铸造工艺中液态金属凝固成形的关键问题
铸件中常见缺陷
铸件中常见的主要缺陷有:1.气孔这是金属凝固过程中未能逸出的气体留在金属内部形成的小空洞,其内壁光滑,内含气体,对超声波具有较高的反射率,但是又因为其基本上呈球状或椭球状,亦即为点状缺陷,影响其反射波幅。
钢锭中的气孔经过锻造或轧制后被压扁成面积型缺陷而有利于被超声检测所发现,如图2.2所示。
2.缩孔与疏松铸件或钢锭冷却凝固时,体积要收缩,在最后凝固的部分因为得不到液态金属的补充而会形成空洞状的缺陷。
大而集中的空洞称为缩孔,细小而分散的空隙则称为疏松,它们一般位于钢锭或铸件中心最后凝固的部分,其内壁粗糙,周围多伴有许多杂质和细小的气孔。
由于热胀冷缩的规律,缩孔是必然存在的,只是随加工工艺处理方法不同而有不同的形态、尺寸和位置,当其延伸到铸件或钢锭本体时就成为缺陷。
钢锭在开坯锻造时如果没有把缩孔切除干净而带入锻件中就成为残余缩孔(缩孔残余、残余缩管),如图2.3、2.4、2.5所示。
如果铸件的型模设计不当、浇注工艺不当等,也会在铸件与型模接触的部位产生疏松,如图2.28所示。
断口照片中的黑色部分即为疏松部位,其呈现黑色是因为该工件已经过退火处理,使得疏松部位被氧化和渗入机油所致。
图2.28 W18钢铸件-用作铣刀齿,采用超声纵波垂直入射多次底波衰减法发现的疏松断口照片3.夹渣熔炼过程中的熔渣或熔炉炉体上的耐火材料剥落进入液态金属中,在浇注时被卷入铸件或钢锭本体内,就形成了夹渣缺陷。
夹渣通常不会单一存在,往往呈密集状态或在不同深度上分散存在,它类似体积型缺陷然而又往往有一定线度。
4.夹杂熔炼过程中的反应生成物(如氧化物、硫化物等)-非金属夹杂,如图2.1和2.6,或金属成分中某些成分的添加料未完全熔化而残留下来形成金属夹杂,如高密度、高熔点成分-钨、钼等,如图2.29,也有如图2.24所示钛合金棒材中的纯钛偏析。
(a)(b)(c)(d)(e)图2.29 BT9钛合金锻制饼坯中的钼夹杂:(a)剖面低倍照片;(b)X射线照相底片;(c)C扫描显示(图中四个白色点状显示为同一个缺陷,是使用水浸点聚焦探头以不同灵敏度检测的结果,其他分散细小的白色点状为与该缺陷无关的杂波显示);(d)B扫描显示;(e)3D显示5.偏析铸件或钢锭中的偏析主要指冶炼过程中或金属的熔化过程中因为成分分布不均而形成的成分偏析,有偏析存在的区域其力学性能有别于整个金属基体的力学性能,差异超出允许标准范围就成为缺陷,如图2.23和2.24、2.27所示。
材料加工第2章作业参考答案
第2章作业参考答案1. 液态金属成形的一般工艺过程是怎样的?结合其工艺特点分析该类工艺的优点、缺点和和适用范围。
液态金属成形是将液态金属注入铸型中使之冷却、凝固而形成零件的方法,一般工艺过程包括模样制造、铸型制造、金属熔化与充型、凝固等关键步骤。
铸造为液体成形具有不受零件大小/薄厚/复杂程度限制、可制造各种合金铸件、相对焊接和塑性成形而言尺寸精度高、成本低等优点;但需要造型、浇注等步骤,工艺相对繁琐,工件承载能力不如锻件,同时工作环境差,粉尘多。
铸造适用于绝大部分零件,适用范围广。
(工艺过程三点明确。
明确分析优点、缺点和适用范围,同时结合其工艺特点)2.铸造合金流动性差对铸件质量有何影响?浇注时金属液过热温度及其他工艺条件相同的情况下,初步判断一下HT350和HT200两种合金,哪个流动性好,为什么?什么是液态金属的充型性能?它与那些因素有关?流动性差,金属充型能力差,铸件成形质量降低;液态金属中的气体夹杂物不易浮出,易产生气孔、夹杂;对缩孔和裂纹的充填和愈合作用减弱,易产生缩孔、裂纹等缺陷。
HT200流动性好,HT200碳含量在3.0~3.6%,HT350在2.7~3.2%,因HT200成分更靠近共晶点,固-液区间小,熔点较低,故流动性好(固液两相区越大,结晶温度范围越大,枝晶越发达,流动性越差)。
(流动性影响,判断及理由)充型能力:指液态金属充满型腔,获得形状完整、轮廓清晰健全铸件的能力。
充型能力首先取决于合金的流动性,同时又受到铸型性质(如铸型蓄热系数、铸型温度、铸型中的气体)、浇注条件(如浇注温度、充型压头、浇注系统结构)以及铸件结构(如模数、复杂程度等)的影响。
(充型能力定义,四个影响方面)3. 缩孔、缩松的区别是什么?什么样的合金容易出现疏松缺陷?生产中如何采取措施防止缩孔、缩松缺陷的产生?缩孔缩松的区别在形态,而取决于凝固方式,当铸件以逐层凝固方式凝固时,液态金属的流动使收缩集中到铸件最后凝固部分形成集中孔,即缩孔;而铸件以体积凝固方式凝固时,枝晶间隙的液体得不到补缩而形成小的孔洞,即缩松。
材料科学基础A习题答案第5章[1]解析
材料科学基础A习题第五章材料的变形与再结晶1、某金属轴类零件在使用过程中发生了过量的弹性变形,为减小该零件的弹性变形,拟采取以下措施:(1)增加该零件的轴径。
(2)通过热处理提高其屈服强度。
(3)用弹性模量更大的金属制作该零件。
问哪一种措施可解决该问题,为什么?答:增加该零件的轴径,或用弹性模量更大的金属制作该零件。
产生过量的弹性变形是因为该金属轴的刚度太低,增加该零件的轴径可减小其承受的应力,故可减小其弹性变形;用弹性模量更大的金属制作该零件可增加其抵抗弹性变形的能力,也可减小其弹性变形。
2、有铜、铝、铁三种金属,现无法通过实验或查阅资料直接获知他们的弹性模量,但关于这几种金属的其他各种数据可以查阅到。
