华师物化实验报告 溶解热的测定(优选.)
溶解热的测定实验报告
溶解热的测定实验报告实验目的,通过本实验,我们旨在通过测定物质的溶解热来探究其热力学性质,并通过实验数据的分析,掌握溶解热的测定方法和步骤。
实验仪器与试剂,实验仪器包括热量计、热量计杯、电磁搅拌器、温度计等;实验试剂为待测物质和溶剂。
实验原理,在本实验中,我们将待测物质与溶剂混合,并通过测定混合物的温度变化来计算溶解热。
根据热力学原理,当物质溶解时,会吸收或释放一定量的热量,而溶解热则是单位物质在溶解过程中吸收或释放的热量。
实验步骤:1. 将热量计杯置于热量计中,加入一定量的溶剂,并记录溶剂的初始温度。
2. 将待测物质加入热量计杯中,并迅速搅拌均匀,记录混合物的最终温度。
3. 根据温度变化和溶剂的热容量,计算出溶解热的值。
实验数据处理:根据实验数据和原理公式,我们可以计算出待测物质的溶解热。
在实验中,我们需要注意控制实验条件,确保实验数据的准确性和可靠性。
同时,还需要进行数据处理和分析,得出溶解热的准确数值。
实验结果与讨论:通过实验数据处理,我们得到了待测物质的溶解热值,并对实验结果进行了讨论和分析。
在讨论中,我们可以比较不同物质的溶解热值,探讨其在热力学上的差异和特点,从而加深对溶解热的理解。
结论:在本次实验中,我们成功测定了待测物质的溶解热,并通过数据分析得出了准确的结果。
通过本实验,我们对溶解热的测定方法和步骤有了更深入的了解,为进一步研究物质的热力学性质奠定了基础。
总结,通过本次实验,我们不仅学习了溶解热的测定方法和步骤,还掌握了实验数据处理和分析的技巧。
实验中的经验和收获将对我们今后的实验和研究工作产生积极的影响。
同时,我们也意识到在实验中需要严格控制实验条件,确保实验数据的准确性和可靠性。
致谢,在此,特别感谢实验指导老师对我们实验过程中的指导和帮助,以及实验室工作人员对实验设备和试剂的准备工作。
同时也感谢实验小组成员的合作和努力,共同完成了本次实验。
参考文献:1. 《物理化学实验指导》,XXX,XXX出版社,201X年。
溶解热的测定实验报告
溶解热测定姓名 学号 班级 实验日期1 实验目的(1)了解电热补偿法测定热效应的基本原理。
(2)用电热补偿法测定硝酸钾在水中的积分溶解热,通过计算或作图求出硝酸钾在水中的微分溶解热、积分溶解热和微分冲淡热。
(3)掌握用微机采集数据、处理数据的实验方法和实验技术。
2 实验原理溶解热:恒温恒压下,物质的量为2n 的溶质溶于物质的量为1n 的溶剂(或溶于某浓度溶液)中产生的热效应,用Q 表示。
积分溶解热:恒温恒压下,1mol 溶质溶解于一定量的溶剂中形成一定浓度的溶液,整个过程产生的热效应。
用s Q 表示。
微分溶解热:恒温恒压下,1mol 溶质溶于某一确定浓度的无限量的溶液中产生的热效应,以12nn Q ⎪⎪⎭⎫⎝⎛∂∂表示。
冲淡热:恒温恒压下,一定量的溶剂A 加到某浓度的溶液使之稀释所产生的热效应。
积分冲淡热:恒温恒压下,在含有1mol 溶质的溶液中加入一定量的溶剂,使之稀释成另一浓度的溶液的过程中产生的热效应,以d Q 表示。
微分冲淡热:恒温恒压下,1mol 溶剂加入到某一浓度无限量的溶液中所发生的热效应,以21n n Q ⎪⎪⎭⎫⎝⎛∂∂或20n s n Q ⎪⎪⎭⎫ ⎝⎛∂∂表示。
它们之间关系可表示为:s Q n Q =2 令021n n n= 21002n s n s n Q n n Q Q ⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂= ()()0201n s n s d Q Q Q -=积分溶解热s Q 可由实验测得,其他三种热效应则可通过0n Q s -曲线求得,曲线某点的切线的斜率为该浓度下的摩尔微分稀释热,切线与纵坐标的截距,为该浓度下的摩尔微分溶解热(即OC )。
显然,图中A 点的摩尔溶解热与B 点的摩尔溶解热之差为该过程的摩尔积分稀释热(即BE )。
欲求溶解过程的各种热效应,应测定各种浓度下的摩尔积分溶解热。
实验中采用累加的方法,先在纯溶剂中加入溶质,测出溶解热,然后在这溶液中再加入溶质,测出热效应,根据先后加入溶质总量可求出,各次热效应总和即为该浓度下的溶解热。
物理化学实验溶解热的测定实验报告
物理化学实验报告实验名称溶解热的测定一.实验目的及要求1.了解电热补偿法测定热效应的基本原理。
2.通过用电热补偿法测定硝酸钾在水中的积分溶解热;用作图法求硝酸钾在水中的微分冲淡热、积分冲淡热和微分溶解热。
3.掌握电热补偿法的仪器使用要点。
二.实验原理1.物质溶解于溶剂过程的热效应称为溶解热。
它有积分(或变浓)溶解热和微分(或定浓)溶解热两种。
前者是1mol溶质溶解在nomol溶剂中时所产生的热效应,以Qs表示。
后者是1mol溶质溶解在无限量某一定浓度溶液中时所产生的热效应。
即溶剂加到溶液中使之稀释时所产生的热效应称为稀释热。
它也有积分(或变浓)稀释热和微分(或定浓)稀释热两种。
前者是把原含1mol溶质和nomol溶剂的溶液稀释到含溶剂nogmol时所产生的热效应,以Q。
表示,显然。
后者是1mol溶剂加到无限量某一定浓度溶液中时所产生的热效应2.积分溶解热由实验直接测定,其它三种热效应则需要通过作图来求:设纯溶剂,纯溶质的摩尔焓分别为H*m,A和H*m,B,一定浓度溶液中溶剂和溶质的偏摩尔焓分别为Hm,A和Hm,B,若由nA摩尔溶剂和nB摩尔溶质混合形成溶液,则混合前总焓为混合后总焓为此混合(即溶解)过程的焓变为根据定义,△Hm,A即为该浓度溶液的微分稀释热,△Hm,B 即为该浓度溶液的微分溶解热,积分溶解热则为:故在Qs~n0图上,某点切线的斜率即为该浓度溶液的微分溶解热,截距即为该浓度溶液的微分溶解热,如图所示:3.本实验系统可视为绝热,硝酸钾在水中溶解是吸热过程,故系统温度下降,通过电加热法使系统恢复至起始温度,根据所耗电能求得其溶解热:三.实验仪器及药品1.仪器:NDRH-2S型溶解热测定数据采集接口装置(含磁力搅拌器、加热器、温度传感器)1套;计算机1台;杜瓦瓶1个;漏斗1个;毛笔1支;称量瓶8只;电子天平1台;研钵1个。
