(完整版)小升初数学行程问题专题总汇

合集下载

小升初行程问题大全

小升初行程问题大全
例8 客、货两车同时从A、B两地相对开出,4.5小时相遇。相遇时客车比货车多行27千米,货车的速度是客车速度的 ,求A、B两地相距多少千米?
例9 小英骑自行车从甲地到乙地,每小时行15千米。他出发1.2小时后,小玲乘汽车也从甲地出发,经过0.6小时追上的小英。汽车每小时行多少千米?
例10 两只轮船同地从甲、乙两港相对开出,客船每小时行42千米,货船的速度是客船的 。两只轮船在离甲、乙两港中点7千米处相遇。甲、乙两港间的距离是多少?
例14 甲、乙两车同时从A、B两地相对开出,40分钟相遇。相遇后以原速继续前进。乙车又经过5分钟到达A、B两地之中点。甲车每分钟行全程的几分之几?
例15 甲乙两列火车同时从两地相对开出,经过5小时在离中点30千米处相遇。快车每小时行60千米,慢车每小时行多少千米?
例16 一辆客车与一辆货车同时从A、B两地相对开出,经过6小时相遇,相遇后两车都以原速继续前进。以经过4小时客车到达B地,这时货车离A地还有188千米。A、B两地相距多少千米?
例17 甲、乙两车同时从A、B两城相向而行,6小时可以相遇。现在甲车从A城出发1小时后距B城210千米,乙车从B城出发1小时后距A城230千米。A、B两城相距多少千米?
例18 客、货两车分别从甲、乙两城同时出发相向而行,如果两车都按原定速度行驶,那么4小时相遇,现在两车都比原计划每小时少走15千米,结果5小时相遇。甲、乙两地相距多少千米?
例23 小华上学坐车,回家步行,在路上一共用90分钟,如果往返都坐车,全部行程只要30分钟。如果往返都步行,全部行程则需要多少时间。
例24 甲、乙二人同一天从北京出发到广州。甲每天行100千米,乙第一天行70千米,以后每天比前一天多行3千米。乙在出发后第几天追上甲?
例25 小建和小宏两人,从学校到少年宫,小建步行要30分钟,小宏步行要20分钟。如果小建离学校分钟后,小宏再出发,要走几分钟后才能追上小建?

小学数学30道“行程问题”专题归纳,公式+例题+解析!

小学数学30道“行程问题”专题归纳,公式+例题+解析!

小学数学30道“行程问题”专题归纳,公式+例题+解析!“行程问题”作为小学数学常用知识点之一,想必大家并不陌生。

然而面对各种古怪的命题陷阱,不少考生还是心内发苦,看不出解题思路,频频出错。

解答“行程问题”时,究竟该怎么做呢?“行程问题”离不开三个基本要素:路程、速度和时间。

这也是解题的关键所在!今天为大家分享一份行程问题资料,包含公式、例题和解析,有需要的为孩子收藏一下,希望对学习行程问题有帮助~题型公式行程问题核心公式:S=V×T,因此总结如下:当路程一定时,速度和时间成反比当速度一定时,路程和时间成正比当时间一定时,路程和速度成正比从上述总结衍伸出来的很多总结如下:追击问题:路程差÷速度差=时间相遇问题:路程和÷速度和=时间流水问题:顺水速度=船速+水流速度;逆水速度=船速-水流速度水流速度=(顺水速度-逆水速度)÷2船速=(顺水速度-逆水速度)×2两岸问题:S=3A-B,两次相遇相隔距离=2×(A-B)电梯问题:S=(人与电梯的合速度)×时间平均速度:V平=2(V1×V2)÷(V1+V2)5.列车过桥问题①火车过桥(隧道)火车过桥(隧道)时间=(桥长+车长)÷火车速度②火车过树(电线杆、路标)火车过树(电线杆、路标)时间=车长÷火车速度③火车经过迎面行走的人迎面错过的时间=车长÷(火车速度+人的速度)④火车经过同向行走的人追及的时间=车长÷(火车速度-人的速度)⑤火车过火车(错车问题)错车时间=(快车车长+慢车车长)÷(快车速度+慢车速度)⑥火车过火车(超车问题)错车时间=(快车车长+慢车车长)÷(快车速度-慢车速度)考点精讲分析1、邮递员早晨7时出发送一份邮件到对面的山坳里,从邮局开始要走12千米的上坡路,8千米的下坡路。

他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地后停留1小时,又从原路返回,邮递员什么时候可以回到邮局?【解析】核心公式:时间=路程÷速度去时:T=12/4+8/5=4.6小时返回:T’=8/4+12/5=4.4小时T总=4.6+4.4+1=10小时7:00+10:00=17:00整体思考:全程共计:12+8=20千米去时的上坡变成返回时的下坡,去时的下坡变成返回时的上坡因此来回走的时间为:20/4+20/5=9小时所以总的时间为:9+1=10小时7:00+10:00=17:002、小明从甲地到乙地,去时每小时走6千米,回时每小时走9千米,来回共用5小时。

小升初数学复习重点 :17道行程问题题知识点总结

小升初数学复习重点  :17道行程问题题知识点总结

小升初数学复习重点:17道行程问题题知识点总结行程问题是各大杯赛中必考的知识点,也是令无数同学望而生畏的一个难点,建议各位同学在复习行程问题的时候切忌一味钻研偏题怪题,攻克每个行程专题中的最典型题目,将整个行程体系建立起来才是王道,在这里徐老师给大家总结了每个专题中的最典型题目,抛砖引玉,通过一道典型题的学习带大家复习相应模块的核心知识。

一、相遇与追及1、路程和路程差公式【例1】某城市东西路与南北路交会于路口.甲在路口南边560米的点,乙在路口.甲向北,乙向东同时匀速行走.4分钟后二人距的距离相等.再继续行走24分钟后,二人距的距离恰又相等.问:甲、乙二人的速度各是多少?2、多人相遇【例2】有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇.那么,东、西两村之间的距离是多少米?3、多次相遇【例3】甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离是多少千米?二、典型行程专题1、火车过桥【例4】某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟?2、流水行船【例5】甲、乙两艘游艇,静水中甲艇每小时行千米,乙艇每小时行千米.现在甲、乙两游艇于同一时刻相向出发,甲艇从下游上行,乙艇从相距27千米的上游下行,两艇于途中相遇后,又经过4小时,甲艇到达乙艇的出发地.水流速度是多少?3、猎狗追兔【例6】猎人带猎狗去捕猎,发现兔子刚跑出40米,猎狗去追兔子。