请通过查阅这几种金属的其他数据确定铜、铝、铁三种金属弹性模量大小的顺序(从大到小排列),并说明其理由。
答:金属的弹性模量主要取决于其原子间作用力,而熔点高低反映了原子间作用力的大小,因而可通过查阅这些金属的熔点高低来间接确定其弹性模量的大小。
据熔点高低顺序,此几种金属的弹性模量从大到小依次为铁、铜、铝。
3、下图为两种合金A、B各自的交变加载-卸载应力应变曲线(分别为实线和虚线),试问那一种合金作为减振材料更为合适,为什么?答:B合金作为减振材料更为合适。
因为其应变滞后于应力的变化更为明显,交变加载-卸载应力应变回线包含的面积更大,即其对振动能的衰减更大。
4、对比晶体发生塑性变形时可以发生交滑移和不可以发生交滑移,哪一种情形下更易塑性变形,为什么?答:发生交滑移时更易塑性变形。
因为发生交滑移可使位错绕过障碍继续滑移,故更易塑性变形。
5、当一种单晶体分别以单滑移和多系滑移发生塑性变形时,其应力应变曲线如下图,问A、B中哪一条曲线为多系滑移变形曲线,为什么?应力滑移可导致不同滑移面上的位错相遇,通过位错反应形成不动位错,或产生交割形成阻碍位错运动的割阶,从而阻碍位错滑移,因此其应力-应变曲线的加工硬化率较单滑移高。
铸造常见缺陷及控制措施研究
铸造常见缺陷及控制措施研究作者:张传龙来源:《中国科技博览》2014年第36期[摘要]本文主要分析了低压铸造常见缺陷及预防控制措施,希望对相关人员具有参考价值。
[关键词]铸造;缺陷;预防中图分类号:O77+1 文献标识码:A 文章编号:1009-914X(2014)36-0034-01前言铸造工艺过程复杂,影响铸件质量的因素很多,往往由于原材料控制不严,工艺方案不合理,生产操作不当,管理制度不完善等原因,会使铸件产生各种铸造缺陷,对于这些缺陷,需要采取正确的防控措施。
1.气孔1.1 气孔缺陷的特征(1)气孔:铸件内部由气体形成的孔洞类缺陷。
其表面一般比较光滑,主要呈梨形、圆形或椭圆形。
一般不在铸件表面露出,大孔常孤立存在,小孔则成群出现。
(2)皮下气孔:位于铸件表皮下的分散性气孔。
为金属液与砂型(铸型、湿芯、涂料、表面不干净的冷铁)之间发生化学反应产生的反应性气孔。
形状有针状、蝌蚪状、球状、梨状等。
大小不一,深度不等。
通常在机械加工或热处理后才能发现。
(3)气窝:铸件表面凹进去一块较平滑的气孔。
(4)气缩孔:分散性气孔与缩孔和缩松合并而成的孔洞类铸造缺陷。
(5)针孔:一般为针头大小分布在铸件截面上的析出性气孔。
铝合金铸件中常出现这类气孔,对铸件性能危害很大。
(6)表面针孔:成群分布在铸件表层的分散性气孔。
其特征和形成原因与皮下气孔相同,通常暴露在铸件表面,机械加工1~2mm后即可去掉。
(7)呛孔:浇注过程中产生的大量气体不能顺利排出,在金属液内发生沸腾,导致在铸件内产生大量气孔,甚至出现铸件不完整的缺陷。
1.2 气孔的防治措施(1)严格执行熔炼操作规程,避免金属液吸气,并认真除气。
(2)尽量减少涂料、砂芯、金属型(芯)等的发气量。
选择质量好的发气量小的涂料,铸型和型芯涂料后要充分烘干。
(3)改善铸型和型芯的排气条件。
可根据铸件的特点,综合考虑铸件的充型情况,选择合理的排气位置及不同的排气措施:排气槽、排气片、排气针、排气塞、排气孔等进行排气。
金属液态成形
材料成形技术基础第一章 金属液态成形金属液态成形(铸造):将液态金属在重力或外力作用下充填到型腔中,待其凝固冷却后,获得所需形状和尺寸的毛坯或零件的方法。
液态成形的优点:(1)适应性广,工艺灵活性大(材料、大小、形状几乎不受限制)(2)最适合形状复杂的箱体、机架、阀体、泵体、缸体等(3)成本较低(铸件与最终零件的形状相似、尺寸相近)主要问题:组织疏松、晶粒粗大,铸件内部常有缩孔、缩松、气孔等缺陷产生,导致铸件力学性能,特别是冲击性能较低。
分类:铸造从造型方法来分,可分为砂型铸造和特种铸造两大类。
其中砂型铸造工艺如图1-1所示。
图1-1 砂型铸造工艺流程图第一节金属液态成形工艺基础一、熔融合金的流动性及充型液态合金充满型腔是获得形状完整、轮廓清晰合格铸件的保证,铸件的很多缺陷都是在此阶段形成的。
(一)熔融合金的流动性1.流动性 液态合金充满型腔,形成轮廓清晰、形状和尺寸符合要求的优质铸件的能力,称为液态合金的流动性。
流动性差:铸件易产生浇不到、冷隔、气孔和夹杂等缺陷。
流动性好:易于充满型腔,有利于气体和非金属夹杂物上浮和对铸件进行补缩。
螺旋形流动性试样衡量合金流动性,如图1-2所示。
在常用铸造合金中,灰铸铁、硅黄铜的流动性最好,铸钢的流动性最差。
常用合金的流动性数值见表1-1。
表1-1 常用合金的流动性(砂型,试样截面8㎜×8㎜)2. 影响合金流动性的因素(1) 化学成份 纯金属和共晶成分的合金,由于是在恒温下进行结晶,液态合金从表层逐渐向中心凝固,固液界面比较光滑,对液态合金的流动阻力较小,同时,共晶成分合金的凝固温度最低,可获得较大的过热度,推迟了合金的凝固,故流动性最好;其它成分的合金是在一定温度范围内结晶的,由于初生树枝状晶体与液体金属两相共存,粗糙的固液界面使合金的流动阻力加大,合金的流动性大大下降,合金的结晶温度区间越宽,流动性越差。
Fe-C合金的流动性与含碳量之间的关系如图1-3所示。
再生铝合金铸造工艺中的常见问题及解决方案
再生铝合金铸造工艺中的常见问题及解决方案随着环境保护意识的提高和对资源利用的要求,再生铝合金铸造工艺在现代制造业中变得越来越重要。
然而,与传统的铸造工艺相比,再生铝合金铸造也存在一些常见问题。
