带电粒子在电场中的运动练习题带标准答案
微型专题03 带电粒子在电场中的运动(四种题型)(练习题)(解析版)
第十章静电场中的能量微型专题3 带电粒子在电场中的运动(四种题型)一、单选题:1.A、B是一条电场线上的两个点,一带负电的微粒仅在静电力作用下以一定的初速度从A点沿电场线运动到B点,其速度v与时间t的关系图象如图1所示。
则此电场的电场线分布可能是( )【解析】从v-t图象可以看出物体的速度逐渐减小,图线的斜率逐渐增大,v-t图线中图线的斜率表示物体的加速度大小,故物体做加速度逐渐增大的减速运动,所以带负电的粒子顺着电场线运动,电场力做负功,速度逐渐减小,且电场线沿粒子运动方向逐渐密集,故选项A正确,选项B、C、D错误。
【答案】A2.如图所示,两平行的带电金属板水平放置.若在两板中间a点从静止释放一带电微粒,微粒恰好保持静止状态,现将两板绕过a点的轴(垂直于纸面)逆时针旋转45°,再由a 点从静止释放一同样的微粒,该微粒将( )A.保持静止状态B.向左上方做匀加速运动C.向正下方做匀加速运动D.向左下方做匀加速运动【答案】D【解析】两平行金属板水平放置时,带电微粒静止,有mg=qE,现将两板绕过a点的轴(垂直于纸面)逆时针旋转45°后,两板间电场强度方向逆时针旋转45°,电场力方向也逆时针旋转45°,但大小不变,此时电场力和重力的合力大小恒定,方向指向左下方,故该微粒将向左下方做匀加速运动,选项D正确.3.如图所示,两极板与电源相连接,电子从负极板边缘沿垂直电场方向射入匀强电场,电子恰好从正极板边缘飞出,现保持负极板不动,正极板在竖直方向移动,并使电子入射速度变为原来的2倍,而电子仍从原位置射入,且仍从正极板边缘飞出,则两极板间距离变为原来的( )A.2倍B.4倍C.12D.14【答案】C【解析】电子从负极板边缘垂直电场方向射入匀强电场,做类平抛运动.假设电子的带电荷量为e ,质量为m ,初速度为v ,极板的长度为L ,极板的间距为d ,电场强度为E .由于电子做类平抛运动,所以水平方向有:L =vt ,竖直方向有:y =12at 2=12·eE m ·(Lv)2=d .因为E =U d ,可得:d 2=eUL 22mv 2,若电子的速度变为原来的两倍,仍从正极板边缘飞出,则由上式可得两极板的间距d 应变为原来的12,故选C.4.一匀强电场的电场强度E 随时间t 变化的图象如图4所示,在该匀强电场中,有一个带负电粒子于t =0时刻由静止释放,若带电粒子只受电场力作用,则下列说法中正确的是(假设带电粒子不与板相碰)( )A.带电粒子只向一个方向运动B.0~2 s 内,电场力做功等于0C.4 s 末带电粒子回到原出发点D.2.5~4 s 内,电场力做功等于0 【答案】D【解析】画出带电粒子速度v 随时间t 变化的图象如图所示,v-t图线与时间轴所围“面积”表示位移,可见带电粒子不是只向一个方向运动,4 s 末带电粒子不能回到原出发点,A、C错误;2 s末速度不为0,可见0~2 s内电场力做的功不等于0,B错误;2.5 s末和4 s末,速度的大小、方向都相同,则2.5~4 s内,电场力做功等于0,所以D正确.5.如图所示,在竖直向上的匀强电场中,一根不可伸长的绝缘细绳的一端系着一个带电小球,另一端固定于O点,小球在竖直平面内做匀速圆周运动,最高点为a,最低点为b.不计空气阻力,则下列说法正确的是( )A.小球带负电B.电场力跟重力平衡C.小球在从a点运动到b点的过程中,电势能减小D.小球在运动过程中机械能守恒【答案】B【解析】由于小球在竖直平面内做匀速圆周运动,所以重力与电场力的合力为0,电场力方向竖直向上,小球带正电,A错,B对;从a→b,电场力做负功,电势能增大,C 错;由于有电场力做功,机械能不守恒,D错.6.如图所示,场强大小为E、方向竖直向下的匀强电场中有一矩形区域abcd,水平边ab 长为s,竖直边ad长为h.质量均为m、带电量分别为+q和-q的两粒子,由a、c两点先后沿ab和cd方向以速率v0进入矩形区域(两粒子不同时出现在电场中).不计重力,若两粒子轨迹恰好相切,则v0等于( )A.s22qEmhB.s2qEmhC.s42qEmhD.s4qEmh【答案】B【解析】根据对称性,两粒子轨迹的切点位于矩形区域abcd的中心,则在水平方向有1 2s=v0t,在竖直方向有12h=12·qEm·t2,解得v0=s2qEmh,故选项B正确,选项A、C、D错误.7.如图甲所示,Q1、Q2为两个被固定的点电荷,a、b、c三点在它们连线的延长线上,其中Q1带负电。
高中物理带电粒子在电场中的运动题20套(带答案)
高中物理带电粒子在电场中的运动题20套(带答案)一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,xOy平面处于匀强磁场中,磁感应强度大小为B,方向垂直纸面向外.点P — L,0处有一粒子源,可向各个方向发射速率不同、电荷量为q、质量为m的带负电3粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x轴正向通过点Q (0, -L),求其速率V1;(2)若撤去第一象限的磁场,在其中加沿y轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率V1沿x轴正向通过点Q,求匀强电场的电场强度E以及粒子2的发射速率V2;(3)若在xOy平面内加沿y轴正向的匀强电场E。
,粒子3以速率V3沿y轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解.222.BLq (3) J E°v2且【答案】(1) 2BLq⑵3m 9m 1 B v B【解析】【详解】2(1)粒子1在一、二、三做匀速圆周运动,则qvi B m"r12 . 2.3 .由几何憨可知:r1 L r1 ——L得到:V i 2BL q 3m(2)粒子2在第一象限中类斜劈运动,有:在第二、三象限中原圆周运动,由几何关系:又 v 2 V i 22Eh,得到:V 22痴BLq9m(3)如图所示,将 V 3分解成水平向右和 v 和斜向的V ,则qvB而 V V 2 V 2所以,运动过程中粒子的最小速率为2.如图所示,竖直面内有水平线 MN 与竖直线PQ 交于P 点,O 在水平线MN 上,OP 间距为d, 一质量为 m 、电量为q 的带正电粒子,从 。
处以大小为V o 、方向与水平线夹角为 0= 60o 的速度,进入大小为 日的匀强电场中,电场方向与竖直方向夹角为0= 60o,粒子到达PQ 线上的A 点时,其动能为在 。
(物理)物理带电粒子在电场中的运动题20套(带答案)及解析
(物理)物理带电粒子在电场中的运动题20套(带答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O ,外圆弧面AB 的电势为2L()o ϕ>,内圆弧面CD 的电势为φ,足够长的收集板MN 平行边界ACDB ,ACDB 与MN 板的距离为L .假设太空中漂浮着质量为m ,电量为q 的带正电粒子,它们能均匀地吸附到AB 圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB 的粒子再次返回.(1)求粒子到达O 点时速度的大小;(2)如图2所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB 圆弧面的粒子经O 点进入磁场后最多有23能打到MN 板上,求所加磁感应强度的大小;(3)如图3所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个垂直MN 的匀强电场,电场强度的方向如图所示,大小4E Lφ=,若从AB 圆弧面收集到的某粒子经O 点进入电场后到达收集板MN 离O 点最远,求该粒子到达O 点的速度的方向和它在PQ 与MN 间运动的时间. 【答案】(1)2q v mϕ=2)12m B L q ϕ=;(3)060α∴= ;22m L q ϕ【解析】 【分析】 【详解】试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:2102qU mv =-2U ϕϕϕ=-=2q v mϕ=(2)从AB 圆弧面收集到的粒子有23能打到MN 板上,则上端刚好能打到MN 上的粒子与MN 相切,则入射的方向与OA 之间的夹角是60︒,在磁场中运动的轨迹如图甲,轨迹圆心角060θ=.根据几何关系,粒子圆周运动的半径:2R L =由洛伦兹力提供向心力得:2v qBv m R=联合解得:12m B L qϕ=(3)如图粒子在电场中运动的轨迹与MN 相切时,切点到O 点的距离最远, 这是一个类平抛运动的逆过程. 建立如图坐标.212qE L t m=222mL mt L qE q ϕ==22x Eq qEL q v t m m m ϕ===若速度与x 轴方向的夹角为α角cosxvvα=1cos2α=60α∴=2.如图所示,在两块长为3L、间距为L、水平固定的平行金属板之间,存在方向垂直纸面向外的匀强磁场.现将下板接地,让质量为m、电荷量为q的带正电粒子流从两板左端连线的中点O以初速度v0水平向右射入板间,粒子恰好打到下板的中点.若撤去平行板间的磁场,使上板的电势φ随时间t的变化规律如图所示,则t=0时刻,从O点射人的粒子P经时间t0(未知量)恰好从下板右边缘射出.设粒子打到板上均被板吸收,粒子的重力及粒子间的作用力均不计.(1)求两板间磁场的磁感应强度大小B.(2)若两板右侧存在一定宽度的、方向垂直纸面向里的匀强磁场,为了使t=0时刻射入的粒子P经过右侧磁场偏转后在电场变化的第一个周期内能够回到O点,求右侧磁场的宽度d 应满足的条件和电场周期T的最小值T min.