已知猎狗跑2步的时间兔子跑3步,猎狗跑4步的距离与兔子跑7步的距离相等,求兔子再跑多远,猎狗可以追上它?。

小升初数学专项 应用题练习:行程问题

小升初数学专项 应用题练习:行程问题

1.甲、乙两车同时从A、B两城出发相向而行.甲每小时行60千米,乙每小时行50千米,出发2小时后乙车行了全程的37,A、B两城相距多少千米?50×2=100(千米)100÷37=7003(千米)答:A、B两城相距7003千米2.甲乙两地相距405千米,一辆汽车从甲地开往乙地,4小时行驶了180千米.照这样的速度,再行驶多少小时,这辆汽车就可以到达乙地?180÷4=45(千米)405﹣180=225(千米)225÷45=5(小时)答:再行驶5小时,这辆汽车就可以到达乙地3.甲、乙两车同时从A地开往B地,乙车6小时达到,甲车每小时比乙车慢8千米,因此比乙车迟到一小时达到.A、B两地间的路程是多少千米?8÷(16﹣17)=8÷142=336(千米)答:A、B两地间的路程是336千米4.甲乙两港相距120千米,一艘轮船从甲港驶往乙港用了5.5小时,返回时因为顺水比去时少用了1小时,求这艘轮船往返的平均速度.120×2÷(5.5+5.5﹣1)=24(千米);答:这艘轮船往返的平均速度是24千米5.甲乙两人从东西两地同时出发,相向而行,甲每分钟行75米,乙每分钟行的是甲的23,经过123小时相遇,求东西两地的距离是多少?123小时=100分钟 75×23=50(米) 75×100+50×100=7500+5000=12500(米).答:东西两地的距离是12500米.6.甲、乙两站相距620千米,一列客车从甲站开往乙站,同时一列货车从乙站开往甲站,经过5小时在途中相遇,已知货车每小时行55千米,客车每小时行多少千米?(列方程解)设客车每小时行x 千米,根据题意列方程得,55×5+5x=620275+5x=6205x=620﹣2755x=345x=69答:客车每小时行69千米7.在一幅比例尺为1:9000000的地图上量得A、B两地的距离是5厘米,如果有两辆汽车同时从A、B两地相对开出,速度分别为每小时行30千米和45千米,问两辆汽车经过几小时后相遇?A、B两地相距:5÷19000000=45000000厘米=450(千米),两车相遇时间:450÷(30+45)=6(小时).答:两辆汽车经过6小时后相遇.8.甲车从A地开往B地要10小时,乙车从B地开往A地要15小时,某日两车分别从两地同时相向开出,结果在距中点120千米处相遇.A、B两地相距多少千米?甲乙速度比(也就是路程比):15:10=3:2,相遇时甲车比乙车多行了全程的:35-25=15,相遇时甲车比乙车多行:120×2=240(千米),AB两地路程是:240÷15=1200(千米).答:A、B两地相距1200千米.9.龟兔赛跑,全程2000米,龟每分钟爬25米,兔每分钟跑320米.兔自以为速度快,在途中睡了一觉,结果龟到终点时,兔离终点还有400米,兔在途中睡了几分钟?2000÷25﹣(2000﹣400)÷320=80﹣1600÷320,=80﹣5,=75(分钟).答:兔子在途中睡了75分钟。

(完整版)小升初行程问题经典试题

(完整版)小升初行程问题经典试题

一、相遇问题1、一列快车和一列慢车,同时从甲、乙两站出发,相向而行,经过6小时相遇,相遇后快车继续行驶3小时后到达乙站。

已知慢车每小时行45千米,甲、乙两站相距多少千米?2、甲、乙二人分别以每小时3千米和5千米的速度从A、B两地相向而行.相遇后二人继续往前走,如果甲从相遇点到达B地共行4小时,那么A、B两地相距多少千米?3.一列快车从甲城开往乙城,每小时行65千米,一列客车同时从乙城开往甲城,每小时行60千米,两列火车在距中点20千米处相遇,相遇时两车各行了多少千米4、兄弟两人同时从家里出发到学校,路程是1400米。

哥哥骑自行车每分钟行200米,弟弟步行每分钟行80米,在行进中弟弟与刚到学校就立即返回来的哥哥相遇。

从出发到相遇,弟弟走了多少米?相遇处距学校有多少米?5、有两只蜗牛同时从一个等腰三角形的顶点A出发(如图),分别沿着两腰爬行。

一只蜗牛每分钟行2.5米,另一只蜗牛每分钟行2米,8分钟后在离C点6米处的P点相遇,BP的长度是多少米?6、甲、乙两人同时从A、B两地相向而行,相遇时距A地120米,相遇后,他们继续前进,到达目的地后立即返回,在距A地150米处再次相遇,AB两地的距离是多少米?7、A、B两地相距38千米,甲、乙两人分别从两地同时出发,相向而行,甲每小时行8千米,乙每小时行11千米,甲到达B地后立即返回A地,乙到达A地后立即返回B地,几小时后两人在途中相遇?相遇时距A地多远?10、甲、乙两人从A地到B地,丙从B地到A地。

他们同时出发,甲骑车每小时行8千米,丙骑车每小时行10千米,甲丙两人经过5小时相遇,再过1小时,乙、丙两人相遇。

求乙的速度。

11、甲、乙、丙三人行走的速度依次分别为每分钟30米、40米、50米。

甲、乙在A地,丙在B地,同时相向而行,丙遇乙后10分钟和甲相遇。

求A、B两地相距多少米?12、甲、乙两车分别从A、B两地同时相对开出,经过5小时相遇,相遇后各自继续前进,又经过3小时,甲车到达B地,这时乙车距A地还有120千米。

