纳米激光器Demonstration of a spaser-based nanolaser
超声对直接激光沉积钛基复材中未熔TiC_聚集现象的影响
![超声对直接激光沉积钛基复材中未熔TiC_聚集现象的影响](https://img.taocdn.com/s3/m/10d2f15b640e52ea551810a6f524ccbff121ca86.png)
第15卷第11期精密成形工程2023年11月JOURNAL OF NETSHAPE FORMING ENGINEERING21超声对直接激光沉积钛基复材中未熔TiC聚集现象的影响张子傲,严新锐,宋晨晨,马广义*,牛方勇,吴东江(大连理工大学,辽宁大连 116024)摘要:目的改善直接激光沉积TiC p增强TC4复合材料中未熔TiC(Unmelted TiC,UMT)的聚集情况,提高钛基复合材料的力学性能。
方法利用定点超声辅助直接激光沉积工艺制备了20%、30%(质量分数)TiC p/TC4复合材料,通过金相显微镜观察UMT的分布情况,采用X射线衍射仪分析物相组成、衍射峰强度与半峰宽变化。
通过扫描电子显微镜(SEM)进一步分析样件的微观组织,并使用SEM配备的能谱仪模块对元素分布情况和元素含量进行分析,同时观察拉伸样件的断口微观形貌和初生TiC情况。
分别采用显微硬度仪和微机控制电子万能试验机测试样件的显微硬度与拉伸性能。
结果超声产生的声流、空化和机械效应不断搅拌熔池,增大了熔池的润湿性,初生TiC熔化/溶解更加充分,改善了UMT在熔覆层边缘的聚集情况。
在超声能场辅助作用下,20%、30%(质量分数)TiC p/TC4复合材料的平均显微硬度分别提升了8.4%和12.7%,极限拉伸性能分别提升了8.0%和15.0%。
结论定点超声高频振动可以有效改善UMT聚集现象,使TiC p在TC4基体中分布得更加均匀,增强了熔覆层间结合强度,最终使沉积件力学性能得到提升。
关键词:直接激光沉积;TiC p/TC4复合材料;超声振动;UMT聚集;微观组织;力学性能DOI:10.3969/j.issn.1674-6457.2023.011.003中图分类号:TG174.442;TB34 文献标识码:A 文章编号:1674-6457(2023)011-0021-10Effect of Ultrasound on Aggregation of Unmelted TiC in Titanium MatrixComposite by Direct Laser DepositionZHANG Zi-ao, YAN Xin-rui, SONG Chen-chen, MA Guang-yi*, NIU Fang-yong, WU Dong-jiang(Dalian University of Technology, Liaoning Dalian 116024, China)ABSTRACT: The work aims to improve the aggregation of UMT in TiC p reinforced TC4 composite fabricated by direct laser deposition to strengthen the mechanical properties of TMC. 20wt.% and 30wt.% TiC p/TC4 composites were prepared by fixed ultrasonic assisted direct laser deposition. The distribution of UMT was observed by metallographic microscope. The phase composition, diffraction peak intensity and half peak width were analyzed by X-ray diffractometer. The microstructure was ana-收稿日期:2023-10-08Received:2023-10-08基金项目:中国高校基本科研业务费资助(DUT21YG116);国家自然科学基金(52175291)Fund:Fundamental Research Funds for the Central University(DUT21YG116);National Natural Science Foundation of China (52175291)引文格式:张子傲, 严新锐, 宋晨晨, 等. 超声对直接激光沉积钛基复材中未熔TiC聚集现象的影响[J]. 精密成形工程, 2023, 15(11): 21-30.ZHANG Zi-ao, YAN Xin-rui, SONG Chen-chen, et al. Effect of Ultrasound on Aggregation of Unmelted TiC in Titanium Matrix Composite by Direct Laser Deposition[J]. Journal of Netshape Forming Engineering, 2023, 15(11): 21-30.*通信作者(Corresponding author)22精密成形工程 2023年11月lyzed by field emission scanning electron microscope. The element distribution and element content were analyzed by energy dispersive spectrometer of SEM. At the same time, the fracture morphology and primary TiC of tensile samples were observed.The mechanical properties of the samples were tested by microhardness tester and microcomputer controlled electronic universal testing machine. The acoustic flow, cavitation and mechanical effects generated by ultrasound could continuously stir the molten pool, increase the wettability of the molten pool, make the primary TiC melt/dissolve more fully, and improve the aggregation of UMT at the edge of the cladding layer. Under the assistance of ultrasonic energy field, the average microhardness of 20wt.% and 30wt.% TiC p/TC4 composites increased by 8.4% and 12.7% respectively, and the ultimate tensile properties increased by 8.0% and 15.0% respectively. The fixed ultrasonic high-frequency vibration effectively improves the UMT aggregation, makes the distribution of TiC p in the TC4 matrix more uniform, enhances the bonding strength between the cladding layers, and finally im-proves the mechanical properties of the deposited samples.KEY WORDS: direct laser deposition; TiC p/TC4 composites; ultrasonic vibration; UMT aggregation; microstructure; me-chanical properties钛合金因具备优异的耐腐蚀性、较高的比刚度和较好的高温性能,已被广泛应用于航空工业中[1-7],例如高压机舱面板、高温涡轮风扇、整体叶盘等关键零部件[8-10]。
苏州纳米所在硅衬底InGaN 基半导体激光器方面取得重要进
![苏州纳米所在硅衬底InGaN 基半导体激光器方面取得重要进](https://img.taocdn.com/s3/m/dfadf7afc850ad02de8041f7.png)
苏州纳米所在硅衬底InGaN 基半导体激光器方面取得重要进
作者:暂无
来源:《新材料产业》 2016年第9期
由于氮化镓(GaN)材料与硅衬底之间存在着巨大的晶格常数失配和热膨胀系数失配,直接在硅衬底上生长G a N材料会导致GaN薄膜位错密度高并且容易产生裂纹,因此硅衬底氮化镓铟(I n G a N)基激光器难以制备。
该研究方向是目前国际上的研究热点,但是到目前为止,仅有文章报道了在光泵浦条件下硅衬底上InGaN基多量子阱发光结构的激射。
针对这一关键科学技术问题,中科院苏州纳米所杨辉研究员领导的Ⅲ族氮化物半导体材料与器件研究团队,采用AlN/AlGaN缓冲层结构,有效降低位错密度的同时,成功抑制了因硅与G a N材料之间热膨胀系数失配而常常引起的裂纹,在硅衬底上成功生长了厚度达到6μ m左右的I nGaN基激光器结构,位错密度小于6×108/ c m2,并通过器件工艺,成功实现了世界上首个室温连续电注入条件下激射的硅衬底I n G a N基激光器,激射波长为413n m,阈值电流密度为4.7k A / c m2。
(中国电子材料行业协会)。
利用纳米技术制备SERS活性基底
![利用纳米技术制备SERS活性基底](https://img.taocdn.com/s3/m/4e6bef3d67ec102de2bd8945.png)
・
综
述 ・
利用 纳米技 术 制备 S R E S活 性 基 底
苏倩倩 , 许蓓蓓 , 程远 , 高倩 , 卫平 钱
( 东南大学 生物科学与工程学院, 生物 电子学国家重点实验室 , 江苏 南京 20 9 ) 10 6
[ 摘要 ]表 面增 强拉 曼散 射 (ufe。n acdR ma ct r g E S 作 为 一种 独特 的 光谱检 测技 术 , sr ee hn e a nsat n ,S R ) a e i 正在 引起人 们的极 大关注 , 别是 在 生物 医学领 域 的应 用。S R 特 E S活性基 底 的制备 是获 得 S R E S信 号的前 提 , 然 而如何 简单地制备 出增 强效 果好 且具 有 高度 一致 性 和 重复性 的活性 基底 却 成 为 限制 S R E S发 展 的 主要 原 因。纳米技 术在基 底制备过 程 中的应 用为其提供 了一 个很 好 的解决方案 。在 本 文 中作者 总结 了与纳 米技 术
相 结合 的 多种 S R E S活性基底 的制备 方法 , 点归纳 了各种 方法的优 缺点及 其对应 的应 用研 究 , 出在制 备 重 指 过程 中需要根据特 定应 用研 究 的要 求选择合适 的方 法。
[ 关键词 ]表 面增强拉 曼散射 ;活性 基底 ; 米技 术 ;文献综述 纳 [ 中图分 类号 ]R 1. 385 [ 文献 标识码 ]A [ 文章编号 ]17 —24 2 1 )l02 —8 6 166 (0 1O 一170
( 本文 编 辑 : 儒 祥 ) 张
z s n et e[ ] i hm Sc rn ,0 12 ( t) a ui pd sJ .Bo e o as20 ,9 P4 : f op i c T
高功率半导体激光器倍频实现紫外光输出
![高功率半导体激光器倍频实现紫外光输出](https://img.taocdn.com/s3/m/b51a862914791711cc791742.png)
第31卷第2期强激光与粒子束V o l.31,N o.2 2019年2月H I G H P OW E R L A S E R A N D P A R T I C L E B E AM S F e b.,2019高功率半导体激光器倍频实现紫外光输出*胡列懋,李志永,刘松阳,宁方晋,谭荣清(1.中国科学院电子学研究所高功率气体激光技术部,北京100190;2.中国科学院大学电子电气与通信工程学院,北京100049)摘要:采用中心波长780n m㊁线宽0.13n m的体布拉格光栅外腔半导体激光作为基频光,基于Ⅰ类相位匹配的三硼酸锂晶体(L B O),获得了中心波长为390n m的倍频光输出,输出功率30μW,转换效率0.01%,为高功率紫外光束的实现提供了新的技术路线㊂关键词:半导体激光器;倍频;紫外光;高功率中图分类号: T N248.2文献标志码: A d o i:10.11884/H P L P B201931.190025S e c o n dh a r m o n i c g e n e r a t i o no f u l t r a v i o l e t l a s e r b a s e do nh i g h p o w e r l a s e r d i o d e a r r a yH uL i e m a o, L i Z h i y o n g, L i uS o n g y a n g, N i n g F a n g j i n, T a nR o n g q i n g(1.D e p a r t m e n t o f H i g hP o w e rG a sL a s e r,I n s t i t u t e o f E l e c t r o n i c s,C h i n e s eA c a d e m y o fS c i e n c e s,B e i j i n g100190,C h i n a;2.S c h o o l o f E l e c t r o n i c,E l e c t r o n i c a l a n dC o mm u n i c a t i o nE n g i n e e r i n g,U n i v e r s i t y o fC h i n e s eA c a d e m y o f S c i e n c e s,B e i j i n g100049,C h i n a)A b s t r a c t: A780n mc o n t i n u o u s-w a v e,w h i c h i so u t p u tb y e x t r a-c a v i t y s e m i c o n d u c t o r l a s e rw i t hab u l kb r a g gg r a t i n g,i su s e da s t h e f u n d a m e n t a l i n p u t l i g h t s o u rc eo f t h eS e c o nd H a r m o n i cGe n e r a t i o n(S H G)s y s-t e m.L i n ew i d t ho f t h e f u n d a m e n t a l l i g h t i s0.13n m.B a s e do n t h e t y p e I p h a s e-m a t c h i n g a n dL i t h i u m T r i b o-r a t e(L B O)c r y s t a l,390n ms e c o n dh a r m o n i c i so b t a i n e d.T h e e m i t t e da v e r a g eo u t p u t p o w e r i s30μW(S H Ge f f i c i e n c y i s0.01%).W e p r o v i d e an e wt e c h n i c a l r o u t e f o r t h e a c h i e v e m e n t o f h i g h-p o w e rU Vb e a m s.K e y w o r d s:l a s e r d i o d e;s e c o n dh a r m o n i c g e n e r a t i o n;u l t r a v i o l e t l i g h t l a s e r;h i g h p o w e rP A C S:42.55.