本文将重点介绍这些问题,并提供解决方案。
1. 气孔和气泡:气孔和气泡的出现是再生铝合金铸造中常见的质量问题。
它们会影响铸件的力学性能和表面质量。
这主要是由于废铝中存在的气体包裹在熔融金属中释放出来所导致的。
解决方案:为了减少气孔和气泡的产生,可以采取以下措施:- 精细处理废铝:通过精细处理废铝,可以减少其中悬浮的气体含量。
- 提高液体铝的温度:增加液体铝的温度可以促进气体的逸出,减少气孔和气泡的形成。
2. 夹杂物:再生铝合金中常常存在夹杂物,如金属硅、铁、碳化物等。
这些夹杂物会对铸件的力学性能和耐腐蚀性能造成负面影响。
解决方案:下面是减少夹杂物的几种方法:- 优化熔炼过程:通过合理的熔炼参数和熔炼工艺,可以减少夹杂物的生成。
- 采用过滤器:在铸造过程中使用过滤器可以有效去除液态金属中的杂质和夹杂物。
3. 织构和晶粒度:再生铝合金铸件的织构和晶粒度也是一个重要的质量指标。
不良的织构和晶粒度会降低铸件的力学性能和塑性变形能力。
解决方案:以下是改善织构和晶粒度的方法:- 优化冷却速度:通过调整冷却速度,可以控制再生铝合金的织构和晶粒度。
- 添加合适的合金元素:合适的合金元素能够有效地改善再生铝合金的织构和晶粒度。
4. 热裂纹:再生铝合金铸件在熔融和凝固过程中容易发生热裂纹。
这主要是由于铸件在冷却过程中产生的热应力导致的。
解决方案:下面是减少热裂纹的方法:- 优化冷却方式:通过合理的冷却方式和速度,可以减少再生铝合金铸件的热应力,从而降低热裂纹的发生。
- 控制铸造温度:合理控制铸造温度可以避免过高的热应力,减少热裂纹的形成。
5. 空振缺陷:再生铝合金铸件中常常出现空振缺陷,这是因为废铝中存在的气体在凝固过程中无法完全排出。
液态成形件的主要缺陷及质量控制
铸件热节处的缩孔与缩松
缩松的特点
• 缩松多出现于凝固温度范围较宽的合金中; • 显微缩松一般出现在枝晶间和分枝之间; • 常分布在缩孔附近或铸件厚壁的中心部位;
缩孔和缩松的危害: 铸件中存在的任何形态的缩孔和缩松,
都会减小铸件的受力面积,在缩孔和缩松的 尖角处产生应力集中,使铸件的力学性能显 著降低。此外,缩孔和缩松还会降低铸件的 气密性和物理化学性能。
——金属熔炼时,脱氧、脱硫、孕育和变质等处理过程, 产生大量的 MnO、SiO2、Al2O3等夹杂物。
——液态金属与炉衬、浇包的耐火材料及溶渣接触时,会 发生相互作用,产生大量的 MnO、Al2O3等夹杂物。
——在精炼后转包及浇注过程中,金属表面与空气接触形 成的表面氧化膜,被卷入金属后形成氧化夹杂物。
——按夹杂物形成时间,可分为初生夹杂物、次生夹杂物 和二次氧化夹杂物。
初生夹杂物:是在金属熔炼及炉前处理过程中产生的。 次生夹杂物:是在金属凝固过程中产生的。 二次氧化夹杂物:而在浇注过程中因氧化而产生的夹杂 物称为二次氧化夹杂物。
——按夹杂物形状,可分为球形、多面体、不规则多角形、 条状及薄板形、板形等。
3.反应性气孔 液态金属内部或与铸型之间发 生化学反应而产生的气孔,称为反应性气孔。
反应性气孔特征: 金属-铸型间反应性气孔常分 布在铸件表面皮下 1~3mm 处,通称为皮下气孔, 其形状有球状和梨状,孔径约 1~3mm。有些皮下 气孔呈细长状,垂直于铸件表面,深度可达 10mm 左右。气孔内主要是 H2、CO 和 N2等。
液态金属内部合金元素之间或与非金属夹杂物
发生化学反应产生的蜂窝状气孔,呈梨形或团球形 均匀分布。碳钢焊缝内因冶金反应生成的 CO 气孔, 则沿焊缝结晶方向呈条虫状分布。皮下气孔常出现 在熔点较高的合金(铸钢、铸铁及铜合金)铸件中。
铸造可能遇到的问题和解决方案
铸造可能遇到的问题和解决方案标题,铸造中常见问题及解决方案。
在铸造过程中,常常会遇到一些问题,这些问题可能会影响产品的质量和生产效率。
以下是一些铸造中常见的问题以及可能的解决方案。
1. 气孔和气泡。
气孔和气泡是铸造中常见的质量问题,可能会导致产品强度不足或者外观质量不佳。
这可能是由于熔融金属中的气体未能完全排除所致。
解决方案,采取适当的浇注系统设计,确保熔融金属能够充分充填模具,同时使用合适的除气剂和浇口设计来减少气孔和气泡的产生。
2. 热裂纹。
热裂纹是由于金属在冷却过程中产生的应力超过了其承受能力
而引起的。
这可能会导致产品在使用过程中出现裂纹。
解决方案,通过合理的冷却控制和合适的金属合金选择,可以减少热裂纹的发生。
此外,预热模具和采用合适的退火工艺也可以有效减少热裂纹的产生。
3. 金属收缩。
金属在冷却过程中会收缩,如果不加以控制,可能会导致产品尺寸不准确甚至变形。
解决方案,通过合理的浇注系统设计和冷却控制,可以减少金属收缩对产品质量的影响。
此外,采用合适的模具设计和金属合金选择也可以减少金属收缩带来的问题。
总之,铸造过程中可能会遇到各种质量问题,但通过合理的工艺控制和技术手段,这些问题是可以得到解决的。
只有不断改进工艺和技术,才能确保铸造产品的质量和稳定性。
熔模铸造的工艺设计要点及注意事项
熔模铸造的工艺设计要点及注意事项熔模铸造是一种常见的铸造工艺,它可以制造出形状复杂、尺寸精确的金属零件。
以下是熔模铸造的工艺设计要点及注意事项。
1. 材料选择:熔模铸造通常使用耐火材料制作模具,如陶瓷、石膏等。
要根据所需零件的材料选择合适的熔模材料,并确保其能够承受高温和金属液体的侵蚀。
2. 模具设计:模具的设计要考虑到零件的形状、尺寸和表面质量要求。