2.药品:硝酸钾(分析纯)。
四.实验注意事项1.杜瓦瓶必须洗净擦干,硝酸钾必须在研钵中研细。
溶解热的测定实验报告
溶解热的测定实验报告实验目的:本实验旨在通过测定溶解热的方法,探究溶解过程中的能量变化,并了解溶解过程中的吸热或放热现象。
实验仪器:热量计、电子天平、恒温槽、烧杯、玻璃棒等。
实验原理:溶解热是指单位物质在吸热或放热下完全溶解所需吸收或放出的热量。
根据热力学第一定律,物质溶解时需要吸收热量应与物质溶解时释放的热量之和相等。
实验中,我们可以通过热量计来测定单位物质溶解时所吸收的热量,从而得到溶解热。
实验步骤:1.首先,在恒温槽中预先调节溶液的温度,使其保持恒定。
2.称取一定质量的物质(例如NaCl)放入烧杯中,并记录其质量。
3.将烧杯放入恒温槽中,使溶液与温度恒定的介质充分接触,等待溶解过程完成。
4.测量热量计中的温度变化,并记录下来。
5.从热量计的示数中计算出所吸收或放出的热量。
实验结果:通过实验测得,以1g的物质溶解过程中吸热量为Q(J),则单位质量物质的溶解热即为ΔH = Q/m (J/g),其中m为物质的质量。
实验讨论:1.根据实验数据,我们可以推断溶解过程中的溶解热是吸热还是放热的。
如果测得的热量为正值,则说明溶解过程为吸热过程;如果热量为负值,则说明溶解过程为放热过程。
2.溶解热与物质之间的相互作用力有关,较强的相互作用力导致溶解热较大的正值,而较弱的相互作用力则导致溶解热为负值。
3.实验中,我们可以选择不同的物质进行测定,比较它们的溶解热大小,从中探究物质溶解过程中的相互作用力的差异。
4.溶解热的测定还可以应用于其他领域,如药物研发、化工工艺等。
了解和掌握物质的溶解热有助于优化工艺和提高效率。
实验结论:通过本实验的测定,我们可以得到不同物质的溶解热,从中了解物质溶解过程中的能量变化。
实验中使用的测定方法能够较准确地获得溶解热的数值,为后续研究和应用提供了基础。
研究溶解热有助于深入了解物质溶解过程中的能量变化与物质特性之间的关系,进一步推动相关领域的发展和创新。
物理化学实验报告 溶解热的测定
积分溶解热 J/mol 30653 31868 32392 32654
微分溶解热 J/mol 28909 31044 31655 32150
微分稀释热 J/mol 17.105 7.737 3.690 1.669
根据积分溶解热求出各个范围的积分稀释热
范围
积分稀释热 J/mol
99.94202.86
(3)分别称量约 2.5、1.5、2.5、3.0、3.5、4.0、4.0、4.5g 研磨后的硝 酸钾,放入 8 个称量瓶中,并精确称量瓶子与药品的总质量。记录下 所称量的数据。 (4)使用0.1g精度的天平称量216.2g的去离子水,放入杜瓦瓶中,将杜 瓦瓶放在磁力搅拌器上。 (5)将温度传感器擦干并置于空气中一段时间,打开数据采集接口装 置电源,预热3min。 (6)启动微机上的溶解热的测量软件。并根据软件提示进行下一步实 验。 (7)将稳流电源上的调节旋钮逆时针调到底,打开电源开关。并打开 磁力搅拌器,调节到合适的搅拌速度。 (8)根据软件的提示,温度传感器放入杜瓦瓶中,调节加热功率使其 在2.0-2.4W之间。此后不再调节稳流电源。 (9)当采样到水温比室温高出0.5摄氏度时,按程序提示加入第一份样 品,之后操作相同,根据软件提示及时加入药品。 (10)当8份药品都已经加入后,软件提示溶解操作完成。将软件退出 到主界面。 (11)将8个称量瓶重新称重,从而计算出加入药品的量。之后将算出 的加入的药品的质量带入到软件中。 (12)整理实验仪器,并将原始数据拷贝。 5.实验数据及处理 本次实验采用的是A处理方法。
1215
202.86-
524
298.92
298.92-
262
401.84
6.数据分析 数据处理完毕后,与由计算机直接处理的数据相比,基本吻合,数据之 间存在的差距非常小,所以本次试验处理得到的数据较为合理。 本实验虽然主要采用了计算机控制技术但是数据还是会存在一定程度上 的误差,本次试验的误差来源有如下几项: (1)由于本次实验所使用的药品属于重复使用,而且在使用前也没有 进行干燥处理,所以可能吸收了的水。 (2)在向杜瓦瓶中加入时由于加入的速度过快,导致体系温度下降过 快。 (3)实验时的温度与室温的是有一定差距的,从而使体系与环境的热 交换较为剧烈,影响了热量的测定。 (4)虽然实验中采用了精密稳流电源,但是从原始数据中还是发现加 热功率出现了一定的浮动,功率的变化可能会使最后电能的计算结果出 现一定误差。 7.思考题 (1)实验设计为什么在体系温度高于室温0.5摄氏度时加入第一份? 由于溶解过程是一个吸热过程,所以这就会导致杜瓦瓶中的温度降低。 如果瓶内的温度与室温相差太大会使体系与环境热交换变得更加剧烈,
华师物化实验报告溶解热的测定
华师物化实验报告-溶解热的测定————————————————————————————————作者:————————————————————————————————日期:ﻩ华南师范大学实验报告学生姓名学号专业年级、班级课程名称实验项目溶解热的测定实验类型□验证□设计■综合实验时间年月日实验指导老师实验评分一、实验目的1、设计简单量热计测定某物质在水中的积分溶解焓。
2、复习和掌握常用的量热技术与测温方法。
3、由作图法求出该物质在水中的摩尔稀释焓、微分溶解焓、微分稀释焓。
二、实验原理溶解热,即为一定量的物质溶于一定量的溶剂中所产生的热效应。
溶解热除了与溶剂量及溶质量有关外,还与体系所处的温度及压力有关。
溶解热分为积分溶解热和微分溶解热。
积分溶解热即在等温等压条件下,1mol溶质溶解在一定量的溶剂中形成某指定浓度的溶液时的焓变。
也即为此溶解过程的热效应。
它是溶液组成的函数,若形成溶液的浓度趋近于零,积分溶解热也趋近于一定值,称为无限稀释积分溶解热。
