几种简单的恒流源电路5

合集下载

几种简单的恒流源电路

几种简单的恒流源电路

几种简单的恒流源电路
2
推荐
恒流电路应用的范围很广,下面介绍几种由常用集成块组成的恒流电路。

1.由7805组成的恒流电路,电路图如下图1所示:
电流I=Ig+VOUT/R,Ig的电流相对于Io是不能忽略的,且随Vout,Vin及环境温度的变化而变化,所以
这个电路在精度要求有些高的场合不适用。

2.由LM317组成的恒流电路如图2所示,I=Iadj+Vref/R(Vref=1. 25),Iadj的输出电流是微安级的所
以相对于Io可以忽略不计,由此可见其恒流效果较好。

3.由PQ30RV31组成的恒流电路如图3所示,I=Vref/R(Vref=1.25),他的恒流会更好,另外他是低压差稳压IC。

6种最常用恒流源电路的分析与比较

6种最常用恒流源电路的分析与比较

6种最常用恒流源电路的分析与比较6种最常用恒流源电路的分析与比较恒流电路有很多场合不仅需要场合输出阻抗为零的恒流源,也需要输入阻抗为无限大的恒流源,以下是几种单极性恒流电路:类型1:特征:使用运放,高精度输出电流:Iout=Vref/Rs类型2:特征:使用并联稳压器,简单且高精度输出电流:Iout=Vref/Rs检测电压:根据Vref不同(1.25V或2.5V)类型3:特征:使用晶体管,简单,低精度输出电流:Iout=Vbe/Rs检测电压:约0.6V类型4:特征:减少类型3的Vbe的温度变化,低、中等精度,低电压检测输出电流:Iout=Vref/Rs检测电压:约0.1V~0.6V类型5:特征:使用JEFT,超低噪声输出电流:由JEFT决定检测电压:与JEFT有关其中类型1为基本电路,工作时,输入电压Vref与输出电流成比例的检测电压Vs(Vs=Rs×Iout)相等,如图5所示,图5注:Is=IB+Iout=Iout(1+1/h FE)其中1/h FE为误差若输出级使用晶体管则电流检测时会产生基极电流分量这一误差,当这种情况不允许时,可采用图6所示那样采用FET管图6Is=Iout-I G类型2,这是使用运放与Vref(2.5V)一体化的并联稳压器电路,由于这种电路的Vref高达2.5V,所以电源利用范围较窄类型3,这是用晶体管代替运放的电路,由于使用晶体管的Vbe (约0.6V)替代Vref的电路,因此,Vbe 的温度变化毫无改变地呈现在输出中,从而的不到期望的精度类型4,这是利用对管补偿Vbe随温度变化的电路,由于检测电压也低于0.1V左右,应此,电源利用范围很宽类型5,这是利用J-FET的电路,改变R gs可使输出电流达到漏极饱和电流I DSS,由于噪声也很小,因此,在噪声成为问题时使用这种电路也有一定价值,在该电路中不接R GS,则电流值变成I DSS,这样,J-FET 接成二极管形式就变成了“恒流二极管”以上电路都是电流吸收型电路,但除了类型2以外,若改变Vref 极性与使用的半导体元件,则可以变成电流吐出型电路。

几种镜像恒流源电路分析!

几种镜像恒流源电路分析!
几种镜像恒流源电路分析!
在改进型差动放大器中,用恒流源取代射极电阻RE, 既为差动放大电路设置了合适的静态 工作电流,又大大增强了共模负反馈作用,使电路具有了更强的抑制共模信号的能力,且

