大学物理 动生电动势与感生电动势

合集下载

动生电动势和感生电动势

动生电动势和感生电动势

§6-2 动生电动势和感生电动势动生电动势:回路或其一部分在磁场中的相对运动所产生的感应电动势。

感生电动势:仅由磁场的变化而产生的感应电动势。

一 动生电动势图6 - 5 动生电动势动生电动势的产生可以用洛伦兹力来解释。

长为l 的导体棒与导轨构成矩形回路abcd 平放在纸面内,均匀磁场B 垂直纸面向里。

当导体棒ab 以速度v 沿导轨向右滑动时,导体棒内自由电子也以速度v 随之一起向右运动。

每个自由电子受到的洛伦兹力为B v F ⨯-)(=e ,方向从b 指向a ,在其作用下自由电子向下运动。

如果导轨是导体,在回路中将形成沿着abcd 逆时针方向的电流。

如果导轨是绝缘体,则洛伦兹力将使自由电子在a 端累积,从而使a 端带负电,b 端带正电,在ab 棒上产生自上而下的静电场。

当作用在自由电子上的静电力与洛伦兹力大小相等时达到平衡,ab 间电压达到稳定值,b 端电势比a 端高。

这一段运动导体相当于一个电源,它的非静电力就是洛伦兹力。

电动势定义为单位正电荷从负极通过电源内部移到正极的过程中,非静电力K 所作的功,即B v F K ⨯=-=e.动生电动势为ε⎰⎰+-⋅⨯=⋅=l B v l K d )(d ba .(6.4)均匀磁场情况:若v ⊥ B , 则有ε = B l v ;若导体顺着磁场方向运动,v // B ,则有 v ⨯ B = 0,没有动生电动势产生。

因此,可以形象地说,只有当导线切割磁感应线而运动时,才产生动生电动势。

普遍情况:在任意的恒定磁场中,一个任意形状的导线线圈L (闭合的或不闭合的)在运动或发生形变时,各个线元d l 的速度v 的大小和方向都可能是不同的。

这时,在整个线圈L 中产生的动生电动势为ε l B v d )()(⋅⨯=⎰L .(6.5)图6 - 6 洛伦兹力不作功洛伦兹力对电荷不作功:洛伦兹力总是垂直于电荷的运动速度,即v ⊥F v ,因此洛伦兹力对电荷不作功。

12.2 动生电动势和感生电动势

12.2  动生电动势和感生电动势

此时电荷积累停止, 两端形成稳定的电势差 两端形成稳定的电势差。 此时电荷积累停止,ab两端形成稳定的电势差。 洛仑兹力是产生动生电动势的根本原因 洛仑兹力是产生动生电动势的根本原因. 是产生动生电动势的根本原因
动生电动势的公式
非静电力
f = −e(v × B)
f 定义 Ek为非静电场强 Ek = = v ×B −e
S
A B ××× ×
ω ××v × ×
非均匀磁场
例 一直导线CD在一无限长直电流磁场中作 一直导线 在一无限长直电流磁场中作 切割磁力线运动。 切割磁力线运动。求:动生电动势。 动生电动势。 解:方法一
dε = ( v × B )⋅ dl I l dl µ0I 0 0 D sin90 dl cos180 =v C 2πl b a µ0vI dl =− 方向 D→C → 2πl µ0vI a+b dl µ0vI a + b ε =− ∫a l = − 2π ln a 2π
×××× ⊗ o ×××× B ×××× h
C
∂B ∂t
××
L
D
解:
ε i = ∫ E涡 • dl
L
r dB E涡 = 2 dt
dε = E涡 • dl r dB dl cosθ = 2 dt
h dB dl = 2 dt
⊗o
B

θ
∂B ∂t
E涡
r h
l dl
L
θ
C
D
h dB 1 dB εCD = ∫L dl = 2hL dt 2 dt
O
解:方法一 取微元
dε = ( v × B )⋅ dl
= Bvdl = Blωdl
εi = ∫ dεi = ∫0 Blωdl

