几类常见不等式-简单完美总结

几类常见不等式-简单完美总结
几类常见不等式-简单完美总结

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

基本不等式知识点归纳.

基本不等式知识点归纳 1.基本不等式2 b a a b +≤ (1)基本不等式成立的条件:.0,0>>b a (2)等号成立的条件:当且仅当b a =时取等号. [探究] 1.如何理解基本不等式中“当且仅当”的含义? 提示:①当b a =时,ab b a ≥+2取等号,即.2 ab b a b a =+?= ②仅当b a =时, ab b a ≥+2取等号,即.2 b a ab b a =?=+ 2.几个重要的不等式 ).0(2);,(222>≥+∈≥+ab b a a b R b a ab b a ),(2 )2();,()2(2 222R b a b a b a R b a b a ab ∈+≤+∈+≤ 3.算术平均数与几何平均数 设,0,0>>b a 则b a ,的算术平均数为2 b a +,几何平均数为a b ,基本不等式可叙述为:两个正实数的算术平均数不小于它的几何平均数. 4.利用基本不等式求最值问题 已知,0,0>>y x 则 (1)如果积xy 是定值,p 那么当且仅当y x =时,y x +有最小值是.2p (简记:积定和最小). (2)如果和y x +是定值,p ,那么当且仅当y x =时,xy 有最大值是.4 2 p (简记:和定积最大). [探究] 2.当利用基本不等式求最大(小)值时,等号取不到时,如何处理? 提示:当等号取不到时,可利用函数的单调性等知识来求解.例如,x x y 1 +=在2≥x 时的最小值,利用单调性,易知2=x 时.2 5min = y [自测·牛刀小试] 1.已知,0,0>>n m 且,81=mn 则n m +的最小值为( ) A .18 B .36 C .81 D .243 解析:选A 因为m >0,n >0,所以m +n ≥2mn =281=18.

完整版一元一次不等式教学案全章

八年级上册数学第6章《一元一次不等式》学案 § 6.1不等关系和不等式(1) 教师寄语:处处留心皆学问 学习目标: 1.通过具体情境,感受现实世界和日常生活中存在着大量的不等关系. 2.了解不等式的意义,使学生经历实际问题中数量关系的分析和抽象过程,感受不等式 和等式都是刻画现实世界中数量关系的工具,发展学生的符号感. 学习重点:不等式的概念 学习难点:不等关系的表示学习过程: 一、自主探究: 1.学生自主阅读课本第162页,你能利用不等号分别表示出上述3个问题中的不等关系 吗?与同学交流一下。 2.相关知识链接: 某中学八年级(1)班50名学生在上体育课,老师说了这样一句话:我拿来了一些篮球,如果每5名同学玩一个篮球,有些同学没有篮球玩,如果每6名同学玩一个 篮球,就会有一个篮球玩的人数少于6人,请同学们回答下面的问题: (1)你能把老师的这句话用三个式子表示出来吗? (2)你列出的式子与我们以前学过的等式有什么不同? 学习新知: 1.___________________________________________ 不等式的概念:叫做不等式。 并举例说明,阅读课本第162页的“加油站”。 2.例题讲解: 判断下列式子哪些是不等式?哪些不是? ①3>—1;②3x< —1;③2x — 1; ?s=vt;⑤2mK 8 — m;⑥5x — 3=2x+1; ⑦a+b> c;⑧ 1+1M 2

规律总结: 一个式子是不是不等式, 关键是看它是否含有常用的五中不等号其中的一种或几种, 若有则是不等式;否则便不是。 强化练习: 1. 设a < b,用“V”或“〉”填空。 ⑴ a+1 b+1 ⑵ a-3 b-3 ⑶-a ⑷-4a-5 -4a-3 2. 用不等式 表示: ⑴.a ⑵.X ⑶.8 不明白的地方(或 ' 容易出错的地方): ② .a 的平方的相反数不是正数 -b 四、 课堂小结: 我学会了: 与b 的和不是负数:_ 的2倍与3的差大于4: 与y 的2倍的和是负数: 达标测试: 基础把握: 1. 五、 ( A 2. A 3. 在数学表达式 ①-2 < 0②3x-k > 0③x=1④X 丰2⑤X+2 > x-1中是不等式的有 ) .2个 B.3 个 C.4 个 D.5 个 若a > b,那么仍能成立的不等式是 .ac > bc B. ac < bc C.a+1 > b+2 用不等式表示下列数量关系: ①.X 的相反数大于X 的倒数. () D.a-c > b-c