不需要很高的电源电压,所以,恒流源和差动放大电路简直是 对绝配!
恒流源既可以为放大电路提供合适的静态电流,也可以作为有源负载取代高阻值的电阻, 从而增大放大电路的电压放大倍数。 这种用法在集成运放电路中有非常广泛的应用,本文 将介绍常见的恒流源电路以及作为有源负载的应用。
广播百科001 — 100期 广播百科101 — 200期 广电术语词旷( 一 ) 广电术语词汇(二)
来源:电子工程专辑
集成运放是 一 个多级放大电路,因而需要多路恒流源电路分别给各级提供合适的静态电 流。 可以利用 一个基准电流去获得多个不同的输出电流,以适应各级的需要。
图 4所示电路是在比例恒流源基础上得到的多路恒流源电路,IR为基准电流,IC1 、 IC2和 IC3为三路输出电流。 由千各管的b-e间电压 UBE数值大致相等,因此可得近似关系
一、 镜像恒流源电路 如圉 1所示为镜像恒流源电路,它由两只特性完全相同的管子VTO和VT1构成,由于VTO管 的c、 b极连接,因此UCEO=UBEO, 即 VTO处于放大状态,集电极电流ICO=�O*IBO。 另 外,管子VTO和VT1的b-e 分别连接,所以它们的基极电流1B0=1B1=1B。 设电流放大系数 �0= 阳=�'则两管集电极电流ICO=IC1=IC=�*IB。 可见,由于电路的这种特殊接法,使 两管集电极IC1和ICO呈镜像关系,故称此电路为镜像恒流源 (IR为基准电流,IC1为输出 电流)。
IEOReO�IE1Re1�1E2Re2�1E3Re3 (2-6)