动生电动势与感生电动势

动生电动势与感生电动势

【解】由于金属棒处在通电导线的非均匀磁场中,因此必
须将金属棒分成很多长度元dx,规定其方向由A指向B。这样 在每一dx处的磁场可以看作是均匀的,其磁感应强度的大小为
B 0I
2x
根据动生电动势的公式可知,dx小段上的动生电动势为
d动
(v
B)
dl
Bv
cos
dx
0I
2x
vdx
由于所有长度元上产生的动生电动势的方向都相同,所以金
d
dt
d dt
S
B
dS
又根据电动势的定义可得
L EK dl
式中,EK为感生电场的电场强度。感生电场的电场强度是 非静电性场强。
则有
L EK
dl
d dt
B dS B dS
s
s t
dB
s
S t
若闭合回路是静止的,即所包围面积S不随时间变化,即
S 0 ,则上式可写成
t
B L EK dl s t dS
性场强为
Ek
fL (e)
vB
根据电动势的定义可得,动生电动势为
a

L Ek
dl
(v B) dl
b
上式是动生电动势的一般表达式。由上式可知,动生电动势
的方向是非静电性场强 Ek v B 在运动导线上投影的指向。
【例9-2】如下图所示,长直导线 中通有电流I=10A,有一长l=0.1m的 金属棒AB,以v=4m·s-2的速度平行于 长直导线作匀速运动,棒离导线较近的 一端到导线的距离a=0.1m,求金属棒 中的动生电动势。
1861年,英国物理学家麦克斯韦提出感生电场的假设,认为 由于磁场变化而产生一种电场,是这个电场使导体中自由电子作 定向运动而形成电流。麦克斯韦还认为,即使没有导体,这种电 场同样存在。这种由变化磁场激发的电场称为感生电场。

大学物理动生电动势与感生电动势

大学物理动生电动势与感生电动势
第8章 电磁感应与电磁场
一、动生电动势
1、非静电力:洛伦兹力
Fm (e)v B
平衡时 Fm Fe eEk
×
×P
++
×
×
B
× Fe × × ×
× × - × ×
v ×
×
Fm××
--
O
× ×
× ×
非静电场
Ek
Fm e
v
B
方向:O → P
1
第8章 电磁感应与电磁场
2、动生电动势的计算
B 0 t
为圆心的圆。
Br
解 i Ei dl
R

o
L
Eidl Ei dl
L
L
dl Ei
15
第8章 电磁感应与电磁场
Ei 2πr
dΦm dt
外部 ( r >R ) Φm BπR2
Ei
R2 2r
B t
内部 ( r <R ) Φm Bπr 2
Ei
1 2
B t
r
B
R

o
r
B
O
r
16
先求线圈所在处的磁通量,再求磁通 量的变化率。
感生电动势计算方法 2
运用Ei的环流定理, 即
i
l Ei dl
dΦ dt
14
第8章 电磁感应与电磁场
例1一个半径 为R 的长直载流螺线管,内部磁
场强度为 B , 现已知 B / t 为大于零的恒量。
求管内外的感生电场。 分析电场线是一系列以O
由电动势的定义,有
说明:
i OP Ek dl
(v
B)
dl

感生、动生电动势

感生、动生电动势

v dx
v 和 B 的夹角: θ1 = π / 2, V × B 与dx 的夹 的夹角:
二、动生电动势
r r r r r r fL r 由 f L = − e ( v × B ) 得: E k = =v×B −e + r r + r r r 代入 ε = ∫ Ek ⋅dl 得: ε = ∫ ( v × B ) ⋅d l


大小: 大小: ε =
r r − θ 1为 v与B的夹角; 的夹角;
dε i = E感dl cos θ
× × × × × × R × × × × × × × o h× × × r × θ × × ×θ B dl × L ×
r dB E感 = 由上题结果, 由上题结果,圆形区域内部的感生电场: 圆形区域内部的感生电场: 2 dt