模具应具有足够的强度和刚度,以抵抗金属液体的压力和温度变化。
同时,还应考虑到材料浇注和铸造后的冷却收缩等因素,并合理设置浇口、排气口和浇筑系统。
3. 浇注温度控制:熔模铸造的关键是要控制好金属液体的浇注温度。
过高的温度会导致铸件表面粗糙,过低的温度则会引起金属流动的困难。
因此,在铸造前,需要对金属液体进行合适的预热和测温,确保温度控制在合适的范围内。
4. 熔模烧结:熔模铸造的首要步骤是烧结模具。
烧结过程需要控制好温度和时间,以保证模具能够具备足够的强度和耐火性。
烧结后,还需要进行模具的表面修整和涂料处理,以提高模具的表面质量和涂层的粘附力。
5. 金属液体的浇注:对金属液体进行浇注时,需要注意浇注速度和浇注方式。
过快的浇注速度会引起金属液体剧烈冲击模具,容易导致模具破裂或产生气孔和夹杂物。
而过慢的浇注速度则会导致金属液体凝固不完全。
此外,还需注意金属液体的均匀浇注,避免产生冷隔。
6. 冷却和晾热处理:在铸造完成后,需要对铸件进行冷却和晾热处理。
冷却过程应缓慢进行,以防止因温度变化引起的热应力和变形。
晾热处理有助于提高铸件的机械性能和组织均匀性。
总之,熔模铸造的工艺设计要点及注意事项包括材料选择、模具设计、浇注温度控制、熔模烧结、金属液体的浇注和冷却晾热处理等。
合理的工艺设计能够确保铸件的质量和精度,提高生产效率和产品品质。
继续写:7. 模具温度控制:熔模铸造中,模具温度的控制是非常重要的。
模具的温度过高会导致模具磨损加剧,模具寿命减少,并且可能引起铸件的气孔和缺陷。
材料成型原理与工艺(01)-液态金属成形概论
夹杂物的排除: 夹杂物的排除:
金属液静止处理、真空浇注,加熔剂, 金属液静止处理、真空浇注,加熔剂,过滤法
2012-1-8
凝固区域
固相区、凝固区、液相区
凝固方式
逐层凝固方式 体积凝固(糊状凝固方式) 体积凝固(糊状凝固方式) 中间凝固方式
2012-1-8 22
如果合金的结晶温度范围很宽,且铸件的温度分布较 为平坦,则在凝固的某段时间内,铸件表面并不存在 固体层,而液、固并存的凝固区贯穿整个断面。由于 这种凝固方式与水泥类似,即先呈糊状而后固化,故 称为糊状凝固。球墨铸铁、高碳钢、锡青铜和某些黄 铜等都是糊状凝固的合金。 中间凝固方式 大多数合金的凝固介于逐层凝固和糊状 凝固之间,称为中间凝固方式。中碳钢、高锰钢、白口 铸铁等具有中间凝固方式
气压保温浇包
15
采用德国KW公司技术的新二线主机,发动机缸体造型生产线。
罗兰门第制芯中心
2012-1-8 16
二、液态金属在铸型中的流动
1、 液态金属充型能力的基本概念 、
液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力, 叫做液态金属充填铸型的能力,简称液态金属的充型能力。 液态金属充填铸型一般是在纯液态下充满型腔的,也有边充型边结晶的 情况,在充型过程中当液态金属中形成晶粒堵塞充型通道时,流动则停 止,造成铸件“浇不足”缺陷。 液态金属的充型能力(实验-螺旋形试样):
2012-1-8
18
思考题 1 1. 液态金属成形的概念是什么?液态金属 液态金属成形的概念是什么? 成形具有哪些优点? 成形具有哪些优点? 2. 液态金属成形生产过程。 液态金属成形生产过程。
液态成形工艺与原理作业与思考题答案(部分)
第二讲1、哪些现象说明金属的熔化并不是原子间结合力的全部破坏?答:以下现象说明金属的熔化并不是原子间结合力的全部破坏:(1)物质熔化时体积变化、熵变(及焓变)一般均不大。
[注意:简答题此部分可略:如金属熔化时典型的体积变化△Vm/V(多为增大)为3~5%左右,表明液体原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。
](2)金属熔化潜热比其汽化潜热小得多(1/15~1/30),表明熔化时其内部原子结合键只有部分被破坏。
2、实际液态金属的结构是怎样的?3、名词解释:能量起伏、结构起伏、浓度起伏、粘度、运动粘度、雷诺数、层流、紊流、表面张力和表面能。
答:雷诺数:流体流动时的惯性力Fg和粘性力(内摩擦力)Fm之比称为雷诺数。
用符号Re 表示。
Re是一个无因次量。
层流:流体流动时,如果流体质点的轨迹(一般说随初始空间坐标x、y、z和时间t而变)是有规则的光滑曲线(最简单的情形是直线),这种流动叫层流。
紊流:在一定雷诺数下,流体表现在时间和空间上的随机脉动运动,流体中含有大量不同尺度的涡旋(eddy)。
4、分析粘度的影响因素及其对粘度的影响规律。
5、分析表面张力的影响因素及其对表面张力的影响规律。
第三讲1、流动性与充型能力的联系和区别。
答:区别:①二者概念不同。
铸造工艺学中的流动性指液态金属本身的流动能力,常用规定的铸型条件和浇注条件下的试样的长度或薄厚尺寸来衡量;而充型能力是指液态金属充满铸型型腔,并使铸件形状完整、轮廓清晰的能力。
②影响因素有区别。
流动性是液态金属本身的流动能力,与金属的成分、温度、杂质含量,及其物理性质有关;而充型能力除了取决于金属本身的流动能力外,还受外界条件,如铸型性质、浇注条件、铸件结构等因素的影响。
联系:都是影响成形产品质量的因素。
①流动性好的合金充型能力强;流动性差的合金充型能力亦差,但是,可以通过改善外界条件提高其充型能力。
②可认为合金的流动性是在确定条件(试样结构、铸型性质、浇注条件)下的充型能力。
液态金属成型