-f;42.55.P x由于紫外波段激光具有波长短㊁分辨率高等特点,因此在材料加工与处理㊁生物学和医学㊁光数据存储等领域都有较广泛的应用㊂目前,该波段激光通常基于三倍频的技术实现[1]㊂2005年,V e s a r a c h等[2]通过半导体激光器(L D)输出波长为660n m的基频光,偏硼酸钡晶体(B B O)作为非线性晶体,利用三倍频技术输出功率为2.9μW的紫外光㊂近年来,随着外腔技术和外延片刻蚀光栅技术的发展,半导体激光器在窄线宽㊁波长精密调控等方面取得了较大发展,目前已能够实现k W级平均功率10G H z量级线宽的高功率窄线宽L D[3]㊂通过选择合适的倍频晶体,使基频光的聚焦参量和线宽与晶体的接收角和接收线宽相匹配,这一技术路线在获得高功率紫外光方面具有较好的应用前景㊂本文采用高功率窄线宽L D作为基频光实现L B O倍频光输出,实验装置如图1所示㊂L D采用的是基于c m巴条的体布拉格光栅(V B G)外腔L D,填充因子50%,19个发光单元,中心波长780.02n m,线宽0.13n m,可通过调节V B G的温度调节波长,中心波长随V B G的调谐速率为7p m/ħ,调谐范围799.30~780.02n m,输出功率30W㊂半波片用于调节L D的偏振方向㊂为了减少倍频晶体由于热累计引起的走离效应,放置了光阑,滤除未用于倍频的基频光㊂光阑的通光孔径3.5mm,通过光阑后,基频光光斑形状如图2所示㊂为提高基频光的功率密度,使用焦距75mm的透镜进行聚焦㊂倍频晶体为L B O,选用Ⅰ类相位匹配(o+ oңe),切割角(θ,φ)为(90.0ʎ,33.7ʎ),尺寸3mmˑ3mmˑ8.4mm,两端镀双波长增透膜(透射率>99.5%@*收稿日期:2019-01-25;修订日期:2019-02-24基金项目:国家自然科学基金项目(61875198);军委装备发展部领域基金项目(61404140107)作者简介:胡列懋(1995 ),男,硕士,从事非线性光学研究;h u l i e m a o17@m a i l s.u c a s.a c.c n㊂通信作者:谭荣清(1966 ),男,研究员,博士生导师,从事气体激光器技术及其应用等方面的研究;r q t a n@m a i l.i e.a c.c n㊂020101-1020101-2 F i g .1 E x p e r i m e n t a l s e t u p of S H G 图1 倍频装置示意图390n m ;透射率>99.8%@780n m )㊂基频光和倍频光经过滤光片后分离,使用光谱仪或硅基光电探测器测量倍频光的参数㊂倍频光的光谱图如图3所示,中心波长为390n m ㊂在距离滤光片0.2m 处放置承接屏,倍频光的光斑如图4(a )所示,在相同位置使用C C D 相机测得的倍频光光斑的图样如图4(b )所示,大小为4.8mmˑ0.6mm ㊂在基频光功率0.336W 时,获得了30μW 的倍频光输出㊂F i g .2 F u n d a m e n t a lw a v e 图2基频光光束F i g .3 S p e c t r u mo f S H G 图3倍频光光谱图F i g .4 S p o t o f S H Ga n d 2De n e r g y d i s t r i b u t i o n i m a g e o f S H Gs po t 图4 倍频光光斑和倍频光2维空间能量分布图目前已经实现了窄带宽L D 作为基频光,利用L B O 晶体倍频技术,直接输出390n m 的倍频光,但是转化效率低,约为0.01%㊂后续工作将从聚焦参量和晶体接收角的匹配㊁减弱走离效应等方面进行优化,进一步提高紫外光的各项技术指标㊂参考文献:[1] 崔建丰,高涛,张亚男,等.高效率㊁高峰值功率351n m 准连续紫外激光器[J ].红外与激光工程,2017,46(6):35-38.(C u i J i a n f e n g,G a o T a o ,Z h a n g Y a n a n ,e t a l .H i g he f f i c i e n c y a n dh i g h p e a k p o w e r 351n m q u a s i -c o n t i n u o u s u l t r a v i o l e t l a s e r .I n f r a r e da n dL a s e rE n g i n e e r i n g ,2017,46(6):35-38)[2] V e s a r a c hP ,N o n a k aK ,O h a r aK.T u n a b l eU V g e n e r a t i o n f r o me x t e n d e d c a v i t y D V D l a s e r d i o d e a n d n o n l i n e a r o p t i c a l c r y s t a l [C ]//2005P a -c i f i cR i m C o n f e r e n c e o nL a s e r s&A m p ;E l e c t r o -O p t i c s .2005:877-878.[3] P i t zG A ,S t a l n a k eD M ,G u i l dE M ,e t a l .A d v a n c e m e n t s i n f l o w i n g d i o d e p u m p e d a l k a l i l a s e r s [C ]//H i g hE n e r g y /A v e r a g eP o w e rL a s e r s &I n t e n s eB e a m A p p l i c a t i o n s I X.2016.强激光与粒子束。
基于石墨烯和碳纳米管所设计的表面等离子体激元纳米激光器
![基于石墨烯和碳纳米管所设计的表面等离子体激元纳米激光器](https://img.taocdn.com/s3/m/6f3e02b1b0717fd5360cdcd5.png)
题目基于石墨烯和碳纳米管所设计的表面等离子体激元纳米激光器摘要表面等离子体激元纳米激光器(Spaser)是通过等离子体谐振器和增益介质来补充能量损失的表面等离子体激元的纳米尺度光源。
这里我们设计了一种碳基spaser,其中的石墨烯纳米片(GNF)谐振器被耦合到碳纳米管(CNT)增益元件上。
我们从理论上证明了,由于这种模式与CNT激子之间的近场的相互作用,所以光激发CNT可以零辐射地将能量转移到GNF的定域等离子体激元模式。
通过计算等离子体激元模式的定域场和等离子体激元激子的相互作用的矩阵元,我们发现了等离子激元的生成速率最高的spaser的最优几何参数和材料参数。
得到的结果可以证明,对等离子体纳米电路设计强大的和超级紧密连贯的的表面等离子体激元光源,将会非常有用。
关键词表面等离子体激元纳米激光器;石墨烯;碳纳米管;量子等离子体;光学器件正文纳米等离子体提供了超快制造超速纳米电路的巨大新机遇,因为它可以突破常规的光波衍射极限而微型化。
可以利用表面等离子体激元(SPs)在金属-电介质界面的电子集体振荡去携带处于纳米尺度的信息。
利用SP去激励电路,需要一个类似于电子晶体管或光学激光的激活装置。
通过辐射的受激发射放大表面等离子体激元,在活性等离子体装置中可被用于产生SP,这种现象被称为spaser。
spaser的运作,要求增益介质的激发能能被零辐射转移到耦合等离子体谐振器中,以增大其定域的SP模式的振幅。
通过SP受激辐射放大,spaser能产生比那些构建于金属表面由激光源激励的更强更连贯的等离子场。
最近SP的受激辐射的实验,实现了spaser的第一个实用性应用——一个被染料掺杂的二氧化硅包裹的球形金纳米颗粒。
spaser的运行特征,诸如等离子激元的生成速率,发射波长,SP的品质因子以及阈值增益,强烈依赖于其几何形状和组成。
因此,许多spaser的设计方案已被提出并进行分析,以寻求性能上的最佳。
这些包括一个位于光泵浦多量子阱(QW)之间的金箔等离子体激元波导,一个由量子点(QD)包裹的V形的金属纳米颗粒,一个在有源基底上的环缝谐振器的阵列,一个领结形束缚量子点金属结构和一个在其底部的带量子点的金属纳米凹槽。
纳米等离子体激光器研究进展
![纳米等离子体激光器研究进展](https://img.taocdn.com/s3/m/fc371be4f80f76c66137ee06eff9aef8941e48a8.png)
纳米等离子体激光器研究进展赵青;黄小平;林恩;焦蛟;梁高峰;陈涛【摘要】半导体激光器在生物技术、信息存储、光子医学诊疗等方面得到了广泛应用.随着纳米技术和纳米光子学的发展,紧凑微型化激光器应用前景引人关注.当激光器谐振腔尺寸减小到发射波长时,电磁谐振腔中将产生更为有趣的物理效应.因此,在发展低维、低泵浦阈值的超快相干光源,以及纳米光电集成和等离激元光路时,减小半导体激光器的三维尺寸至关重要.在本综述中,首先介绍了纳米等离子体激光器中的谐振腔模式增益和限制因子的总体理论,并综述了金属-绝缘材料-半导体纳米(MIS)结构或其它相关金属覆盖半导体结构的纳米等离子体激光器各方面的总体研究进展.特别地,对基于MIS结构的等离子体谐振腔实现纳米等离子体激光器三维衍射极限的突破,进行了详细的介绍.本文也介绍并展望了纳米等离子体激光器的技术挑战和发展趋势,为纳米激光器进一步研究提供参考.%Semiconductor lasers are widely used for applications in biology, information storage, photonics and medical therapeutics. With the development of the emerging area of nano-optics and nanophotonics, more compact lasers attract significant interest. As the cavity size is reduced with respect to the emission wavelength, interesting physical effects in electromagnetic cavities arise. To scale down the semiconductor lasers in all three dimensions plays an important role in the development of low-dimension, low-threshold, and ultrafast coherent light sources, aswell as integrated nano-opto electronic and plasmonic circuits. In this review, the overall formalism of mode gain and confinement factor in the metal–semiconductor plasmonic lasers was introduced firstly. In addition, an update doverview of the latestdevelopments, particularly in plasmonic nanolasers using the metal-insulator-semiconductor(MIS) configuration and another related metal-cladded semiconductor microlasers was presented. In particular, it hasbeen experimentally demonstrated that the use of plasmonic cavities based on MIS nanostructures can indeed breakthe diffraction limit in three dimensions. We also present some perspectives on the challenges and developmenttrend for the plasmonic nanolasers. This review can provide useful guide for the research of plasmonic nanolasers.【期刊名称】《光电工程》【年(卷),期】2017(044)002【总页数】12页(P140-151)【关键词】等离子体激光器;表面等离子体激元;微纳加工【作者】赵青;黄小平;林恩;焦蛟;梁高峰;陈涛【作者单位】电子科技大学物理电子学院,成都 610054;电子科技大学物理电子学院,成都 610054;电子科技大学物理电子学院,成都 610054;电子科技大学物理电子学院,成都 610054;电子科技大学物理电子学院,成都 610054;电子科技大学物理电子学院,成都 610054【正文语种】中文【中图分类】TN248自从上世纪60年代激光器发明以来,激光器和人类的其它发明一样,对人类的各个方面都产生了巨大影响。
Ⅱ类超晶格红外探测器技术概述(二)
![Ⅱ类超晶格红外探测器技术概述(二)](https://img.taocdn.com/s3/m/8c470dc3afaad1f34693daef5ef7ba0d4a736d90.png)
第51卷 第5期 激光与红外Vol.51,No.5 2021年5月 LASER & INFRAREDMay,2021 文章编号:1001 5078(2021)05 0548 06·综述与评论·Ⅱ类超晶格红外探测器技术概述(二)尚林涛,王 静,邢伟荣,刘 铭,申 晨,周 朋,赵建忠(华北光电技术研究所,北京100015)摘 要:简要归纳总结了Ⅱ类超晶格材料的生长、器件制备方法以及最近新型Ⅱ类超晶格材料体系的演化。
Ⅱ类超晶格理论和工艺技术不断取得进步和完善并呈现出材料体系多样化和更高的性能。
虽然目前及今后较长时间内HgCdTe技术仍然是市场主流,但是Ⅱ类超晶格技术在整体系统性能和成本上可以挑战HgCdTe,Ⅱ类超晶格技术将在红外应用领域全方位替代HgCdTe技术的优势已经越来越清晰。