ε i = ∫ dε i = ∫ E感dl cosθ

L
动生电动势的求解可以采用两种方法: 动生电动势的求解可以采用两种方法:一是利用 一是利用 “动生电动势”的公式来计算; 的公式来计算;二是设法构成一种合理 的闭合回路以便于应用“法拉第电磁感应定律”求解。 求解。
三、应用动生电动势的解题方法
公式: 公式: ε
= ∫ vBdl sin θ1 cosθ 2
∫ vB dl sin θ
+
1
r r r θ 2为 v × B 与 d l 的夹角。 的夹角。
cos θ 2
方向: 方向:电动势方向从负极到正极。 电动势方向从负极到正极。 以上结论普遍成立。 以上结论普遍成立 。 如果整个回路都在磁场中运动, ,则在回路中产生的总 如果整个回路都在磁场中运动 r r r 的电动势为: 的电动势为: ε = ( v × B ) ⋅ d l

动生电动势和感生电动势

动生电动势和感生电动势

Ek
1 2
B t
r
1 2
kr
2. r > R 区域
作半径为 r 的环形路径,并以逆
时针为回路绕向,则同理有
2rEk
S
B t
ds
R2k
R
o
r
r
B
1 B R2 1 R2
Ek 2 t
r
k 2r
Foundation - SJYGGF
§ 13.2 动生电动势和感生电动势
Nov 5, 2002 9/33
随时间均匀增加, dB k dt
若铝圆盘的电导率为γ,求盘内 的感应电流。
见书P212页,例4
R
解: 取半径为r、宽为dr的圆环微 元,并以逆时针方向为正方向,则 微元环中元电动势为
d L Ek dl L Ek dl
1 kr 2r dl kr2
20
o
r
dr
B
微元环中的电阻为 dR 1 2r hdr
Foundation - SJYGGF
§ 13.2 动生电动势和感生电动势
Nov 5, 2002 21/33
4) 电度表记录电量
电度表记录用电量,就是
利用通有交流电的铁心产生交
变的磁场,在缝隙处铝盘上产
o
生涡电流,涡电流的磁场与电
磁铁的磁场作用,表盘受到一
转动力矩,使表盘转动。
o’
Foundation - SJYGGF
感生电动势
1. 感生电动势——回路不动或不变,因磁场随时间变 化产生的电动势。相应的电流称为感生电流。
2. 感生电动势的起源——感生电场Ek 1) Maxwell感生电场(涡旋电场)假设
Maxwell 1861年首先从理论上预言感生电场的存在,后 被Hertz的电磁波实验所证实。Maxwell假设: 变化的磁场要在其周围空间激发一种电场——感生电场

《大学物理》6.2动生电动势感生电动势解读

《大学物理》6.2动生电动势感生电动势解读
k
b
B B 1 2 dS 解: bc R S t t 2
B 0 t
× ×
O × × × ×
uc ub
a
× ×
上页
b E c
下页
四、涡电流
产生原因: 大块的金属导体处在变化的磁场中时,通过金属 块的磁通量发生变化,从而产生感应电动势,在 金属内部形成电流,称为涡电流。 涡电流特点:
A
G
E
B
。。
下页
如何度量这种本领? ε----电动势
上页
电动势: 电源把单位正电荷经内电路从 负极移到正极的过程中,非静 电力Fk所作的功 从场的观点: 非静电力对应非静电场
A非 q
q
E0
Fk qEk A非 Fk dl q Ek dl Ek dl
d 1.热效应: i dt
I
i
R

I(ω)
Q I 2 Rt 2
表明: 交流电频率越高发热越多——感应加 热原理
I(ω)
I(ω) I(ω)
I’
2.磁效应: 阻尼摆
上页 下页
小结:
动生电动势:磁场分布不变, 回路或导线在磁场中运动而引起的感应电动
势 感生电动势:导体回路不动,磁场随时间发生变化而引起的感应电动势
静电场
静止电荷
涡旋电场
变化磁场
有源场
无源场
上页 下页
感生电动势的计算 法拉第电磁感应定律
i
L
d d Ek dl
dt
dt
S B d S
因为回路固定不动,磁通量的变化仅来自磁场的变化