一元一次不等式应用题分类专题训练

一元一次不等式应用题专题 (积分问题) 1、某次数学测验共20道题(满分100分)。评分办法是:答对1道给5分,答错1道扣2分,不答不给分。某学生有1道未答。那么他至少答对几道题才能及格 2、在一次竞赛中有25道题,每道题目答对得4分,不答或答错倒扣2分,如果要求在本次竞赛中的得分不底于60分,至少要答对多少道题目 3、一次知识竞赛共有15道题。竞赛规则是:答对1题记8分,答错1题扣4分,不答记0分。结果神箭队有2道题没答,飞艇队答了所有的题,两队的成绩都超过了90分,两队分别至少答对了几道题 4、在比赛中,每名射手打10枪,每命中一次得5分,每脱靶一次扣1分,得到的分数不少于35分的射手为优胜者,要成为优胜者,至少要中靶多少次

5.有红、白颜色的球若干个,已知白球的个数比红球少,但白球的两倍比红球多,若把每一个白球都记作数2,每一个红球都记作数3,则总数为60,求白球和红球各几个 (分配问题) 1、一堆玩具分给若干个小朋友,若每人分3件,则剩余4件,若前面每人分4件,则最后一人得到的玩具最多3件,问小朋友的人数至少有多少人。 2、解放军某连队在一次执行任务时,准备将战士编成8个组,如果每组人数比预定人数多1名,那么战士人数将超过100人,则预定每组分配战士的人数要超过多少人 3、把若干颗花生分给若干只猴子。如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。问猴子有多少只,花生有多少颗 4、把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的

多少人 5、某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间 8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。 6、将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放; 若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。问有笼多少个有鸡多少只 7、用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。请问:有多少辆汽车 8、一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,

浅谈中学几种常用证明不等式的方法

成绩: 江西科技师范大学 毕业论文 题目:浅谈中学几种常用证明不等式的方法 (外文):On the method commonly used in Middle School to prove inequality 院(系):数学与计算机科学学院 专业:数学与应用数学 学生姓名:吴丹 学号:20091741 指导教师:樊陈 2013年3月20日

目录 1引言 (1) 2放缩法证明不等式 (1) 2.1放缩法 (1) 2.2(改变分子分母)放缩法 (1) 2.3拆补放缩法 (2) 2.4编组放缩法 (3) 2.5寻找“中介量”放缩法 (4) 3反正法证明不等式 (4) 3.1反证法定义 (4) 3.2反证法步骤 (5) 4.换元法证明不等式 (6) 4.1利用对称性换元,化繁为简 (6) 4.2三角换元法 (7) 4.3和差换元法 (8) 4.4分式换元法 (8) 5.综合法证明不等式 (9) 5.1综合法证明不等式的依据 (9) 5.2用综合法证明不等式的应用 (9) 5.3综合法与比较法的内在联系 (10) 6.分析法 (11) 6.1分析法的定义 (11) 6.2分析法证明不等式的方法与步骤 (11) 6.3分析法证明不等式的应用 (11) 7.构造法证明不等式 (13) 7.1构造函数模型 (13) 7.2构造数列模型 (14) 8.数学归纳法证明不等式 (15) 8.1分析综合法 (16) 8.2放缩法 (16) 8.3递推法 (17) 9.判别式法证明不等式 (17) 10.导数法证明不等式 (18) 10.1利用函数的单调性证明不等式 (18) 9.2利用极值(或最值) (20) 11比较法证明不等式 (20) 11.1差值比较法 (20) 11.2商值比较法 (21) 11.3比较法的应用范围 (22) 12结束语: (22) 参考文献 (22)