小升初数学行程问题专题总汇

小升初数学行程问题专题总汇

小升初数学行程问题专题总汇行程问题(一)相遇问题(异地相向而行)三个大体数量关系:路程= 相遇时刻* 速度和(1)甲乙两人别离从相距20千米的两地同时动身相向而行,甲每小时走6千米,乙每小时走4千米.两人几小时后相遇?(2)甲乙两艘轮船别离从A、B两港同时动身相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,通过6小时两船在途中相遇.两地间的水路长多少千米?(3)一辆汽车和一辆摩托车同时别离从相距900千米的甲、乙两地动身,汽车每小时行40千米,摩托车每小时行50千米.8小时后两车相距多少千米?(4)甲乙两车别离从相距480千米的A、B两城同时动身,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时.两车动身后多少小时相遇?(5)甲车每小时行6千米,乙车每小时行5千米,两车于相隔10千米的两地同时相背而行,几小时后两人相隔65千米?(6)东西两镇相距20千米,甲、乙两人别离从两镇同时动身相背而行,甲每小时的路程是乙的2倍,3小时后两人相距56千米.两人的速度各是多少?(二)追击问题(同向异速而行相遇)同向追及问题的特点是:两个物体同时沿同一方向运动,慢者在前面,快者在后面。

他们之间的距离不断缩短,直到快者追上慢者。

设V1 < V2 甲的速度为V1 乙的速度为V2 甲乙相距△S甲在乙前若同时同向而行当甲乙相遇即乙恰好追上甲时历时T则: △S + V1*T = V2*T它有三个大体的数量:追及时刻、速度差和路程差。

其大体的数量关系式是:追及时刻=路程差(即相隔路程)/速度差(快行速度-慢行速度)速度差=路程差/追及时刻路程差=速度差*追及时刻(1)小强和小英从相距80米的两地同时同向行走,小英在前面每分钟走50米,小强在后面每分钟走70米。

两分钟后小强和小英还相隔多少米?(2)甲、乙两艘轮船从相距60千米的码头同时动身相向而行,甲轮船每小时行驶25千米,乙轮船在后每小时行38千米,几小时后两轮船还相距21千米?(3)娟子和小平从相距140米的两地同时同向而行,小平在前每分钟走45米,娟子在后每分钟走65米,即分钟后娟子能够追上小平?(4)一辆汽车从甲地动身,速度是每小时50千米,在汽车开出1小时后,一辆摩托车以每小时75千米的速度从同一地址动身沿同一行驶线路去追这辆汽车,几小时能够追上?追上时距动身地的距离是多少?(5)甲、乙两车同时、同地动身去货场运货。

(完整版)小升初数学行程问题应用题(附答案)

(完整版)小升初数学行程问题应用题(附答案)

小升初数学行程问题应用题1、甲乙两车同时从AB两地相对开出。

甲行驶了全程的5/11,如果甲每小时行驶4。

5千米,乙行了5小时。

求AB两地相距多少千米?2、一辆客车和一辆货车分别从甲乙两地同时相向开出。

货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。

甲乙两地相距多少千米?3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。

现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。

求乙绕城一周所需要的时间?4、甲乙两人同时从A地步行走向B地,当甲走了全程的1/4时,乙离B地还有640米,当甲走余下的5/6时,乙走完全程的7/10,求AB 两地距离是多少米?5、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。

甲车每小时行75千米,乙车行完全程需7小时。

两车开出3小时后相距15千米,A,B两地相距多少千米?6、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟乙相遇?7、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车?8、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走0。

5千米,求甲、乙两人的速度?9、两列火车同时从相距400千米两地相向而行,客车每小时行60千米,货车小时行40千米,两列火车行驶几小时后,相遇有相距100千米?10、甲每小时行驶9千米,乙每小时行驶7千米。

两者在相距6千米的两地同时向背而行,几小时后相距150千米?11、甲乙两车从相距600千米的两地同时相向而行已知甲车每小时行42千米,乙车每小时行58千米两车相遇时乙车行了多少千米? 12、两车相向,6小时相遇,后经4小时,客车到达,货车还有188千米,问两地相距?13、甲乙两地相距600千米,客车和货车从两地相向而行,6小时相遇,已知货车的速度是客车的3分之2 ,求二车的速度?14、小兔和小猫分别从相距40千米的A、B两地同时相向而行,经过4小时候相聚4千米,再经过多长时间相遇?15、甲、乙两车分别从a b两地开出甲车每小时行50千米乙车每小时行40千米甲车比乙车早1小时到两地相距多少?16、两辆车从甲乙两地同时相对开出,4时相遇。