【答案】(1)0mvBqL=(2)223cosd R a R L≥+=;min(632)3LTvπ+=【解析】【分析】【详解】(1)如图,设粒子在两板间做匀速圆周运动的半径为R1,则012qv B mvR=由几何关系:222113()()2L LR R=+-解得0mvBqL=(2)粒子P从O003L v t=01122y L v t =解得0y v =设合速度为v ,与竖直方向的夹角为α,则:0tan yv v α== 则=3πα00sin 3v v v α== 粒子P 在两板的右侧匀强磁场中做匀速圆周运动,设做圆周运动的半径为R 2,则212sin L R α=,解得23R =右侧磁场沿初速度方向的宽度应该满足的条件为22cos d R R L α≥+=; 由于粒子P 从O 点运动到下极板右侧边缘的过程与从上板右边缘运动到O 点的过程,运动轨迹是关于两板间的中心线是上下对称的,这两个过程经历的时间相等,则:2min 0(22)2R T t v πα--=解得()min 023L T v π=【点睛】带电粒子在电场或磁场中的运动问题,关键是分析粒子的受力情况和运动特征,画出粒子的运动轨迹图,结合几何关系求解相关量,并搞清临界状态.3.如图所示,虚线MN 左侧有一场强为E 1=E 的匀强电场,在两条平行的虚线MN 和PQ 之间存在着宽为L 、电场强度为E 2=2E 的匀强电场,在虚线PQ 右侧距PQ 为L 处有一与电场E 2平行的屏.现将一电子(电荷量为e ,质量为m ,重力不计)无初速度地放入电场E 1中的A 点,最后电子打在右侧的屏上,A 点到MN 的距离为2L,AO 连线与屏垂直,垂足为O ,求:(1) 电子到达MN 时的速度;(2) 电子离开偏转电场时偏转角的正切值tan θ; (3) 电子打到屏上的点P ′到点O 的距离.【答案】(1) eELv m=L . 【解析】 【详解】(1)电子在电场E 1中做初速度为零的匀加速直线运动,设加速度为a 1,到达MN 的速度为v ,则:a 1=1eE m =eEm 2122La v =解得eELv m=(2)设电子射出电场E 2时沿平行电场线方向的速度为v y ,a 2=2eE m =2eEm t =L v v y =a 2ttan θ=y v v=2(3)电子离开电场E 2后,将速度方向反向延长交于E 2场的中点O ′.由几何关系知:tan θ=2xLL+解得:x =3L .4.如图所示,在空间坐标系x <0区域中有竖直向上的匀强电场E 1,在一、四象限的正方形区域CDEF 内有方向如图所示的正交的匀强电场E 2和匀强磁场B ,已知CD =2L ,OC =L ,E 2 =4E 1。
高中物理带电粒子在电场中的运动题20套(带答案)及解析
高中物理带电粒子在电场中的运动题20套(带答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,03P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()2221133r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:133L v t=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:22219BLqv m=(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭2.如图所示,竖直平面内有一固定绝缘轨道ABCDP ,由半径r =0.5m 的圆弧轨道CDP 和与之相切于C 点的水平轨道ABC 组成,圆弧轨道的直径DP 与竖直半径OC 间的夹角θ=37°,A 、B 两点间的距离d =0.2m 。
高考物理带电粒子在电场中的运动题20套(带答案)及解析
高考物理带电粒子在电场中的运动题20套(带答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.某控制带电粒子运动的仪器原理如图所示,区域PP′M′M 内有竖直向下的匀强电场,电场场强E =1.0×103V/m ,宽度d =0.05m ,长度L =0.40m ;区域MM′N′N 内有垂直纸面向里的匀强磁场,磁感应强度B =2.5×10-2T ,宽度D =0.05m,比荷qm=1.0×108C/kg 的带正电的粒子以水平初速度v 0从P 点射入电场.边界MM′不影响粒子的运动,不计粒子重力.(1) 若v 0=8.0×105m/s ,求粒子从区域PP′N′N 射出的位置;(2) 若粒子第一次进入磁场后就从M′N′间垂直边界射出,求v 0的大小; (3) 若粒子从M′点射出,求v 0满足的条件.【答案】(1)0.0125m (2) 3.6×105m/s. (3) 第一种情况:v 0=54.00.8()10/21nm s n -⨯+ (其中n =0、1、2、3、4)第二种情况:v 0=53.20.8()10/21nm s n -⨯+ (其中n =0、1、2、3).【解析】 【详解】(1) 粒子以水平初速度从P 点射入电场后,在电场中做类平抛运动,假设粒子能够进入磁场,则竖直方向21··2Eq d t m= 得2mdt qE=代入数据解得t =1.0×10-6s 水平位移x =v 0t 代入数据解得x =0.80m因为x 大于L ,所以粒子不能进入磁场,而是从P′M′间射出, 则运动时间t 0=Lv =0.5×10-6s , 竖直位移201··2Eq y t m==0.0125m 所以粒子从P′点下方0.0125m 处射出.(2) 由第一问可以求得粒子在电场中做类平抛运动的水平位移x =v 0 2mdqE粒子进入磁场时,垂直边界的速度 v 1=qE m ·t =2qEd m设粒子与磁场边界之间的夹角为α,则粒子进入磁场时的速度为v =1v sin α在磁场中由qvB =m 2v R得R =mv qB 粒子第一次进入磁场后,垂直边界M′N′射出磁场,必须满足x +Rsinα=L 把x =v 02md qE 、R =mv qB 、v =1v sin α、12qEdv m =代入解得 v 0=L·2Eqmd-E B v 0=3.6×105m/s.(3) 由第二问解答的图可知粒子离MM′的最远距离Δy =R -Rcosα=R(1-cosα)把R =mv qB 、v =1v sin α、12qEdv m=代入解得12(1cos )12tan sin 2mEd mEd y B q B q ααα-∆==可以看出当α=90°时,Δy 有最大值,(α=90°即粒子从P 点射入电场的速度为零,直接在电场中加速后以v 1的速度垂直MM′进入磁场运动半个圆周回到电场)1max 212mv m qEd mEdy qB qB m B q∆=== Δy max =0.04m ,Δy max 小于磁场宽度D ,所以不管粒子的水平射入速度是多少,粒子都不会从边界NN′射出磁场.若粒子速度较小,周期性运动的轨迹如下图所示:粒子要从M′点射出边界有两种情况, 第一种情况: L =n(2v 0t +2Rsinα)+v 0t把2md t qE =、R =mv qB 、v 1=vsinα、12qEd v m= 代入解得 0221221L qE n E v n md n B=-⋅++v 0= 4.00.821n n -⎛⎫⎪+⎝⎭×105m/s(其中n =0、1、2、3、4)第二种情况:L =n(2v 0t +2Rsinα)+v 0t +2Rsinα 把2md t qE =、R =mv qB 、v 1=vsinα、12qEd v m=代入解得02(1)21221L qE n E v n md n B+=-⋅++v 0= 3.20.821n n -⎛⎫⎪+⎝⎭×105m/s(其中n =0、1、2、3).2.如图所示,荧光屏MN 与x 轴垂直放置,荧光屏所在位置的横坐标x 0=60cm ,在第一象限y 轴和MN 之间存在沿y 轴负方向的匀强电场,电场强度E =1.6×105N/C ,在第二象限有半径R =5cm 的圆形磁场,磁感应强度B =0.8T ,方向垂直xOy 平面向外.磁场的边界和x 轴相切于P 点.在P 点有一个粒子源,可以向x 轴上方180°范围内的各个方向发射比荷为qm=1.0×108C/kg 的带正电的粒子,已知粒子的发射速率v 0=4.0×106m/s .不考虑粒子的重力、粒子间的相互作用.求:(1)带电粒子在磁场中运动的轨迹半径; (2)粒子从y 轴正半轴上射入电场的纵坐标范围; (3)带电粒子打到荧光屏上的位置与Q 点的最远距离. 【答案】(1)5cm ;(2)0≤y≤10cm ;(3)9cm 【解析】 【详解】(1)带电粒子进入磁场受到洛伦兹力的作用做圆周运动,由洛伦兹力提供向心力得:qvB =m 2v r解得:r =20510mv Bq-=⨯m=5cm (2)由(1)问可知r =R ,取任意方向进入磁场的粒子,画出粒子的运动轨迹如图所示:由几何关系可知四边形PO′FO 1为菱形,所以FO 1∥O′P ,又O′P 垂直于x 轴,粒子出射的速度方向与轨迹半径FO 1垂直,则所有粒子离开磁场时的方向均与x 轴平行,所以粒子从y 轴正半轴上射入电场的纵坐标范围为0≤y ≤10cm (3)假设粒子没有射出电场就打到荧光屏上,有:x 0=v 0t 0 h =2012at a =qE m解得:h =18cm >2R =10cm说明粒子离开电场后才打在荧光屏上.设从纵坐标为y 的点进入电场的粒子在电场中沿x 轴方向的位移为x ,则:x =v 0t y =212at 代入数据解得:x 2y设粒子最终到达荧光屏的位置与Q 点的最远距离为H ,粒子射出电场时速度方向与x 轴正方向间的夹角为θ,000tan 2y qE x v m v yv v θ⋅===所以:H =(x 0﹣x )tan θ=(x 0﹣2y)•2y由数学知识可知,当(x 0﹣2y )=2y 时,即y =4.5cm 时H 有最大值 所以H max =9cm3.平面直角坐标系的第一象限和第四象限内均存在垂直纸面向里的匀强磁场,磁感应强度大小分别为2B 和B (B 的大小未知),第二象限和第三象限内存在沿﹣y 方向的匀强电场,x 轴上有一点P ,其坐标为(L ,0)。
带电粒子在电场中的运动计算题(含答案)