关键词:Ⅱ类超晶格;Type Ⅱ;T2SL;SLS;生长及制备中图分类号:TN213 文献标识码:A DOI:10.3969/j.issn.1001 5078.2021.05.002Overviewoftype Ⅱsuperlatticeinfrareddetectortechnology(Ⅱ)SHANGLin tao,WANGJing,XINGWei rong,LIUMing,SHENChen,ZHOUPeng,ZHAOJian zhong(NorthChinaResearchInstituteofElectro Optics,Beijing100015,China)Abstract:Thegrowthoftype Ⅱsuperlatticematerials,thedevicepreparationmethodsandtherecentevolutionofnewtype Ⅱsuperlatticematerialssystemsarebrieflysummarized type Ⅱsuperlatticestheoryandprocesstechnologyhavebeencontinuouslyimproved,presentingdiversifiedmaterialsystemsandhigherperformance AlthoughHgCdTetechnologyisstillthemarketmainstreamatpresentandforalongtimetocome,type ⅡsuperlatticetechnologycanchallengeHgCdTeintermsofoverallsystemperformanceandcost Theadvantagesoftype ⅡsuperlatticetechnologyincomprehensivelyreplacingHgCdTetechnologyinthefieldofinfraredapplicationhavebecomeincreasinglyclear Keywords:classⅡsuperlattice;type Ⅱ;T2SL;SLS;growthandpreparation作者简介:尚林涛(1985-),男,硕士,工程师,研究方向为红外探测器材料分子束外延技术研究。
基于空间光调制技术的飞秒激光微纳加工
![基于空间光调制技术的飞秒激光微纳加工](https://img.taocdn.com/s3/m/2851defd80c758f5f61fb7360b4c2e3f572725cd.png)
内容摘要飞秒激光加工表面微纳米结构作为一种新型的、多用途的纳米材料制备技术被广泛应用于物理、生物、信息等多领域中,然而传统的飞秒激光加工往往采用逐点扫描的方法,效率低下。
借助于LCoS SLM (Liquid Crystal on Silicon-Spatial Light Modulator)的空间光调制技术能够通过相位调制实现对飞秒激光焦平面光场的空间整形,将其用于无掩膜并行加工,可以在保证加工精度的同时极大提升加工效率。
本文研究了空间光调制器的构造和工作原理,对基于LCoS SLM的多种光场图形化算法进行了分析、模拟、改进和实验验证,主要研究结果如下:首先,本文研究并总结了基于时空干涉的新型空间整形系统的原理,它相比传统技术更加简单灵活并有更高的效率。
然而此技术中的缩束系统造成的成像畸变严重影响了加工的准确性。
本文模拟并分析了该系统中的畸变现象,利用空间光调制器的相位全息图补偿畸变引起的空间光场的位置变化和光强分布不均。
此方法可使曝光处干涉图案的最大偏移量由10.66 μm趋近于0,在实验中将相对最大偏差由60.42 %降至8 %以下,并使该处二维光强分布趋近于平顶光。
该算法降低了时空干涉的飞秒激光空间整形技术对于缩束成像系统的设计需求,节省了成本与时间。
基于以上方法,在不锈钢表面拼接加工出了1.5 × 1.5 mm的具备多级别防伪能力的二维码图案。
此外,本文还模拟并验证了借助MPFL(Multiplexed Phase Fresnel Lenses)算法实现的多路菲涅尔透镜全息图和对其改进得到的柱透镜全息图,成功将激光光场调制为点阵和直线分布,并通过GS(Gerchberg–Saxton)算法和GSW(Weighted Gerchberg–Saxton)算法得到了将光场调制为面状分布的计算全息图,大幅提升了焦平面处的光强均匀性。
关键词:飞秒激光,空间光调制器,微纳加工,无掩膜加工ABSTRACTAs a new multi-purposed nanomaterial processing technology, the surface micro-nanostructures processed by femtosecond laser are widely used in many fields, such as physics, biology and information. The spatial light modulation technology based on LCoS SLM(Liquid Crystal on Silicon-Spatial Light Modulator) can realize the spatial shaping of femtosecond laser focal plane light field through phase modulation, which can apply to the parallel processing without mask, so as to ensure the processing precision as well as to raise the efficiency much higher than the traditional point by point scanning processing technology.This work introduces the structure and working principle of spatial light modulator, and does some analysis, simulation and improvements on a series of optical field graphics algorithms based on LCoS SLM. A series of experiments are applied to verify that.This work will investigate and summarize principles of a spatial shaping system based on the spatiotemporal interference which is more easy, flexible and efficient than traditions. However, the imaging distortion introduced by the shrink-beam system has huge influence on the accuracy of processing. This work simulates and analyzes the distortion of the systems, and provides a method to adjust the phase hologram from a spatial light modulator via compensating for the position changes and the uneven light distribution from the distortion. The method can make the maximum deviation of the interference pattern near the exposure point approach 0 from 10.66 μm, the relative maximum deviation reduce from 60.42 % to under 8% and the two-dimension light intensity distribution get close to flat-top. The algorithm reduces the design requirement on the system, cost and time are saved. Thehigh-precision large-area micro-nanostructures are realized successfully fabricated on a stainless steel surface based on this system, including the 1.5 × 1.5 mm QR code with multi-level anti-counterfeiting ability.Furthermore, the multiplexed Fresnel lens hologram are simulated by using the MPFL(Multiplexed Phase Fresnel Lenses). The cylindrical lens hologram is obtained by improving simulation, which modulates the laser field into dot matrix and linear distribution. By using the GS algorithm and the GSW algorithm, a computer hologram to modulate the light field into a planar distribution is obtained. The light intensity uniformity is immensely improved at the focal plane.Keywords: [Femtosecond laser] [Spatial light modulator] [Micro/nano fabrication] [Maskless fabrication]目录内容摘要 (I)ABSTRACT (i)第1章绪论 (1)1.1 飞秒激光加工技术 (1)1.2 飞秒激光加工表面微纳米结构的特性及应用 (2)1.3 空间光调制技术用于加工表面微结构 (4)1.4 课题的意义和主要研究内容 (5)第2章空间光调制技术研究 (8)2.1 空间光调制器介绍 (8)2.2 空间光调制器的构造和原理 (9)2.3 本章小结 (13)第3章基于时空干涉的空间整形畸变校正及加工应用 (14)3.1 基于时空干涉的空间整形的优势与缺陷 (14)3.2 实验装置 (16)3.3 畸变校正的算法与模拟 (17)3.4 光强校正的算法与模拟 (19)3.5 畸变与光强校正的实验验证 (22)3.6 畸变与光强校正用于拼接制备大面积微结构 (24)3.6.1 拼接微结构的试验 (24)3.6.2 拼接制造基于二维码的多级防伪结构 (26)3.6.3 拼接制造仿生疏水结构 (29)3.7 本章小结 (30)第4章基于MPFL算法的点阵与线状分布光场空间整形 (31)4.1 MPFL算法的原理和改进 (31)4.2 “点”与“线”空间整形的实验验证 (32)4.3 本章小结 (34)第5章基于GS算法的平面衍射光场整形 (35)5.1 衍射光学元件 (35)5.2 GS算法的原理和模拟 (35)5.3 对GS算法的改进和模拟 (38)5.4 实验验证 (41)5.5 本章小结 (43)第6章结语 (45)总结 (45)展望 (46)科研成果 (47)参考文献 (48)致谢54第1章绪论1.1 飞秒激光加工技术激光拥有极高的单色性、方向性、相干性和相比普通光源超高的亮度(能量输出)等特点[1],此外还可根据对功率、波长、脉宽等多种需求进行选择和适配。
表面等离子体激元纳米激光器技术及应用研究进展
![表面等离子体激元纳米激光器技术及应用研究进展](https://img.taocdn.com/s3/m/343377c4250c844769eae009581b6bd97f19bc3f.png)
表面等离子体激元纳米激光器技术及应用研究进展陈泳屹;佟存柱;秦莉;王立军;张金龙【摘要】Conventional semiconductor lasers suffer from the scale of the diffraction limit due to the light to be confined by the optical feedback systems. Therefore, the scales of the lasers cannot be miniaturized because their cavities cannot be less than the half of the lasing wavelength. However, lasers based on the Surface Plas- mon Polaritons(SPPs) can operate at a deep sub-wavelength, even nanometer scale. Moreover, the develop- ment of modern nanofabrication techniques provides the fabrication conditions for micro - or even nanometer scale lasers. This paper reviews the progress in nano-lasers based on SPPs that have been demonstrated re-cently. It describes the basic principles of the SPPs and gives structures and characteristics for several kinds of nanometer scale lasers. Then, it points out that the major defects of the nanometer scale lasers currently are focused on higher polariton losses and the difficultiesin fabrication and electronic pumping technologies men- tioned above. Finally, the paper considers the research and application prospects of the nanometer scale lasers based on the SPPs.%传统半导体激光器由于采用光学系统反馈而存在衍射极限,其腔长至少是其发射波长的一半,因此难以实现微小化。
激光散斑法测量定向纳米流体中纳米粒子速度
![激光散斑法测量定向纳米流体中纳米粒子速度](https://img.taocdn.com/s3/m/949da2a4f524ccbff121848d.png)
激光散斑法测量定向纳米流体中纳米粒子速度钱明 倪晓武摘 要 本文利用激光散斑测速法测量定向纳米流体中纳米粒子的运动。
首先建立了针对纳米粒子的光学特性的激光散斑测速系统(Laser Speckle Velocimetry,LSV),利用实验、数值模拟证实了激光照射纳米流体确能形成散斑。
根据改进的实验装置建立了层流物理模型,进而构建了定向纳米流体实验装置,获得了时间间隔很短的相邻两幅散斑图。
最后对相邻两幅散斑图进行图像处理和信息提取,得到了纳米粒子运动矢量图。
关键词 激光散斑法;纳米流体;纳米粒子1 引言纳米流体是指把金属或非金属纳米粉体分散到水、醇、油等传统换热介质中,制备成均匀、稳定、高导热的新型换热介质[1]。
大量实验表明纳米流体的导热系数比原介质流体有很大幅度提高[2-6]。
国内外的科学工作者展开了大量的研究,提出了各种物理模型试图解释纳米流体的传热机理[7-13],其中纳米粒子的运动被认为是导致纳米流体导热性能显著提高的主要因素。
因此,研究一套测试系统来探测纳米粒子在纳米流体中的运动状态是迫切且意义重大的,本文利用激光散斑测速法测量定向纳米流体中纳米粒子的运动。
2 测量纳米流体中纳米粒子运动的LSV系统组成2.1 传统LSV系统组成作为最基本的二维LSV系统(如图1所示),系统的基本构成为:照明流场的瞬态二次或多次曝光光源(包括片光形成技术)、散斑记录装置、散斑处理和判读设备。