小升初数学行程问题必考题型

小升初数学行程问题必考题型

小升初数学行程问题必考题型01甲、乙两人分别从相距100 米的 A 、B 两地出发,相向而行,其中甲的速度是 2 米每秒,乙的速度是3 米每秒。

一只狗从 A 地出发,先以6 米每秒的速度奔向乙,碰到乙后再掉头冲向甲,碰到甲之后再跑向乙,如此反复,直到甲、乙两人相遇。

问在此过程中狗一共跑了多少米?02某人上午八点从山脚出发,沿山路步行上山,晚上八点到达山顶。

不过,他并不是匀速前进的,有时慢,有时快,有时甚至会停下来。

第二天,他早晨八点从山顶出发,沿着原路下山,途中也是有时快有时慢,最终在晚上八点到达山脚。

试着说明:此人一定在这两天的某个相同的时刻经过了山路上的同一个点。

03甲从A 地前往 B 地,乙从 B 地前往 A 地,两人同时出发,各自匀速地前进,每个人到达目的地后都立即以原速度返回。

两人首次在距离 A 地700 米处相遇,后来又在距离B 地400 米处相遇。

求 A 、B 两地间的距离。

04甲、乙、丙三人百米赛跑,每次都是甲胜乙10 米,乙胜丙10 米。

则甲胜丙多少米?05哥哥弟弟百米赛跑,哥哥赢了弟弟1 米。

第二次,哥哥在起跑线处退后1 米与弟弟比赛,那么谁会获胜?06如果你上山的速度是2 米每秒,下山的速度是6 米每秒(假设上山和下山走的是同一条山路)。

那么,你全程的平均速度是多少?07船在静水中往返A 、 B 两地和在流水中往返 A 、B 两地相比,哪种情况下更快?这是一个经典问题了。

08船在流水中逆水前进,途中一个救生圈不小心掉入水中,一小时后船员才发现并调头追赶。

则追上救生圈所需的时间会大于一个小时,还是小于一个小时,还是等于一个小时?这也是一个经典问题了。

中学物理竞赛中曾出现过此题,《编程之美》上也有一个完全相同的问题。

09你需要从机场的一号航站楼走到二号航站楼。

路途分为两段,一段是平地,一段是自动传送带。

假设你的步行速度是一定的,因而在传送带上步行的实际速度就是你在平地上的速度加上传送带的速度。

(完整版)小升初行程问题

(完整版)小升初行程问题

行程问题考点一:一般行程问题公式,速度×时间=路程 路程÷时间=速度 路程÷速度=时间 考点二:相遇问题公式,速度和×相遇时间=相遇路程 相遇路程÷相遇时间=速度和 相遇路程÷速度和=相遇时间考点三:追及问题公式,速度差×追及时间=追及距离 追及距离÷追及时间=速度差 追及距离÷速度差=追及时间考点四:火车过桥公式:火车速度×过桥时间=车长+桥长考点五:流水行船公式,顺水速度=船速+水速 逆水速度=船速-水速 船速=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2 顺水速度=逆水速度+水速×2 逆水速度=顺水速-水速×2考点六:环形行程问题公式,封闭环形上的相遇问题,利用关系式:环形周长÷速度和=相遇时间 封闭环形上的追及问题,利用关系:环形周长÷速度差=追及时间【例1】甲乙二人同时从两地出发,相向而行。

走完全程,甲需要60分钟,乙需要40分钟。

出发后5分钟,甲因忘带东西而返回出发点,取东西又耽误了5分钟。

甲再次出发,多长时间后两人相遇?【例2】两列火车从甲、乙两地相向而行,慢车从甲地到乙地需要8小时,比快车从乙地到甲地多用31的时间。

如果两车同时开出,那么相遇时快车比慢车多行40千米。

求甲、乙两地的距离。

【例3】一艘轮船顺流航行120千米,逆流航行80千米共用了16小时,逆流航行120千米也用了16小时。

求水流速度。

【例4】已知某铁路长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用了120秒,整列火车完全在桥上的时间为80秒,求火车的速度和长度。

【例5】甲乙二人在操场的400米跑到上练习竞走,两人同时出发,出发时甲在乙的后面,出发后6分钟甲第一次追上乙,22分钟时甲第二次追上乙。

假设两人的速度都保持不变,问:出发时甲在乙身后多少米?【例6】甲乙两车分别从A 、B 两地同时出发,在A 、B 之间不断往返行驶。

小学数学小升初考点行程问题(火车过桥问题)经典题型题型全

小学数学小升初考点行程问题(火车过桥问题)经典题型题型全

1.一列火车长360米,每秒行30米,全车通过一个山洞需要20秒,这个山洞长多少米?30×20-360=240(米)2.一列火车经过南京长江大桥,大桥长6700米,这列火车长100米,每分钟行驶400米,这列火车经过长江大桥需要多长时间?(6700+100)÷400=17(分)3.某列火车通过一条长342米的隧道用了23秒,接着通过一条长234米的隧道用了17秒。

火车的速度和车长各是多少?速度:(342-234)÷(23-17)=18(米/秒)车长:18×23-342=72(米)4.一列火车通过一座长1200米的大桥要用50秒。

如果以同样的速度穿过一条长600米的隧道则要用30秒。

求这列火车的车身长和速度。

速度:(1200-600)÷(50-30)=30(米/秒)车长:30×50-1200=300(米)5.小明站在铁路旁,一列火车从他身旁通过用了8秒,这列火车又通过一座长850米的大桥用了33秒,火车的长度和速度各是多少?速度:850÷(33-8)=34(米/秒)车长:34×8=272(米)6.小明站在铁路边,一列火车从他身边开过用了2分钟。

已知这列火车长900米,以同样的速度通过一座大桥,用了5分钟,这座大桥长多少米?速度:900÷2=450(米/分)桥长: 450×5-900=1350(米)7.某人以120米/分的速度沿铁路边跑步,一列长288米的火车从对面开来,从他身边通过用了8秒,求火车的速度。

120米/分=2米/秒 288÷8=36(米/秒)36-2=34(米/秒)8.小张以每秒2米的速度前进,他看见对面开来的火车只用5秒钟就从他身边驶过。

如果知道迎面来的火车长70米,那么火车的速度是多少?70÷5=14(米/秒) 14-2=14(米/秒)9.某人沿着铁路边的步道行走。

小升初复习行程问题练习(含答案)

小升初复习行程问题练习(含答案)

行程问题练习知识点梳理一、基础公式①路程=速度×时间②时间=路程÷速度③速度=路程÷时间二、常见题型①一般相遇:路程和=时间×速度和②中点相遇:四步曲(1)找出快走者多走的路程:中点路程×2 (2)算出速度差:快者速度-慢者速度 (3)时间:(1)的路程÷(2)的速度=时间(4)套用公式:路程和=时间×速度和③往返相遇:两者相对行驶,第三人在中间往返。