3.2 动生电动势与感生电动势

3.2 动生电动势与感生电动势
A-B-C-D-A
用动生电动势求解
取ABCDA回路为正 ABCDA回路为正
ε AB
µ0 I = ∫ (v × B ) ⋅ dl = vB( x)b = bv A 2πx
B
ε CD = ∫ (v × B ) ⋅ dl = −vB( x + a)b = −
C
D
2π ( x + a )
µ0 I
bv
µ0 NI 1 1 µ 0 NIbav ε = N (ε AB + ε CD ) = ( − )bv = 2π x x + a 2πx( x + a)
电动势: 电动势:
把单位正电荷从负极通过电源内部移到 正极时,非静电力所做的功 正极时,非静电力所做的功
ε = ∫ K ⋅ dl

+
与外电路是否接通无关, 与外电路是否接通无关, 对于闭合回路,定义为 对于闭合回路,
ε = ∫ K ⋅ dl
动生电动势
导体棒在磁场中运动 电动势是反映电源性能的, 电动势是反映电源性能的,是 衡量电源内部非静电力大小的 物理量。 物理量。
计算
eR d ( mv ) = dB 2
初始条件: ,B=0 初始条件:v=0,B=0 对上式求积分得 ,B=
eR mv = B 与 eRB R = mv 比较 2
1 BR = B 2
电子感应加速器原则上不受相对论效 应影响, 应影响,但因电子被加速时会辐射能量 而限制其能量进一步提高
§3 磁矢势与磁场中带电粒子的动量
L
不闭合
r r ∫ E旋 ⋅ dl ≠ 0
L
闭合
保守场 有源、 有源、无旋场
非保守场 无源、 无源、有旋场

§10-2. 动生电动势与感生电动势

§10-2. 动生电动势与感生电动势

(3)感生电场是无源场。

S
E dS 0.....( 4)
B t E
• 涡旋电场无源其电里力线是闭合曲线。 3、感生电动势的非静电力—感生电场对电 11 荷的作用力 F eE 。
4.感生电场和静电场的比较 (1)相同点:都对电荷有作用力。
不同点 产生的原因 电力线 静电场 电荷 电力线有头有尾
I B1 0 2d
B2 2 (d a)
0 I

I
1 : B DA 2 : B CB 回路中总感应电动势方向沿顺
时针.
1
d

B 2
a
15
10-11)
在金属杆上取距左边直导线为,则
I B1 0 2r
B B1 B2
图中电动势的方向:从负极a正极b;
b
(1)动生电动势的大小:
(3)式 (v B) dl 仅适用 a

a
f
v
于计算切割磁场线的导体中的感 应电动势。 (4)积分是沿着运动的导线进行的。

3
(5)若ab导体为闭合回路则动生电动势为: (v B) dl .....(1)
0…………(2)
10
(2)感生电场是非保守场。
d B l E dl dt SB d S S t d S........(10.4)
B dS 代入(2)式,得: S
n S l
• dS的正方向与l成右手螺旋关系
b
r Iv Iv dr d l sin 0 Iv sin dl 0 dr0 a 2 r r 2 r d 2 r 0 Iv d l sin ln 2 d v B:b a

大学物理动生电动势和感生电动势全篇

大学物理动生电动势和感生电动势全篇

第十三章电磁感应
步骤:
dm
dt
b
a (v B) dl
1) 约定 右旋
2)求磁通
3)根据公式计算
1)取线元 dl ,并规定其方向
2)
写出
d
(v
B)
dl
3)确定积分范围,并积分
若结果 0,则
说明 实 与 相反
若结果 0,则
说明 实与 dl 相反
10 - 2 动生电动势和感生电动势
第十三章电磁感应
感生电场和静电场的对比
E静 和 Ek 均对电荷有力的作用.
静电场是保守场 L E静 dl 0
感生电场是非保守场
dΦ L Ek dl dt 0
静电场由电荷产生;感生电场是由变化的磁 场产生 .
10 - 2 动生电动势和感生电动势
第十三章电磁感应
例:将磁铁插入非金属环中,环内有无感
坩锅外的线圈中通交流电 电磁炉:交变磁场作用于金属锅底,产生
大量涡流
2. 电磁阻尼摆
涡电流的弊
热效应过强、温度过高, 易破坏绝缘,损耗电能,还可能造成事故
10 - 2 动生电动势和感生电动势
第十三章电磁感应
减少涡流 1、选择高阻值材料(硅钢、矽钢等) 2、多片铁芯组合
感生电场充当着产生感应电动势
的非静电力。
闭合回路中的感生电动势
L
Ek
dl
dΦ dt
10 - 2 动生电动势和感生电动势
第十三章电磁感应
闭合回路中的感生电动势
L
Ek
dl
dΦ dt
Φ SB dS
d
L Ek
dl
dt
B dS
S
S不变