高中数学必修5基本不等式知识点总结

高中数学必修5基本不等式知识点总结 一.算术平均数与几何平均数 1.算术平均数 设a 、b 是两个正数,则 2 a b +称为正数a 、b 的算术平均数 2.几何平均数 a 、 b 的几何平均数 二基本不等式 1.基本不等式: 若0a >,0b >,则a b +≥,即 2 a b +≥2.基本不等式适用的条件 一正:两个数都是正数 二定:若x y s +=(和为定值),则当x y =时,积xy 取得最大值2 4 s 若xy p =(积为定值),则当x y =时,和x y +取得最小值 三相等:必须有等号成立的条件 注:当题目中没有明显的定值时,要会凑定值 3.常用的基本不等式 (1)()22 2,a b ab a b R +≥∈ (2)()22 ,2 a b ab a b R +≤∈ (3)()20,02a b ab a b +??≤>> ??? (4)()222,22a b a b a b R ++??≥∈ ??? . 三.跟踪训练 1.下列各函数中,最小值为2的是 ( ) A .1y x x =+ B .1sin sin y x x =+,(0,)2x π∈ C .2 y = D .1y x =+ 2.当02x π <<时,函数21cos 28sin ()sin 2x x f x x ++=的最小值是( )。

A. 1 B. 2 C. 4 D. 3.x >0,当x 取什么值,x +1x 的值最小?最小值是多少? 4.用20cm长的铁丝折成一个面积最大的矩形,应该怎样折? 5.一段长为30m的篱笆围成一个一边靠墙的矩形花园,墙长18m,这个矩形的长,宽各为多少时,花园的面积最大?最大面积是多少? 6.设0,0x y >>且21x y +=,求11x y +的最小值是多少? 7.设矩形ABCD(AB>AD)的周长是24,把?ABC沿AC向?ADC折叠,AB折过去后交CD与点P,设AB=x ,求?ADP的面积最大值及相应x 的值

含参数的一元一次不等式专题

含参数的一元一次不等式专题 1、由xay 的条件是( ) A 、a ≥0 B 、a ≤0 C 、a>0 D 、a<0 2、△ABC 的三条边分别是5、9、a 3,则a 的取值范围是 (单位:cm )。 3.若a 为整数,且点M (3a -9,2a -10)在第四象限,则a 2+1的值为( ) A .17 B .16 C .5 D .4 4、的取值范围是则x x x ,6556-=-( ) A 65> x B 652 6、关于x 的不等式2x -a ≤-1的解集如图2所示,则a 的取值是( )。 A 、0 B 、-3 C 、-2 D 、-1 7.关于x 的方程632=-x a 的解是非负数,那么a 满足的条件是 ( ) A .3>a B .3≤a C .3-<312x a x 无解,则( ) A 、2a D 、1≥a 10、若不等式(m-2)x >2的解集是x <2 2-m , 则m 的取值范围是( ) A 、2=m B 、2 m C 、2 m D 、无法确定 11.若方程()()31135m x m x x ++=--的解是负数,则m 的取值范围是( ) A .54m >- B .54m <- C .54m > D .54m < 12.不等式()123 x m m ->-的解集为2x >,则m 的值为( ) A .4 B .2 C .32 D .12 13、.不等式组?? ?+>+<+1,159m x x x 的解集是2>x ,则m 的取值范围是( ) (A) m ≤2 (B) m ≥2 (C) m ≤1 (D) m >1 14.已知关于x 的不等式组?????<++>+0 1234a x x x 的解集为2

高中数学不等式知识点总结

弹性学制数学讲义 不等式(4课时) ★知识梳理 1、不等式的基本性质 ①(对称性)a b b a >?> ②(传递性),a b b c a c >>?> ③(可加性)a b a c b c >?+>+ (同向可加性)d b c a d c b a +>+?>>, (异向可减性)d b c a d c b a ->-?<>, ④(可积性)bc ac c b a >?>>0, bc ac c b a 0, ⑤(同向正数可乘性)0,0a b c d ac bd >>>>?> (异向正数可除性)0,0a b a b c d c d >>< ⑥(平方法则) 0(,1)n n a b a b n N n >>?>∈>且 ⑦(开方法则)0(,1)n n a b a b n N n >>?>∈>且 ⑧(倒数法则) b a b a b a b a 110;110>?<<> 2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22 .2a b ab +≤ ②(基本不等式) 2a b ab +≥ ()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: 2a b a b +≥ 2 .2a b ab +??≤ ??? 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、