同时出发、同时停止就是相遇时间。

④环形相遇:背向行驶,相遇几次就共走了几个全长。

三、解题思路①画行程图理解题意。

②分析题型。

③套用公式。

例题1红红和聪聪分别从相距 1026 米的两地同时出发,相向而行。

红红家的小狗也跟来了,而且跑在了红红的前面。

当小狗和聪聪相遇后,立即返回跑向红红,遇到红红后,又立即返回跑向聪聪,这样跑来跑去,一直到两人相遇。

这只小狗一共跑了__________米。

(已知红红每分钟走54 米,聪聪每分钟走60 米,小狗每分钟跑70米)例题2一辆客车从 A 地出发开往 B 地,同时一辆货车从 B 地出发开往 A 地。

3 小时后两车在离 A 地 180 千米的 C 地相遇。

相遇后两车继续向前行驶,2 小时后,客车到达 B 地。

此刻,货车还要行驶多少小时才能到达A地?例题3星期天,小英从家里出发去少年宫学画画。

她刚走不久,妈妈发现小英忘了带画笔,于是就去追小英。

如图象表示两人行走的时间和路程。

①妈妈每分钟走__________米;②照这样的速度,妈妈出发后__________分钟可以追上小英。

例题4某日上午,甲、乙两车先后从 A 地出发沿一条公路匀速前往 B 地。

甲车 7 点出发,如图是甲行驶路程 s(千米)随行驶时间 t(小时)变化的图像。

乙车 8 点出发,若要在 9 点至 10 点之间(含 9 点和 10 点)追上甲车,则乙车的速度 v (单位:千米/时)的范围是__________。

小学数学小升初行程问题总结及答案详解

小学数学小升初行程问题总结及答案详解

行程问题经典题型1、甲、乙两地相距6千米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行70米。

问他走后一半路程用了多少分钟?2、甲、乙两辆汽车同时从东西两地相向开出,甲每小时行56千米,乙每小时行48千米,两车在离两地中点32千米处相遇。

问:东西两地的距离是多少千米?3、李华步行以每小时4千米的速度从学校出发到20.4千米外的冬令营报到.0.5小时后,营地老师闻讯前往迎接,每小时比李华多走1.2千米。

又过了1。

5小时,张明从学校骑车去营地报到。

结果3人同时在途中某地相遇。

问:骑车人每小时行驶多少千米?4 小轿车的速度比面包车速度每小时快6千米,小轿车和面包车同时从学校开出,沿着同一路线行驶,小轿车比面包车早10分钟到达城门,当面包车到达城门时,小轿车已离城门9千米,问学校到城门的距离是多少千米?5 小张从家到公园,原打算每分种走50米。

为了提早10分钟到,他把速度加快,每分钟走75米.问家到公园多远?6、上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他。

然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?“相遇问题”,常常要考虑两人的速度和.7、小张从甲地到乙地步行需要36分钟,小王骑自行车从乙地到甲地需要12分钟。

他们同时出发,几分钟后两人相遇?8、小张从甲地到乙地,每小时步行5千米,小王从乙地到甲地,每小时步行4千米。

两人同时出发,然后在离甲、乙两地的中点1千米的地方相遇,求甲、乙两地间的距离.9、一列长100米的火车过一座桥,火车的速度是25米/秒,它过桥一共用了10秒,那么桥的长度是多少?10、甲骑摩托车,乙骑自行车,同时从相距126千米的A、B两城出发、相向而行。

3小时后,在离两城中点处24千米的地方,甲、乙二人相遇。

求甲、乙二人的速度各是多少?11、客轮行了全程的3\7时,货轮行全程的多少? 3/7×7/10=3/10 2.甲乙两码头相距多少千米?12、A、B两城相距240千米,一辆汽车计划用6小时从A城开到B城,汽车行驶了一半路程,因故障在中途停留了30分钟,如果按原计划到达B城,汽车在后半段路程时速度应加快多少?13、两码头相距231千米,轮船顺水行驶这段路程需要11小时,逆水每小时少行10千米,问行驶这段路程逆水比顺水需要多用几小时?14、一辆汽车从甲地出发到300千米外的乙地去,在一开始的120千米内平均速度为每小时40千米,要想使这辆车从甲地到乙地的平均速度为每小时50千米,剩下的路程应以什么速度行驶?15、骑自行车从甲地到乙地,以每小时10千米的速度行驶,下午1时到;以每小时15千米的速度行驶,下午1时到;以每小时15千米的速度行进,上午11时到;如果希望中午12时到,应以怎样的速度行进?16、一辆公共汽车和一辆小轿车同时从相距299千米的两地相向而行,公共汽车每小时行 40千米,小轿车每小时行52千米,问:几小时后两车第一次相距69千米?再过多少时间两车再次相距69千米?17、一列客车与一列货车同时同地反向而行,货车比客车每小时快6千米,3小时后,两车相距342千米,求两车速度.18、甲、乙两车同时从A、B两地相向而行,它们相遇时距A、B两地中心处8千米,已知甲车速度是乙车的1.2倍,求A、B两地距离。

(完整版)小升初行程问题大全(含答案)

(完整版)小升初行程问题大全(含答案)

行程问题【题目1】有甲乙丙三车各以一定的速度从A到B,乙比丙晚出发10分钟,出发后40分钟追上丙,甲比乙又晚出发10分钟,出发后60分钟追上丙,问,甲出发后多少分钟可以追上乙?【题目2】正方形ABCD是一条环形公路,已知汽车在AB上的时速为90千米,在BC上的时速是120千米,在CD 上的时速是60千米,在DA上的时速是80千米。

已知从CD上的一点P同时反向各发一辆汽车,他们将在A、B的中点上相遇。

那么如果从PC中点M点同时反向各发一辆汽车,他们将在A、B上的一点N相遇。

求AN占AB的几分之几?【题目3】甲乙二人在400米的跑道上进行两次竞赛,第一次乙先跑到25米后,甲开始追乙,到终点比乙提前7.5秒,第二次乙先跑18秒后,甲追乙,当乙到终点时,甲距终点40米,求在400米内,甲乙速度各多少?【题目4】甲乙两人分别从AB两地同时出发,在AB之间往返跑步,甲每秒跑3米,乙每秒跑7米。

如果他们第四次相遇点与第五次相遇点的距离是150米,那么AB之间的距离是多少米?【题目5】甲乙两辆车在一条长为10千米的环形公路上从同一地点同时反向开出,甲车开出4千米时两车相遇。

如果每次相遇后两车都提速10%,求第三次相遇时甲车离出发点多远。

【题目6】甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们下山的速度是各自上山速度的2倍。

甲到达山顶时乙距山顶还有400米;甲回到山脚时,乙刚好下到半山腰。

求山脚到山顶的距离。

【题目7】甲乙两车同时从A、B两地出发相向而行,两车中途相遇后,甲又用4小时到B地,乙又用9小时到A地,相遇时,甲车比乙车多行了90千米,求甲乙两车每小时各行多少千米?【题目1】一次越野赛跑中,当小明跑了1600米时,小刚跑了1450米,此后两人分别以每秒a米和每秒b米匀速跑,又过100秒时小刚追上小明,200秒时小刚到达终点,300秒时小明到达终点,这次越野赛跑的全程为多少?【题目2】甲乙两车分别从AB两地同时出发相向而行,出发时,甲和乙的速度比是4:3,相遇后,甲的速度减少10%,乙的速度增加20%。