mos管恒流源电路

mos管恒流源电路

mos管恒流源电路介绍在电子电路中,常常需要使用恒流源来对电路中的负载进行电流控制。

MOS管恒流源电路是一种常见的电路配置,它可以提供稳定的电流输出并对负载电阻的变化具有一定的抵抗能力。

本文将对MOS管恒流源电路进行全面、详细、完整且深入地探讨。

基本原理MOS管恒流源电路是通过MOS管的工作原理来实现恒流输出的。

当MOS管处于饱和区时,其漏极电流与栅极电压成正比。

通过合理的电路设计和偏置设置,可以使得MOS管工作在饱和区,从而实现恒流输出。

电路结构MOS管恒流源电路的基本结构如下所示:Vdd|R|+---| ||MOS|| |---|GND其中,Vdd为电源电压,R为负载电阻,MOS为MOS管。

通过控制MOS管的栅极电压,可以控制电路中的电流。

工作原理MOS管恒流源电路的工作原理如下:1.当电源电压Vdd施加在电路上时,MOS管的栅极电压为0V,此时MOS管处于截止区,没有漏极电流流过负载电阻R。

2.当把栅极电压逐渐增加时,当栅极电压达到某个阈值电压时,MOS管开始进入饱和区。

此时,栅极电压的增加将导致漏极电流的增加。

3.当栅极电压继续增加时,MOS管的漏极电流逐渐稳定在一个恒定值。

这是因为MOS管的饱和区特性决定了漏极电流与栅极电压成正比。

4.当电源电压Vdd变化时,由于MOS管的饱和区特性,漏极电流基本保持不变,从而实现了对负载电阻变化的抵抗能力。

设计与优化设计和优化MOS管恒流源电路时,需要考虑以下几个关键因素:1. MOS管尺寸选择MOS管的尺寸选择对电路的性能有重要影响。

较大的MOS管尺寸可以提供更大的漏极电流范围,但也会增加电路的功耗和面积。

因此,需要根据具体应用需求综合考虑。

2. 偏置电路设计为了使MOS管能够工作在饱和区,需要设计合适的偏置电路。

常见的偏置电路包括电流镜电路和电流源电路。

合理的偏置电路设计可以提高电路的稳定性和性能。

3. 电源电压选择电源电压的选择也会影响电路的性能。

LED驱动电源恒流电路方案详解

LED驱动电源恒流电路方案详解

恒流案大全恒流源是电路中广泛使用的一个组件,这里我整理一下比较常见的恒流源的结构和特点。

恒流源分为流出(Current Source)和流入(Current Sink)两种形式。

最简单的恒流源,就是用一只恒流二极管。

实际上,恒流二极管的应用是比较少的,除了因为恒流二极管的恒流特性并不是非常好之外,电流规格比较少,价格比较贵也是重要原因。

最常用的简易恒流源如图(1) 所示,用两只同型三极管,利用三极管相对稳定的be电压作为基准,电流数值为:I = Vbe/R1。

这种恒流源优点是简单易行,而且电流的数值可以自由控制,也没有使用特殊的元件,有利于降低产品的成本。

缺点是不同型号的管子,其be电压不是一个固定值,即使是相同型号,也有一定的个体差异。

同时不同的工作电流下,这个电压也会有一定的波动。

因此不适合精密的恒流需求。

为了能够精确输出电流,通常使用一个运放作为反馈,同时使用场效应管避免三极管的be电流导致的误差。

典型的运放恒流源如图(2)所示,如果电流不需要特别精确,其中的场效应管也可以用三极管代替。

电流计算公式为:I = Vin/R1这个电路可以认为是恒流源的标准电路,除了足够的精度和可调性之外,使用的元件也都是很普遍的,易于搭建和调试。

只不过其中的Vin还需要用户额外提供。

从以上两个电路可以看出,恒流源有个定式(寒,“定式”好像是围棋术语XD),就是利用一个电压基准,在电阻上形成固定电流。

有了这个定式,恒流源的搭建就可以扩展到所有可以提供这个“电压基准”的器件上。

最简单的电压基准,就是稳压二极管,利用稳压二极管和一只三极管,可以搭建一个更简易的恒流源。

如图(3)所示:电流计算公式为:I = (Vd-Vbe)/R1TL431是另外一个常用的电压基准,利用TL431搭建的恒流源如图(4)所示,其中的三极管替换为场效应管可以得到更好的精度。

TL431组成流出源的电路,暂时我还没想到:)TL431的其他信息请参考《TL431的部结构图》和《TL431的几种基本用法》电流计算公式为:I = 2.5/R1事实上,所有的三端稳压,都是很不错的电压源,而且三端稳压的精度已经很高,需要的维持电流也很小。