带电粒子在电场中的运动1、(1)匀强电场场强E的大小、方向如何?(2)试探电荷+q放在点c时,受力F c的大小、方向如何?(3)试探电荷+q放在点b时,受力F b的大小、方向如何?【解析】试题分析:(1)由题意可知:①②由,所以,,匀强电场方向沿db方向.(2)试探电荷放在c点:所以方向与ac方向成45°角斜向下(如右图所示).(3)试探电荷放在b点:所以,方向沿db方向.考点:考查了电场的叠加点评:根据点电荷场强的计算公式及电场叠加原理即可求解.2、如图所示,在一足够大的空间内存在着水平向右的匀强电场,电场强度大小E=3.0×104N/C。
有一个质量m=4.0×10-3kg的带电小球,用绝缘轻细线悬挂起来,静止时细线偏离竖直方向的夹角θ=37°。
取g=10m/s2,sin37°=0.60,cos37°=0.80,不计空气阻力的作用。
求:(1)求小球所带的电荷量及电性;(2)如果将细线轻轻剪断,求细线剪断后,小球运动的加速度大小;(3)从剪断细线开始经过时间t=0.20s,求这段时间内小球电势能的变化量。
【解析】试题分析:(1)小球受到重力mg、电场力F和细线的拉力T的作用,由共点力平衡条件,得F=qE=mgtanθ解得q=mgtanθ/E=1.0×10-6C电场力的方向与电场强度的方向相同,故小球所带电荷为正电荷(2)剪断细线后,小球做匀加速直线运动,设其加速度为a,由牛顿第二定律,得=ma解得a==12.5m/s2(3)在t=0.20s的时间内,小球的位移为l==0.25m小球运动过程中,电场力做的功W=qElsinθ=mglsinθtanθ=4.5×10-3J所以小球电势能的变化量(减少量)ΔE p=4.5×10-3J。
考点:考查了共点力平衡条件的运动点评:本题的综合性较强,关键是根据受力分析,结合牛顿第二定律解题3、如图所示,一根长L=1.5m的光滑绝缘细直杆MN,竖直固定在场强为E=1.0×105N/C、与水平方向成θ=30°角的倾斜向上的匀强电场中。
带电粒子在电场中的运动(含解析)
带电粒子在电场中的运动一、带电粒子在电场中的直线运动1.做直线运动的条件(1)粒子所受合外力F 合=0,粒子或静止,或做匀速直线运动.(2)粒子所受合外力F 合≠0,且与初速度方向在同一条直线上,带电粒子将做匀加速直线运动或匀减速直线运动.2.用动力学观点分析a =qE m ,E =U d,v 2-v 02=2ad . 3.用功能观点分析匀强电场中:W =Eqd =qU =12mv 2-12mv 02 非匀强电场中:W =qU =E k2-E k1●带电粒子在匀强电场中的直线运动【例1】如图所示,三块平行放置的带电金属薄板A 、B 、C 中央各有一小孔,小孔分别位于O 、M 、P 点.由O 点静止释放的电子恰好能运动到P 点.现将C 板向右平移到P ′点,则由O 点静止释放的电子( )图6A .运动到P 点返回B .运动到P 和P ′点之间返回C .运动到P ′点返回D .穿过P ′点【答案】A【解析】根据平行板电容器的电容的决定式C = εr S 4πkd 、定义式C =Q U和匀强电场的电压与电场强度的关系式U =Ed 可得E = 4πkQ εr S,可知将C 板向右平移到P ′点,B 、C 两板间的电场强度不变,由O 点静止释放的电子仍然可以运动到P 点,并且会原路返回,故选项A 正确.【变式1】 两平行金属板相距为d ,电势差为U ,一电子质量为m ,电荷量为e ,从O 点沿垂直于极板的方向射入,最远到达A 点,然后返回,如图所示,OA =h ,此电子具有的初动能是( )A.edh U B .edUh C.eU dh D.eUh d【答案】D【解析】由动能定理得:-e U d h =-E k ,所以E k =eUh d,故D 正确. 二、带电粒子在交变电场中的直线运动【例2】 匀强电场的电场强度E 随时间t 变化的图象如图所示.当t =0时,在此匀强电场中由静止释放一个带电粒子(带正电),设带电粒子只受电场力的作用,则下列说法中正确的是( )A .带电粒子将始终向同一个方向运动B .2 s 末带电粒子回到原出发点C .3 s 末带电粒子的速度不为零D .0~3 s 内,电场力做的总功为零【答案】D【解析】由牛顿第二定律可知带电粒子在第1 s 内的加速度和第2 s 内的加速度的关系,因此粒子将先加速1 s 再减速0.5 s ,速度为零,接下来的0.5 s 将反向加速……,v -t 图象如图所示,根据图象可知选项A 错误;由图象可知前2 s 内的位移为负,故选项B 错误;由图象可知3 s 末带电粒子的速度为零,故选项C 错误;由动能定理结合图象可知0~3 s 内,电场力做的总功为零,故选项D 正确.●带电粒子在电场力和重力作用下的直线运动问题【例3】如图所示,在竖直放置间距为d 的平行板电容器中,存在电场强度为E 的匀强电场.有一质量为m 、电荷量为+q 的点电荷从两极板正中间处静止释放.重力加速度为g .则点电荷运动到负极板的过程( )A .加速度大小为a =Eq m+g B .所需的时间为t =dm Eq C .下降的高度为y =d 2D .电场力所做的功为W =Eqd 【答案】B【解析】点电荷受到重力、电场力的作用,所以a =(Eq )2+(mg )2m ,选项A 错误;根据运动独立性,水平方向点电荷的运动时间为t ,则d 2=12Eq mt 2,解得t =md Eq ,选项B 正确;下降高度y =12gt 2=mgd 2Eq,选项C 错误;电场力做功W =Eqd 2,选项D 错误. 【例4】如图所示,一带电液滴在重力和匀强电场对它的作用力作用下,从静止开始由b 沿直线运动到d ,且bd 与竖直方向所夹的锐角为45°,则下列结论不正确的是( )A .此液滴带负电B .液滴的加速度大小为2gC .合力对液滴做的总功等于零D .液滴的电势能减少【答案】C【解析】带电液滴由静止开始沿bd 做直线运动,所受的合力方向必定沿bd 直线,液滴受力情况如图所示,电场力方向水平向右,与电场方向相反,所以此液滴带负电,故选项A 正确;由图知液滴所受的合力F =2mg ,其加速度为a =F m =2g ,故选项B 正确;因为合力的方向与运动的方向相同,故合力对液滴做正功,故选项C 错误;由于电场力所做的功W 电=Eqx bd sin 45°>0,故电场力对液滴做正功,液滴的电势能减少,故选项D 正确.三、带电粒子在电场中的偏转1.两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的.证明:由qU 0=12mv 02 y =12at 2=12·qU 1md ·(l v 0)2 tan θ=qU 1l mdv 02得:y =U 1l 24U 0d ,tan θ=U 1l 2U 0d(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l 2. 2.功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 02,其中U y =U dy ,指初、末位置间的电势差.【例5】 质谱仪可对离子进行分析.如图所示,在真空状态下,脉冲阀P 喷出微量气体,经激光照射产生电荷量为q 、质量为m 的正离子,自a 板小孔进入a 、b 间的加速电场,从b 板小孔射出,沿中线方向进入M 、N 板间的偏转控制区,到达探测器(可上下移动).已知a 、b 板间距为d ,极板M 、N 的长度和间距均为L ,a 、b 间的电压为U 1,M 、N 间的电压为U 2.不计离子重力及进入a 板时的初速度.求:(1)离子从b 板小孔射出时的速度大小;(2)离子自a 板小孔进入加速电场至离子到达探测器的全部飞行时间;(3)为保证离子不打在极板上,U 2与U 1应满足的关系.【答案】 (1)2qU 1m (2)(2d +L )m 2qU 1(3) U 2<2U 1 【解析】(1)由动能定理qU 1=12mv 2,得v =2qU 1m (2)离子在a 、b 间的加速度a 1=qU 1md 在a 、b 间运动的时间t 1=v a 1=2m qU 1·d 在MN 间运动的时间:t 2=Lv =L m 2qU 1离子到达探测器的时间:t =t 1+t 2=(2d +L )m 2qU 1; (3)在MN 间侧移:y =12a 2t 22=qU 2L 22mLv 2=U 2L 4U 1由y <L2,得 U 2<2U 1. 【变式2】 如图所示,电荷量之比为q A ∶q B =1∶3的带电粒子A 、B 以相同的速度v 0从同一点出发,沿着跟电场强度垂直的方向射入平行板电容器中,分别打在C 、D 点,若OC =CD ,忽略粒子重力的影响,则下列说法不正确的是( )A .A 和B 在电场中运动的时间之比为1∶2B .A 和B 运动的加速度大小之比为4∶1C .A 和B 的质量之比为1∶12D .A 和B 的位移大小之比为1∶1【答案】D【解析】粒子A 和B 在匀强电场中做类平抛运动,水平方向由x =v 0t 及OC =CD 得,t A ∶t B =1∶2;竖直方向由h =12at 2得a =2h t 2,它们沿竖直方向运动的加速度大小之比为a A ∶a B =4∶1;根据a =qE m 得m =qE a ,故m A m B =112,A 和B 的位移大小不相等,故选项A 、B 、C 正确,D 错误.【变式3】 如图所示,喷墨打印机中的墨滴在进入偏转电场之前会带上一定量的电荷,在电场的作用下带电荷的墨滴发生偏转到达纸上.已知两偏转极板长度L =1.5×10-2 m ,两极板间电场强度E =1.2×106 N/C ,墨滴的质量m =1.0×10-13 kg ,电荷量q =1.0×10-16 C ,墨滴在进入电场前的速度v 0=15 m/s ,方向与两极板平行.不计空气阻力和墨滴重力,假设偏转电场只局限在平行极板内部,忽略边缘电场的影响.(1)判断墨滴带正电荷还是负电荷?(2)求墨滴在两极板之间运动的时间;(3)求墨滴离开电场时在竖直方向上的位移大小y .【答案】(1)负电荷 (2)1.0×10-3 s (3)6.0×10-4 m【解析】(1)负电荷.(2)墨滴在水平方向做匀速直线运动,那么墨滴在两板之间运动的时间t =L v 0.代入数据可得:t =1.0×10-3 s(3)离开电场前墨滴在竖直方向做初速度为零的匀加速直线运动,a =Eq m代入数据可得:a =1.2×103 m/s 2离开偏转电场时在竖直方向的位移y =12at 2 代入数据可得:y =6.0×10-4 m.。