液态金属成型金属液态成型论文作者:刘永星摘要:金属液态成型又称为铸造,是将液态金属在重力或外力作用下充填到型腔中,待其冷却凝固后,获得所需形状和尺寸的毛坯或零件,即铸件的方法,它是成形毛坯或机器零件的重要方法之一。
工程材料除切削加工以外有各种成型方法,包括金属液态成型、金属塑性成形、材料连接成型、粉末冶金成型以及塑料、橡胶、陶瓷等非金属材料成型及复合材料成型等。
材料成型技术主要讲述金属材料成型和非金属材料成型,现对金属液态成型进行详细论述。
关键词:金属液态成型、成型方法、生产流程、成型原理、选择成型依据一、金属液态成形金属材料在液态下成形,具有很多优点:(1)最适合铸造形状复杂、特别是复杂内腔的铸件。
(2)适应性广,工艺灵活性大。
(3)成本较低。
但液态成形也有很多不足,如铸态组织疏松、晶粒粗大,铸件内部常有缩孔、缩松、气孔等缺陷产生,导致铸件力学性能、特别是冲击性能低于塑形成行件;铸件涉及的工序很多,不易精确控制,铸件质量不稳定;由于目前仍以砂型铸造为主,自动化程度还不够高,工作环境较差;大多数铸件只是毛坯件,需经过切削加工才能成为零件。
砂型铸造是将熔融金属浇入砂质铸型中,待凝固冷却后,将铸型破坏,取出铸件的铸造方法,是应用最为广泛的传统铸造方法,它适用于各种形状、大小及各种常用合金铸件的生产。
砂型铸造的工艺过程称为造型。
造型是砂型铸造最基本的工序,通常分为手工造型和机器造型两大类。
手工造型时,填砂、紧实和起模都用手工和手动完成。
其优点是操作灵活、适应性强、工艺装备简单、生产准备时间短。
但生产效率低、劳动强度大、铸件质量不易保证。
故手工造型只适用于单件、小批量生产。
机器造型生产率很高,是手工造型的数十倍,制造出的铸件尺寸精度高、表面粗糙度小、加工余量小,同时工人劳动条件大为改善。
但机器造型需要造型机、模板以及特质砂箱等专用机器设备,一次性投资大,生产准备时间长,故适用于成批大量生产,且以中、小型铸件为主。
金属的相变行为从液态到固态的转变
金属的相变行为从液态到固态的转变金属是一种常见的材料,具有良好的导电性和导热性,因此被广泛应用于工业生产和日常生活中。
然而,金属在不同温度下会出现相变现象,其中从液态到固态的转变是最常见的相变行为之一。
本文将探讨金属从液态到固态转变的过程以及相关的因素。
一、凝固过程金属从液态到固态的转变被称为凝固,这是因为在此过程中,金属的原子或离子聚集在一起形成结晶体。
凝固过程可以分为三个阶段:液态阶段、凝胶阶段和固态阶段。
在液态阶段,金属原子或离子呈无序排列,并具有较高的动能。
当金属温度下降到一定程度时,原子或离子开始逐渐接近,并逐渐形成有序的结构。
在凝胶阶段,金属原子或离子的排列变得更加有序,结晶核形成并逐渐生长。
最后,在固态阶段,金属原子或离子完全有序地排列形成晶体结构。
二、凝固的影响因素金属从液态到固态的凝固过程受到多种因素的影响,其中最主要的因素是温度、压力和成分。
1. 温度:温度是金属凝固的关键因素之一。
一般来说,金属的凝固温度是指金属从液态向固态转变的温度,称为凝固点。
不同金属具有不同的凝固点,例如,铅的凝固点约为327摄氏度,而铁的凝固点约为1538摄氏度。
凝固点的升高或降低可能是由于杂质的存在或添加了其他元素。
2. 压力:压力对金属凝固的影响不如温度显著。
然而,在高压下,金属原子或离子更容易接触和聚集,因此凝固速度可能会加快。
此外,压力的变化也可能导致凝固点的变化。
3. 成分:金属合金的凝固行为比纯金属更加复杂。
合金中不同元素的含量会影响凝固点和凝固过程。
例如,铜和锌的合金黄铜的凝固点会随着铅含量的增加而降低。
三、实际应用金属的相变行为从液态到固态的转变在实际应用中具有重要意义。
1. 铸造工艺:在金属加工中,铸造是一种常见的制造工艺,它涉及到将液态金属倾注入模具中,并通过凝固使其变成固态。
凝固的过程可以控制金属的形状和结构,从而得到所需的产品。
2. 金属合金制备:金属合金是由两种或更多金属元素组成的材料。
液态金属加工中常见问题解析
液态金属加工是一种广泛应用于各种工业领域的工艺技术,然而,在实践中,可能会遇到各种问题。
以下是一些常见的问题及解决方案,供您参考。
问题一:液态金属泄漏原因:管道、阀门或其他设备损坏,或者密封件失效。
解决方案:定期检查和维护设备,确保所有部件都处于良好状态。
如果发现泄漏,应立即停止生产并修复泄漏部位。
问题二:金属粘度过高原因:温度过低,金属没有达到适当的熔化状态。
解决方案:调整加工参数,确保金属达到适当的温度。
如果需要,可以添加一些熔剂来降低粘度。
问题三:金属飞溅原因:金属温度过高,或者设备密封不良。
解决方案:调整加工参数,确保金属温度在适宜的范围内。
同时,检查设备的密封性,确保没有泄漏。
问题四:表面质量不佳原因:加工过程中产生过多的杂质或气泡。
解决方案:优化加工参数,确保金属在加工过程中保持纯净。
同时,定期清理设备和工作环境,以减少杂质和气泡的产生。
问题五:加工效率低下原因:设备故障、操作不当、材料问题等。
解决方案:定期检查和维护设备,确保其正常运行。
操作人员应接受培训,了解正确的操作方法。
同时,选择高质量的液态金属材料,以确保加工过程的顺利进行。
问题六:产品缺陷原因:材料质量问题、温度控制不当、速度过快等。
解决方案:选择高质量的液态金属材料,确保其质量符合要求。
同时,严格控制加工过程中的温度和速度等参数,确保产品质量符合标准。