三相等”. ③(三个正数的算术—几何平均不等式) 33a b c abc ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号). ④()222a b c ab bc ca a b R ++≥++∈, (当且仅当a b c ==时取到等号). ⑤ 3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号) 0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>?>?<->当时,或 22. x a x a a x a

新人教版一元一次方程全章优秀教案

新人教版七年级上册数学 第三章一元一次方程教案 (2015年秋季学期) 授课者:蒋宏亮 学校:东兴市京族学校 第三章一元一次方程 单元要点分析 教案内容 方程就是将众多实际问题“教案化”的一个重要模型?因此,课本从学生熟悉的实际问题开始,从算式到方程,展开方程的学习,以使学生认识到方程的出现源于解决问题的需要,体会学习方程的意义和作用. 本章内容主要分为以下三个部分: 1 ?通过丰富实例,从算式到建立一元一次方程,?展开方程是刻画现实生活的 有效数学模型. 2 .运用等式的基本性质解方程,归纳移项法则,运用分配律,?归纳“合并”、“去括号”等法则,逐步展现求解方程的一般步骤,这些内容的学习不是孤立进行 的,始终从实际问题出发,使学生经历模型化的过程,激发学生的好奇心和主动学习的欲望. 3 .运用方程解决丰富多彩的、贴近学生生活的实际问题,?展现运用方程解决 实际问题的一般过程. 为了使学生经历“建立方程模型”这一数学化的过程,理解学习方程的意义,培养学生的抽象概括等能力,课本内容的呈现都以求解决一个实际问题为切入点,让学生经历抽象、符号变号、应用等活动,在活动中培养学生解决问题的兴趣和能力,提高学生的思维水平和应用数学知识去解决实际问题的意识. 三维目标 1 .知识与技能根据具体问题中的数量关系,经历形成方程模型,解方程和运用方程解决实际

问题的过程,体会方程是刻画现实世界的有效数学模型. 2 .过程与方法 (1)了解一元一次方程及其相关概念,会解一元一次方程.(数学系数) (2)能以一元一次方程为工具解决一些简单的实际问题,包括列方程,?求解 方程和解释结果的实际意义及合理性,提高分析问题、解决问题的能力. 3.情感态度与价值观培养学生求实的态度。培养学生获取信息,分析问题,处理问题的能力。 激发学生的好奇心和主动学习的欲望,体会数学的应用价值.重、难点与关键 1 .重点:一元一次方程有很多直接应用,?解一元一次方程是解其他方程和方程组的基础.因此本章重点在于使学生能根据具体问题中的数量关系列出一元一次方程,掌握解一元一次方程的基本方法,能运用一元一次方程解决实际问题. 2 .难点:正确地列出一元一次方程的解决实际问题. 3 .关键:(1)熟练地解一元一次方程的关键在于正确地了解方程、方程解的意义和运用等式的两个性质. (2)正确地列出方程的关键在于正确地分析问题中的已知数、未知数,?并找 出能够表示应用题全部含义的相等关系. 3.1 从算式到方程 §3.1.1 一元一次方程(一)教案目标: 知识与技能: 通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;过程与方法: 初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;情感、态度、价值观: 培养学生获取信息,分析问题,处理问题的能力。 教案重点:从实际问题中寻找相等关系 教案难点:从实际问题中寻找相等关系 教案过程: 一、情境引入 提出教科书第78 页的问题,并用多媒体直观演示: 问题1:从题中你能获得哪些信息?(可以提示学生从时间、路程、速度、等方面去考虑。)可以在学生回答的基础上做回顾小结问题2:你会用算术方法求出A,B两地的距离吗?列算式试试。 教师可以在学生回答的基础上做回顾小结: 1、问题涉及的三个基本物理量及其关系; 2、对于客车,1km所用的时间为—h,而卡车所用的时间为—h;所以1km, 70 60 1 1 客车比卡车少用的( ---------- )h。路程多少千M时客车才比卡车少用1h呢? 60 70 1 1