动生和感生电动势

动生和感生电动势
动生和感生电动势
目录
• 动生电动势 • 感生电动势 • 比较动生和感生电动势 • 实例分析 • 问题与讨论
01
CATALOGUE
动生电动势
定义与原理
定义
动生电动势是指由导体在磁场中运动而产生的感应电动势。
原理
根据法拉第电磁感应定律,当导体在磁场中运动时,导体中 的电子会受到洛伦兹力的作用,从而在导体两端产生电动势 。
感生电动势的大小取决于磁场的变化率。如果磁场变化很快,那么产生的电动势就很大。
应用比较
动生电动势在电力生产和传输中起着关键作用。例如,发电机是通过动生电动势将机械能转化为电能 。
感生电动势在电子设备和磁性材料中有着广泛的应用。例如,变压器和电感器是通过感生电动势来改 变信号和传输能量。
04
CATALOGUE
电磁制动
在某些机械设备中,利用 动生电动势可以实现电磁 制动,达到减速或停止的 目的。
电磁感应现象
动生电动势是电磁感应现 象的一种表现形式,可以 用来解释和利用电磁感应 现象。
02
CATALOGUE
感生电动势
定义与原理
定义
感生电动势是指磁场变化时在导体中产生的电动势。
原理
根据法拉第电磁感应定律,当一个导体处于变化的磁场中时,导体中的自由电子 会受到洛伦兹力的作用,从而在导体两端产生电动势。
电子感应加速器
利用感生电动势加速带电粒子。
03
CATALOGUE
比较动生和感生电动势
产生方式比较
动生电动势
是由磁场和导线的相对运动引起的。当 导线切割磁力线时,导线两端会感应出 电动势。
VS
感生电动势
是由磁场的变化引起的。当磁场发生变化 时,附近的导体中会产生感应电流和电动 势。

动生电动势和感生电动势

动生电动势和感生电动势
8-2
动生电动势和感生电动势
d d 感应电动势 N dt dt 引起磁通量变化的原因 ?
磁场恒定,导体运动
导体不动,磁场变化
P.1
1、电动势定义
I
Ek
+
-
Ek : 非静电电场强度.



Ek dl
P.2
2、感应电动势的分类: (1)动生电动势 稳恒磁场中的导体运动 , 或者回路面积 变化、取向变化等。 (2)感生电动势: 导体不动,磁场变化。
OP
P.5
动生

OP
(v B) dl
混合积:(a b ) c
× × P ×
(vB sin ) cosdl
OP
×
× × ×
×
(v × B) ×
× ×
×
特例 B均匀,杆 l水平运动:

×
× v×
× B
× O ×

OP
l
l (vB sin 900 )cos00 dl (v B) dl 0
vBl
vBdl vBl
0
P.6
2、计算方法
d动生 (v B) dl
动生
×
×
× P× B × dl
× ×

OP
(v B) dl
1 2 d BL 2 dt 1 2 BL 2
×
×
× P × × × ×
× ×
B ×
×
×
×
o
×
×
×
×
×
×
×

5、感生电动势和动生电动势解析

5、感生电动势和动生电动势解析
(2)测量; (3)读数.
留意: (1)将电压表并联在待测电路两端.
(2)量程应大于小灯泡两端电压的估量值. (3)红表笔接高电势,黑表笔接低电势.
(4)读数时先看量程再看小格,要正视表针.
(二)使用
2.测量电流 怎样用多用电表测量通过 小灯泡的电流?测量中应 步留骤意:什((12么))选测?档量;;
a
解析:以a表示金属杆运动的加速度,在t时刻,金属杆 与初始位置的距离L=at2/2,此时杆的速度v=at 这时,杆与导轨构成的回路的面积S=Ll 回路中的感应电动势E=SΔB/Δt+Blv
B k t B B (t t) B tk
t t
回路的总电阻 R=2Lr0 回路中的感应电流 I=E/R
F 3k 2l 2 t
作用于杆的安培力F=BIl 代入数据为F=1.44×10-3N
2r0
学 问 回
1.如何把电流表改装成电压表?
Ig
Rg
分压电阻 R
IR R
分流电阻