总结:液态金属加工中常见的问题包括泄漏、粘度过高、飞溅、表面质量不佳、效率低下和产品缺陷等。
这些问题可以通过定期检查和维护设备、优化加工参数、选择高质量的材料和严格控制加工过程中的参数等措施来解决。
当然,如果遇到无法解决的问题,建议寻求专业人士的帮助。
铸造工艺技术要点
铸造工艺技术要点铸造工艺是一种通过将液态金属或合金注入到模具中,然后通过凝固和冷却使其成型的工艺。
它是制造金属零件和组件的重要方法之一。
以下是铸造工艺技术的一些要点:1. 材料选择:铸造的主要材料是金属或合金。
在选择材料时,需要考虑应用环境、工作温度、强度要求等因素。
常用的铸造材料有铁、铝、镁、铜等。
2. 模具设计:模具是铸造过程中非常重要的工具,它决定了最终产品的形状。
模具设计需要考虑产品的形状、尺寸、壁厚等因素,并确保模具的强度和耐用性。
3. 熔炼和准备金属:在铸造过程中,需要熔炼原材料以得到液态金属。
这个过程通常在高温下进行,通常使用电炉或燃煤炉进行。
熔炼后,金属被倒入预先准备好的浇口中。
4. 浇注和充填:一旦金属熔化,它将通过浇口注入到模具中。
浇口的大小和位置要经过合理的设计,以确保金属能够充分填充模具的空腔。
充填过程需要控制浇注速度和温度,避免产生气泡和缺陷。
5. 凝固和冷却:一旦金属进入模具,它会开始凝固和冷却。
这个过程需要控制好时间和温度,以确保金属能够完全凝固并达到所需的机械性能。
通常,凝固和冷却的过程是自然进行的,但也可以通过加热或冷却设备来加速。
6. 脱模和后续处理:一旦金属凝固,模具可以打开,并将铸件取出。
在脱模过程中需要小心操作,以避免破坏铸件的形状。
取出后,铸件可能需要进行修整、抛光、热处理等后续步骤,以达到最终的要求。
7. 检验和质量控制:铸造工艺中的质量控制非常重要。
铸件需要经过非破坏性和破坏性的检测,以确保其尺寸、密度和机械性能符合要求。
常用的检测方法包括X射线检测、磁粉检测、超声波检测等。
8. 设备和工艺改进:铸造工艺技术在不断发展和改进中。
随着新材料和新工艺的引入,铸造设备和工艺也在不断提升。
例如,电磁搅拌技术可以提高液态金属的均匀性,数控铸造技术可以提高铸件的精度。
总结来说,铸造工艺技术在金属制造领域具有重要作用。
通过合理的材料选择、模具设计、熔炼、浇注、凝固、冷却、脱模、后续处理、检验和质量控制等步骤,可以获得质量优良的铸件。
《材料成形原理》重难点复习题
第一章练习一一、填空题1、液体的表观特征有:(1)类似于 体,液体最显著的性质是具有 性,即不能够象固体那样承受剪切应力; (2)类似于 体,液体可完全占据容器的空间并取得容器 的形状;(3)类似于固体,液体具有 表面;(4)类似于固体,液体可压缩性很 。
2、按液体结构和内部作用力分类,液体可分为原子液体、分子液体及离子液体三类。
其中,液态金属属于 液体,各种简单及复杂的熔盐属于 液体。
3、偶分布函数g(r) 的物理意义是距某一 粒子r处找到另一个粒子的 ,换言之,表示离开参考原子(处于坐标原点r=0)距离为r位置的数密度ρ(r)对于平均数密度ρo(=N/V)的相对偏差。
4、考察下面右图中表达物质不同状态的偶分布函数g(r)的图(a)、(b)、(c)的特征,然后用连线将分别与左图中对应的结构示意图进行配对。
固体结构(a)的偶分布函数气体结构(b)的偶分布函数液体结构(c)的偶分布函数5、能量起伏:描述液态结构的“综合模型”指出,液态金属中处于热运动的不同原子的有高有低,同一原子的能量也在随不停地变化,时高时低。
这种现象称为能量起伏。
6、结构起伏:液态金属是由大量不停“游动”着的组成,团簇内为某种结构,团簇周围是一些的原子。
由于“能量起伏”,一部分金属原子(离子)从某个团簇中出去,同时又会有另一些原子到该团簇中,此起彼伏,不断发生着这样的涨落过程,似乎原子团簇本身在“游动”一样,团簇的尺寸及其内部原子数量都随和发生着改变,这种现象称为结构起伏。
7、在特定的温度下,虽然“能量起伏”和“结构起伏”的存在,但对于某一特定的液体,其团簇的统计平均是一定的。
然而,原子团簇平均尺寸随温度变化而变化,温度越高原子团簇平均尺寸。
8、浓度起伏:工业中常用的合金存在着异类组员;即使是“纯”金属,也存在着大量原子。
因此,对于实际金属及合金的液态结构,还需考虑不同原子的分布情况。
由于同种元素及不同元素之间的原子间结合力存在差别,结合力的原子容易聚集在一起,把别的原于排挤到别处,表现为游动原子团簇之间存在着成分差异。
金属凝固过程的研究与控制
THANKS
感谢您的观看。
转变过程中,金属原子由无序的液态排列转变为有序的晶体结构,形成固态金属。
转变过程中伴随着能量的变化,包括潜热和相变热等。
1Hale Waihona Puke 23热力学研究金属凝固过程的平衡状态和相变规律,涉及自由能、熵、焓等热力学参数。
动力学研究金属凝固过程的速度和时间关系,探讨相变过程中原子迁移、晶核形成和长大的机制。
热力学和动力学对理解金属凝固过程具有重要意义,并为控制凝固过程提供理论依据。
控制方法
共晶反应
偏析现象
在金属凝固过程中,溶质元素在固相和液相中的分布不均匀,导致金属组织中出现化学成分的差异。
控制方法
通过优化铸造工艺、选择合适的熔炼材料、加入微量元素等手段,可以减轻或消除偏析现象,提高金属材料的性能。
03
CHAPTER
金属凝固过程中的缺陷形成与控制
在金属凝固过程中,由于液态金属的体积收缩,未能及时得到充分补充,会在铸件内部形成孔洞,即缩孔和缩松。