小升初数学行程问题典型题精选

小升初数学行程问题典型题精选

小升初数学行程问题典型题精选1.羊跑5步的时刻马跑3步,马跑4步的距离羊跑7步,现在羊已跑出30米,马开始追它。

问:羊再跑多远,马能够追上它?解:依照马跑4步的距离羊跑7步,能够设马每步长为7x米,则羊每步长为4x米。

依照羊跑5步的时刻马跑3步,可知同一时刻马跑3*7x米=21x米,则羊跑5*4x=20米。

能够得出马与羊的速度比是21x:20x=21:20依照现在羊已跑出30米,能够明白羊与马相差的路程是30米,他们相差的份数是21-20=1,现在求马的21份是多少路程,确实是30(21-20)21=630米2.甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b两地相距多少千米?答案720千米。

由甲车行完全程要8小时,乙车行完全程要10小时可知,相遇时甲行了10份,乙行了8份(总路程为18份),两车相差2份。

又因为两车在中点40千米处相遇,说明两车的路程差是(40+40)千米。

因此算式是(40+ 40)(10-8)(10+8)=720千米。

3.在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,依旧在原先动身点同时动身,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?答案为两人跑一圈各要6分钟和12分钟。

解:60012=50,表示哥哥、弟弟的速度差6004=150,表示哥哥、弟弟的速度和(50+150)2=100,表示较快的速度,方法是求和差问题中的较大数(150-50)/2=50,表示较慢的速度,方法是求和差问题中的较小数600100=6分钟,表示跑的快者用的时刻600/50=12分钟,表示跑得慢者用的时刻4.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时刻?答案为53秒算式是(140+125)(22-17)=53秒能够如此明白得:快车从追上慢车的车尾到完全超过慢车确实是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和。

行程问题知识点总结小升初

行程问题知识点总结小升初

行程问题知识点总结小升初一、行程的概念行程是一个物体从一个地点到另一个地点所经过的路程,是一个物体在空间中的移动过程。

在我们日常生活中,行程是非常常见的,比如我们每天都需要走路去学校或者去购物,这些都是行程。

二、行程的求解1. 行程的公式行程等于速度乘以时间,公式为:行程 = 速度 × 时间其中,行程的单位通常为米(m)或千米(km),速度的单位通常为米每秒(m/s)或千米每小时(km/h),时间的单位通常为秒(s)或小时(h)。

2. 行程的求解要求解行程,就需要已知速度或时间中的一个参数,再通过行程的公式进行计算。

例如,如果已知速度和时间,就可以用公式求解行程;如果已知速度和行程,就可以用公式求解时间。

三、行程问题的应用1. 同向行程问题同向行程问题是指两个物体从同一地点出发,朝同一个方向移动,问它们何时能相遇。

这种问题通常需要通过分析两个物体的行程和速度来求解。

2. 相向行程问题相向行程问题是指两个物体从两个不同的地点出发,朝着对方的方向移动,问它们何时能相遇。

这类问题也需要通过分析两个物体的行程和速度来求解。

四、行程问题的解题步骤1. 分析题目首先要看清楚题目中给出的信息,包括物体的速度、行程和时间等,从而确定需要求解的问题类型。

2. 建立方程根据题目中给出的信息,建立相应的方程,通常是利用行程的公式进行建立。

3. 求解方程通过解方程来求解行程问题,可以使用代入法、消元法等进行求解。

4. 检查答案最后还要检查所得的答案是否符合题意,是否合理。

五、行程问题的注意事项1. 单位换算在求解行程问题时,要注意单位的换算,比如将小时换算为秒,将千米换算为米等。

2. 约束条件在建立方程时,要注意约束条件,比如物体的速度和时间不能为负数,行程不能为零等。

3. 问题拓展学习了基本的行程问题解法后,还可以拓展一些复杂的应用问题,比如通过行程问题求解相遇时间等。

六、行程问题的综合练习为了更好地掌握行程问题的解题方法,可以做一些综合练习,包括同向行程问题、相向行程问题、相遇时间问题等,从而提高解题能力。

小升初行程问题例题及答案

小升初行程问题例题及答案

小升初行程问题例题及答案小升初行程问题例题及答案【第一篇:流水行船求时间】某河有相距45千米的上下两港,每天定时有甲乙两船速相同的客轮分别从两港同时出发相向而行,这天甲船从上港出发掉下一物,此物浮于水面顺水漂下,4分钟后与甲船相距1千米,预计乙船出发后几小时可与此物相遇。

【解】:物体漂流的速度与水流速度相同,所以甲船与物体的速度差即为甲船本身的船速(水速作用抵消),甲的船速为1÷1/15=15千米/小时;乙船与物体是个相遇问题,速度和正好为乙本身的船速,所以相遇时间为:45÷15=3小时【拓展】甲轮船和自漂水流测试仪同时从上游的A站顺水向下游的B站驶去,与此同时乙轮船自B站出发逆水向A站驶来。

7.2时后乙轮船与自漂水流测试仪相遇。

已知甲轮船与自漂水流测试仪2.5时后相距31.25千米,甲、乙两船航速相等,求A,B两站的距离。

【解】:因为测试仪的漂流速度与水流速度相同,所以若水不流动,则7.2时后乙船到达A站,2.5时后甲船距A站31.25千米。

由此求出甲、乙船的航速为31.25÷2.5=12.5(千米/时)。

A,B两站相距12.5×7.2=90(千米)。

【第二篇:流水行船求船速】江上有甲、乙两码头,相距15千米,甲码头在乙码头的上游,一艘货船和一艘游船同时从甲码头和乙码头出发向下游行驶,5小时后货船追上游船。

又行驶了1小时,货船上有一物品落入江中(该物品可以浮在水面上),6分钟后货船上的人发现了,便掉转船头去找,找到时恰好又和游船相遇。

则游船在静水中的速度为每小时多少千米?【解】:此题可以分为几个阶段来考虑。

第一个阶段是一个追及问题。

在货舱追上游船的过程中,两者的追及距离是15千米,共用了5小时,故两者的速度差是15÷5=3千米。

由于两者都是顺水航行,故在静水中两者的速度差也是3千米。

在紧接着的1个小时中,货船开始领先游船,两者最后相距3*1=3千米。

小升初数学行程问题应用题总结大全

小升初数学行程问题应用题总结大全

如何考好小学升初中的行程问题应用题(总结大全!全部学会,再多做题巩固,保证拿分!)※一定要理解:在行车、走路等类似运动时,已知其中的两种量,按照速度、路程和时间三者之间的相互关系,求第三种量的问题,叫做“行程问题”。