Ug
UR
I
Ig Rg
U
Ug
Ig
V
I
A
U
Ug
2.如何把电流表改装成量程较大的电流表?
能否把电流表改装成直接测量电阻的
欧姆表?
例 题
r,其余局部电阻不计.开头磁感强度为B0.
〔1〕假设从t=0时刻起,磁感强度均匀增加,每秒增量为
k,同时棒保持静止.求棒中的感应电流.在图上标出感
应电流的方向;
〔2〕在上述〔1〕状况中,始终保持棒静止,当t=t1末时
需加的垂直于棒的水平拉力为多大? 〔3〕假设t=0时刻起,磁感强度渐
e
a
f
渐减小,当棒以恒定速度v向右做

大学物理(8.2.2)--动生电动势感生电动势

大学物理(8.2.2)--动生电动势感生电动势

,求金


杆中

动生

动B 势
。O′
距 a 点为 l 处取一线元矢d量l v r l sin

b
该,处 的 非 静 电 场 场 强 为 :
Ek

v

B
r
Ek
Ek vB lB sin

该线元运动时产生的电动势 di Ek dl

al
:di Ek dl cos(900 ) Ek dl sin lBdl sin 2
计算该线元运动时产生的电动势 di
, Ek dl

(v

B)

dl
( 3 ):计算该导线运动时产生的动生电动

εi

l
(v

B)

dl
i 0 电动势方向与积分路线方向相同 i 0 电动势方向与积分路线方向相反
例 8-3: 一长度为 L 的金属杆 ab 在均匀B磁场 中绕平行于磁


金属棒,金属棒绕其一端 O 顺时针匀速转动,转动角速度为

O 点至导线的垂直距离为 a ,

:金距1属)O选棒点O求所为:在l方M处处1向)的取当为金磁一金积属感线属分棒应元棒路内强矢转线d感度l量至应为与电B:v长动直2势l0导的aI 线,大方平小向行和,方如向图I;中
该,处 的 非 静 电 场 场 强 为 :
场方向

磁场
′ 的定轴 OO′ 转动,已知杆的角速度为 ,杆相对于 的方位角为 θ ,求金属杆中的动生电动势B 。O′

b
L
a
O
例 8-3:

动生电动势和感生电动势

动生电动势和感生电动势

m1
三、电子感应加速器
原理:在电磁铁的两磁极间放一个真空室,电磁铁是由
交流电来激磁的。
当磁场发生变化时,两极间任意闭合回路的磁通发生变化, 激起感生电场,电子在感生电场的作用下被加速,电子在 Lorentz力作用下将在环形室内沿圆周轨道运动。
轨道环内的磁场 等于它围绕面积 内磁场平均值的 一半。
解:法拉第电机可视为无数铜棒一 端在圆心,另一端在圆周上,即为 并联,因此其电动势类似于一根铜 棒绕其一端旋转产生的电动势。
w
B
o a
R
U0 Ua o Bwl dl
U0
Ua
1 2
BR2w
二、感生电动势
1、感生电动势
由于磁场的变化而在回路中产生的感应电 动势称为感生电动势.
2、感生电场
变化的磁场在其周围空间激发的一种能够产生感生电动势 的电场,这种电场叫做感生电场,或涡旋电场。
是以轴为圆心的一系列同心圆,同一同心圆
上任一点的感生电场的Ek大小相等,并且方
向必然与回路相切。于是沿L取Ek的线积分,
有:
L Ek dl Ek 2 r
EkΒιβλιοθήκη 2rr 2dB dt
若r<R,则 Br 2
L
Ek
dl
- d dt
r 2
dB dt
r dB Ek 2 dt
若r≥R,则
BR2
2、涡流的热效应
电阻小,电流大,能 够产生大量的热量。
3、应用
高频感应炉 真空无按触加热
加热
4、涡流的阻尼作用
当铝片摆动时,穿过运动铝片的磁通量 是变化的,铝片内将产生涡流。根据楞 次定律感应电流的效果总是反抗引起感 应电流的原因。因此铝片的摆动会受到 阻滞而停止,这就是电磁阻尼。