铸造工艺优化
03
实验与模拟结合
将实验结果与数值模拟结果进行对比分析,进一步优化金属凝固过程。
01
实验验证
通过实验验证数值模拟结果的准确性和可靠性。
02
实验优化
通过实验手段优化金属凝固过程,提高铸件性能和降低生产成本。
05
CHAPTER
金属凝固过程的应用与实例
金属铸造是将熔融态的金属注入或压入铸模中,冷却后形成所需形状的金属制品的过程。金属凝固过程在此过程中起着至关重要的作用,它决定了铸件的质量和性能。
控制金属的凝固过程可以防止铸造缺陷的产生,如缩孔、缩松和热裂等。通过优化铸造工艺参数,如浇注温度、冷却速度和铸模温度等,可以提高铸件的质量和力学性能。
华科 材料成型原理 第一部分 液态金属凝固学答案
第一部分:液态金属凝固学2.1 答:(1)纯金属的液态结构是由原子集团、游离原子、空穴或裂纹组成。
原子集团的空穴或裂纹内分布着排列无规则的游离的原子,这样的结构处于瞬息万变的状态,液体内部存在着能量起伏。
(2)实际的液态合金是由各种成分的原子集团、游离原子、空穴、裂纹、杂质气泡组成的鱼目混珠的“混浊”液体,也就是说,实际的液态合金除了存在能量起伏外,还存在浓度起伏和结构起伏。
2.2答:液态金属的表面张力是界面张力的一个特例。
表面张力对应于液-气的交界面,而界面张力对应于固-液、液-气、固-固、固-气、液-液、气-气的交界面。
表面张力ς和附加压力p的关系如(1)p=2ς/r,因表面张力而长生的曲面为球面时,r 为球面的半径;(2)p=ς(1/r1+1/r2),式中r1、r2分别为曲面的曲率半径。
附加压力是因为液面弯曲后由表面张力引起的。
2.3答:液态金属的流动性和冲型能力都是影响成形产品质量的因素;不同点:流动性是确定条件下的冲型能力,它是液态金属本身的流动能力,由液态合金的成分、温度、杂质含量决定,与外界因素无关。
而冲型能力首先取决于流动性,同时又与铸件结构、浇注条件及铸型等条件有关。
提高液态金属的冲型能力的措施:(1)金属性质方面:①改善合金成分;②结晶潜热L要大;③比热、密度、导热系大;④粘度、表面张力大。
(2)铸型性质方面:①蓄热系数大;②适当提高铸型温度;③提高透气性。
(3)浇注条件方面:①提高浇注温度;②提高浇注压力。
(4)铸件结构方面:①在保证质量的前提下尽可能减小铸件厚度;②降低结构复杂程度。
2.4 解:浇注模型如下:则产生机械粘砂的临界压力p=2ς/r显然 r =21×0.1cm =0.05cm 则 p =410*5.05.1*2-=6000Pa 不产生机械粘砂所允许的压头为H =p/(ρ液*g )=10*75006000=0.08m 2.5 解: 由Stokes 公式 上浮速度 92(2v )12r r r -= r 为球形杂质半径,γ1为液态金属重度,γ2为杂质重度,η为液态金属粘度γ1=g*ρ液=10*7500=75000γ2=g 2*ρMnO =10*5400=54000所以上浮速度 v =0049.0*95400075000(*10*1.0*223)-)(-=9.5mm/s3.1解:(1)对于立方形晶核 △G 方=-a 3△Gv+6a 2ς①令d △G 方/da =0 即 -3a 2△Gv+12a ς=0,则临界晶核尺寸a *=4ς/△Gv ,得ς=4*a △Gv ,代入① △G 方*=-a *3△Gv +6 a *24*a △Gv =21 a *2△Gv 均质形核时a *和△G 方*关系式为:△G 方*=21 a *3△Gv (2)对于球形晶核△G 球*=-34πr *3△Gv+4πr *2ς 临界晶核半径r *=2ς/△Gv ,则△G 球*=32πr *3△Gv 所以△G 球*/△G 方*=32πr *3△Gv/(21 a *3△Gv) 将r*=2ς/△Gv ,a *=4ς/△Gv 代入上式,得△G 球*/△G 方*=π/6<1,即△G 球*<△G 方*所以球形晶核较立方形晶核更易形成3-7解: r 均*=(2ςLC /L)*(Tm/△T)=319*6.618702731453*10*25.2*25)+(-cm =8.59*10-9m △G 均*=316πςLC 3*Tm/(L 2*△T 2) =316π*262345319*)10*6.61870(2731453*10*10*25.2()+()-=6.95*10-17J3.2答: 从理论上来说,如果界面与金属液是润湿得,则这样的界面就可以成为异质形核的基底,否则就不行。
铸造心得体会
铸造心得体会铸造心得体会篇1铸造之旅:我的工艺体验与感悟我曾以为铸造过程是神秘且复杂的,但当我亲身参与其中,我才发现它其实是一种丰富而有意义的体验。
以下是我的铸造心得体会,它涵盖了我对铸造过程、铸造成功的关键因素以及个人成长感悟等方面的理解。
在铸造过程中,我意识到每个环节都充满了挑战。
从设计阶段开始,我们必须精确地计算每一个细节,以确保模具的正确性和使用寿命。
在填充阶段,对原材料的要求和填充速度的控制都是关键。
而铸件打磨和清洗过程中,耐心和仔细则是不可或缺的。
每一个阶段都需要我们倾注心血,才能获得满意的产品。
铸造成功并非偶然,而是需要多种因素共同作用。
坚定的决心、精确的设计和实施、严格的质量控制以及良好的团队协作,都是铸造成功的关键。
我明白了,成功的铸造不仅需要我们对工艺的深入理解,更需要我们对细节的关注和执着。
在铸造过程中,我也体验到了挫折感。