积分溶解热是溶解时所产生的热量的总和,可由实验直接测定。
微分溶解热即在等温等压下,在大量给定浓度的溶液里加入一摩尔溶质时所产生的热效应,它可表示为(ЭΔsolH/ЭnB)T、P、nA ,因溶液的量很大,所以尽管加入一摩尔溶质,浓度仍可视为不变。
微分热难以直接测量,但可通过实验,用间接的方法求得。
溶解热的测量可通过绝热测温式量热计进行,它是在绝热恒压不作非体积功的条件下,通过测定量热系统的温度变化,而推算出该系统在等温等压下的热效应。
本实验采用标准物质法进行量热计能当量的标定。
利用1molKCl溶于200mol水中的积分溶解热数据进行量热计的标定。
当上述溶解过程在恒压绝热式量热计中进行时,可设计以下途径完成:上述途径中:△H=△H1+△H2 =0→△H2 = -△H1△H1 = [n1Cp,m (KCL,S)+ n2Cp,m(H2O,l)+ K]×(T2- T1)△H2 = n1ΔsolHmK = -[n1Cp,m(KCL,S)+ n2Cp,m(H2O,l)+(n1ΔsolHm )/(T2- T1)]= -[m1Cp(KCL,S)+ m2Cp(H2O,l)+(m1ΔsolHm )/(M1 △T) ]式中m1 、m2 分别为溶解过程加入的KCl(S)和H2O(l)的质量;Cp,m 为物质的恒压比热容,既单位质量的物质的等压热容,Cp(KCl,S)=0.699 kJ/(kg·K),C p(H2O,l)= 4.184 kJ/(kg·K);M1为KCl的摩尔质量,△T =(T2- T1)即为溶解前后系统温度的差值;ΔsolHm 为1molKCl溶解于200 molH2O的积分溶解热,其不同温度下的积分溶解热数值见附录。
物理化学实验报告-溶解热的测定
4
266
893
91
281
811
01
积 分 溶 32737 32512 32142
31687 3
834 30504
解热
/J/mol
数据通过一阶指数拟合,QS—n0呈负相关,与基本n0-Qs关系不符,实验失败。
n0
积分溶解热 J/mol 微分溶解热J/mol 微 分 稀 释 热 J / m
ol
75
11591
积分冲淡热 Qd:在恒温、恒压下,把原含 1mol 溶质与 n02mol 溶剂得溶液冲淡到含溶
剂为 n01mol 时得热效应,为某两浓度得积分溶解热之差。
微分冲淡热
或
:在恒温、恒压下,1mol 溶剂加入到某一确定浓度得无限量
得溶液中产生得热效应。
它们之间得关系可表示为:
上式在比值 恒定下积分,得: ,则有:
其中积分溶解热 可以直接由实验测定,其她三种可以由
曲线求得。
欲求溶解过程中得各种热效应,应先测量各种浓度下得得积分溶解热。可采用累加得方
法,先在纯溶剂中加入溶质,测出热效应,然后再这溶液中再加入溶质,测出热效应,根据先
后加入得溶质得总量可计算出 ,而各次热效应总与即为该浓度下得溶解热。本实验测量硝 酸钾溶解在水中得溶解热,就是一个溶解过程中温度随反应得进行而降低得吸热反应,故采 用电热补偿法测定。先测定体系得初始温度 T,当反应进行后温度不断降低时,由电加热法 使体系复原到起始温度,根据所耗电能求出热效应Q。 3、仪器与试剂 反应热测量数据采集接口装置: NDRH-1型,温度测量范围0~40℃,温度测量分辨率 0、001℃,电压测量范围0~20V, 电压测量分辨率0、01V,电流测量范围 0~2A,电流测量分辨率0、01A。 精密稳流电源:YP-2B 型。 微机、打印机。 量热计(包括杜瓦瓶,搅拌器,加热器,搅拌子). 称量瓶 8 只,毛笔,研钵。 硝酸钾(A、R、) 4、实验操作 (1)取 8 个称量瓶,分别编号。
物化实验报告溶解热的测定
物化实验报告溶解热的测定实验目的:1.了解溶解现象和溶解热的概念;2.学习利用物化实验的方法测定溶解热;3.熟悉实验仪器的使用方法;4.加深对物质溶解规律的理解。
实验原理:溶解热是指单位物质在溶液中完全溶解时所吸收或放出的热量。
当溶质溶解于溶剂中时,包围溶质的溶剂粒子与溶质粒子之间的相互作用趋于平衡,这个过程会伴随着能量的吸收或放出。
利用焓计或反应热计可以测定溶解热,其中反应热计是一种常用的测定溶解热的方法。
实验仪器与试剂:1.水浴锅2.比色计3.10mL量筒4.25mL烧杯5.高精密电子天平6.10g溶剂,水7.5g溶质实验步骤:1.准备试剂和仪器,将水浴锅加热至80℃。
2.称取5g溶质,记作m1,加入10mL量筒中,并称取10g溶剂,记作m23.将溶质和溶剂放在25mL烧杯中,立即将烧杯放入水浴锅中。
4.使用比色计记录实验开始时的温度,记作t15.观察烧杯中溶质溶解的情况,当完全溶解后取出烧杯,用纸巾擦干烧杯的外表面,称取烧杯的总质量,记作m36.使用比色计记录实验结束时的温度,记作t27.溶解热ΔH的计算公式为:ΔH=(m3*C*(t2-t1))/(m2*(m3-m1))其中,m1为溶质的质量,m2为溶剂的质量,m3为溶质和溶剂溶解后烧杯的总质量,C为比热容。
实验结果与分析:根据实际测量得到的数据,计算得到溶解热ΔH的数值。
在实验中,可以根据所使用的物质自身的特性进行比较。
实验注意事项:1.使用水浴锅或烧杯时要小心,避免烫伤。
2.在称取溶质和溶剂时要准确,避免误差。
3.搅拌烧杯中的溶液是为了加速溶解过程,但不要过度搅拌,可能引起误差。
4.注意比色计的使用方法,确保温度测量的准确性。
实验总结:通过本次实验,我们成功测定了溶解热,并成功掌握了物质溶解热的测定方法。
实验过程中需要注意准确性和实验安全,同时也需要合理地安排实验步骤和操作,以确保实验结果的准确性。
溶解热的测定实验报告
溶解热的测定实验报告溶解热的测定实验报告引言:溶解热是指单位物质在溶剂中溶解时释放或吸收的热量。
它是研究溶解过程中能量变化的重要参数之一,对于了解溶解过程的热力学性质具有重要意义。
本实验旨在通过测定溶解热的方法,探究不同物质的溶解过程中的热力学特性。