高一物理《带电粒子在电场中的运动》练习题
高一物理《带电粒子在电场中的运动》练习题一、单选题1.如图所示,两平行金属板相距为d ,电势差U 未知,一个电子从O 点沿垂直于极板的方向以速度v 射出,最远到达A 点,然后返回,已知O 、A 相距为h ,电子的质量为m ,电荷量为e ,则两金属板间的电势差U 为( )A .22mv hB .22mv eC .22mdv ehD .22mhv ed【答案】C【解析】电子由O 到A 的过程,只有电场力做功,根据动能定理得2102eEh mv -=-两板间的电场强度U E d=解得两金属板间的电势差U 为22mdv U eh=故选C 。
2.让一价氢离子和一价氦离子的混合物由静止开始经过同一匀强电场加速,然后在同一匀强电场里偏转,并离开偏转电场( ) A .在加速电场中的加速度相等 B .离开加速电场时的动能相等 C .在偏转电场中的运动时间相等 D .离开偏转电场时分成两股粒子束 【答案】B【解析】AB .设加速电压为1U ,板间距离为1d ,在加速电场中,由牛顿第二定律可知11qU a md =在加速电场中,由动能定理得02112qU mv =则离开加速电场时的动能02112k mv U E q == 加速获得的速度为102qU v m=由于两种粒子的比荷不同,则在加速电场中的加速度不相等,两种粒子所带电荷相等,则离开加速电场时的动能相等,故A 错误,B 正确;CD .设偏转电压为2U ,偏转极板的长度为L ,板间距离为2d ,两种粒子在偏转电场中,水平方向做速度为0v 的匀速直线运动,由于两种粒子的比荷不同,则0v 不同,所以两粒子在偏转电场中运动的时间不同,故C 错误; 粒子离开偏转电场时,沿电场线方向的分速度220y qU Lv at md v ==⋅ 速度的偏转角22202021tan 4y v qU U LL v md v d U θ==⋅= 与电荷的电量和质量无关; 在偏转电场中的偏转位移222222202111224qU U L L y at md v d U ==⋅⋅=与电荷的电量和质量无关;所以两个粒子离开偏转电场时的速度方向和位置都相同,即离开偏转电场时只有一股粒子束,故D 错误; 故选B 。
带电粒子在电场中运动题目及标准答案(分类归纳经典)
带电粒子在电场中的运动一、带电粒子在电场中做偏转运动1.如图所示的真空管中,质量为m ,电量为e 的电子从灯丝F发出,经过电压U1加速后沿中心线射入相距为d 的两平行金属板B、C间的匀强电场中,通过电场后打到荧光屏上,设B、C间电压为U2,B、C板长为l 1,平行金属板右端到荧光屏的距离为l 2,求:⑴电子离开匀强电场时的速度与进入时速度间的夹角. ⑵电子打到荧光屏上的位置偏离屏中心距离. 解析:电子在真空管中的运动过分为三段,从F发出在电压U1作用下的加速运动;进入平行金属板B、C间的匀强电场中做类平抛运动;飞离匀强电场到荧光屏间的匀速直线运动.⑴设电子经电压U1加速后的速度为v 1,根据动能定理有: 21121mv eU =电子进入B、C间的匀强电场中,在水平方向以v 1的速度做匀速直线运动,竖直方向受电场力的作用做初速度为零的加速运动,其加速度为: dmeU meE a 2==电子通过匀强电场的时间11v l t =电子离开匀强电场时竖直方向的速度v y 为: 112mdv l eU at v y ==电子离开电场时速度v 2与进入电场时的速度v 1夹角为α(如图5)则d U l U mdv l eU v v tg y 112211212===α ∴dU l U arctg1122=α ⑵电子通过匀强电场时偏离中心线的位移dU l U v l dm eU at y 1212212122142121=•== 电子离开电场后,做匀速直线运动射到荧光屏上,竖直方向的位移 dU l l U tg l y 1212222==α ∴电子打到荧光屏上时,偏离中心线的距离为 )2(22111221l l d U l U y y y +=+= 图 52. 如图所示,在空间中取直角坐标系Oxy ,在第一象限内平行于y 轴的虚线MN 与y 轴距离为d ,从y 轴到MN 之间的区域充满一个沿y 轴正方向的匀强电场,场强大小为E 。
带电粒子在电场中的运动练习题(含答案)
带电粒子在电场中的活动 【1 】 1.如图所示,A 处有一个静止不动的带电体Q,若在c 处有初速度为零的质子和α粒子,在电场力感化下由c 点向d 点活动,已知质子到达d 时速度为v1,α粒子到达d 时速度为v2,那么v1.v2等于:()A. :1B.2∶1C.2∶1D.1∶22.如图所示,一电子沿等量异种电荷的中垂线由 A→O→B 匀速活动,电子重力不计,则电子除受电场力外,所受的另一个力的大小和偏向变更情形是:( )A .先变大后变小,偏向程度向左B .先变大后变小,偏向程度向右C .先变小后变大,偏向程度向左D .先变小后变大,偏向程度向右3.让. . 的混杂物沿着与电场垂直的偏向进入统一有界匀强电场偏转, 要使它们的偏转角雷同,则这些粒子必须具有雷同的( )4.如图所示,有三个质量相等,分离带正电,负电和不带电的小球,从上.下带电平行金属板间的P 点.以雷同速度垂直电场偏向射入电场,它们分离落到 A.B.C 三点,则 ( )A.A 带正电.B 不带电.C 带负电B.三小球在电场中活动时光相等C.在电场中加快度的关系是aC>aB>aAD.到达正极板时动能关系EA>EB>EC5.如图所示,实线为不知偏向的三条电场线,从电场中M 点以雷同速度垂直于电场线偏向飞出 a.b 两个带电粒子,活动轨迹如图中虚线所示,不计粒子重力及粒子之间的库仑力,则()A .a 必定带正电,b 必定带负电B .a 的速度将减小,b 的速度将增长C .a 的加快度将减小,b 的加快度将增长D .两个粒子的动能,一个增长一个减小2H 11H 21H 316.空间某区域内消失着电场,电场线在竖直平面上的散布如图所示,一个质量为m.电荷量为q 的小球在该电场中活动,小球经由A 点时的速度大小为v1,偏向程度向右,活动至B 点时的速度大小为v2,活动偏向与程度偏向之间的夹角为α,A.B 两点之间的高度差与程度距离均为H,则以下断定中准确的是( )A .若v2>v1,则电场力必定做正功B .A.B 两点间的电势差2221()2m U v v q =-C .小球活动到B 点时所受重力的瞬时功率2P mgv =D .小球由A 点活动到B 点,电场力做的功22211122W mv mv mgH =-- 7.如图所示的真空管中,质量为m,电量为e 的电子从灯丝F发出,经由电压U1加快后沿中间线射入相距为d 的两平行金属板B.C间的匀强电场中,经由过程电场后打到荧光屏上,设B.C间电压为U2,B.C板长为L1,平行金属板右端到荧光屏的距离为L 2,求:(1)电子分开匀强电场时的速度与进入时速度间的夹角.(2)电子打到荧光屏上的地位偏离屏中间距离.8. 在真空中消失空间规模足够大的.程度向右的匀强电场.若将一个质量为m.带正电电量q 的小球在此电场中由静止释放,小球将沿与竖直偏向夹角为︒37的直线活动.现将该小球从电场中某点以初速度0v 竖直向上抛出,求活动进程中(取8.037cos ,6.037sin =︒=︒)(1)小球受到的电场力的大小及偏向;(2)小球活动的抛出点至最高点之间的电势差U .带电粒子在电场中的活动答案7.解析:电子在真空管中的活动过火为三段,从F发出在电压U1感化下的加快活动;进入平行金属板B.C间的匀强电场中做类平抛活动;飞离匀强电场到荧光屏间的匀速直线活动.⑴设电子经电压U1加快后的速度为v1,依据动能定理有:21121mv eU = 电子进入B.C间的匀强电场中,在程度偏向以v1的速度做匀速直线活动,竖直偏向受电场力的感化做初速度为零的加快活动,其加快度为:dm eU m eE a 2==电子经由过程匀强电场的时光11v l t =电子分开匀强电场时竖直偏向的速度vy 为:112mdv l eUat v y ==电子分开电场时速度v2与进入电场时的速度v1夹角为α(如图5)则dU l U mdv l eU v v tg y112211212===α∴dU l U arctg 1122=α⑵电子经由过程匀强电场时偏离中间线的位移dU l U v l dm eU at y 1212212122142121=•== 电子分开电场后,做匀速直线活动射到荧光屏上,竖直偏向的位移d U l l U tg l y 1212222==α∴电子打到荧光屏上时,偏离中间线的距离为)2(22111221l l d U l U y y y +=+=8.解析:(1)依据题设前提,电场力大小mg mg F e 4337tan =︒=①电场力的偏向向右(2)小球沿竖直偏向做初速为0v 的匀减速活动,到最高点的时光为t ,则:图 500=-=gt v v ygv t 0=② 沿程度偏向做初速度为0的匀加快活动,加快度为x a g m F a e x 43==③ 此进程小球沿电场偏向位移为:gv t a s x x 8321202==④ 小球上升到最高点的进程中,电场力做功为: 20329mv S F qU W x e === q mv U 32920=⑤。
高中物理带电粒子在电场中的运动题20套(带答案)