一元一次不等式培优专题训练一

一元一次不等式培优专题训练一 例1 1、 用“>”或“<”填空,并在题后括号内注明理由: (1)∵a >b,∴a -m ________b -m (2)∵a >2b,∴2 a ________ b (3)∵4a >5a,∴a ________0 (4)∵2x -1<9,∴x ________5 2、不等号填空:(1)、x 为任意有理数,x -3____x -4.(2)若a <0,b <0,则a ·b ____ab 2. 变式训练:(七中实验)若b a <,则2ac 2bc ;若22bc ac <,则a b (填不等号) ; 例2、不等式(组)的解法:1、不等式1y ,试求出m 的取值范围. x -y=5m -1, ② 3、(09优等生数学)已知关于x ,Y 的方程组???-=+-=-1 331k y x k y x 的解满足x+y >3k+2,求k 的取值范围

浅谈不等式的证明

浅谈不等式的证明 不等式问题是高中数学的重要内容之一,考察学生对不等式理论熟练掌握的程度也是衡量学生数学水平的重要方面,同时,不等式也是高中数学的基础,因此,在每年的数学高考题中,有关不等式的相关题目占有一定的比例,命题主要涉及解不等式、不等式的证明、不等式的应用这三方面,现将不等式的证明进行研究。 证明不等式有利于提高学生的分析与综合能力,证明不等式没有固定的程序,一个不等式的证法往往不止一种,证明过程往往是几种方法的综合运用,但无论是哪种方法,都离不开不等式的基本性质,另外在教材中提到了平均值不等式、排序不等式、三角不等式,如果能熟记并能运用的话,在证明不等式的过程中会有很大的帮助。下面将详细列举证明不等式的方法。 一、比较法 比较法是证明不等式的一种最基本也是最重要的方法,主要有作差比较和作商比较两种形式。 (1)作差比较法的步骤一般为:①作差式②差式变形③判断差式的正负④下结论;在这些步骤中,最难的就是差式变形,常用到的有配方法、通分法、因式分解法等等。 (2)作商比较法的步骤为:①作商式②商式变形③判断商式的值是大于1、小于1还是等于1④下结论。 (3)当不等式两边为多项式、分式或对数形式时,往往选择作差法;当不等式两边为指数时,常采用作商法。下面将列举例子进行

分析,以进一步加深对比较法的认识。 例1 若40πβα< <<,则ββααcos sin cos sin +<+ 证明 β βααβαβαβαβαβαβαπβαβαππβαβαβαβαβαβαβαβαβαβαβ βααcos sin cos sin 02 sin 2cos 2sin 22 sin 222cos ,02sin 420,02840)2 sin 2(cos 2sin 22 cos 2sin 22sin 2cos 2) cos (cos )sin (sin cos sin cos sin +<+<+-+-+>>+<-<+<<-<-<<<+-+-=-+--+=-+-=+-+即)(所以得于是有,所以因为 二、放缩法 放缩法是证明不等式所特有的方法,把要证的不等式中的一部分量进行放大或缩小,形成新的不等式,而这个新的不等式必须是比原不等式更容易证明的,同时,由新的不等式成立可以推出原不等式成立。另外,放缩目标必须明确,从实际出发,从原不等式过渡到新的不等式是证明的关键。下面就实际例子进行分析。 例2 若,求证:且3,0,,≥++>zx yz xy z y x

高中数学基本不等式知识点归纳及练习题00294

高中数学基本不等式的巧用 1.基本不等式:ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R );(2)b a +a b ≥2(a ,b 同号);(3)ab ≤? ?? ??a +b 22(a ,b ∈R ); (4)a 2+b 22≥? ?? ??a +b 22(a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为两个 正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大) 一个技巧 运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用就是22 ?? ??a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等. 两个变形 (1)a 2+b 22≥? ?? ??a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号); a +b 这两个不等式链用处很大,注意掌握它们. 三个注意 (1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽

视.要利用基本不等式求最值,这三个条件缺一不可. (2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件. (3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x 解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245 y x x =-+-的最大值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 技巧三: 分离 例3. 求2710(1)1 x x y x x ++=>-+的值域。 。 技巧四:换元 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+ 的单调性。例:求函数224y x =+的值域。 练习.求下列函数的最小值,并求取得最小值时,x 的值. (1)231,(0)x x y x x ++=>(2)12,33 y x x x =+>- (3)12sin ,(0,)sin y x x x π=+∈ 2.已知01x <<,求函数(1)y x x = -.;3.203 x <<,求函数(23)y x x =-. 条件求最值 1.若实数满足2=+b a ,则b a 33+的最小值是. 变式:若44log log 2x y +=,求11x y +的最小值.并求x ,y 的值 技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。 2:已知0,0x y >>,且191x y +=,求x y +的最小值。

《一元一次方程》全章知识讲解

《一元一次方程》全章复习 【学习目标】 1.理解方程,等式及一元一次方程的概念,并掌握它们的区别和联系; 2.会解一元一次方程,并理解每步变形的依据; 3.会根据实际问题列方程解应用题. 【知识网络】 【要点梳理】 知识点一、一元一次方程的概念 1.方程:含有未知数的等式叫做方程. 2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程. 要点诠释:判断是否为一元一次方程,应看是否满足: ①只含有一个未知数,未知数的次数为1; ②未知数所在的式子是整式,即分母中不含未知数. 3.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解. 4.解方程:求方程的解的过程叫做解方程. 知识点二、等式的性质与去括号法则 1.等式的性质: 等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等. 等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.

2.合并法则:合并时,把系数相加(减)作为结果的系数,字母和字母的指数保持不变. 3.去括号法则: (1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同. (2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反. 知识点三、一元一次方程的解法 解一元一次方程的一般步骤: (1)去分母:在方程两边同乘以各分母的最小公倍数. (2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号. (3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边. (4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax =b (a ≠0)的形式. (5)系数化为1:方程两边同除以未知数的系数得到方程的解b x a =(a ≠0). (6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解. 知识点四、用一元一次方程解决实际问题的常见类型 1.行程问题:路程=速度×时间 2.和差倍分问题:增长量=原有量×增长率 3.利润问题:商品利润=商品售价-商品进价 4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量 5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数 6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =?+?+?+. 【典型例题】 类型一、一元一次方程的相关概念 1.已知方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程,求m 和x 的值. 【思路点拨】若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程. 【答案与解析】 解:因为方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程, 所以3m -4=0且5-3m ≠0. 由3m -4=0解得43m =,又43m =能使5-3m ≠0,所以m 的值是43. 将43m =代入原方程,则原方程变为485333x ??--?= ?? ?,解得83x =-. 所以43 m =,83x =-. 【总结升华】解答这类问题,一定要严格按照一元一次方程的定义.方程(3m -4)x 2-(5-3m )x -4m =-2m 2是关于x 的一元一次方程,就是说x 的二次项系数3m -4=0,而x 的一次项系数5-3m ≠0,m 的值必须同时符合这两个条件. 举一反三: 【变式】下面方程变形中,错在哪里:

一元一次不等式组应用题专题训练

一元一次不等式组应用题专题训练 例1.某中学为八年级寄宿学生安排宿舍,如果每间 4 人,那么有20人无法安排;如果每 间8 人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。 练习某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们。如果没 人送3 本,则还余8本;如果前面每人送5本,最后一人得到的课外读物不足3 本。设该校买了m 本课外读物,有x 名学生获奖,请解答下列问题: (1)用含x 的代数式表示m; (2)求出该校的获奖人数及所买课外读物的本数。 例2.甲以5km/h 的速度进行有氧体育锻炼,2h 后,乙骑自行车从同地出发沿同一条路追赶甲,根据他们两人的约定,乙最快不早于1h 追上甲,最慢不晚于1h15min 追上甲,那么乙骑车的速度应该控制在什么范围? 例3.把价格为每千克20 元的甲种糖果8 千克和价格为每千克18 元的乙种糖果若干千克混合,要使总价不超过400元,且糖果不少于15 千克,所混合的乙种糖果最多是多少?最少是多少? 例4.某公司经营甲、乙两种商品,每件甲种商品进价12万元,售价14.5 万元。每件乙种 商品进价8 万元,售价10 万元,且它们的进价和售价始终不变。现准备购进甲、乙两种商品共20 件,所用资金不低于190 万元不高于200 万元。 (1)该公司有哪几种进货方案? (2)该公司采用哪种进货方案可获得最大利润?最大利润是多少? 练习某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货