2.2 针对纳米流体的LSV系统组成[14]微米级示踪粒子的散射光足够强,只需少量的粒子被照亮,散射光的相互干涉就可以形成散斑。
而纳米粒子由于其小尺寸效应而显示出独特的光学特性。
因此我们对原LSV系统中光源的照射方式和记录装置的接收方式进行改进,新系统的组成如图2,主要由激光光源、透镜L 1和L 2组成的扩束透镜组、纳米流体透明管道和CCD记录装置组成,扩束透镜组中的透镜L 1和L 2的焦距分别为f 1和f 2,其焦距可根据具体的扩束倍数要求选定。
有机光电突触材料、器件及应用
![有机光电突触材料、器件及应用](https://img.taocdn.com/s3/m/a14041dd690203d8ce2f0066f5335a8102d266ad.png)
文章编号: 1008-9357(2022)01-0005-14DOI: 10.14133/ki.1008-9357.20210402002有机光电突触材料、器件及应用郭延博, 刘 钢(上海交通大学电子信息与电气工程学院,微纳电子学系,类脑与智能仿生器件实验室,上海 200240)摘 要: 随着大数据和物联网(IoTs )的迅猛发展,人工智能(AI )技术受到了广泛关注。
可克服冯·诺依曼瓶颈和提高串行计算机性能的光电神经形态器件在半导体器件和集成电路领域的发展迅猛。
光信号具有低功耗、低串扰、高带宽和低计算要求等优点,可视为额外端口以丰富突触可塑性的调节自由度。
光电器件的光电性能在很大程度上依赖于光电材料的设计、制备。
其中,有机材料具备分子多样性、成本低、易加工、机械柔韧性以及与柔性基板兼容等优点,是构建高性能光电突触器件的重要材料载体。
本文从有机材料出发,介绍了其在光电器件和视觉仿生领域应用的最新进展,并讨论了当前的应用挑战和未来发展趋势。
关键词: 有机材料;有机-无机杂化材料;光电器件;光电突触;神经形态计算中图分类号: TB34 文献标志码: AOrganic Photoelectric Synaptic Materials, Devices and ApplicationsGUO Yanbo, LIU Gang(Brain-Inspired and Smart Bionic Devices Laboratory, Department of Micro/Nano Electronics, School of ElectronicInformation and Electrical Engineering, Shanghai Jiao Tong Univeristy, Shanghai 200240, China )Abstract: With the advent of big data and the Internet of Things (IoTs), Artificial Intelligence (AI) has received greatattention from the global scientific and industrial communities. Photoelectric neuromorphic devices, which can overcome the von Neumann bottleneck issue of conventional computer systems, are developing rapidly. The optical signal, which has the advantages of low power consumption, low crosstalk, high bandwidth and low computational requirements, can be regarded as an additional terminal to enrich the regulatory freedom of synaptic plasticity. The optoelectronic performance of optoelectronic devices largely depends on the design and preparation of optoelectronic materials. With the advantages of molecular diversity, low cost, easy processing, mechanical flexibility and compatibility with flexible substrates, organic materials are important materials platform for constructing high performance optoelectronic synaptic devices. In this review,the latest development of organic materials in optoelectronic devices and visual bionics is introduced, and the current application challenges and future prospects of organic materials are discussed.Key words: organic material ; organic-inorganic hybrid material ; photoelectric device ; photoelectric synapse ; neuromorphic computing收稿日期: 2021-04-02基金项目: 国家重点研发计划(2017YFB0405604);国家自然科学基金(61974090,62004123);上海市自然科学基金(19ZR1474500);中国博士后科学基金(2020M671118)作者简介: 郭延博(1993—),女,博士生,主要从事基于金属氧化物材料的光电器件性能研究。
纳米微结构中表面等离子体的机理及应用研究
![纳米微结构中表面等离子体的机理及应用研究](https://img.taocdn.com/s3/m/c48bf1ebba0d4a7302763a85.png)
器的折射率灵敏度依赖于金属膜厚度, 因此通过改变金属膜厚度, 可以使 SPR 传感器 的分辨率达到 2.2 × 10 −7 单位折射率。
(5) ቤተ መጻሕፍቲ ባይዱ用反射光谱分析方法,提出了一种多层膜结构的金属纳米光栅 LSPR 传感
器。 该结构由金属薄膜和金属光栅组成, 可以同时激发局域的 SPPs 模式和传播的 SPPs 模式,两者之间发生强相互作用,从而产生一个新的附加共振峰。当金属光栅周围介 质折射率增加时,附加共振峰将发生红移,共振波长与折射率变化近似成线性关系。 分析了金属光栅周期和高度对 LSPR 传感器折射率灵敏度的影响,当光栅周期为
sppssp光子ckk图22金属电介质表面spps色散曲线示意图前面分析的是表面电磁场在tm偏振情况下的基本特性如果考虑te偏振的表面电磁场在两个半无限空间的电场表达式与式21和式22中的磁场表达式类似只是电场分量和磁场分量互换根据maxwell的旋度方程式23可得到两个空间的磁场分量再引入边界条件解maxwell方程组结果发现不存在非零解这说明te偏振的表面电磁场在金属介质界面不能存在
550nm,高度为 40nm 时,其折射率灵敏度可以达到 543nm/单位折射率。
关键词: 表面等离子体
纳米微结构
SPR 传感器
LSPR 传感器
II
Abstract
The research work in this thesis is supported by the pre-research special project in important fundamental research of China Science and Technology Department under Grant No. 2005CCA04200. By using rigorous coupled wave ananlysis (RCWA) and the mode orthogonality, the physical mechanisms of the surface plasmon polaritons (SPPs) generation and scattering in the subwavelength metallic structures are analyzed quantificationally; On the basis of the surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR) effects, SPR sensor based on the lateral optical beam displacements measure and LSPR sensor based on the nano metallic gratings are proposed, respectively. The main research works are as follows: Firstly, based on RCWA method and the mode orthogonality, the SPPs excitation efficiency at a metallic interface perforated by a single slit under illumination by a fundamental mode of the slit and a plane wave are quantificationally analyzed, respectively, and the properties of the electromagnetic field scattered by the single slit are dicussed. Specially, the propagation behaviors of two kinds of surface wave in the metallic surface, SPPs and quasi-cylidrical wave are investigated. Secondly, a fully-vectorial Fourier-modal-method approach combined with the Lorentz reciprocity theorem is used to analyze the capability of isolated objects to launch surface plasmon polaritons (SPPs) on a nearby surface under illumination by light. Various two-dimensional subwavelength geometies, including grooves, metallic or dielectric ridges and metallic ridges on dielectic posts, have been considered. Generally, for a given object volume, the metallo-dielectic ridge geometry offers the higherst SPPs excitation efficiencies. This is propably due to the fact that this geometry combines several effects that favor the exaltation of resonance. The SPPs generation efficiency strongly depends on the metal permittivity. Thirdly, the mechanism of the interaction between the microstructures on the metallic surface is studied. Based on the RCWA method, the SPP-generation efficiency for the double grooves on the metallic surface is analyzed quantificationally, and according to the “pure” SPPs model, the essential scattering process of SPPs between two grooves is discussed. Furthermore,a novel model contaning the cross conversion from cylindrical
纳米光子学11
![纳米光子学11](https://img.taocdn.com/s3/m/534955db240c844769eaee30.png)
Maximum ηT at ω0
Power Transmission Coefficients, ηT
IN
L
T
OUT IN
OUT
ηT = 8/9
ηT = 1/2
T L T η = 1/2 T
OUT
IN
T L
OUT
ηT = 8/9
• ηT > 64 % for all possible corner and T structures
!
Transverse
Where
!0
1 !0 - 2 ! !0 2
!Ve " = 4#$ 0 me n 2 d 3
2 1
Longitudinal
-" d
-" 2d
0
" 2d
" d
k
Example: Ag particles, R = 10 nm
d = 40 nm; n = 1.5
vg,T = 3.4 x 106 m/s ΔωT= 1.8 x 1014 s-1 (E = 115 meV)
γT = 1: γL = -2:
pT,m pL,m
pT,m+1 pL,m+1
Propagating wave solution:
pi ,m (t ) = Pi exp i ( !t ± kmd )
Modes
Dispersion Relation for Plasmon Modes
2 ! 1 !0 + 2 ! 0
Reflections
The Role of Defects and Disorder
Periodicity
一种基于表面等离激元的纳米温度传感器
![一种基于表面等离激元的纳米温度传感器](https://img.taocdn.com/s3/m/3d7724c828ea81c759f57814.png)
一种基于表面等离激元的纳米温度传感器
宗 妍,郎佩琳
100876) (北京邮电大学理学院,北京
摘
要 : 本文基于表面等离激元( Surface Plasmon Polariton,缩写为 SPP)共振腔提出了一种新型纳米温度传感
器。随着温度的升高,金属的折射率会发生微小的变化,而且,共振腔的整体结构也会发生热膨胀,这都是共振腔共 振波长随温度变化的因素。同时,为了放大温度对共振波长的影响,引入了一个热膨胀系数不同的金属双层膜,随着 双层膜的形变,共振腔的共振波长随之发生更明显的变化。这种共振波长移动的大小可用于测量温度的变化。此外, 本文采用有限元法( Finite Element Method,简称 FEM)来计算共振腔的光学特性。据了解,这是第一个基于 SPP 共 振腔热膨胀的纳米光学温度传感器,而且与同等尺度的传感器相比,其拥有较大的灵敏度。 关键词 : 表面等离激元;共振腔;温度传感器。 中图分类号 : O436.2 文献标识码 : A DOI: 10.3969/j.issn.1003-6970.2017.01.002 本文著录格式: 宗妍,郎佩琳 . 一种基于表面等离激元的纳米温度传感器 [J]. 软件, 2017, 38( 1) : 0610