mos恒流源电路

mos恒流源电路

MOS恒流源电路1. 引言MOS恒流源电路是一种常用的电子电路,用于在集成电路中提供稳定的恒定电流。

它由金属氧化物半导体场效应晶体管(MOSFET)和其他辅助元件组成。

在本文中,我们将深入探讨MOS恒流源电路的原理、设计和应用。

2. 原理MOS恒流源电路基于场效应晶体管的工作原理。

场效应晶体管有三个区域:栅极、漏极和源极。

通过对栅极施加控制信号,可以控制漏极和源极之间的电流。

当栅极-源极电压(Vgs)大于门阈电压(Vth)时,场效应晶体管处于放大区域,漏极-源极之间形成一个稳定的饱和区。

在MOS恒流源电路中,一个MOSFET被设置为恒流源。

通过调整栅极-源极之间的偏置电压,可以实现所需的输出恒定电流。

这种设计可以提供高精度和稳定性。

3. 设计步骤3.1 确定所需的恒定电流在设计MOS恒流源电路之前,首先需要确定所需的恒定电流。

这取决于特定应用的要求。

例如,在模拟集成电路中,可能需要一个稳定的参考电流。

3.2 选择合适的MOSFET根据所需的恒定电流和其他工作参数,选择适合的MOSFET。

关键参数包括最大漏极-源极电压(Vds)、最大漏极电流(Id)和门阈电压(Vth)。

确保所选MOSFET能够满足设计要求。

3.3 偏置设置通过设置栅极-源极之间的偏置电压来实现所需的输出恒定电流。

这可以通过添加一个偏置电路来实现。

常见的偏置方法包括简单的基准偏置、反馈偏置和温度补偿。

3.4 稳定性分析进行稳定性分析以确保设计在各种工作条件下都能提供稳定的输出。

分析中应考虑温度变化、供应电压波动等因素对输出恒流源的影响。

4. 应用MOS恒流源电路在许多应用中都有广泛使用,以下是其中一些常见应用:4.1 参考电流源MOS恒流源电路可以用作模拟集成电路中的参考电流源。

它提供了一个稳定的参考电流,用于其他模块或电路的运算和校准。

4.2 差分放大器MOS恒流源电路在差分放大器中也有重要作用。

差分放大器是一种常见的模拟电路,用于放大差分信号并抑制共模信号。

双向恒流源电路

双向恒流源电路

双向恒流源电路1 双向恒流源电路介绍双向恒流源电路,也叫双向开关恒流源(Bi-directional Switching Current Source),是一种精密的恒流源电路。

它不仅能提供对给定电路的输出电流,还能提供外部电源的双向控制输出电流,从而可以实现多种应用场景下的无源控制,包括电池充放电控制、多路电流模式监控、温度测量等。

2 工作原理双向恒流源电路利用半导体控制来控制输出流,其结构由部分半导体功率放大器、电源放大器、反馈电路和可调节稳压元件等组成。

半导体控制电路能够根据输入信号来改变其内部功率放大器的电压和电流,从而控制输出电流的大小。

电源放大器则将功率放大器的电压或电流转换为恒定的输出电流。

反馈电路会不断地对输出电流进行检测,确保电流保持在设定的范围内。

可调节稳压元件可以调节电源电压,以确保其输出电流不受电源电压变化的影响。

3 应用领域双向恒流源电路应用广泛,可以用于与可变功率设备的连接,以及提供电压或电流信号的调节和控制。

它还能够提供对保护电路的连接,并且可以实现电池放电和充电的控制,以实现多种动态控制的需求。

另外,还可以用于检测温度和测量电压、电流等,从而提供准确而可靠的信息,帮助人们控制和管理电子系统。

4 总结双向恒流源电路是一种精密的恒流源电路,它不仅能够提供对给定电路的输出电流,而且能够提供外部电源的双向控制输出电流,从而可以实现多种应用场景下的无源控制,包括电池充放电控制、多路电流模式监控、温度测量等,还可用作测控系统的外部调节信号来指导系统的工作,为智能电子系统提供准确、可靠的信息,因此应用广泛,受到用户的青睐。

恒流源电路设计方法

恒流源电路设计方法

恒流源电路设计方法1.基于电流镜的恒流源电路设计方法:基于电流镜的恒流源电路是一种常见的实现方式,它通过将负载电流转化为电压信号控制电流源输出的电流,来实现恒流输出的稳定性。

首先,写出恒流源电路基本的分析方程式:Vin = I*Rin,其中Vin 为输入电压,Rin为输入电阻,I为恒流源输出的电流。

其次,选择电流镜的工作模式。

常见的电流镜工作模式有共射和共基模式。

在选择工作模式时需要考虑输出电流的稳定性和电压的要求。

通常情况下,共射模式更常用。

然后,根据电流源电压和目标输出电流的关系,确定电流镜的尺寸。

根据电流镜的工作模式,计算电流源电压和目标输出电流的关系,并选择合适的电流镜尺寸。

最后,根据系统的要求调整电流源电路的参数。

根据具体的负载电流需求和电源电压,确定输入电压和输入电阻的数值。

通过调整输入电压和输入电阻,可以得到所需的恒流源输出电流。

2.基于反馈的恒流源电路设计方法:基于反馈的恒流源电路是另一种常见的实现方式,它通过负反馈将输出电流与参考电流进行比较,并根据比较结果调整输入电压或输入电流,从而实现稳定的恒流输出。