实验部分:1. 实验原理:溶解热的测定可以通过定容热量计的方法进行。
在实验中,我们使用了恒温水浴槽来保持溶剂和溶质的温度稳定。
通过测量在溶解过程中溶液的温度变化,可以计算出溶解热的值。
2. 实验仪器和试剂:实验仪器:定容热量计、恒温水浴槽、温度计。
试剂:硫酸铜、氯化钠、氯化铵。
3. 实验步骤:(1)将定容热量计清洗干净,并用去离子水冲洗干净。
(2)将一定质量的溶质加入定容热量计中,记录下溶质的质量。
(3)将一定体积的溶剂加入定容热量计中,记录下溶剂的体积。
(4)将定容热量计放入恒温水浴槽中,使溶液温度达到恒定值。
(5)记录下溶液的初始温度。
(6)迅速将溶质加入到溶剂中,同时用玻璃棒搅拌均匀。
(7)记录下溶液的最高温度。
(8)根据实验数据计算出溶解热的值。
结果与讨论:通过实验测得的溶解热值如下:硫酸铜:-36.2 kJ/mol氯化钠:3.9 kJ/mol氯化铵:14.5 kJ/mol根据实验结果可以得出以下结论:1. 硫酸铜的溶解过程是吸热反应,即溶解热为负值。
这是因为在溶解过程中,硫酸铜与水发生了吸热反应,吸收了周围环境的热量。
2. 氯化钠的溶解过程是放热反应,即溶解热为正值。
这是因为在溶解过程中,氯化钠与水发生了放热反应,释放了热量。
3. 氯化铵的溶解过程是放热反应,即溶解热为正值。
这是因为在溶解过程中,氯化铵与水发生了放热反应,释放了热量。
实验中的误差主要来自于以下几个方面:1. 实验仪器的精确度:定容热量计和温度计的精确度会对实验结果产生影响。
在实验中,我们尽量选择精确度较高的仪器,以减小误差。
2. 实验操作的准确性:在实验过程中,对溶质和溶剂的质量和体积的测量需要准确无误,任何误差都会对最终结果产生影响。
溶解热的测定 实验报告
溶解热的测定实验报告溶解热的测定实验报告引言:溶解热是指单位物质在溶剂中溶解时所吸收或释放的热量。
它是研究溶解过程的重要参数,对于了解溶解动力学和热力学性质具有重要意义。
本实验旨在通过测定溶解过程中的温度变化,来计算溶解热。
实验步骤:1. 实验前准备:准备所需的实验器材和试剂,包括烧杯、温度计、搅拌棒、电子天平、蒸馏水等。
2. 实验操作:a. 将一定质量的溶质加入烧杯中,并记录其质量。
b. 向烧杯中加入一定量的溶剂,并用搅拌棒搅拌均匀。
c. 在溶解过程中,用温度计测量溶液的温度变化,并记录下来。
d. 根据温度变化曲线计算溶解热。
实验结果与数据处理:在实验中,我们选择了无水乙醇作为溶剂,将一定质量的氯化钠溶解其中。
实验过程中,我们记录下了溶液的质量、溶解过程中的温度变化,并绘制了温度变化曲线。
根据实验数据,我们可以使用以下公式计算溶解热(ΔH):ΔH = q / m其中,q为溶解过程中吸收或释放的热量,m为溶质的质量。
通过实验测得的数据和计算,我们得到了氯化钠的溶解热为X kJ/mol。
这个结果与文献值进行对比后,发现两者相差不大,说明实验结果较为准确。
讨论与分析:在实验过程中,我们注意到溶解过程中的温度变化曲线呈现出两个阶段。
在溶解开始时,温度下降较快,后期则趋于平稳。
这是因为溶解过程中吸收了大量的热量,导致温度下降。
随着溶解的进行,溶质与溶剂之间的相互作用力逐渐增强,温度变化逐渐减小,最终趋于稳定。
实验中可能存在的误差主要来自以下几个方面:1. 实验器材的误差:包括温度计的精度、烧杯的热容等。
2. 操作误差:在溶解过程中,温度的测量和记录可能存在一定的误差。
3. 环境误差:实验室环境的温度变化等因素也可能对实验结果产生一定的影响。
为了减小误差,我们可以采取以下措施:1. 使用精确度较高的实验器材和仪器,确保测量的准确性。
2. 在实验过程中,尽量减小外界环境对实验的干扰,例如控制实验室的温度稳定。
物理化学实验溶解热的测定
下一内容
回主目录
返回
物理化学实验—溶解热的测定
二、三人同时操作。1人采零,按锁定;1人点“开始计时” ,同时记下“标准北京时间”;1人加料。
上一内容
下一内容
回主目录
返回
物理化学实验—溶解热的测定
注意
软件操作中 串口设置为:COM1
在温差=-0.001时,加入下一个样品
上一内容
下一内容
(Ⅱ-2-16)
本实验采用电热补偿法,测定KNO3在水溶液中的积分溶 解热,并通过图解法求出其它三种热效应。
上一内容 下一内容 回主目录
返回
物理化学实验—溶解热的测定
四、仪器药品
微型计算机
SWC-RJ溶解热测定装置 WLS-2型可调式恒流电源(1A,0V~ 15V) 速度可调磁力搅拌器 1.仪器
含溶剂为n02时的热效应,亦即为某两浓度溶液的积分溶解热之差,以
Qd
表示。
微分冲淡热:在恒温恒压下,一摩尔溶剂加入某一确定浓度的无限量的 Q 溶液中产生的热效应,以 Q
n 1 T , P ,n2 表示,简写为
n 1 n2
。
上一内容
2.每次样品的加入。
3.搅拌速度宜快。
注意
上一内容
下一内容
回主目录
返回
物理化学实验—溶解热的测定
六、注意事项
1.实验过程中要求I、V值恒定,故应随时注意调节。 2.搅拌速度宜快。
3.固体KNO3易吸水,故称量和加样动作应迅速。固体KNO3在实验前务
必研磨成粉状,并在110℃烘干。 4.量热器绝热性能与盖上各孔隙密封程度有关,实验过程中要注意盖好 ,减少热损失。 5.记下每次加入样品的时间(时,分,秒)
物化实验报告材料溶解热地测定_KCl、KNO3
华南师范大学实验报告学生姓名 学 号____ 专 业 化学(师范) 年级、班级___ 课程名称 物理化学实验 实验项目实验类型 □验证 □设计 □综合 实验时间 年 月 日 实验指导老师 实验评分 【实验目的】1. 设计简单量热装置测定某物质在水中的积分溶解热。
2. 复习和掌握常用的量热技术与温度测定与校正方法。
3. 由作图法求出该物质在水中的摩尔稀释焓、微分溶解焓、微分稀释焓。
【实验原理】溶解热,即为一定量的物质溶解于一定量的溶剂中所产生的热效应。
溶解热除了与溶剂量及溶质量有关外,还与体系所处的温度及压力有关。
溶解热分为积分溶解热和微分溶解热。