量的一半。电视机与洗衣机的进价和售价如下表: 计划购进电视机和洗衣机共100台,商店最多可筹集资金161800元。 (1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其它费用) (2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润。 (利润=售价一进价) 例5.某公司为了扩大经营,决定购进6台机器用于生产某种活塞。现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示。经过预算,本次购买 机器所耗资金不能超过34万元。 (1 )按该公司要求可以有几种购买方案? (2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种方案? 练习接待一世博旅行团有290名游客,共有100件行李。计划租用甲、乙两种型号的汽车共8辆。甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李。 (1)设租用甲种汽车x辆,请你帮助设计可能的租车方案; (2)如果甲、乙两种汽车每辆的租车费用分别为2000元,1800元,你会选择哪种租

浅谈中学数学不等式的证明方法

本科生毕业论文 学院数学与计算机科学学院 专业数学与应用数学 届别 2015 届 题目浅谈中学数学不等式的证明方法 学生姓名徐亚娟 学号 201111401138 指导教师吴万勤 教务处制

云南民族大学毕业论文(设计)原创性声明 本人郑重声明:所呈交的毕业论文(设计),是本人在指导教师的指导下进行研究工作所取得的成果。除论文中已经注明引用的内容外,本论文没有抄袭、剽窃他人已经发表的研究成果。本声明的法律结果由本人承担。 毕业论文(设计)作者签名: 日期:年月日 …………………………………………………………………………… 关于毕业论文(设计)使用授权的说明 本人完全了解云南民族大学有关保留、使用毕业论文(设计)的规定,即:学校有权保留、送交论文的复印件,允许论文被查阅,学校可以公布论文(设计)的全部或部分内容,可以采用影印或其他复制手段保存论文(设计)。 (保密论文在解密后应遵守) 指导教师签名:论文(设计)作者签名: 日期:年月日

目录

摘要 (4) 引言 (6) 1、预备知识 (6) 1.1不等式的概念 (6) 1.2不等式的性质 (6) 1.3基本不等式 (7) 1.4几个重要不等式 (7) 1.4.1柯西不等式 (7) 1.4.2伯努利不等式 (7) 2、证明不等式的常用方法 (7) 2.1比较法 (8) 2.1.1求差法 (8) 2.1.2求商法 (8) 2.1.3过度比较法 (8) 2.2分析法 (9) 2.3综合法 (9) 2.4缩放法 (10) 2.4.1放缩法的常见技巧 (10) 2.5反推法 (10) 2.6数学归纳法 (11) 2.7反证法 (11) 2.7.1反证法的基本思路 (11) 2.7.2反证法的步骤 (11) 2.8判别式法 (12) 2.9等式法 (12) 2.10中值定理法 (12) 2.11排序法 (12) 2.12分解法 (13) 2.13函数极值法 (13) 3 .利用构造法证明不等式 (13) 3.1构造函数模型 (13) 3.1.1构造一次函数模型 (14) 3.1.2构造二次函数模型 (14) 3.1.3构造单调函数证明不等式 (14) 3.2构造复数模型 (14) 3.3构造方程法 (15) 4.换元法证明不等式 (15) 4.1.三角换元法 (15) 4.2均值换元 (16)