此类问题一般分为四类:一、相遇问题;二、相离问题;三、追击问题;四、过桥问题。

一、相遇问题※一定要理解:两个运动物体作相向运动,或在环形道口作背向运动,随着时间的延续、发展,必然面对面地相遇。

这类问题即为相遇问题。

例1:AB两地相距2800千米,甲乙两车同时从AB两地相向开出。

甲车每小时行45千米,乙车每小时行25千米。

问:两车需要几小时相遇?解:2800÷(45+25)=2800÷70=40(小时)答:两车需要40小时相遇。

二、相离问题※一定要理解:两个运动着的动体,从同一地点相背而行。

若干时间后,间隔一定的距离,求这段距离的问题,叫做相离问题。

它与相遇问题类似,只是运动的方向有所改变。

三、追击问题※一定要理解:两个运动着的物体从不同的地点出发,同向运动。

慢的在前,快的在后,经过若干时间,快的追上慢的。

解答这类问题,要找出两个运动物体之间的距离和速度之差,从而求出追击时间。

掌握下面几个数量关系:追击的路程÷速度差=追击时间速度差×追击时间=追击的路程追击的路程÷追击时间=速度差例1:甲、乙两人分别从东西两地同时向东面行。

甲步行每小时行5千米,乙骑车每小时行14千米。

4小时后,甲被乙追上。

求:东西两地的距离。

解:当乙追上甲时,乙比甲多走的路程正好是东、西两地的距离。

列式:(14-5)×4=36(千米)答:东西两地的距离为36千米。

※行程的另一类追击问题:分、时针重叠问题。

认真学习:六年级(时钟问题),见截图:例:当时针在3点,分针在12点时,分针第一次与时针重叠时,是几点几分?※一定要理解:一个钟表一圈:分为60个小格,分针每小时走60小格,时针每小时走5小格,因为一圈12个小时,60÷12=5(小格),所以:时针的速度是分针速度的1/12,分针每分钟比时针多走1-1/12=11/12小格。

小升初数学行程问题专项训练题及答案

小升初数学行程问题专项训练题及答案

小升初数学行程问题专项训练题及答案一、甲、乙两车分别从A、B两地同时出发,相向而行,甲车每小时行40千米,乙车每小时行60千米,两车相遇后,甲车还需要再行多少小时才能到达B地?二、A、B两地相距1000千米,甲车从A地出发,乙车从B地出发,两车同时出发相向而行。

甲车每小时行50千米,乙车每小时行70千米。

两车相遇后,甲车还需要再行多少小时才能到达B地?三、甲、乙两车分别从A、B两地同时出发,相向而行。

甲车每小时行60千米,乙车每小时行45千米。

两车相遇后,甲车还需要再行多少小时才能到达B地?答案:一、甲、乙两车分别从A、B两地同时出发,相向而行,甲车每小时行40千米,乙车每小时行60千米,两车相遇后,甲车还需要再行多少小时才能到达B地?解题思路:1、设两车相遇后甲车还需要再行x小时才能到达B地。

2、根据题意,甲车每小时行40千米,乙车每小时行60千米。

两车相遇后,甲车还需要再行x小时才能到达B地。

3、根据速度和时间的关系,可以得到方程:40x + 60x = 1000。

4、解方程得到:x = 10小时。

二、A、B两地相距1000千米,甲车从A地出发,乙车从B地出发,两车同时出发相向而行。

甲车每小时行50千米,乙车每小时行70千米。

两车相遇后,甲车还需要再行多少小时才能到达B地?解题思路:1、设两车相遇后甲车还需要再行x小时才能到达B地。

2、根据题意,甲车每小时行50千米,乙车每小时行70千米。

两车相遇后,甲车还需要再行x小时才能到达B地。

3、根据速度和时间的关系,可以得到方程:50x + 70x = 1000。

4、解方程得到:x = 8.33小时。

三、甲、乙两车分别从A、B两地同时出发,相向而行。

甲车每小时行60千米,乙车每小时行45千米。

两车相遇后,甲车还需要再行多少小时才能到达B地?解题思路:1、设两车相遇后甲车还需要再行x小时才能到达B地。

2、根据题意,甲车每小时行60千米,乙车每小时行45千米。

【小升初】小学数学《行程问题专题课程》含答案

【小升初】小学数学《行程问题专题课程》含答案

17.行程问题知识要点梳理一、基本公式:1.路程=速度×时间2.速度=路程÷时间3.时间=路程÷速度二、问题类型1.相遇问题:①相遇时间=总路程÷速度和②速度和=总路程÷相遇时间③总路程=速度和×相遇时间2.追及问题:①追及时间=路程差÷速度差②速度差=路程差÷追及时间③路程差=速度差×追及时间3.流水行船问题:①顺水速度=船速+水速②逆水速度=船速-水速③船速=(顺水速度+逆水速度)÷2④水速=(顺水速度-逆水速度)÷24.列车过桥问题:(1) 火车过桥(隧道):火车过桥(隧道)时间=(桥长+车长)÷火车速度(2) 火车过树(电线杆、路标):火车过树(电线杆、路标)时间=车长÷火车速度(3) 火车过人:①火车经过迎面行走的人:迎面错过的时间=车长÷(火车速度+人的速度)②火车经过同向行走的人:追及的时间=车长÷(火车速度-人的速度)(4) 火车过火车:①错车问题:错车时间=(快车车长+慢车车长)÷(快车速度+慢车速度)②超出问题:错车时间=(快车车长+慢车车长)÷(快车速度-慢车速度)考点精讲分析典例精讲考点1 一般行程问题【例1】小王骑公共自行车从家去上班,每分钟行350米,用了20分钟,下午下班沿原路回家,每分钟比去时多骑50米,多少分钟到家?【精析】先根据路程=速度×时间,求出家到单位的距离,再求出下班的速度,最后根据时间=路程÷速度即可解答。