积分溶解热是指在等温等压下把1mol 溶质溶解在一定量的溶剂中时所产生的热效应。
它是溶液组成的函数,若形成溶液的浓度趋近于零,积分溶解热也趋近于一定值,称为无限稀释积分溶解热。
积分溶解热是溶解时所产生的热量的总和,可由实验直接测定。
微分溶解热是等温等压下,在大量给定浓度的溶液里加入1mol 溶质时所产生的热效应,它可以表示为0,,)(np T sol n H∂∆∂,因溶液的量很大,所以尽管加入1mol 溶质,浓度仍可视为不变。
微分热难以直接测量,但可通过实验,用间接的方法求得。
溶解热的测量可通过绝热测温式量热计进行,它是在绝热恒压而且不做非体积功的条件下,通过测定量热系统的温度变化,而推算出该系统在等温等压下的热效应。
本实验采用标准物质法进行量热计能当量的标定。
利用1molKCl 溶于200mL 水中的积分溶解热数据进行量热计的标定。
当上述溶解过程在恒压绝热式量热计中进行时,可设计如下途径:在上述途径中,ΔH 1为KCl(s)、H 2O(l)及量热计从T 1等压变温至T 2过程的焓变,ΔH 2则为在T 2温度下,物质的量为n 1 mol 的KCl(s)溶于n 2 mol H 2O(l)中,形成终态溶液的焓变。
因为 ΔH=ΔH 1 +ΔH 2=0 ΔH 2 = -ΔH 1所以 ΔH 1=[ n 1 C p,m (KCl,s)+ n 2C p,m ( H 2O,l)+K]×(T 2-T 1) ΔH 2=n 1Δsol H mK=-[n 1 C p,m (KCl,s)+ n 2C p,m ( H 2O,l)]+ n 1Δsol H m /( T 2-T 1)=-[m 1 C p (KCl,s)+ m 2 C p ( H 2O,l)]+ m 1Δsol H m /M 1ΔT (1) 式中,m 1、m 2分别为溶解过程加入的KCl(s)和H 2O(l)的质量;C p,m 为物质的恒压比热容;C p (KCl,s)=0.699kJ/(kg ·K),C p ( H 2O,l)=4.184 kJ/(kg ·K);M 1为KCl 的摩尔质量;ΔT= T 2-T 1,即为溶解前后系统温度的差值;Δsol H m 为1mol KCl 溶解于200mL H 2O 的积分溶解热,其不同温度下的积分溶解热值见附录。
熔解热实验报告
华南师范大学实验报告学生姓名学号专业化学年级、班级课程名称物化实验实验项目溶解热的测定实验类型□验证□设计■综合实验时间2013年12月10 日实验指导老师肖信实验评分一、实验目的1、设计简单量热计测定某物质在水中的积分溶解焓。
2、复习和掌握常用的量热技术与测温方法。
3、由作图法求出该物质在水中的摩尔稀释焓、微分溶解焓、微分稀释焓。
二、实验原理溶解热,即为一定量的物质溶于一定量的溶剂中所产生的热效应。
溶解热除了与溶剂量及溶质量有关外,还与体系所处的温度及压力有关。
溶解热分为积分溶解热和微分溶解热。
积分溶解热即在等温等压条件下,1mol溶质溶解在一定量的溶剂中形成某指定浓度的溶液时的焓变。
也即为此溶解过程的热效应。
它是溶液组成的函数,若形成溶液的浓度趋近于零,积分溶解热也趋近于一定值,称为无限稀释积分溶解热。
积分溶解热是溶解时所产生的热量的总和,可由实验直接测定。
微分溶解热即在等温等压下,在大量给定浓度的溶液里加入一摩尔溶质时所产生的热效应,它可表示为(ЭΔsolH/ЭnB)T、P、nA ,因溶液的量很大,所以尽管加入一摩尔溶质,浓度仍可视为不变。
微分热难以直接测量,但可通过实验,用间接的方法求得。
溶解热的测量可通过绝热测温式量热计进行,它是在绝热恒压不作非体积功的条件下,通过测定量热系统的温度变化,而推算出该系统在等温等压下的热效应。
本实验采用标准物质法进行量热计能当量的标定。
利用1molKCl溶于200mol水中的积分溶解热数据进行量热计的标定。
当上述溶解过程在恒压绝热式量热计中进行时,可设计以下途径完成:上述途径中:△H = △H1+△H2 = 0 →△H2 = -△H1△H1 = [n1Cp,m (KCL,S)+ n2Cp,m(H2O,l)+ K ]×(T2- T1)△H2 = n1ΔsolHmK = -[n1Cp,m(KCL,S)+ n2Cp,m(H2O,l)+(n1ΔsolHm )/(T2- T1)] = -[m1Cp(KCL,S)+ m2Cp(H2O,l)+(m1ΔsolHm )/(M1 △T)] 式中m1 、m2分别为溶解过程加入的KCl(S)和H2O(l)的质量;Cp,m为物质的恒压比热容,既单位质量的物质的等压热容,Cp(KCl,S)=0.699 kJ/(kg·K), Cp(H2O,l)=4.184 kJ/(kg·K);M1为KCl的摩尔质量,△T =(T2- T1)即为溶解前后系统温度的差值;ΔsolHm 为1molKCl溶解于200 molH2O的积分溶解热,其不同温度下的积分溶解热数值见附录。
溶解热测定实验报告
溶解热测定实验报告溶解热测定实验报告引言:溶解热是指在恒定温度下,将一定质量的溶质溶解在溶剂中所吸收或释放的热量。
溶解热的测定对于理解物质的溶解过程、研究物质的溶解性质以及工业生产中的溶解过程控制等方面具有重要意义。
本实验旨在通过测定氯化铵在水中的溶解热,探究溶解热的测定方法和影响因素。
实验原理:溶解热的测定方法有多种,其中最常用的是容量法和热量计法。
容量法是通过测定溶液的温度变化来计算溶解热,而热量计法则是通过将溶质溶解在溶剂中释放的热量与热量计测得的热量相平衡来计算溶解热。
实验步骤:1.首先,准备好所需的实验器材,包括热量计、量筒、温度计等。
2.称取一定质量的氯化铵固体,放入热量计中。
3.用量筒量取一定体积的水,并将水加入热量计中,使氯化铵完全溶解。
4.记录下溶解过程中的温度变化,并观察是否有放热或吸热现象。
5.根据实验数据,计算出氯化铵在水中的溶解热。
实验结果与讨论:在实验过程中,我们观察到氯化铵溶解的过程中有放热现象,即溶解过程是放热反应。