【Abstract 】: This paper presents a novel optical temperature sensor based on a nanoscale surface plasmon polariton (SPP) resonator. With the increase of temperature, the refractive index of the metal will have small changes, and thermal expansion will occur throughout the structure of the resonant resonator, these are the factors that result in the shift of the resonators’ resonance wavelength with the temperature changing. At the same time, in order to enlarge the temperature's influence on the resonant wavelength, a metal bilayer with different thermal expansion coefficient is introduced, with the deformation of the bilayer, the resonator’s resonance wavelength then will change more obviously. The size of resonance wavelength can be used to measure the changes of temperature. In addition, The Finite Element Method (Finite Element Method, FEM for short) is applied to calculate the optical properties of the resonator. As is known to all, it is the first nanoscale optical temperature sensor based on the thermal expansion of the SPP resonators, and compared with the same scale of sensor, it has greater sensitivity. 【Key words】: SPP; Resonator; Temperature sensor 质。它在亚波长光学器件 [4]、超高分辨率成像 [5]等方 面有巨大的优势。金属 - 介质 - 金属( MIM )结构因 其独特的优越性,比如,局部场增强,更容易激发 SPP ,低弯曲损耗,结构简单,容易制造等 [6,7] 。因 此, 很多 MIM 结构纳米光学器件如调制器、 导波管、 滤波器、传感器、转换器被研发出来 [8,9,10]。 温度传感器是将温度转换为其他信号的温度检 测元件器件。近年来,它向着小型化、集成化方向
Applications of laser-processed substrate for mole
![Applications of laser-processed substrate for mole](https://img.taocdn.com/s3/m/6437c603700abb68a882fb30.png)
专利名称:Applications of laser-processed substratefor molecular diagnostics发明人:Steven M. Ebstein申请号:US12584574申请日:20090908公开号:US20100165336A1公开日:20100701专利内容由知识产权出版社提供专利附图:摘要:Surface enhanced Raman Scattering (SERS) and related modalities offer greatly enhanced sensitivity and selectivity for detection of molecular species through theexcitation of plasmon modes and their coupling to molecular vibrational modes. One ofthe chief obstacles to widespread application is the availability of suitable nanostructured materials that exhibit strong enhancement of Raman scattering, are inexpensive to fabricate, and are reproducible. I describe nanostructured surfaces for SERS and other photonic sensing that use semiconductor and metal surfaces fabricated using femtosecond laser processing. A noble metal film (e.g., silver or gold) is evaporated onto the resulting nanostructured surfaces for use as a substrate for SERS. These surfaces are inexpensive to produce and can have their statistical properties precisely tailored by varying the laser processing. Surfaces can be readily micropatterned and both stochastic and self-organized structures can be fabricated. This material has application to a variety of genomic, proteomic, and biosensing applications including label free applications including binding detection. Using this material, monolithic or arrayed substrates can be designed. Substrates for cell culture and microlabs incorporating microfluidics and electrochemical processing can be fabricated as well. Laser processing can be used to form channels in the substrate or a material sandwiched onto it in order to introduce reagents and drive chemical reactions. The substrate can be fabricated so application of an electric potential enables separation of materials by electrophoresis or electro-osmosis.申请人:Steven M. Ebstein地址:Newton MA US国籍:US更多信息请下载全文后查看。
InGaAs
![InGaAs](https://img.taocdn.com/s3/m/5813e45a53ea551810a6f524ccbff121dd36c533.png)
第 21 卷 第 12 期2023 年 12 月Vol.21,No.12Dec.,2023太赫兹科学与电子信息学报Journal of Terahertz Science and Electronic Information TechnologyInGaAs/InAlAs光电导太赫兹发射天线的制备与表征陈益航1,杨延召2,张桂铭2,徐建星1,苏向斌1,王天放1,余红光1,石建美1,吴斌2,杨成奥1,张宇1,徐应强1,倪海桥1,牛智川1(1.中国科学院半导体研究所,北京100083;2.中国电子科技集团公司第四十一研究所,山东青岛266555)摘要:光电导天线作为太赫兹时域光谱仪产生与探测太赫兹辐射的关键部件,具有重要的科研与工业价值。
本文采用分子束外延(MBE)方法制备InGaAs/InAlAs超晶格作为1 550 nm光电导天线的光吸收材料,使用原子力显微镜、光致发光、高分辨X射线衍射等方式验证了材料的高生长质量;通过优化制备条件得到了侧面平整的台面结构光电导天线。
制备的光电导太赫兹发射天线在太赫兹时域光谱系统中实现了4.5 THz的频谱宽度,动态范围为45 dB。
关键词:太赫兹时域光谱仪;光电导天线;分子束外延;InGaAs/InAlAs超晶格中图分类号:TN405.98+.4文献标志码:A doi:10.11805/TKYDA2022204Fabrication and characterization of InGaAs/InAlAs photoconductiveterahertz transmitting antennaCHEN Yihang1,YANG Yanzhao2,ZHANG Guiming2,XU Jianxing1,SU Xiangbin1,WANG Tianfang1,YU Hongguang1,SHI Jianmei1,WU Bin2,YANG Cheng'ao1,ZHANG Yu1,XU Yingqiang1,NI Haiqiao1,NIU Zhichuan1(1.Institute of Semiconductors,Chinese Academy of Science,Beijing 100083,China;2.The 41st Institute of China Electronic Technology Group Corporation,Qingdao Shandong 266555,China)AbstractAbstract::Photoconductive antennas are of great scientific and industrial value as the key components for generating and detecting terahertz radiation in terahertz time-domain spectrometers. Inthis paper, Molecular Beam Epitaxy(MBE) is utilized to prepare InGaAs/InAlAs superlattices as light-absorbing materials for 1 550 nm photoconductive antennas. The high growth quality of the materials isverified by Atomic Force Microscopy(AFM), Photoluminescence(PL), and high-resolution X-raydiffraction. The mesa-structured photoconductive antenna with flat sides is obtained by optimizing thepreparation conditions. The fabricated photoconductive terahertz transmitting antenna achieves aspectral width of 4.5 THz in a terahertz time-domain spectroscopy system with a dynamic range of 45 dB.KeywordsKeywords::terahertz time-domain spectrometer;photoconductive antenna;Molecular Beam Epitaxy;InGaAs/InAlAs superlattices太赫兹时域光谱基于超短太赫兹脉冲的相干时间分辨探测原理工作,是重要的材料分析检测技术,也是开展太赫兹频段科学研究的关键平台[1]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LETTERSDemonstration of a spaser-based nanolaserM.A.Noginov 1,G.Zhu 1,A.M.Belgrave 1,R.Bakker 2,V.M.Shalaev 2,E.E.Narimanov 2,S.Stout 1,3,E.Herz 3,T.Suteewong 3&U.Wiesner 3One of the most rapidly growing areas of physics and nanotech-nology focuses on plasmonic effects on the nanometre scale,with possible applications ranging from sensing and biomedicine to imaging and information technology 1,2.However,the full develop-ment of nanoplasmonics is hindered by the lack of devices that can generate coherent plasmonic fields.It has been proposed 3that in the same way as a laser generates stimulated emission of coherent photons,a ‘spaser’could generate stimulated emission of surface plasmons (oscillations of free electrons in metallic nano-structures)in resonating metallic nanostructures adjacent to a gain medium.But attempts to realize a spaser face the challenge of absorption loss in metal,which is particularly strong at optical frequencies.The suggestion 4–6to compensate loss by optical gain in localized and propagating surface plasmons has been implemented recently 7–10and even allowed the amplification of propagating surface plasmons in