【答案】350×20=7000(米)350+50=400 (米/分)7000÷400=17.5(分钟)答:17.5分钟到家。

【归纳总结】本题考查知识点:依据速度,时间以及路程之间的数量关系解决冋题。

考点2 相遇问题【例2】甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A 城到B城需6小时,乙车从B城到A城需12小时。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小升初数学行程问题专题总汇
行程问题
(一)相遇问题(异地相向而行)
三个基本数量关系:路程 = 相遇时间×速度和
例1甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米.两人几小时后相遇?
例2甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇.两地间的水路长多少千米?
例3一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米.8小时后两车相距多少千米?
例4甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时.两车出发后多少小时相遇?
例5甲车每小时行6千米,乙车每小时行5千米,两车于相隔10千米的两地同时相背而行,几小时后两人相隔65千米?
例6东西两镇相距20千米,甲、乙两人分别从两镇同时出发相背而行,甲每小时的路程是乙的2倍,3小时后两人相距56千米.两人的速度各是多少?
(二)追击问题(同向异速而行相遇)
同向追及问题的特点是:两个物体同时沿同一方向运动,慢者在前面,快者在后面。

他们之间的距离不断缩短,直到快者追上慢者。

设 V
1 < V
2
甲的速度为V
1
乙的速度为V
2
甲乙相距△S
甲在乙前若同时同向而行当甲乙相遇即乙刚好追上甲时用时T
则: △S + V
1*T = V
2
*T
它有三个基本的数量:追及时间、速度差以及路程差。

其基本的数量关系式是:追及时间=路程差(即相隔路程)/速度差(快行速度-慢行速度)速度差=路程差/追及时间路程差=速度差*追及时间
(1)小强和小英从相距80米的两地同时同向行走,小英在前面每分钟走50米,小强在后面每分钟走
70米。

两分钟后小强和小英还相隔多少米?
(2)甲、乙两艘轮船从相距60千米的码头同时出发相向而行,甲轮船每小时行驶25千米,乙轮船在后
每小时行38千米,几小时后两轮船还相距21千米?
(3)娟子和小平从相距140米的两地同时同向而行,小平在前每分钟走45米,娟子在后每分钟走65米,
即分钟后娟子可以追上小平?
(4)一辆汽车从甲地出发,速度是每小时50千米,在汽车开出1小时后,一辆摩托车以每小时75千米
的速度从同一地点出发沿同一行驶路线去追这辆汽车,几小时可以追上?追上时距出发地的距离是多少?
(5)甲、乙两车同时、同地出发去货场运货。

甲车每小时行64千米,乙车每小时行 48千米。

途中甲车
因出故障,停车修理3小时,结果乙车比甲车早1小时到达货场,问出发地到货场的路程是多少千米?
思路启迪根据要求,要想求出两地之间的距离,需要先求出甲车或乙车的行使时间。

求行使的时间,可以用追及的问题求时间的思路来解答。

条件“甲车中途停车3小时,乙车比甲车早1小时到达“可以理解为乙车比甲车先出发2小时,两车同时到达货场。

也就是甲车要追的路程为48*2=96(千米),速度差为64-48=16(千米),这样可求出甲车行使的时间为96/16=6(小时),从而求出两地之间的路程。

解: 64*((48*2)/(64-48)+2)=384(千米)
***(6) 甲、乙两人在一个400米的环形跑道上跑步,若二人同时从同一地点同方向出发, 甲过10分钟第一次从乙身后追上乙;若二人同时从同一点反向而行,只要2分钟就相遇。

求甲、乙的速度?
思路启迪此题是一道追击问题和相遇合一的题。

由题意可知,同向即为追及问题,那甲、乙的速度差为400/10=40(米/分钟),甲、乙的速度和为400/2=200(米/分钟);那甲的速度为(200+40)/2=120(米/分钟),乙的速度为(200-40)/2=80(米/分钟)。

(三)环形跑道问题
环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。

(1)一条环形跑道长400米,小强每分钟跑300米,小星每分钟跑250米,两人同时同地同向出发,经过多长时间小强第一次追上小星?
(2) 光明小学有一条长200米的环形跑道,亮亮和晶晶同时从起跑线起跑.亮亮每秒跑6米,晶晶每秒跑4米,问:亮亮第一次追上晶晶时两人各跑了多少米?
(3) 一环形公路周长是24千米,甲乙两人从公路上的同一地点同一时间出发,背向而行,3小时后他们相遇。

已知甲每小时比乙慢0.5千米,求甲、乙两人速度各是多少?
(四)顺风顺水问题
顺风实际速度= 交通工具速度+ 风速
逆风实际速度= 交通工具速度- 风速
逆水同上
(1) 一艘轮船的静水速度为每小时18千米,水流速度为每小时3千米,这艘船从相距3.15千米的两个港口间来回一趟至少需要多少小时?
(2) 一架飞机在两城之间飞行,风速为24千米/时。

顺风飞行需要2小时50分,逆风飞行需要3
小时,求无风时飞机的航速和两城之间的航程。

(3) 两码头相距360千米,一艘汽艇顺水航行行完全程要9小时,逆水航行完全程要12小时。

这艘船在静水中的速度是多少千米?这条河水流速是多少千米?
(五)火车过桥问题
(1)一列匀速行驶的火车通过800米长的隧道用时50s,通过600米长的大桥用时40s,求这列火车的长度为多少米?列车的速度为多少km/h?
(2)有一列客车长190米,另有一列货车长290米。

客车的速度与货车的速度比为5:3,已知它们同向行驶时,两车交叉时间为1分钟,问:它们相向行驶时,两车交叉的时间是多少?。

相关文档
最新文档