通过记录温度变化的数据,我们得到了如下结果:在溶解过程中,溶液的温度从初始温度20℃升高到最高温度25℃,然后逐渐降低至最终温度23℃。
根据热力学原理,溶解热可以通过以下公式计算:ΔH = mcΔT其中,ΔH表示溶解热,m表示溶质的质量,c表示溶液的比热容,ΔT表示温度变化。
根据实验数据计算可得,溶解热的数值为:ΔH = (m溶质× c溶质 + m溶剂× c溶剂) × ΔT其中,m溶质为氯化铵的质量,c溶质为氯化铵的比热容,m溶剂为水的质量,c溶剂为水的比热容,ΔT为溶液温度的变化。
通过实验数据计算,我们得到氯化铵在水中的溶解热为X J/g。
实验误差与改进:在实验过程中,由于实验器材的精度和环境条件的影响,可能会导致实验结果存在一定的误差。
为了减小误差,我们可以采取以下改进措施:1.提高实验器材的精度,如使用更精确的量筒和温度计。
溶解热的测定-物化实验报告
溶解热的测定2 实验操作2.1 仪器药品、仪器型号及测试装置示意图保温瓶,磁力搅拌器1台,热敏电阻测温装置1套,加热器,直流稳压稳流电源,精密毫安表,秒表,容量瓶(500ml),烧杯(1000ml),温度计,研钵1只,称量瓶,分析天平(公用),高精度万用表(公用)。
KNO3(AR)图1 热敏电阻测溶解热装置图2.2 实验条件室温:20.5 ℃湿度:58%大气压:992.8 hPa2.3 实验操作步骤及方法要点(1)搭装置,要求装置绝热性能良好。
(2)量取500 mL去离子水注入保温瓶中。
开动搅拌器。
用电加热方法调节水温,使之尽量接近室温,输出温度基本保持不变。
调节惠斯通电桥的调节旋钮,使输出温度为5 度。
待温度基本稳定后,记录约4 min。
(3)打开电源开关,设定电源输出的电压值(20 V以上)和电流值(0.95 A)。
(4)按下电源的“输出”按键,开始加热,温度上升至7度时(以无纸记录仪上显示的数值为准)停止加热。
待温度稳定后再记录一段时间。
(5)在保温瓶中加入5 g研细的KNO3。
由于KNO3溶解吸热,温度降低,待温度稳定后再记录8 min左右。
(6)本实验采用称量瓶装样品,直接倒入。
由减量法求出样品质量。
天平为公用,每次使用前请务必归零。
(7)按下电源的“输出”按键,开始加热,同时打开秒表计时。
输出电压升至多少时停止加热,应根据下次加入KNO3的量估算,原则是:尽量保证环境温度处在最高温度与最低温度中间。
停止加热,同时停止计时,记下加热时间。
待温度稳定后再记录一段时间。
(8) 按上述步骤依次加入约6 g 、7 g 、8 g 、8 g 、7 g 和6 g KNO 3。
(9) 测量实验所用加热器的阻值R 。
3 结果与讨论3.1 原始实验数据加热电流I =0.95 A ,加热电压U=21.7 V ,加热电阻R=16.73 Ω 初始加入水的体积=500 mL 原始数据如下表。
表1 原始数据记录表序号 硝酸钾质量/g 加热时间/s 1 5.3207 126.691 2 5.9365 128.413 3 6.9239 159.506 4 7.9308 166.412 5 7.9321 151.312 6 7.0205 131.753 76.0079114.0953.2计算的数据、结果(1)作∆sol H m ~n 0曲线由于体系与环境之间不可避免地存在热交换,所以对实验数据进行雷诺校正,图解求吃醋加入溶质前后体系的温度T 1、T 2,电加热前后体系的温度T 1’、T 2’。
溶解热的测定实验报告
溶解热的测定实验报告一、实验目的1、掌握量热法测定物质溶解热的原理和方法。
2、了解温度和浓度对溶解热的影响。
3、学会使用数字贝克曼温度计和恒温槽等仪器。
二、实验原理溶解热是指在一定温度和压力下,溶质溶解于溶剂中产生的热效应。
溶解热分为积分溶解热和微分溶解热。
积分溶解热是指在定温定压下,把 1 摩尔溶质溶解在一定量的溶剂中所产生的热效应。
微分溶解热是指在定温定压下,在大量溶液中加入 1 摩尔溶质所产生的热效应。
在本实验中,采用绝热式量热法测定硝酸钾在水中的溶解热。
实验时,先测定量热器的热容,然后在量热器中加入已知量的水和一定量的硝酸钾,测量溶解过程中的温度变化,根据温度变化和量热器的热容计算溶解热。
量热器的热容可以通过已知溶解热的物质(如氯化钾)来测定。
三、实验仪器与试剂1、仪器数字贝克曼温度计磁力搅拌器恒温槽量热器电子天平2、试剂硝酸钾(分析纯)氯化钾(分析纯)蒸馏水四、实验步骤1、量热器热容的测定洗净并干燥量热器,用电子天平称取约 25g 氯化钾,放入量热器中。
用量筒量取 200ml 蒸馏水,倒入量热器中,插入搅拌棒,盖好盖子。
将数字贝克曼温度计插入量热器,启动磁力搅拌器,搅拌均匀。
观察温度计示数,待温度稳定后,记录初始温度 T1。
迅速加入氯化钾,同时启动秒表,继续搅拌,观察温度变化。
当温度升至最高点并稳定后,记录终止温度 T2。
根据氯化钾的溶解热(已知)和温度变化,计算量热器的热容 C。
2、硝酸钾溶解热的测定洗净量热器,用电子天平称取约 5g 硝酸钾。
用量筒量取 200ml 蒸馏水,倒入量热器中,插入搅拌棒,盖好盖子。
将数字贝克曼温度计插入量热器,启动磁力搅拌器,搅拌均匀。
观察温度计示数,待温度稳定后,记录初始温度 T3。
迅速加入硝酸钾,同时启动秒表,继续搅拌,观察温度变化。
当温度降至最低点并稳定后,记录终止温度 T4。
五、实验数据记录与处理1、量热器热容的测定|实验序号|氯化钾质量(g)|水的体积(ml)|初始温度T1(℃)|终止温度 T2(℃)||::|::|::|::|::|| 1 | 251 | 200 | 2050 | 2280 |已知氯化钾的溶解热为 1724kJ/mol,根据公式:\C =\frac{m \times \Delta H}{(T2 T1)}\其中,m 为氯化钾的物质的量(mol),\(\Delta H\)为氯化钾的溶解热(kJ/mol),C 为量热器的热容(kJ/℃)。
物化实验报告:实验3溶解热的测定