首先,确定参考电流的数值。

参考电流的数值应根据具体的需求来确定,通常需要通过试验或计算来得到合适的数值。

其次,选择比较器。

比较器的作用是将输出电流与参考电流进行比较,并将比较结果输出。

然后,设计反馈回路。

反馈回路的作用是根据比较结果调整输入电压或输入电流,以保持输出电流稳定。

最后,根据系统的要求调整电流源电路的参数。

根据具体的负载电流需求和电源电压,确定输入电压或输入电流的数值。

通过调整输入电压或输入电流,可以得到所需的恒流源输出电流。

总之,恒流源电路设计的关键是根据具体的需求选择合适的实现方式,并根据系统的要求调整电流源电路的参数。

通过合理的设计和参数调整,可以实现稳定的恒流输出。

单片机恒流源电路

单片机恒流源电路

单片机恒流源电路单片机恒流源电路是一种常见的电子电路,用于控制电流的大小保持恒定。

它在许多应用中都扮演着重要的角色,比如电池充电、发光二极管(LED)驱动和电阻等。

本文将介绍单片机恒流源电路的原理、设计和应用。

一、原理单片机恒流源电路的原理是通过负反馈控制电流的大小。

它由一个电流传感器、一个运算放大器和一个功率放大器组成。

电流传感器用于检测电流的大小,运算放大器用于比较检测到的电流与设定的目标电流,功率放大器用于根据比较结果来调节输出电流。

二、设计单片机恒流源电路的设计需要考虑多个因素,包括电流范围、精度要求和稳定性。

首先,确定所需的电流范围,即电流的最大和最小值。

然后,选择适当的电流传感器和运算放大器,以满足所需的精度要求。

最后,设计功率放大器的控制电路,使其能够根据比较结果来调节输出电流。

三、应用单片机恒流源电路在许多应用中都有广泛的应用。

以下是一些常见的应用示例:1. 电池充电:单片机恒流源电路可以用于控制电池的充电电流,以避免过充或过放。

通过监测电池电流并根据需要调节充电电流,可以保证电池的安全充电。

2. LED驱动:单片机恒流源电路可以用于驱动LED,以保持恒定的亮度。

通过监测LED电流并根据需要调节驱动电流,可以确保LED 的稳定亮度。

3. 电阻:单片机恒流源电路可以用于测试电阻的阻值。

通过控制电流的大小并测量电压,可以计算出电阻的阻值。

四、总结单片机恒流源电路是一种常见的电子电路,广泛应用于电池充电、LED驱动和电阻测试等领域。

它通过负反馈控制电流的大小,使其能够保持恒定。

设计单片机恒流源电路需要考虑电流范围、精度要求和稳定性等因素。

通过合理设计和应用,单片机恒流源电路能够实现各种电流控制和测量需求。

最简单的恒流源LED驱动电路

最简单的恒流源LED驱动电路

WMZD系列专门为LED照明做温度补偿的电阻,采用热敏电阻补偿法的LED恒流源,具有电路简洁,可靠性好,组合方便,经济实用,适用各种LED头灯,日光灯,路灯;车船灯,太阳能LED庭院灯;LED显示屏等对恒流的需求。

就是专门针对LED 照明出现的由于温度引起的LED PN结电压VF下降,即-2mV/℃,称为PN结的负温效应。

该特性在发光应用上就是个致命的缺陷,直接影响到LED器件的发光效率、发光亮度、发光色度。

比如,常温25℃时LED最佳工作电流20mA,当环境温度升高到85℃时,PN结电压VF下降,工作电流急剧增加到35mA~37mA,此时电流的增加并不会产生亮度的增加,称为亮度饱与。

更为严重的就是,温度的上升,引起光谱波长的偏移,造成色差。

如长时工作在此高温区还将引起器件老化,发光亮度逐步衰减。

同样,当环境温度下降至-40℃时,结电压VF上升,最佳工作电流将从20mA减小到8mA~10mA,发光亮度也随电流的减少而降低,达不到应用场所所需的照度。

为了避免上述特性带来的不足,一般在LED灯的相关产品上,通常采用如下措施:1、将LED装在散热板上,或风机风冷降温。

2、LED采用恒流源的供电方式,不因LED随温度上升引起使回生电流增加,防止PN结恶性升温。

或这两种方法并用。

实践证明,这两种方法用于大功率LED灯(如广告背景灯、街灯)。

确实就是行之有效的措施。

但当LED灯进入寻常百姓家就碰到如下问题了:散热板与风冷能否集成在一个普通灯头的空间内;采用集成电路或诸多元器件组成的恒流源电路,它的寿命不取于LED,而取决整个系统的某块“短板”;有没有吸引眼球的价格。