高中物理带电粒子在电场中的运动题20套(带答案)一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,虚线MN 左侧有一场强为E 1=E 的匀强电场,在两条平行的虚线MN 和PQ 之间存在着宽为L 、电场强度为E 2=2E 的匀强电场,在虚线PQ 右侧距PQ 为L 处有一与电场E 2平行的屏.现将一电子(电荷量为e ,质量为m ,重力不计)无初速度地放入电场E 1中的A 点,最后电子打在右侧的屏上,A 点到MN 的距离为2L,AO 连线与屏垂直,垂足为O ,求:(1) 电子到达MN 时的速度;(2) 电子离开偏转电场时偏转角的正切值tan θ; (3) 电子打到屏上的点P ′到点O 的距离.【答案】(1) eELv m=L . 【解析】 【详解】(1)电子在电场E 1中做初速度为零的匀加速直线运动,设加速度为a 1,到达MN 的速度为v ,则:a 1=1eE m =eEm 2122La v =解得eELv m=(2)设电子射出电场E 2时沿平行电场线方向的速度为v y ,a 2=2eE m =2eEm t =L v v y =a 2ttan θ=y v v=2(3)电子离开电场E 2后,将速度方向反向延长交于E 2场的中点O ′.由几何关系知:tan θ=2xLL+解得:x =3L .2.如图甲所示,极板A 、B 间电压为U 0,极板C 、D 间距为d ,荧光屏到C 、D 板右端的距离等于C 、D 板的板长.A 板O 处的放射源连续无初速地释放质量为m 、电荷量为+q 的粒子,经电场加速后,沿极板C 、D 的中心线射向荧光屏(荧光屏足够大且与中心线垂直),当C 、D 板间未加电压时,粒子通过两板间的时间为t 0;当C 、D 板间加上图乙所示电压(图中电压U 1已知)时,粒子均能从C 、D 两板间飞出,不计粒子的重力及相互间的作用.求:(1)C 、D 板的长度L ;(2)粒子从C 、D 板间飞出时垂直于极板方向偏移的最大距离; (3)粒子打在荧光屏上区域的长度. 【答案】(1)02qU L t m =2)2102qU t y md =(3)21032qU t s s md∆== 【解析】试题分析:(1)粒子在A 、B 板间有20012qU mv = 在C 、D 板间有00L v t = 解得:02qU L t m=(2)粒子从nt 0(n=0、2、4……)时刻进入C 、D 间,偏移距离最大 粒子做类平抛运动 偏移距离2012y at = 加速度1qU a md=得:2102qU t y md=(3)粒子在C 、D 间偏转距离最大时打在荧光屏上距中心线最远ZXXK]出C 、D 板偏转角0tan y v v θ=0y v at =打在荧光屏上距中心线最远距离tan s y L θ=+荧光屏上区域长度21032qU t s s md∆==考点:带电粒子在匀强电场中的运动【名师点睛】此题是带电粒子在匀强电场中的运动问题;关键是知道粒子在水平及竖直方向的运动规律和特点,结合平抛运动的规律解答.3.如图所示,在空间坐标系x <0区域中有竖直向上的匀强电场E 1,在一、四象限的正方形区域CDEF 内有方向如图所示的正交的匀强电场E 2和匀强磁场B ,已知CD =2L ,OC =L ,E 2 =4E 1。
高考物理带电粒子在电场中的运动题20套(带答案)
高考物理带电粒子在电场中的运动题20套(带答案)一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,光滑绝缘的半圆形轨道ABC 固定在竖直面内,圆心为O ,轨道半径为R ,B 为轨道最低点。
该装置右侧的14圆弧置于水平向右的足够大的匀强电场中。
某一时刻一个带电小球从A 点由静止开始运动,到达B 点时,小球的动能为E 0,进入电场后继续沿轨道运动,到达C 点时小球的电势能减少量为2E 0,试求: (1)小球所受重力和电场力的大小; (2)小球脱离轨道后到达最高点时的动能。
【答案】(1)0E R 02E R(2)8E 0 【解析】 【详解】(1)设带电小球的质量为m ,则从A 到B 根据动能定理有:mgR =E 0则小球受到的重力为:mg =E R方向竖直向下;由题可知:到达C 点时小球的电势能减少量为2E 0,根据功能关系可知:EqR =2E 0则小球受到的电场力为:Eq =2E R方向水平向右,小球带正电。
(2)设小球到达C 点时速度为v C ,则从A 到C 根据动能定理有:EqR =212C mv =2E 0 则C 点速度为:v C 04E m方向竖直向上。
从C 点飞出后,在竖直方向只受重力作用,做匀减速运动到达最高点的时间为:41C v E t g g m== 在水平方向只受电场力作用,做匀加速运动,到达最高点时其速度为:0442E E qE qE v at t m mg m m==== 则在最高点的动能为:2200411(2)822k E E mv m E m===2.如图所示,竖直平面内有一固定绝缘轨道ABCDP ,由半径r =0.5m 的圆弧轨道CDP 和与之相切于C 点的水平轨道ABC 组成,圆弧轨道的直径DP 与竖直半径OC 间的夹角θ=37°,A 、B 两点间的距离d =0.2m 。
质量m 1=0.05kg 的不带电绝缘滑块静止在A 点,质量m 2=0.1kg 、电荷量q =1×10﹣5C 的带正电小球静止在B 点,小球的右侧空间存在水平向右的匀强电场。
高考物理带电粒子在电场中的运动试题(有答案和解析)及解析
高考物理带电粒子在电场中的运动试题(有答案和解析)及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图,质量分别为m A=1kg、m B=2kg的A、B两滑块放在水平面上,处于场强大小E=3×105N/C、方向水平向右的匀强电场中,A不带电,B带正电、电荷量q=2×10-5C.零时刻,A、B用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s末细绳断开.已知A、B与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s2.求:(1)前2s内,A的位移大小;(2)6s末,电场力的瞬时功率.【答案】(1) 2m (2) 60W【解析】【分析】【详解】(1)B所受电场力为F=Eq=6N;绳断之前,对系统由牛顿第二定律:F-μ(m A+m B)g=(m A+m B)a1可得系统的加速度a1=1m/s2;由运动规律:x=12a1t12解得A在2s内的位移为x=2m;(2)设绳断瞬间,AB的速度大小为v1,t2=6s时刻,B的速度大小为v2,则v1=a1t1=2m/s;绳断后,对B由牛顿第二定律:F-μm B g=m B a2解得a2=2m/s2;由运动规律可知:v2=v1+a2(t2-t1)解得v2=10m/s电场力的功率P=Fv,解得P=60W2.如图所示,竖直平面内有一固定绝缘轨道ABCDP,由半径r=0.5m的圆弧轨道CDP和与之相切于C点的水平轨道ABC组成,圆弧轨道的直径DP与竖直半径OC间的夹角θ=37°,A、B两点间的距离d=0.2m.质量m1=0.05kg的不带电绝缘滑块静止在A点,质量m2=0.1kg、电荷量q=1×10-5C的带正电小球静止在B点,小球的右侧空间存在水平向右的匀强电场.现用大小F=4.5N、方向水平向右的恒力推滑块,滑块到达月点前瞬间撤去该恒力,滑块与小球发生弹性正碰,碰后小球沿轨道运动,到达P点时恰好和轨道无挤压且所受合力指向圆心.小球和滑块均视为质点,碰撞过程中小球的电荷量不变,不计一切摩擦.取g=10m/s2,sin37°=0.6,cos37°=0.8.(1)求撤去该恒力瞬间滑块的速度大小v 以及匀强电场的电场强度大小E ; (2)求小球到达P 点时的速度大小v P 和B 、C 两点间的距离x . 【答案】(1) 6m /s ;7.5×104N /C (2) 2.5m /s ;0.85m 【解析】 【详解】(1)对滑块从A 点运动到B 点的过程,根据动能定理有:2112Fd m v = 解得:v =6m /s小球到达P 点时,受力如图所示:则有:qE =m 2g tan θ, 解得:E =7.5×104N /C(2)小球所受重力与电场力的合力大小为:2cos m gG 等θ=小球到达P 点时,由牛顿第二定律有:2P v G r=等解得:v P =2.5m /s滑块与小球发生弹性正碰,设碰后滑块、小球的速度大小分别为v 1、v 2, 则有:m 1v =m 1v 1+m 2v 222211122111222m v m v m v =+ 解得:v 1=-2m /s(“-”表示v 1的方向水平向左),v 2=4m /s 对小球碰后运动到P 点的过程,根据动能定理有:()()22222211sincos 22P qE x r m g r r m v m v θθ--+=- 解得:x =0.85m3.如图所示,一内壁光滑的绝缘圆管ADB 固定在竖直平面内.圆管的圆心为O ,D 点为圆管的最低点,AB 两点在同一水平线上,AB=2L ,圆管的半径为r=2L(自身的直径忽略不计).过OD 的虚线与过AB 的虚线垂直相交于C 点,在虚线AB 的上方存在方向水平向右、范围足够大的匀强电场;虚线AB 的下方存在方向竖直向下、范围足够大的匀强电场,电场强度大小E 2=mgq.圆心O 正上方的P 点有一质量为m 、电荷量为-q(q>0)的小球(可视为质点),PC 间距为L .现将该小球从P 点无初速释放,经过一段时间后,小球刚好从管口A 无碰撞地进入圆管内,并继续运动.重力加速度为g .求:(1)虚线AB 上方匀强电场的电场强度E 1的大小; (2)小球在AB 管中运动经过D 点时对管的压力F D ;(3)小球从管口B 离开后,经过一段时间到达虚线AB 上的N 点(图中未标出),在圆管中运动的时间与总时间之比ABPNt t . 【答案】(1)mg q (2)2mg ,方向竖直向下(3)4ππ+【解析】 【分析】(1)小物体释放后在重力和电场力的作用下做匀加速直线运动,根据正交分解,垂直运动方向的合力为零,列出平衡方程即可求出虚线AB 上方匀强电场的电场强度;(2)根据动能定理结合圆周运动的规律求解小球在AB 管中运动经过D 点时对管的压力F D ;(3)小物体由P 点运动到A 点做匀加速直线运动,在圆管内做匀速圆周运动,离开管后做类平抛运动,结合运动公式求解在圆管中运动的时间与总时间之比. 