实验3溶解热的测定姓名:贾曌 学号:2008011920 班级:化82班 (同组者:张辇) 实验日期:2010年12月1日 提交报告日期:2010年12月7日实验指导老师:文芳1 引言1.1实验目的1.1.1测量硝酸钾在不同浓度水溶液的溶解热,求硝酸钾在水中溶解过程的各种热效应。
1.1.2掌握量热装置的基本组合及电热补偿法测定热效应的基本原理。
1.1.3复习和掌握常用的测温技术。
1.2实验原理溶解热 在恒温恒压下,溶质B 溶于溶剂A 中产生的热效应,用sol H ∆表示。
摩尔积分溶解热 在恒温恒压下,1mol 溶质溶解于一定量的溶剂中形成一定浓度的溶液,整个过程产生的热效应。
sol sol m BHH n ∆∆=(1) 摩尔微分溶解热 在恒温恒压下,1mol 溶质溶于某一确定浓度的无限量的溶液中产生的热效应,以,,()A sol T P n B H n ∂∆∂表示,简写为()A sol n BHn ∂∆∂。
稀释热 在恒温恒压下,一定量的溶剂A 加到某浓度的溶液中使之稀释,所产生的热效应。
摩尔积分稀释热 在恒温恒压下,在含有1mol 溶质的溶液中加入一定量的溶剂,使之稀释成另一浓度的溶液,这个过程产生的热效应,以dil m H ∆表示。
21dil m sol m sol m H H H ∆=∆-∆ (2)摩尔微分稀释热 在恒温恒压下,1mol 溶剂加入到某一浓度无限量的溶液中所发生的热效应,以,,()B sol T P n A H n ∂∆∂表示,简写为()B sol n AHn ∂∆∂。
在恒温恒压下,对于指定的溶剂A 和溶质B ,溶解热的大小取决于A 和B 的物质的量,即 (,)s o l A BH n n ∆=⎰(3) ,,,,()()B A sol sol sol A T P n B T P n A BH HH n n n n ∂∆∂∆∆=+∂∂ (4) 或 ,,,,()()B A sol sol A sol m T P n T P n B A BHH n H n n n ∂∆∂∆∆=+∂∂ (5)令0/A B n n n =,(5)改写为:0,,,,()()B A sol sol sol m T P n T P n A BH HH n n n ∂∆∂∆∆=+∂∂ (6) 作出图1 sol m H ∆-0n 曲线图本实验采用累加的方法,先在纯溶剂中加入溶质,测出溶解热,然后在这溶液中再加入溶质,测出热效应,根据先后加入溶质总量可求出0n ,而各次热效应总和即为该浓度下的溶解热。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改赠人玫瑰,手留余香。
华南师范大学实验报告学生姓名学号专业年级、班级课程名称实验项目溶解热的测定实验类型□验证□设计■综合实验时间年月日实验指导老师实验评分一、实验目的1、设计简单量热计测定某物质在水中的积分溶解焓。
2、复习和掌握常用的量热技术与测温方法。
3、由作图法求出该物质在水中的摩尔稀释焓、微分溶解焓、微分稀释焓。
二、实验原理溶解热,即为一定量的物质溶于一定量的溶剂中所产生的热效应。
溶解热除了与溶剂量及溶质量有关外,还与体系所处的温度及压力有关。
溶解热分为积分溶解热和微分溶解热。
积分溶解热即在等温等压条件下,1mol溶质溶解在一定量的溶剂中形成某指定浓度的溶液时的焓变。
也即为此溶解过程的热效应。
它是溶液组成的函数,若形成溶液的浓度趋近于零,积分溶解热也趋近于一定值,称为无限稀释积分溶解热。
积分溶解热是溶解时所产生的热量的总和,可由实验直接测定。
微分溶解热即在等温等压下,在大量给定浓度的溶液里加入一摩尔溶质时所产生的热效应,它可表示为(ЭΔsolH/ЭnB)T、P、nA ,因溶液的量很大,所以尽管加入一摩尔溶质,浓度仍可视为不变。
微分热难以直接测量,但可通过实验,用间接的方法求得。
溶解热的测量可通过绝热测温式量热计进行,它是在绝热恒压不作非体积功的条件下,通过测定量热系统的温度变化,而推算出该系统在等温等压下的热效应。
本实验采用标准物质法进行量热计能当量的标定。
利用1molKCl溶于200mol水中的积分溶解热数据进行量热计的标定。
当上述溶解过程在恒压绝热式量热计中进行时,可设计以下途径完成:上述途径中:△H = △H1+△H2 = 0 →△H2 = -△H1△H1 = [n1Cp,m (KCL,S)+ n2Cp,m(H2O,l)+ K ]×(T2- T1)△H2 = n1ΔsolHmK = -[n1Cp,m(KCL,S)+ n2Cp,m(H2O,l)+(n1ΔsolHm )/(T2- T1)]= -[m1Cp(KCL,S)+ m2Cp(H2O,l)+(m1ΔsolHm )/(M1 △T) ] 式中m1 、m2 分别为溶解过程加入的KCl(S)和H2O(l)的质量;Cp,m为物质的恒压比热容,既单位质量的物质的等压热容,Cp(KCl,S)=0.699 kJ/(kg·K),Cp(H2O,l)= 4.184 kJ/(kg·K);M1为KCl的摩尔质量,△T =(T2- T1)即为溶解前后系统温度的差值;ΔsolHm 为1molKCl溶解于200 molH2O的积分溶解热,其不同温度下的积分溶解热数值见附录。
通过公式式可计算量热计的K值。
本实验测定1mol的KNO3溶于200mol的H2O的溶解过程的积分溶解热,途径如下ΔsolH = -[n1Cp,m (KNO3,S)+ n2Cp,m(H2O,l)+ K ]×(T2- T1)= -[ m1Cp(KNO3,S)+ m2Cp(H2O,l)+ K ]×(T2- T1)摩尔溶解热ΔsolH m = ΔsolH/n1同理m1,m2 :分别为溶解过程加入的KNO3(S)和 H2O(l)的质量;Cp物质的恒压比热容,既单位质量的物质的等压热容,Cp(KNO3,S)=0.9522KJ.Kg-1.K-1,△T =(T2- T1 ):溶解前后系统温度的差值 (需经过雷诺校正) ;n1:所加入的KNO3摩尔数通过公式,既可求得1mol的KNO3溶于200mol的H2O的溶解过程的积分溶解热。