open paths 11.Still,these experi-ments and the reported enhancement of the stimulated emission of dye molecules in the presence of metallic nanoparticles 12–14lack the feedback mechanism present in a spaser.Here we show that 44-nm-diameter nanoparticles with a gold core and dye-doped silica shell allow us to completely overcome the loss of localized surface plasmons by gain and realize a spaser.And in accord with the notion that only surface plasmon resonances are capable of squeezing optical frequency oscillations into a nanoscopic cavity to enable a true nanolaser 15–18,we show that outcoupling of surface plasmon oscillations to photonic modes at a wavelength of 531nm makes our system the smallest nanolaser reported to date—and to our knowledge the first operating at visible wavelengths.We anticipate that now it has been realized experimentally,the spaser will advance our fundamental understanding of nanoplasmonics and the development of practical applications.A spaser should have a medium with optical gain in close vicinity to a metallic nanostructure that supports surface plasmon oscillations 3.To realize such a structure,we employed a modified synthesis technique for high-brightness luminescent core–shell silica nanoparticles 19,20known as Cornell dots.As illustrated in Fig.1a,the produced nano-particles are composed of a gold core,providing for plasmon modes,surrounded by a silica shell containing the organic dye Oregon Green 488(OG-488),providing for gain.Transmission and scanning electron microscopy measurements give the diameter of the Au core and the thickness of the silica shell as ,14nm and ,15nm,respectively (Fig.1b,c).The number of dye molecules per nanoparticle was estimated to be 2.73103,and the nanoparticle concentration in a water suspension was equal to 331011cm 23(Methods).A calculation of the spaser mode of this system (Fig.1d)yields a stimulated emission wavelength of 525nm and a quality (Q )-factor of 14.8(Methods).We note that in gold nanoparticles as small as the ones used here,the Q -factor is domi-nated by absorption.But as we show below,the gain in our system is high enough to compensate the loss.The extinction spectrum of a suspension of nanoparticles shown in Fig.2is dominated by the surface plasmon resonance band at ,520nm wavelength and the broad short-wavelength band corres-ponding to interstate transitions between d states and hybridized s –p states of Au.The Q -factor of the surface plasmon resonance is esti-mated from the width of its spectral band as 13.2,in good agreement with the calculations.The spectra in Fig.2also illustrate that the surface plasmon band overlaps with both the emission and excitation bands of the dye molecules incorporated in the nanoparticles.As illustrated in Fig.3,the decay kinetics of the emission at 480nm were non-exponential.Fitting the data with the sum of two expo-nentials resulted in two characteristic decay times,1.6ns and 4.1ns.The absorption and emission spectra of OG-488(Fig.2)are nearly symmetrical to each other,as expected of dyes,and this allows us to assume that the peak emission cross-section,s em ,is equal to the peak absorption cross-section,s abs 52.55310216cm 2,determined from the absorption spectrum of OG-488in water at known dye concen-tration.With this value and using the known formula relating the strength and the width of the emission band with the radiative life-time t (see ref.21and Methods),we obtain an estimated radiative1Center for Materials Research,Norfolk State University,Norfolk,Virginia 23504,USA.2School of Electrical &Computer Engineering and Birck Nanotechnology Center,Purdue University,West Lafayette,Indiana 47907,USA.3Materials Science and Engineering Department,Cornell University,Ithaca,New York 14850,USA.1b acdGold coreSodium silicate shellOG-488 dye doped silica shellFigure 1|Spaser design.a ,Diagram of the hybrid nanoparticle architecture (not to scale),indicating dye molecules throughout the silica shell.b ,Transmission electron microscope image of Au core.c ,Scanning electron microscope image of Au/silica/dye core–shell nanoparticles.d ,Spaser mode(in false colour),with l 5525nm and Q 514.8;the inner and the outer circles represent the 14-nm core and the 44-nm shell,respectively.The field strength colour scheme is shown on the right.Vol 460|27August 2009|doi:10.1038/nature083181110lifetime of t 54.3ns that is very close to that of the slower compo-nent of the experimentally determined emission kinetics.We infer that the decay-time shortening (down to 1.6ns)seen with the dye molecules in our effective plasmonic nanocavity can be explained by the Purcell effect 22.When the emission was detected in the spectral band 520620nm (which encompasses the maximum of the emission and gain),it first decayed and then developed a second peak (Fig.3)that is characteristic of the development of a stimulated emission pulse 23and consistent with the spaser effect (see below).In fact,both the delay of the stimu-lated emission pulse relative to the pumping pulse and the oscillating behaviour of the stimulated emission (relaxation oscillations)are known in lasers 23,24;and because these phenomena do not depend on the nature of the oscillating mode,they are expected in spasers as well.To study the stimulated emission,samples were loaded in cuvettes of 2mm path length and pumped at wavelength l 5488nm with ,5-ns pulses from an optical parametric oscillator lightly focused into a ,2.4-mm spot.Whereas the emission spectra resembled those measured in the spectrofluorometer (Fig.2)at weak pumping,a narrow peak appeared at l 5531nm (Fig.4a)once the pumping energy exceeded a critical threshold value.Figure 4b gives the intensity of this peak as a function of pumping energy,yielding an input–outputcurve with a pronounced threshold characteristic of lasers.The ratio of the intensity of this laser peak to the spontaneous emission background increased with increasing pumping energy (Fig.4b inset).By analogy with lasers,the dramatic change of the emission spectrum above the threshold (from a broad band to a narrow line)suggests that the majority of excited molecules contributed to the stimulated emission mode.As expected,the laser-like emission occurred at a wavelength at which the dye absorption,as evidenced by the excitation spectrum,is practically absent while the emission and the surface plasmon resonance are strong (see Fig.2).Diluting the sample more than 100-fold decreased the emission intensity,but did not change the character of the spectral line (Fig.4a inset)or diminish the ratio of stimulated emission intensity to spon-taneous emission background.We conclude from this that the observed stimulated emission was produced by single nanoparticles,rather than being a collective stimulated emission effect in a volume of gain medium with the feedback supported by