基本不等式知识点和基本题型

基本不等式专题辅导 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若* ,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则2 2?? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值; 特别说明:以上不等式中,当且仅当b a =时取“=” 4、求最值的条件:“一正,二定,三相等” 5、常用结论 (1)若0x >,则1 2x x + ≥ (当且仅当1x =时取“=”) (2)若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) (4)若R b a ∈,,则2 )2(2 22b a b a ab +≤ +≤ (5)若* ,R b a ∈,则22111 2 2b a b a ab b a +≤ +≤≤+ 特别说明:以上不等式中,当且仅当b a =时取“=” 6、柯西不等式 (1)若,,,a b c d R ∈,则22222 ()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有:2222222 1231123112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有22212(n a a a ++???+)22212)n b b b ++???+(21122()n n a b a b a b ≥++???+ 二、题型分析 题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等式:ab ≥ b a 112+ 2、已知c b a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++222 3、已知1a b c ++=,求证:2 2 2 13 a b c ++≥ 4、已知,,a b c R + ∈,且1a b c ++=,求证:abc c b a 8)1)(1)(1(≥--- 已知,,a b c R + ∈,且1a b c ++=,求证:1111118a b c ??????---≥ ??????????? 6、选修4—5:不等式选讲 设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤; (Ⅱ)222 1a b c b c a ++≥. 7、选修4—5:不等式选讲: 已知0>≥b a ,求证:b a ab b a 2 23322-≥- 题型二:利用不等式求函数值域

一元一次不等式整章教案

第八章一元一次不等式 8.1认识不等式 教学目标 1.知道不等式的定义。 2.理解不等式的解和方程的解的异同。 3.会根据问题列不等式。 4.会将实际问题抽象成数学问题,并用学到的知识解决问题,从而培养学生分析问题、解决问题的能力。 教学重难点 重点:不等式的定义、不等式的解及列不等式。 难点:总结归纳不等式及不等式的解。 教学过程 一、创设问题情境。 公园(或本地区的某个旅游景点)的票价是每人5元。团体参观旅游优惠,一次购票满30张,每张票可少收1元。某班有27名学生去公园进行参观活动,假如要你去买票,请问你打算买多少张?你向每位学生收多少钱? 这里可先由学生自己思考,是买27张还是买30张?然后让学生自己算一算。 买27张票,要付款:5×27=135元。 买30张票,要付款:4×30=120元。 引导学生:你说是买30张票花钱少还是买27张票花钱少? 通过计算发现,用120元就可以买到30张票,而用135元却只能买到27张票,是什么原因? 列出两个不等式: 27张<30张, 135元>120元。 二、探索学习。 1.我们继续探讨上面的问题。 问题1:我们只用120元买了30张票,我们是不是就买30张票?请大家讨论。 如果买30张票,我们不仅省钱,而且多买了票,那剩下的票怎么办?是卖掉?扔掉?还是送给困难的学生和门外的一些穷人?从而培养学生怜贫悯苦的友爱之心。(对学生进行思想教育。) 问题2:买30张票比买27张票付的款还要少,这是不是说多买票反

而花钱少?如果你一个人去参观,是不是也买30张呢? 请你计算10人、20人、21人、22人、23人、24人、25人、26人…… 问题3:至少要有多少人去参观,多买票反而便宜?能否用数学知识来解决? 引导学生分析。 设有。人要去公园参观。 (1)如果x≥30,则按实际人数买票,每张票只要付4元。 (2)如果x<30,那么:按实际人数买票。张,要付款5x元;买30张票要付款4×30=120元。 如果买30张票合算,则120<5x。 问题4:x取哪些数值时,上式成立? (1)你能否结合前面学的解方程的知识,尝试解这个不等式。 (2) 问题 要有25人进公园时,买30张合算。即当x>24时,5x,120。 2.概括总结。 (1)像上面出现的135>120,27<30,5x>20,x<30那样用不等号“<”或“>”表示不等关系的式子,叫做不等式。 不等号有:<、>、≠、≤、≥。 (2)不等式120<5x中含有未知x。能使不等式成立的未知数的值,叫做不等式的解。 不等式的解可以有无数个。 如上例中,x=25,26,27,…等都是120<5x的解,x=24,23,22,21则都不是不等式的解。 三、应用举例。 例1 用不等式表示:

相关文档
最新文档