比如有一次,我们精心设计的模具出现了问题,导致整个项目失败。
这次经历让我深刻地认识到,失败并不可怕,重要的是从失败中学习,找出问题并改进。
这次铸造之旅让我对自己和他人有了更深的理解。
我明白了每个人在团队中的角色和责任,以及团队协作的重要性。
同时,我也体验到了铸造成功的喜悦。
当我们最终得到完美的铸件时,那份满足感和成就感是无法言表的。
总的来说,铸造的经历让我明白了,工艺不仅仅是手艺,更是一种智慧和耐心。
它让我学会了如何在困难面前坚持,如何在失败中寻找教训,以及如何与团队紧密合作,共同实现目标。
这是我在铸造中学到的宝贵经验,我将带着这些体验和感悟,继续我的生活和职业生涯。
铸造心得体会篇2铸造是一项需要耐心和技术的过程,目的是将液态金属铸成固态物品。
以下是我的铸造心得体会:首先,我意识到保持冷静的重要性。
在铸造过程中,温度和时间的控制至关重要。
任何的失误都可能导致铸件失败,或者更糟糕的是,造成设备的损坏。
因此,我学会了在压力和不确定因素下保持冷静,以便做出正确的决策。
铸造加工中的凝固和冷却控制
铸造加工中的凝固和冷却控制在铸造加工中,凝固和冷却是非常重要的工艺过程,对产品质量的影响非常大。
因此,控制凝固和冷却是铸造加工的关键。
本文将从材料的物理性质,凝固的基本原理和冷却的作用等方面探讨凝固和冷却控制对铸造加工的影响。
一、材料的物理性质材料的物理性质是指某一物质在自然界中存在时表现出来的各种特定的物理特性,其主要包括热传导、导热系数、比热容等。
其中,热传导是指物质内部传递热量的能力,也是影响凝固速度和均匀度的重要因素。
材料的热传导系数决定了热量在材料内部传递的速度,因此,热传导系数高的材料,在凝固过程中可以更快地将热量释放出来,凝固速度更快。
另外,材料的比热容也是影响凝固和冷却的关键因素。
比热容是指单位质量物质升高单位温度时所需要吸收的热量,它可以反映材料的热惯性。
当材料比热容大时,需要吸收的热量也会更多,因此,凝固和冷却的速度会变慢。
所以,铸造加工中需要根据材料的物理性质来制定合理的凝固和冷却控制方案。
二、凝固的基本原理凝固是指由液态物质向固态物质转变的过程。
在铸造加工中,凝固是产品成型的一个重要过程。
凝固实质上是液态材料中的原子和分子进入晶格的过程,它是一个放热的过程,也就是释放热量。
在凝固过程中,液态金属的原子和分子逐渐由无序状态转变为有序状态,进入晶格中形成晶粒。
根据晶体学原理,晶粒在晶体生长时会沿着确定的晶格生长方向,因此晶粒的大小和形状对产品的力学性能和化学性能有着重要的影响。
在铸造加工中,为了实现均匀凝固,需要根据具体的铸件形状、尺寸和材料性质等制定恰当的凝固速度和凝固温度控制方案,使凝固过程达到均匀和完整。
三、冷却的作用在铸造加工中,除了控制凝固速度和温度外,还需要控制冷却剂的流量和速度,以实现均匀冷却。
正常的冷却过程可以保证材料的宏观平衡性和细观结构的完整性,同时也可以提高产品的性能和延长使用寿命。
在铸造加工过程中,冷却的主要作用是将铸件中的热量迅速地散发出去,降低铸件的温度,减少铸件的变形和内部应力,并在适当的时间内将铸件冷却到室温。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铸造工艺中液态金属凝固成形的关键问题
液态金属通过冷却凝固最终获得合格的、满足各种使用要求的铸件。
山东伊莱特重工跟您一起探讨:以下的关键问题是在生产过程中应予以妥善解决的。
(一)结晶及凝固组织的形成与控制液体金属的结构,晶核的形成与长大,晶粒的大小、方向和形态等与铸件的凝固组织密切相关,它们以铸件的物理性能和力学性能有着重大的影响。
控制铸件的凝固组织的目的就是为了获得所希望的组织,欲控制凝固组织,就必须对其形成机理、形成过程和影响因素有全面的了解和深入研究。
目前山东伊莱特重工有限公司已建立的有效控制组织的方法有变质、孕育、动态结晶、顺序凝固、快速凝固等。
(二)铸件尺寸精度和表面粗糙度控制现代制造的许多领域,对铸件尺寸精度和外观质量的要求愈来愈高,技术改变着铸造只能提供毛坯的传统观念,其目的在于降低物耗、能耗、工耗,并且改善产品的内外质量,争取市场和高效益。
然而,铸件尺寸精度和表面粗糙度由于受到诸多因素(如铸型表面的作用、凝固热应力、凝固收缩等)的影响和制约,控制难度很大。
铸件是液态成形的,实现净形化具有独特的优越性,在结构方面铸件的内腔和外形用铸造方法一次成形,使其接近零件的最终形状,使加工和组装工序减至最少;在尺寸精度和表面质量方面,使铸件能接近产品的最终要求,做到无余量或小余量;另一方面,被保留的铸造原始表面有益于保持铸件的耐蚀和耐疲劳等优越性能,从而提高产品寿命。
努力提高铸件的尺寸精度和降
低表面粗糙度,推进铸件近净形技术的发展是未来的方向。
(三)铸造缺陷的防止与控制铸造缺陷是造成废品的主要原因,是对铸件质量的严重威胁。
由于方方面面的原因,存在于铸件的缺陷五花八门,由于凝固成形时条件的差异,缺陷的种类表现为形态和表现部位不尺相同。
如液态金属的凝固收缩会形成缩孔、缩松;凝固期间元素在固相和液相中的再分配会赞成偏析;冷却过程中热应力的集中会造成铸件裂纹和变形。
应根据产生的原因和出现的程度不同,采取相应措施加以控制,使之消除或降至最低程度。
此外,还有许多缺陷,如有夹杂物、气孔、冷隔等,出现在充填过程中,它们不仅与合金种类有关,而且还与具体成形工艺有关。
总之,防止、消除和控制各类。
更多问题请百度咨询山东伊莱特重工有限公司。