动生电动势 感生电动势

动生电动势  感生电动势

bv
a
I
例10-6 由导线弯成的宽为a
高为b的矩形线圈,以不变速 率v平行于其宽度方向从无磁 场空间垂直于边界进入一宽为
3a
3a的均匀磁场中,线圈平面与 磁场方向垂直(如图),然后
又从磁场中出来,继续在无磁
场空间运动。设线圈右边刚进
入磁场时为t=0时刻,试在附
图中画出感应电流I与时间t的
ab中的感生电动势,并确定哪端电势高?解:Fra bibliotekl Er
dl
dm
dt
螺线管外感生电场的分布具有轴对 称性,取半径为r(r>R)的圆形环
R
o 0
Er b
rP
路与ab交于P点,Er沿P点的逆时针 切线方向。则
a
l
E r
dl
E r
2r
m B S 0nI R2 29
dm
dt
0n
dI dt
R2
,设t = 0 时线圈平面的法线方向n0
与B的夹角为 = 0,若线圈角速度为
,则 t时刻穿过该线圈的磁通为
m B s Bscos Bscos t
由法拉第电磁感应定律
0 b
c
no
B
a
d 0/
i
d dt
d dt
(NBscos t)
NBs sint m sin t m NBs
电动势的实质依然是动生电动势,上述为交流发电机的工作原理 14
uB v v B u
所以总的洛仑兹力的功率为零,即总的洛仑兹力仍然不做功。
但为维持导体棒以速度v作匀速运动,必须施加外力以克服
洛仑兹力的一个分力fmu=qu×B。
由前述可知
qu B v qv B u
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ln 2π d
6
负号表明左端电势高。
第8章 电磁感应与电磁场
二、感生电动势 有旋电场 1. 非静电力-感生电场
变化的磁场在其周围空间 激发出一种新的涡旋状电场, 不管其周围空间有无导体, 不管周围空间有否介质还是 i 真空; 称其为涡旋电场或感 生电场。 涡旋电场是一种客观存在的物质, 它对电荷有 作用力。若有导体回路存在,则感生电场力驱动电 荷运动在回路中将产生感应电动势。
感生电场的环流
B Ei dl dS l s t
可见, 只要
B 0 , t
E dl
l i
0
即,感生电场的环流就不为零。 感生电场的电场线是闭合的, 感生电场 也称为涡旋电场, 是有旋场, 是非保守场。
11
第8章 电磁感应与电磁场
3.感生电场和静电场的比较:
0
1 2 i BL 2
×
×
×
×
×
i方向
O
P
4
第8章 电磁感应与电磁场
例2 金属杆以速度 v 平行于长直导线移动。 求: 杆中的感应电动势多大? 哪端电势高? 解: 建立如图的坐标系, 取积 → v dx 分元 dx , 由安培环路定理知 I 在dx 处的磁感应强度为 x

B
因为
0 I
× ×P × ++ × × × × × ×
×F e
× × ×
B
--
× ×
Fm
× v×
×
× O ×
非静电场
Fm Ek v B e
方向:O → P
2
第8章 电磁感应与电磁场
i 方向? 由电动势的定义,有 i Ek dl OP ( v B ) dl OP 说明: b l 1)在上述情况下 i v B dl Bvdl Bvl
电场是无源场。
8
第8章 电磁感应与电磁场
判定 Ei 的方向
B
B 0 t
B
Ei
B t
Ei
Ei
B 0 t
注意是 Ei与 B / t ,而不是与 B 组成左螺旋。
9
第8章 电磁感应与电磁场
2. Ei 的环流与感生电动势 由电动势的定义,有 i
E
a 0
2、动生电动势的计算
2)一般情况下,计算动生电动势:
步骤:a任取一元段 dl
b确定 v B 的方向
d积分求
c求 d
(v B) dl
i (v B) dl
3
第8章 电磁感应与电磁场
例1 一长为L的铜棒在磁感强度为 B 的均 匀磁场中,以角速度 在与磁场方向垂直的 平面上绕棒的一端转动。 求: 铜棒两端的感应电动势。 × × × × × 解: d i (v B) dl P dl × × vBdl × × × L i vBdl × × × × × 0 o v B L × × × × × lBdl
or