三、仪器与试剂1、仪器:广口保温瓶(1个)磁力搅拌器(1台)贝克曼温度计(1台)1/10℃温度计(1支)容量瓶(200ml)(1个)停表(1个)2、试剂氯化钾(分析纯)硝酸钾(分析纯)四、实验步骤1.量热计的标定(1)在称量瓶中准确称取4.1413克的KCl, 并记下装有KCL的称量瓶的总重量。
(2) 用容量瓶准确量取200mL室温下的蒸馏水(密度为ρ=1Kg.dm-3),倒入广口保温杯中。
(3) 按图3-1所示,组装好简单绝热测温式量热计,并调节好贝克曼温度计。
(4) 开动磁力搅拌器,保持一定的搅拌速率,观察贝克曼温度计读数的变化,待温度变化率基本稳定后(既单位时间温度的变化值基本相同)后,每隔一分钟记录一次温度,连续记录六次,作为溶解的前期温度。
(5)打开量热计盖子,将称好的KCl迅速倒入量热计并盖好盖子,保持与溶解前相同的搅拌速率,继续每分钟记录一次温度,直到温度不再变化时,再连续记录六个温度变化率稳定的点,此六个点作为溶解的后期温度。
(6)读取1/10℃温度计的读数,根据此温度从附表中查出相应的KCL的积分溶解热。
(7)称量已倒出KCl的空称量瓶质量,准确计算已溶解的KCL的质量。
2、 KNO3 积分溶解热的测定(1)在称量瓶中准确称取 5.6161克的KNO3 ,并记下装KNO3 的称量瓶的总重量。
(2) 用容量瓶准确量取200mL室温下的蒸馏水(密度ρ=1Kg.dm-3),倒如广口保温杯中,以下操作按上述中的(4)、(5)、(7)。
五、数据记录室温: 22.20°C 大气压: 102.055Kpat/min 12 13 14 15 16 17 18 19 20 21 22T/°C 20.714 20.680 20.659 20.650 20.651 20.665 20.685 20.726 20.746 20.746 20.763t/min 1 2 3 4 5 6 7 8 9 10 11T/°C 23.251 23.249 23.249 23.249 23.250 23.217 22.341 22.091 21.445 21.330 21.216 t/min 12 13 14 15 16 17 18 19 20 21 22T/°C 21.153 21.128 21.104 21.092 21.089 21.088 21.089 21.089 21.105 21.141 21.158t/min 1 2 3 4 5 6 7 8 9 10 11T/°C 22.692 22.695 22.698 22.702 22.706 22.654 22.368 21.149 20.930 20.837 20.686 t/min 12 13 14 15 16 17 18 19 20 21 22T/°C 20.642 20.613 20.589 20.575 20.569 20.568 20.589 20.600 20.619 20.638 20.655六、数据处理与计算1、雷诺校正:2、氯化钾(1)m=4.1610gt=22.5℃校正后△T=1.1655℃氯化钾(2)m=3.7992gt=221.90℃校正后△T=1.1712℃氯化钾(3)m=4.1791gt=22.80℃校正后△T=1.2079℃硝酸钾(1)m=5.6662gt=22.20℃校正后△T=2.3020℃硝酸钾(2)m=5.6035gt=22.80℃校正后△T=2.2166℃硝酸钾(3)m=5.6421gt=22.10℃校正后△T=2.2835℃2、量热计的K值计算由图得:氯化钾(1)△T=1.1655℃氯化钾(2)△T=1.1712℃氯化钾(3)△T=1.2079℃分别代入K = -[m1Cp(KCL,S)+ m2Cp(H2O,l)+(m1ΔsolHm )/(M1 △T]求得:K1=0.014563364kJ/K K2=-0.056449269kJ/K K3=-0.019113618kJ/K由于(2)中数据偏差较大,故舍去,取(1)(3)平均值K=-0.0022751273、1mol的KNO3溶于200mol的H2O的溶解过程的积分溶解热ΔsolH = -[n1Cp,m (KNO3,S)+ n2Cp,m(H2O,l)+ K ]×(T2- T1)= -[ m1Cp(KNO3,S)+ m2Cp(H2O,l)+ K ]×(T2- T1)ΔsolH m = ΔsolH/n1分别代入求得Hm1=34.4987(kJ/mol)Hm2=33.5882(kJ/mol)Hm3=34.3667(kJ/mol)取平均值得Hm=34.151(kJ/mol)参考文献值Hm=34.73(kJ/mol)相对误差为: 0.666%七、分析与讨论1、本次实验中,在加入样品进行量热后,由于温度下降速度较快,温度读数往往来不及,导致部分读数点缺失或有偏差,在进行雷诺校正时难以做出平滑曲线,是误差来源之一。
2、由于单次实验的温度并不完全一致,在不同温度下样品的溶解速率有差别,因此是误差来源之一,但在温度差别范围之内影响不大,可以忽略。
3、在实验过程中,对应于第(2)组氯化钾,由于实验操作不当导致部分样品撒落,样品质量偏小,误差较大,故在数据处理中舍弃,未参与处理,故无影响。
4、实验仪器,保温瓶的绝热性能一般,兼之样品为开盖式加热,不可避免有较多的热交换,故,因此温度差值偏小,这是实验误差主要来源。
与参考文献比对,与事实情况接近。
5、实验为了加速溶解充分,使用了磁子搅拌器,属于机械搅拌。
在此过程中会时保温瓶内温度会不断升高,导致温度差值偏小,这也是主要误差来源。
九、参考文献[1]傅献彩 ,沈文霞 ,姚天扬 .物理化学第五版上册 [M].北京 :高等教育出版社[2]华南师范大学化学实验教学中心组织等编 .物理化学实验 [M].化学工业出版社最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改赠人玫瑰,手留余香。