the cuvette walls.The spontaneous emission intensity of a 0.235mM aqueous solu-tion of OG-488dye was approximately 1,000times stronger than that of the lasing nanoparticle sample.But under pumping,the dye solu-tion did not show spectral narrowing or superlinear dependence of the emission intensity on pumping power.The dependence of the emission intensity on pumping power was in fact sublinear,which could be a result of dye photo-bleaching.This control result isfurtherWavelength (nm)E m i s s i o n , e x t i n c t i o n (r e l. u n i t s )Figure 2|Spectroscopic results.Normalized extinction (1),excitation (2),spontaneous emission (3),and stimulated emission (4)spectra of Au/silica/dye nanoparticles.The peak extinction cross-section of the nanoparticles is 1.1310212cm 2.The emission and excitation spectra were measured in a spectrofluorometer at low fluence.I n t e n s i t y (r e l. u n i t s )939801.00.10.0151015Time (ns)Time (ns)1Figure 3|Emission kinetics.Main panel,emission kinetics detected at 480nm (1)and 520nm (2).Inset,trace 1plotted in semi-logarithmic coordinates (dots)and the corresponding fitting curve.The beginning of each emission kinetic trace coincides with the 90-ps pumping pulse.E m i s s i o n (r e l. u n i t s )E m i s s i o n (r e l. u n i t s )Pumping (mJ)Absorbed pumping per nanoparticle (10–13 J)Wavelength (nm)a bFigure 4|Stimulated emission.a ,Main panel,stimulated emission spectra of the nanoparticle sample pumped with 22.5mJ (1),9mJ (2),4.5mJ (3),2mJ (4)and 1.25mJ (5)5-ns optical parametric oscillator pulses atl 5488nm.b ,Main panel,corresponding input–output curve (lower axis,total launched pumping energy;upper axis,absorbed pumping energy per nanoparticle);for most experimental points,,5%error bars (determined by the noise of the photodetector and the instability of the pumping laser)do not exceed the size of the symbol.Inset of a ,stimulated emission spectrum at more than 100-fold dilution of the sample.Inset of b ,the ratio of the stimulated emission intensity (integrated between 526nm and 537nm)to the spontaneous emission background (integrated at ,526nm and .537nm).NATURE |Vol 460|27August 2009LETTERS1111evidence that the stimulated emission occurs in individual hybrid Au/silica/dye nanoparticles,rather than in the macroscopic volume of the cuvette.The diameter of the nanoparticle(hybrid Cornell dot)is44nm—too small to support visible stimulated emission in a purely photonic mode.But modelling of the system predicts that stimulated emission can occur in a much smaller surface plasmon mode if the number of excited dye molecules per nanoparticle exceeds2.03103(Methods); this number is smaller than the number of OG-488molecules available per nanoparticle in the experimental sample,which is ,2.73103.The pumping photon flux in our measurements (,1025cm22s21)exceeds the saturation level for OG-488dye mole-cules(,1024cm22s21),so almost all the dye molecules were excited. The gain in the system was thus sufficiently large to overcome the overall loss,enabling the first experimental demonstration of a spaser, which we report here and regard as the central finding of the present work.But another important result is that the outcoupling of surface plasmon oscillations to photonic modes(facilitated by the radiative damping of the localized surface plasmon mode)constitutes a nanolaser that is realized by each individual nanoparticle,making it the smallest reported in the literature and the only one to date operating in the visible range.The demonstrated phenomenon,involving resonant energy transfer from excited molecules to surface plasmon oscillations and stimulated emission of surface plasmons in a luminous mode,is consistent with the original theoretical proposal of a spaser3and the more recent concept of a‘lasing spaser’25,which share many common features despite their differences in detail.We note that this phenomenon is very different from that exploited in quantum cascade lasers26,in which the surface plasmon mode(almost indistinguishable at the mid-infrared wavelength and the geometry of the experiment from the photonic transverse electromagnetic mode)is used as a guiding mode in an otherwise normal laser cavity.In contrast,in the reported spaser,the oscillating surface plasmon mode provides for feedback needed for stimulated emission of localized surface plasmons.The ability of the spaser to actively generate coherent surface plasmons could lead to new opportunities for the fabrication of photonic meta-materials,and have an impact on technological developments seeking to exploit optical and plasmonic effects on the nanometre scale. METHODS SUMMARYThe Methods section presents a detailed discussion of the following experimental and theoretical studies:(1)synthesis and cleaning of hybrid Au/silica/dye nano-particles,(2)theoretical modelling of the spaser effect in hybrid core–shell nanoparticles,(3)emission kinetics measurements,and(4)calculation of the radiative decay lifetime from the emission spectra.Full Methods and any associated references are available in the online version of the paper at /nature.Received15September2008;accepted24July2009.Published online16August2009.1.Maier,S.A.Plasmonics:Fundamentals and Applications(Springer,2007).2.Brongersma,M.L.&Kik,P.G.(eds),Surface Plasmon Nanophotonics(SpringerSeries in Optical Sciences,Vol.131,Springer,2007).3.Bergman,D.J.&Stockman,M.I.Surface plasmon amplification by stimulatedemission of radiation:quantum generation of coherent surface plasmons innanosystems.Phys.Rev.Lett.90,027402(2003).4.Sudarkin,A.N.&Demkovich,P.A.Excitation of surface electromagnetic waveson the boundary of a metal with an amplifying medium.Sov.Phys.Tech.Phys.34, 764–766(1989).5.Nezhad,M.P.,Tetz,K.&Fainman,Y.Gain assisted propagation of surfaceplasmon on planar metallic waveguides.Opt.Express12,4072–4079(2004).wandy,N.M.Localized surface plasmon singularities in amplifying media.Appl.Phys.Lett.85,5040–5042(2004).7.Noginov,M.A.et al.Enhancement of surface plasmons in an Ag aggregate byoptical gain in a dielectric medium.Opt.Lett.31,3022–3024(2006).8.Noginov,M.A.et al.The effect of gain and absorption on surface plasmons inmetal nanoparticles.Appl.Phys.B86,455–460(2007).9.Seidel,J.,Grafstroem,S.&Eng,L.Stimulated emission of surface plasmons at theinterface between a silver film and an optically pumped dye solution.Phys.Rev.Lett.94,177401(2005).10.Noginov,M.A.et pensation of loss in propagating surface plasmonpolariton by gain in adjacent dielectric medium.Opt.Express16,1385–1392(2008).11.Noginov,M.A.et al.Stimulated emission of surface plasmon polaritons.Phys.Rev.Lett.101,226806(2008).12.Dice,G.D.,Mujumdar,S.&Elezzabi,A.Y.Plasmonically enhanced diffusive andsubdiffusive metal nanoparticle-dye random laser.Appl.Phys.Lett.86,131105 (2005).13.Popov,O.,Zilbershtein,A.