【详解】(1)小物体释放后在重力和电场力的作用下做匀加速直线运动,小物体从A 点沿切线方向进入,则此时速度方向与竖直方向的夹角为45°,即加速度方向与竖直方向的夹角为45°,则:tan45°= mg Eq解得:mg qE =(2)从P 到A 的过程,根据动能定理:mgL+EqL=12mv A 2 解得v A =2gL小球在管中运动时,E 2q=mg ,小球做匀速圆周运动,则v 0=v A =2gL在D 点时,下壁对球的支持力2022v F m mg r==由牛顿第三定律,22F F mg =='方向竖直向下.(3)小物体由P 点运动到A 点做匀加速直线运动,设所用时间为t 1,则:211222L gt =解得12L t g= 小球在圆管内做匀速圆周运动的时间为t 2,则:2323244A rL t v gππ⋅==小球离开管后做类平抛运动,物块从B 到N 的过程中所用时间:322L t g= 则:24t t ππ=+ 【点睛】本题考查带点小物体在电场力和重力共同作用下的运动,解题关键是要分好运动过程,明确每一个过程小物体的受力情况,并结合初速度判断物体做什么运动,进而选择合适的规律解决问题,匀变速直线运动利用牛顿第二定律结合运动学公式求解或者运用动能定理求解,类平抛利用运动的合成和分解、牛顿第二定律结合运动学规律求解.4.如图1所示,光滑绝缘斜面的倾角θ=30°,整个空间处在电场中,取沿斜面向上的方向为电场的正方向,电场随时间的变化规律如图2所示.一个质量m=0.2kg ,电量q=1×10-5C 的带正电的滑块被挡板P 挡住,在t=0时刻,撤去挡板P .重力加速度g=10m/s 2,求:(1)0~4s 内滑块的最大速度为多少? (2)0~4s 内电场力做了多少功? 【答案】(1)20m/s (2)40J 【解析】 【分析】对滑块受力分析,由牛顿运动定律计算加速度计算各速度. 【详解】【解】(l)在0~2 s 内,滑块的受力分析如图甲所示,电场力F=qE11sin F mg ma θ-=解得2110/a m s =在2 ---4 s 内,滑块受力分析如图乙所示22sin F mg ma θ+=解得2210/a m s =因此物体在0~2 s 内,以2110/a m s =的加速度加速, 在2~4 s 内,2210/a m s =的加速度减速,即在2s 时,速度最大由1v a t =得,max 20/v m s =(2)物体在0~2s 内与在2~4s 内通过的位移相等.通过的位移max202v x t m == 在0~2 s 内,电场力做正功1160W F x J == - 在2~4 s 内,电场力做负功2220W F x J ==-电场力做功W=40 J5.一电路如图所示,电源电动势E=28v ,内阻r=2Ω,电阻R1=4Ω,R2=8Ω,R3=4Ω,C 为平行板电容器,其电容C=3.0pF ,虚线到两极板距离相等,极板长L=0.20m ,两极板的间距d=1.0×10-2m .(1)闭合开关S 稳定后,求电容器所带的电荷量为多少?(2)当开关S 闭合后,有一未知的、待研究的带电粒子沿虚线方向以v0=2.0m/s 的初速度射入MN 的电场中,已知该带电粒子刚好从极板的右侧下边缘穿出电场,求该带电粒子的比荷q/m (不计粒子的重力,M 、N 板之间的电场看作匀强电场,g=10m/s 2)【答案】(1)114.810C -⨯ (2)46.2510/C kg -⨯【解析】 【分析】 【详解】(1)闭合开关S 稳定后,电路的电流:12282482E I A A R R r ===++++;电容器两端电压:222816R U U IR V V ===⨯=;电容器带电量: 12112 3.01016 4.810R Q CU C C --==⨯⨯=⨯(2)粒子在电场中做类平抛运动,则:0L v t =21122Uq d t dm= 联立解得46.2510/qC kg m-=⨯6.如图所示,荧光屏MN 与x 轴垂直放置,与x 轴相交于Q 点,Q 点的横坐标06x cm =,在第一象限y 轴和MN 之间有沿y 轴负方向的匀强电场,电场强度51.610/E N C =⨯,在第二象限有半径5R cm =的圆形磁场,磁感应强度0.8B T =,方向垂直xOy 平面向外.磁场的边界和x 轴相切于P 点.在P 点有一个粒子源,可以向x 轴上方180°范围内的各个方向发射比荷为81.010/qC kg m=⨯的带正电的粒子,已知粒子的发射速率60 4.010/v m s =⨯.不考虑粒子的重力、粒子间的相互作用.求:(1)带电粒子在磁场中运动的轨迹半径; (2)粒子从y 轴正半轴上射入电场的纵坐标范围; (3)带电粒子打到荧光屏上的位置与Q 点间的最远距离. 【答案】(1)5cm (2)010y cm ≤≤ (3)9cm 【解析】 【详解】(1)带电粒子进入磁场受到洛伦兹力的作用做圆周运动20v qv B m r=解得:05mv r cm qB== (2)由(1)问中可知r R =,取任意方向进入磁场的粒子,画出粒子的运动轨迹如图所示,由几何关系可知四边形1PO FO '为菱形,所以1//FO O P ',又O P '垂直于x 轴,粒子出射的速度方向与轨迹半径1FO 垂直,则所有粒子离开磁场时的方向均与x 轴平行,所以粒子从y 轴正半轴上射入电场的纵坐标范围为010y cm ≤≤.(3)假设粒子没有射出电场就打到荧光屏上,有000x v t =2012h at =qE a m=解得:18210h cm R cm =>=,说明粒子离开电场后才打到荧光屏上.设从纵坐标为y 的点进入电场的粒子在电场中沿x 轴方向的位移为x ,则0x v t =212y at =代入数据解得2x y =设粒子最终到达荧光屏的位置与Q 点的最远距离为H ,粒子射出的电场时速度方向与x 轴正方向间的夹角为θ,000tan 2y qE x v m v yv v θ===g,所以()()00tan 22H x x x y y θ=-=-g , 由数学知识可知,当()022x y y -=时,即 4.5y cm =时H 有最大值,所以max 9H cm =7.能量守恒是自然界基本规律,能量转化通过做功实现。
105带电粒子在电场中的运动同步练习(Word版含解析)
人教版必修第三册 10.5 带电粒子在电场中的运动一、单选题1.示波器是一种常见的电学仪器,可以在荧光屏上显示出被检测的电压随时间变化的情况。
示波器的内部构造简化图如图所示,电子经电子枪加速后进入偏转电场,最终打在荧光屏上。
下列关于所加偏转电压与荧光屏上得到图形的说法中正确的是()A.如果只在XX'上加图甲所示的电压,则在荧光屏上看到的图形如图(a)B.如果只在YY'上加图乙所示的电压,则在荧光屏上看到的图形如图(b)C.如果在YY'、XX'上分别加图甲、乙所示的电压,则在荧光屏上看到的图形如图(c)D.如果在YY',XX'上分别加图甲、乙所示的电压,则在荧光屏上看到的图形如图(d)2.如图,竖直放置的圆环处于水平向左的匀强电场中,A,B、C、D为圆环上的四个点,AD竖直,AB与AD间夹角=60θ,AC为圆环直径,沿AB、AC、AD分别固定光滑细杆。
现让质量均为m、带电量均为+ q的带孔小球分别套在细杆AB、AC、AD上(图中未画出),均从A点由静止开始下滑,设小球分别经时间tB、tC、tD到达B、C、D三点。
已知匀强电场场强大小E g,关于三个小球的运动时间tB、tC、tD,下列说法正确的是()A.tB=tC=tD B.tB > tC > tD C.tB < tC < tD D.tD < tB < tC 3.如图所示,绝缘的水平面上有一质量为0.1kg的带电物体,物体与水平面间的动摩擦因数μ=0.75,物体恰能在水平向左的匀强电场中向右匀速运动,电场强度E=1×103N/C,g取10m/s2。
则下列说法正确的是()A.物体带正电B.物体所带的电荷量绝对值为47.510CC.若使物体向右加速运动,则电场方向应变为斜向左下方且与水平方向成37°角D.若使物体向右加速运动,则加速度的最大值为1.25m/s24.如图所示,氘核和氦核以相同初速度从水平放置的两平行金属板正中间进入板长为L、两板间距离为d、板间加直流电压U的偏转电场,一段时间后离开偏转电场。
教科版高中物理必修第三册第一章静电场9带电粒子在电场中的运动练习含答案
第一章静电场
9带电粒子在电场中的运动
基础过关练
题组一带电粒子的加速
1.(2024广东汕头聿怀中学期中)如图所示,一带负电的粒子以初速度v进入范围足够大的匀强电场E中,初速度方向与电场方向平行,不计粒子重力。
下列说法正确的是( )
A.粒子一直做匀加速直线运动
B.粒子一直做匀减速直线运动
C.粒子先做匀减速直线运动,再反向做匀加速直线运动
D.粒子先做匀加速直线运动,再反向做匀减速直线运动
2.(2024四川遂宁射洪绿然学校月考)如图所示,两平行金属板相距为d,电势差为U,一电子质量为m、电荷量大小为e,从O点沿垂直于极板的方向射出,最远到达A点,然后返回,OA=h,则此电子具有的初动能是( )
A.edℎ
U h C.eU
dℎ
D.eUℎ
d
3.(2023北京北师大第二附中期中)某些肿瘤可以用“质子疗法”进行治疗,在这种疗法中,质子先被加速,具有较高的能量后被引向轰击肿瘤,杀死细胞,如图所示。
若质子的加速距离为d,要使质子由静止匀加速到v,已知质子的质量为m,电荷量为e,则下列说法不正确的是( )
A.由以上信息可以推算该加速电场的电压
B.由以上信息可以推算该加速电场的电场强度
C.由以上信息可以判断出运动过程中电场力做正功,电势能增加
D.由以上信息不可以推算出质子加速后的电势能。
带电粒子在电场中的运动经典例题
带电粒子在电场中的运动经典例题
带电粒子在电场中的运动是中学物理中的重要知识点,以下是一些经典例题:
1. 一个质量为 m、带电量为 q 的粒子在匀强电场中由 A 点运动到 B 点,电场强度为 E,时间为 t,则粒子在 AB 之间的平均速度为多大?