内部 ( r <R )
Φm Bπr
2
B
1 B Ei r 2 t
O
r
17
第8章 电磁感应与电磁场
8.2 动生电动势与感生电动势 d 法拉第电磁感应定律 i dt
引起磁通量变化的原因 (1)稳恒磁场中的导体运动, 或者回路 面积变化、取向变化等 动生电动势 (2)导体不动, 磁场变化 感生电动势
1
第8章 电磁感应与电磁场
一、动生电动势 1、非静电力:洛伦兹力 Fm (e)v B 平衡时 Fm Fe eEk
分析电场线是一系列以O 为圆心的圆。 解 i
L
t
0
E dl
i
R
o

Br

L
E d l E dl
i i L
dl
Ei
16
第8章 电磁感应与电磁场
dΦm Ei 2πr dt
外部 ( r >R ) Φm BπR
2
R B Ei 2r t
2
R
B
静电场 相 同 涡旋电场
Fc qEc
Fi qEi
B 有旋场) E dl E dl 0 t ds (非保守场、 (保守力场) i l c
不 同
E ds q
c c
i
0(有源场)
E ds 0
i
(无源场) (无源场)
D ds q
dΦ B i dS s t dt
先求线圈所在处的磁通量,再求磁通 量的变化率。 感生电动势计算方法 2 运用Ei的环流定理, 即 dΦ i Ei dl l dt
15
第8章 电磁感应与电磁场
例1一个半径为 R 的长直载流螺线管,内部磁 场强度为 B , 现已知 B / t 为大于零的恒量。 求管内外的感生电场。 B
涡电流的机械效应 依据——楞次定理
涡流线 交 流 电 源 铁芯
利 1、冶炼难熔金属及特种合金
2、家用 如:电磁灶 3、电磁阻尼,电磁制动
弊 热效应过强、温度过高,
易破坏绝缘,损耗电能,还可能造成事故
减少涡流: 1、选择高阻值材料
2、多片铁芯组合
第8章 电磁感应与电磁场
感生电动势计算方法 1 运用法拉第电磁感应定律 ,即
d
L
2 πx v B ; v B // dx


5
第8章 电磁感应与电磁场
dx 处的动生电动势
d i v B dl



v I
d
dx
L
0 Iv
2πx

dx
x
金属杆的电动势
i
d L
Байду номын сангаас
0 Iv
2πx
d
dx
0 Iv d L
l
k
dl
E dl
l i
d Φ 由法拉第电磁感应定律又有 i dt dΦ
i
E dl
l i

dt
因为回路不动, 又Φ S B dS, 所以
B dΦ d dS B dS s t dt dt s
10
第8章 电磁感应与电磁场
c
(有源场)
D ds 0
i
对导体产生静电感应
对导体产生电磁感应(产生涡电流)
第8章 电磁感应与电磁场 应用:涡电流(涡流)
大块的金属在磁场中运动,或处在变化的 磁场中,金属内部也要产生感应电流,这种电流 在金属内部自成闭合回路,称为涡电流或涡流。 涡流线
铁芯
交 流 电 源
第8章 电磁感应与电磁场 涡电流的热效应 利用涡电流进行加热
dB 0 dt

0
7
第8章 电磁感应与电磁场
涡旋电场(感生电场)的性质
(1)只要有变化的磁场, 就有涡旋电场。涡 旋电场不是由电荷激发,由变化磁场激发。 (2) 电场线是环绕磁感应线的闭合曲线。 因此环流不为零, 即

l
Ei dl 0
(3) Ei 的通量 S Ei dS 0 与 B 类似, 涡旋
相关文档
最新文档