&Davidov,D.Random lasing from dye-goldnanoparticles in polymer films:enhanced gain at the surface-plasmon-resonance wavelength.Appl.Phys.Lett.89,191116(2006).14.Kawasaki,M.&Mine,S.Novel lasing action in dye-doped polymer films coated onlarge pseudotabular Ag islands.J.Phys.Chem.B110,15052–15054(2006). 15.Muhlschlegel,P.,Eisler,H.-J.,Martin,O.J.F.,Hecht,B.&Phol,D.W.Resonantoptical antennas.Science308,1607–1609(2005).16.Gordon,J.A.&Ziolkowski,R.W.The design and simulated performance of acoated nanoparticle laser.Opt.Express15,2622–2653(2007).17.Noda,S.Seeking the ultimate nanolaser.Science314,260–261(2006).18.Hill,M.T.et sing in metallic-coated nanocavities.Nature Photon.1,563–564(2007).19.Enu¨stu¨n,B.V.&Turkevich,J.Coagulation of colloidal gold.J.Am.Chem.Soc.85,3317–3328(1963).20.Ow,H.et al.Bright and stable core-shell fluorescent silica nanoparticles.NanoLett.5,113–117(2005).21.Noginov,M.A.et al.Crystal growth and characterization of a new laser material,Nd:Ba5(PO4)3Cl.J.Opt.Soc.Am.B17,1329–1334(2000).22.Purcell,E.M.Spontaneous emission probabilities at radio frequencies.Phys.Rev.69,681(1946).23.Noginov,M.A.,Fowlkes,I.,Zhu,G.&Novak,J.Neodymium random lasersoperating in different pumping regimes.J.Mod.Opt.51,2543–2553(2004).24.Svelto,O.Principles of Lasers4th edn(Plenum,1998).25.Zheludev,N.I.,Prosvirnin,S.L.,Papasimakis,N.&Fedotov,sing spaser.Nature Photon.2,351–354(2008).26.Sirtori,C.et al.Long-wavelength(l<8–11.5m m)semiconductor lasers withwaveguides based on surface plasmons.Opt.Lett.23,1366–1368(1998). Acknowledgements The work was supported by NSF PREM grant DMR0611430, NSF NCN(EEC-0228390),NASA URC(NCC3-1035),an ARO-MURI award (50342-PH-MUR)and a United States Army award(W911NF-06-C-0124).We thank M.I.Stockman for discussions,and J.Chen and J.Irudayaraj for the assistance with the kinetics measurements.S.S.was a member of the Summer Research Program at the Center for Materials Research,Norfolk State University. Author Information Reprints and permissions information is available at /reprints.Correspondence and requests for materials should be addressed to M.A.N.(mnoginov@).LETTERS NATURE|Vol460|27August2009 1112METHODSParticle synthesis and cleaning.Gold cores with a thin sodium silicate shell were prepared according to previously published methods19,27and transferred into a basic ethanol(1m l ammonium hydroxide per ml of ethanol)solution via dilu-tion(1:4).Tetraethoxysilane was added(1m l per10ml of Sto¨ber synthesis solu-tion)to grow a thick silica shell.Ten microlitres of OG-488isothiocyanate or maleimide(Invitrogen,dissolved to4.56mM concentration in dimethylsulph-oxide),were conjugated to3-isocyanatopropyltriethoxysilane(ICPTS)or 3-mercaptopropyltrimethoxysilane(MPTMS),respectively in a1:50molar ratio (dye:ICPTS or dye:MPTMS)in an inert atmosphere and added to the aforemen-tioned10ml of Sto¨ber synthesis solution.The particles were cleaned by cent-rifugation and resuspended in water.The concentration of nanoparticles in the suspension,approximately331011cm23,was calculated from the gold wt% measurements provided by Elemental Analysis,Inc.The number of dye mole-cules per particle,2.73103,was estimated on the basis of the known concen-tration of nanoparticles,the starting concentration of dye molecules used in the reaction,and the concentration of dye molecules which remained in the solution after the synthesis.Theoretical model.To calculate the cold-cavity modes in the system,the struc-ture is modelled as a spherical silica shell(refractive index of1.46)with a gold core,whose frequency-dependent dielectric permittivity is taken from ref.28 (Fig.1a).The corresponding three-dimensional wave equation can be solved analytically using Debye potentials29,which yields a sequence of localized plas-mon modes with different values of total angular momentum‘and its projection m(m52‘,...,0,...,‘).The experimental wavelength range l<530nm corre-sponds to the lowest frequency modes of this sequence,‘51,which are triply degenerate(m521,0,1).This degeneracy(similar to that in the p state of the hydrogen atom30)can be visualized in relation to a different direction of the mode‘axis’(Fig.1d)and will be lifted by a deviation from spherical symmetry in the particle geometry.The resulting cold-cavity‘51mode wavelength(calcu-lated with no fitting parameters)is525nm,and the Q-factor is14.8(where the primary contribution originates from the losses in the gold core).For the active system,the gain is taken into account in the imaginary part of the refractive index of the silica shell,with the magnitude calculated using standard expressions of refs24and29,and from the known value of the stimulated emis-sion cross-section of OG-488molecules and their density.In this approach,the lasing threshold relates to the zero of the imaginary part of the mode frequency (corresponding to infinite lifetime).Assuming that the active molecules are uniformly distributed from the core to the diameter of24nm(in the44-nm-diameter silica shell),we find that the stimulated emission requires,2,000active molecules.Emission kinetics measurements.Emission decay kinetics were measured using a fluorescence lifetime imaging microscope(Microtime200).The samples were excited at l5466nm with,90ps laser pulses at40MHz repetition rate.The emission was taken from the side of the pumping in an inverted microscope set-up (an immersion objective lens,a coverslip and a droplet of sample on the coverslip). The diameter and the depth of the focused laser beam were0.24m m and1m m, respectively,and the pumping power density was9.83105W cm22 (4.23104W cm22)when the emission was detected in the48065nm (520620nm)spectral band.The response time of the detector was shorter than 300ps.The fit of the emission kinetics detected at480nm with the sum of two exponents resulted in I(t)/a1exp(2t/t1)1a2exp(2t/t2),with a150.48, a250.52,t151.6ns and t254.1ns.Given the experimental noise,the character-istic decay times are determined with610%accuracy.The observation of the stimulated emission kinetics(Fig.2,trace2)from such a tiny volume,which can provide for only very small amplification,is additional proof of the spaser and nanolaser effects occurring in individual nanoparticles. Radiative lifetime.Evaluation of the radiative lifetime from the emission spectra was performed using the known formulas em lðÞ~l5I lðÞ8p n2c tÐl I lðÞd lwhere l is the wavelength,I(l)is the emission intensity,n is the index of refraction,and c is the speed of light.27.Mulvaney,P.,Liz-Marzan,L.M.,Giersig,M.&Ung,T.Silica encapsulation ofquantum dots and metal clusters.J.Mater.Chem.10,1259–1270(2000).28.Johnson,P.B.&Christy,R.W.Optical constants of the noble metals.Phys.Rev.B6,4370–4379(1972).29.Born,M.&Wolf,E.Principles of Optics6th edn(Cambridge Univ.Press,1998).ndau,L.D.&Lifshits,E.M.Quantum Mechanics:Non-Relativistic Theory(Pergamon,1977).doi:10.1038/nature08318。