答案:v 平均 = (E*t)/m
2. 一个带电粒子在电场中从静止开始运动,到达电场极板后速度变为 v,则粒子在电场中的加速度为多大?
答案:a = (F - E*v/m)/qE
3. 一个带电粒子在电场中沿着一条直线运动,电场方向与粒子运动方向垂直,粒子在电场中的加速度为 a,电场强度为 E,则粒子的最大速度为多大?
答案:vmax = sqrt(2*a*E)
4. 一个带电粒子在匀强电场中的运动轨迹为一条抛物线,粒子的质量为 m,带电量为 q,则粒子在电场中的电场力做的功为多大?
答案:W = q*E*t
5. 一个带电粒子在磁场中做圆周运动,磁场强度为 B,粒子的质量为 m,带电量为 q,则粒子在磁场中的半径为多大?
答案:r = m*sqrt(B^2/4*q^2)
6. 一个带电粒子在磁场中沿着一条直线运动,磁场方向与粒子运动方向垂直,粒子在磁场中的加速度为 a,磁场强度为 B,则粒子
的最大速度为多大?
答案:vmax = sqrt(2*a*B)
这些例题都是带电粒子在电场中的运动的典型例子,涉及到运动的描述、加速度的计算、能量守恒、电磁感应等问题,是中学物理中非常重要的知识点。
微型专题03 带电粒子在电场中的运动(四种题型)(练习题)(解析版)
第十章静电场中的能量微型专题3 带电粒子在电场中的运动(四种题型)一、单选题:1.A、B是一条电场线上的两个点,一带负电的微粒仅在静电力作用下以一定的初速度从A点沿电场线运动到B点,其速度v与时间t的关系图象如图1所示。
则此电场的电场线分布可能是()【解析】从v-t图象可以看出物体的速度逐渐减小,图线的斜率逐渐增大,v-t图线中图线的斜率表示物体的加速度大小,故物体做加速度逐渐增大的减速运动,所以带负电的粒子顺着电场线运动,电场力做负功,速度逐渐减小,且电场线沿粒子运动方向逐渐密集,故选项A正确,选项B、C、D 错误。
【答案】A2.如图所示,两平行的带电金属板水平放置.若在两板中间a点从静止释放一带电微粒,微粒恰好保持静止状态,现将两板绕过a点的轴(垂直于纸面)逆时针旋转45°,再由a点从静止释放一同样的微粒,该微粒将()A.保持静止状态B.向左上方做匀加速运动C.向正下方做匀加速运动D.向左下方做匀加速运动【答案】D【解析】两平行金属板水平放置时,带电微粒静止,有mg=qE,现将两板绕过a点的轴(垂直于纸面)逆时针旋转45°后,两板间电场强度方向逆时针旋转45°,电场力方向也逆时针旋转45°,但大小不变,此时电场力和重力的合力大小恒定,方向指向左下方,故该微粒将向左下方做匀加速运动,选项D正确.3.如图所示,两极板与电源相连接,电子从负极板边缘沿垂直电场方向射入匀强电场,电子恰好从正极板边缘飞出,现保持负极板不动,正极板在竖直方向移动,并使电子入射速度变为原来的2倍,而电子仍从原位置射入,且仍从正极板边缘飞出,则两极板间距离变为原来的()A.2倍B.4倍C.12D.14【答案】C【解析】电子从负极板边缘垂直电场方向射入匀强电场,做类平抛运动.假设电子的带电荷量为e ,质量为m ,初速度为v ,极板的长度为L ,极板的间距为d ,电场强度为E .由于电子做类平抛运动,所以水平方向有:L =vt ,竖直方向有:y =12at 2=12·eE m ·(L v )2=d .因为E =U d ,可得:d 2=eUL 22mv 2,若电子的速度变为原来的两倍,仍从正极板边缘飞出,则由上式可得两极板的间距d 应变为原来的12,故选C.4.一匀强电场的电场强度E 随时间t 变化的图象如图4所示,在该匀强电场中,有一个带负电粒子于t =0时刻由静止释放,若带电粒子只受电场力作用,则下列说法中正确的是(假设带电粒子不与板相碰)( )A.带电粒子只向一个方向运动B.0~2 s 内,电场力做功等于0C.4 s 末带电粒子回到原出发点D.2.5~4 s 内,电场力做功等于0 【答案】D【解析】画出带电粒子速度v 随时间t 变化的图象如图所示,v -t 图线与时间轴所围“面积”表示位移,可见带电粒子不是只向一个方向运动,4 s 末带电粒子不能回到原出发点,A 、C 错误;2 s 末速度不为0,可见0~2 s 内电场力做的功不等于0,B 错误;2.5 s 末和4 s 末,速度的大小、方向都相同,则2.5~4 s 内,电场力做功等于0,所以D 正确.5.如图所示,在竖直向上的匀强电场中,一根不可伸长的绝缘细绳的一端系着一个带电小球,另一端固定于O 点,小球在竖直平面内做匀速圆周运动,最高点为a ,最低点为b .不计空气阻力,则下列说法正确的是( )A.小球带负电B.电场力跟重力平衡C.小球在从a 点运动到b 点的过程中,电势能减小D.小球在运动过程中机械能守恒 【答案】B【解析】由于小球在竖直平面内做匀速圆周运动,所以重力与电场力的合力为0,电场力方向竖直向上,小球带正电,A 错,B 对;从a →b ,电场力做负功,电势能增大,C 错;由于有电场力做功,机械能不守恒,D 错.6.如图所示,场强大小为E 、方向竖直向下的匀强电场中有一矩形区域abcd ,水平边ab 长为s ,竖直边ad 长为h .质量均为m 、带电量分别为+q 和-q 的两粒子,由a 、c 两点先后沿ab 和cd 方向以速率v 0进入矩形区域(两粒子不同时出现在电场中).不计重力,若两粒子轨迹恰好相切,则v 0等于( )A.s 22qEmh B.s 2qE mh C.s 42qEmhD.s 4qE mh【答案】B【解析】根据对称性,两粒子轨迹的切点位于矩形区域abcd 的中心,则在水平方向有12s =v 0t ,在竖直方向有12h =12·qE m ·t 2,解得v 0=s2qEmh,故选项B 正确,选项A 、C 、D 错误. 7.如图甲所示,Q 1、Q 2为两个被固定的点电荷,a 、b 、c 三点在它们连线的延长线上,其中Q 1带负电。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带电粒子在电场中的运动专题练习知识点:1.带电粒子经电场加速:处理方法,可用动能定理、牛顿运动定律或用功能关系。
qU =mv t 2/2-mv 02/2 ∴ v t = ,若初速v 0=0,则v = 。
2.带电粒子经电场偏转: 处理方法:灵活应用运动的合成和分解。
带电粒子在匀强电场中作类平抛运动, U 、 d 、 l 、 m 、 q 、 v 0已知。
(1)穿越时间: (2)末速度: (3)侧向位移:(4)偏角:1、如图所示,长为L 、倾角为θ的光滑绝缘斜面处于电场中, 一带电量为+q 、质量为m 的小球,以初速度v 0从斜面底端 A 点开始沿斜面上滑,当到达斜面顶端B 点时,速度仍为v 0,则 ( )A .A 、B 两点间的电压一定等于mgLsin θ/qB .小球在B 点的电势能一定大于在A 点的电势能C .若电场是匀强电场,则该电场的电场强度的最大值一定为mg/qD .如果该电场由斜面中点正止方某处的点电荷产生,则该点电荷必为负电荷 2、如图所示,质量相等的两个带电液滴1和2从水平方向的匀强电场中0点自由释放后,分别抵达B 、C 两点,若AB=BC ,则它们带电荷量之比q 1:q 2等于( ) A .1:2 B .2:1C .1:2D .2:13.如图所示,两块长均为L 的平行金属板M 、N 与水平面成α角放置在同一竖直平面,充电后板间有匀强电场。
一个质量为m 、带电量为q 的液滴沿垂直于电场线方向射人电场,并沿虚线通过电场。
下列判断中正确的是( )。
A 、电场强度的大小E =mgcos α/qB 、电场强度的大小E =mgtg α/qC 、液滴离开电场时的动能增量为-mgLtg αD 、液滴离开电场时的动能增量为-mgLsin α4.如图所示,质量为m 、电量为q 的带电微粒,以初速度v 0从A 点竖直向上射入水平方向、电场强度为E 的匀强电场中。
当微粒经过B 点时速率为V B =2V 0,而方向与E 同向。
下列判断中正确的是( )。
A 、A 、B 两点间电势差为2mV 02/q B 、A 、B 两点间的高度差为V 02/2gC 、微粒在B 点的电势能大于在A 点的电势能D 、从A 到B 微粒作匀变速运动1.一个带正电的微粒,从A点射入水平方向的匀强电场中,微粒沿直线AB运动,如图,AB与电场线夹角θ=30°,已知带电微粒的质量m=1.0×10-7kg,电量q=1.0×10-10C,A、B相距L=20cm.(取g=10m/s2,结果保留二位有效数字)求:(1)说明微粒在电场中运动的性质,要求说明理由.(2)电场强度的大小和方向?(3)要使微粒从A点运动到B点,微粒射入电场时的最小速度是多少?2.一个带电荷量为-q的油滴,从O点以速度v射入匀强电场中,v的方向与电场方向成θ角,已知油滴的质量为m,测得油滴达到运动轨迹的最高点时,它的速度大小又为v,求:(1) 最高点的位置可能在O点的哪一方?(2) 电场强度E为多少?(3) 最高点处(设为N)与O点的电势差U NO为多少?3. 如图所示,水平放置的平行板电容器,原来两板不带电,上极板接地,它的极板长L = 0.1m,两板间距离d = 0.4 cm,有一束相同微粒组成的带电粒子流从两板中央平行极板射入,由于重力作用微粒能落到下板上,已知微粒质量为m = 2×10-6kg,电量q = 1×10-8 C,电容器电容为C =10-6 F.求(1) 为使第一粒子能落点范围在下板中点到紧靠边缘的B点之内,则微粒入射速度v0应为多少?(2) 以上述速度入射的带电粒子,最多能有多少落到下极板上?4.如图所示,在竖直平面内建立xOy直角坐标系,Oy表示竖直向上的方向。
已知该平面内存在沿x轴负方向的区域足够大的匀强电场,现有一个带电量为2.5×10-4C的小球从坐标原点O沿y轴正方向以0.4kg.m/s的初动量竖直向上抛出,它到达的最高点位置为图中的Q点,不计空气阻力,g取10m/s2.(1)指出小球带何种电荷;(2)求匀强电场的电场强度大小;(3)求小球从O点抛出到落回x轴的过程中电势能的改变量.VvBA5、如图所示,一对竖直放置的平行金属板A、B构成电容器,电容为C。
电容器的A板接地,且中间有一个小孔S,一个被加热的灯丝K与S位于同一水平线,从丝上可以不断地发射出电子,电子经过电压U0加速后通过小孔S沿水平方向射入A、B两极板间。
设电子的质量为m,电荷量为e,电子从灯丝发射时的初速度不计。
如果到达B板的电子都被B 板吸收,且单位时间内射入电容器的电子数为n个,随着电子的射入,两极板间的电势差逐渐增加,最终使电子无法到达B板,求:(1)当B板吸收了N个电子时,AB两板间的电势差(2)A、B两板间可以达到的最大电势差(U O)(3)从电子射入小孔S开始到A、B两板间的电势差达到最大值所经历的时间。
6.如图所示是示波器的示意图,竖直偏转电极的极板长L1=4cm,板间距离d=1cm。
板右端距离荧光屏L2=18cm,(水平偏转电极上不加电压,没有画出)电子沿中心线进入竖直偏转电场的速度是v=1.6×107m/s,电子电量e=1.6×10-19C,质量m=0.91×10-30kg。
(1)要使电子束不打在偏转电极上,加在竖直偏转电极上的最大偏转电压U不能超过多大?(2)若在偏转电极上加u=27.3sin100πt (V)的交变电压,在荧光屏竖直坐标轴上能观察到多长的线段?7.两块水平平行放置的导体板如图所示,大量电子(质量m、电量e)由静止开始,经电压为U0的电场加速后,连续不断地沿平行板的方向从两板正中间射入两板之间。
当两板均不带电时,这些电子通过两板之间的时间为3t0;当在两板间加如图所示的周期为2t0,幅值恒为U0的周期性电压时,恰好..能使所有电子均从两板间通过。
问:⑴这些电子通过两板之间后,侧向位移的最大值和最小值分别是多少?⑵侧向位移分别为最大值和最小值的情况下,电子在刚穿出两板之间时的动能之比为多少?U8、如图8所示,在匀强电场中一带正电的小球以某一初速度从绝缘斜面上滑下,并沿与斜面相切的绝缘圆轨道通过最高点.已知斜面倾角为300, 圆轨道半径为R,匀强电场水平向右,场强为E,小球质量为m ,带电量为Em g33,不计运动中的摩擦阻力,则小球至少应以多大的初速度滑下?在此情况下,小球通过轨道最高点的压力多大?9.(2001年全国)如图所示,虚线a 、b 和c 是某静电场中的三个等势面,它们的电势分别为U a 、U b 和U c ,U a >U b >U c .一带正电的粒子射入电场中,其运动轨迹如实线KLMN 所示,由图1可知A.粒子从K到L的过程中,电场力做负功 B.粒子从L到M的过程中,电场力做负功 C.粒子从K到L的过程中,电势能增加 D.粒子从L到M的过程中,动能减少 10.(94年全国)图2中A 、B 是一对平行的金属板。
在两板间加上一周期为T 的交变电压u 。
A 板的电势U A =0,B 板的电势U B 随时间的变化规律为:在0到T/2的时间内,U B =U 0(正的常数);在T/2到T 的时间内,U B =-U 0;在T 到3T/2的时间内,U B =U 0;在3T/2到2T 的时间内。
U B =-U 0……,现有一电子从A 板上的小孔进入两板间的电场区内。
设电子的初速度和重力的影响均可忽略,则A.若电子是在t =0时刻进入的,它将一直向B 板运动;B.若电子是在t =T/8时刻进入的,它可能时而向B 板运动,时而向A 板运动,最后打在B 板上; C.若电子是在t =3T/8时刻进入的,它可能时而向B 板运动,时而向A 板运动,最后打在B 板上; D.若电子是在t =T/2时刻进入的,它可能时而向B 板、时而向A 板运动。
图 8答案1、A D2、B 3 AD 4 ABD 1.(1)微粒只在重力和电场力作用下沿AB 方向运动,在垂直于AB 方向上的重力和电场力必等大反向,可知电场力的方向水平向左,如图所示,微粒所受合力的方向由B 指向A ,与初速度v A 方向相反,微粒做匀减速运动.(2)在垂直于AB 方向上,有qE sin θ-mg cos θ=0 所以电场强度E =1.7×104N/C电场强度的方向水平向左(3)微粒由A 运动到B 时的速度v B =0时,微粒进入电场时的速度最小,由动能定理得, mgL sin θ+qEL cos θ=mv A 2/2 代入数据,解得v A =2.8m/s (2分)2.(1) 在O 点的左方.(2) U NO =qmv 2sin 22θ.(1)由动能定理可得在O 点的左方.(2)在竖直方向 mgt = mv sin θ,水平方向 qEt = mv + mv cos θ.(3) 油滴由O 点N点,由qU -mgh = 0,在竖直方向上,(v 0 sin θ)2= 2gh .U NO =qmv 2sin 22θ.3.(1)若第1个粒子落到O 点,由2L =v 01t 1,2d =21gt 12得v 01=2.5 m/s .若落到B 点,由L =v 02t 1,2d=21gt 22得v 02=5 m/s .故2.5 m/s ≤v 0≤5 m/s .(2)由L =v 01t ,得t =4×10-2 s .2d=21at 2得a =2.5 m/s 2,有mg -qE=ma ,E=dc Q 得Q =6×10-6C .所以qQn ==600个. 4:(1)小球带负电(2)小球在y 方向上做竖直上抛运动,在x 方向做初速度为零的匀加速运动,最高点Q 的坐标为(1.6m, 3.2m ) 由gy v 220= ①代入数据得 s m v /80= (1分) 由初动量p=m v 0 ②解得 m=0.05kg 又mqEt at x 22122== ③ 221gt y = ④ 由③④代入数据得E=1×103N/C(3)由④式可解得上升段时间为t=0.8s 所以全过程时间为s t t 6.12=='代入③式可解得x 方向发生的位移为x =6.4m由于电场力做正功,所以电势能减少,设减少量为△E ,代入数据得△E=qE x =1.6J 5.(1)C Ne(2)U 0(3)t=neC U 0 6.解:(1)22121at d = ①dm Uea = ② v L t 1= ③ 由以上三式,解得:2122eL v md U = ④代入数据,得 U=91V ⑤ (2)偏转电压的最大值:U 1=27.3V ⑥通过偏转极板后,在垂直极板方向上的最大偏转距离:21121)(221vL dm e U t a y ==⑦ 设打在荧光屏上时,亮点距O'的距离为y',则:2/2/'112L L L y y +=⑧ 荧光屏上亮线的长度为:l=2y' ⑨代入数据,解得l=3cm ⑩7. (画出电子在t=0时和t=t 0时进入电场的v-t 图象进行分析(1)001t m d eU v y=, ==0022t m d eU v y m d t eU 002 233)21(2200010101max d md t eU t v t v t v s y y y y ===+= 4235.121200010101mind md t eU t v t v t v s y y y y ===+=解得006t meU d =meU t d s y 00max 622==,meU t d s y 00min 644==(2)由此得m eU t md eU v y 6)(020021==,==20022)2(t m d eU v y m eU 320 (2分) 而m eU v 0202=131612/3/21212121000021202220minmax =++=++=eU eU eU eU m mv mv mv E Ey y K K 8、解析:小球的受力如图9所示,从图中可知:3333===Emg mgE mg qE tg θ,030=θ.所以带电小球所受重力和电场力的合力始终垂直于斜面,小球在斜面上做匀速直线运动,其中mg mg F 332cos ==θ 把小球看作处于垂直斜面向下的等效力场F 中,等效力加速度g m F g 332,==,小球在B点的速度最小,为Rg Rg v B 332,==,由功能关系可得:,2222121R m g mv mv B A += Rg g R Rg Rg v v B A 331033243324,2=+=+=此即为小球沿斜面下滑的最小速度.设C点的速度为v c ,则)c o s 1(2121,22θ-=-R mg mv mv B C Rg Rg Rg R g v v B C )232()31(3432)cos 1(2,2-=-+=-+=θ000v v v0000Rmv mg N C2=+mg RRgm mg R mv N C --=-=)232(2mg )332(-= 9、答案:A、C说明:该题要求①理解等势面的概念;②掌握电场力做功与电势能、动能变化间的关系. 10、答案:A、B说明:解答此题要求运用形象思维想象电子在交变电场中的运动(往复运动)得出答案.。