用热敏电阻补偿法来解决LED恒流源问题,既经济又实用。

我公司采用具有正温度系数的热敏电阻(+2mV/℃)与负温度特性的LED(-2mV/℃)串联,互补成一个温度系数极小电阻型负载。

一旦工作电压确定后,串联回路中的电流,将不会随温度变化而变化,通俗地讲,当LED随温度升高电流增加时,热敏电阻也随温度升高电阻变大,阻止了回路电流上升,当LED随温度下降电流减小时,热敏电阻也随温度下降电阻变小,阻止了回路电流的减少,如匹配得当,当环境温度在-40℃-85℃范围内变化时,LED的最佳工作电流不会明显变化,见图1电流曲线Ⅱ。

恒流源温度补偿电路

恒流源温度补偿电路

恒流源温度补偿电路恒流源温度补偿电路是一种用于补偿温度变化对恒流源输出电流的影响的电路。

在恒流源中,通常使用一个电流源来提供恒定的电流。

然而,当环境温度发生变化时,电流源的输出电流也会发生变化,这可能会导致电路性能的不稳定和误差的增加。

为了解决这个问题,可以使用恒流源温度补偿电路来补偿温度变化对恒流源输出电流的影响。

下面是一种常见的恒流源温度补偿电路的示意图:```┌─R1─┐│ ││ │+Vcc ┼ ■ R3■ └─┬─────┐│ │ ■ Q2Vref ┼ ■ ┌─┴─■────■───■───Vout├─Q1 │ Q3│ R4 R5├──■──────┐ ■│ R2 ■Ib ││ └─┘│└────────────GND```其中,Q1, Q2, Q3为三个晶体管,R1, R2, R3, R4, R5为五个电阻,Vcc为直流电源电压,Vref为基准电压。

恒流源温度补偿电路的工作原理如下:1. Q1是一个NPN型晶体管,通过R1和R2来产生一个基准电压Vbe1。

这个基准电压将用于控制Q2和Q3的工作状态。

2. Q2是一个PNP型晶体管,它通过R3来形成一个电流源,其电流被限制在一个恒定的范围内。

3. Q3也是一个PNP型晶体管,它通过R4和R5来形成一个负反馈电路,将Q2的输出电流作为输入,控制Q2的工作状态,使其输出电流恒定。

4. 当环境温度变化时,Q1的Vbe1也会发生变化。

为了抵消这种变化对电路输出的影响,通过选择合适的电阻值和晶体管参数,使得Q2和Q3的工作状态在温度变化的同时能够保持恒定的输出电流。

5. R1, R2的选择会影响Q1的工作点和基准电压的大小,R3的选择会影响Q2的工作状态和输出电流的大小,而R4和R5的选择会影响Q3的工作状态和对Q2输出电流变化的补偿效果。

通过适当选择电阻值和晶体管参数,恒流源温度补偿电路可以在一定范围内保持恒定的输出电流,从而提高电路的稳定性和精度。

mos管恒流源电路

mos管恒流源电路

mos管恒流源电路
摘要:
1.简介
2.mos 管恒流源电路的基本原理
3.mos 管恒流源电路的分类
4.mos 管恒流源电路的应用领域
5.mos 管恒流源电路的发展趋势和前景
正文:
mos 管恒流源电路是一种利用mos 管的导通电阻特性来实现恒定电流输出的电路。

在现代电子技术中,恒流源电路被广泛应用于各种电子设备和仪器中,如电源、放大器、振荡器等。

mos 管恒流源电路的基本原理是利用mos 管的导通电阻特性来控制电流。

当mos 管的栅极电压达到一定值时,mos 管进入导通状态,此时电流可以通过mos 管的漏极和源极形成恒定电流输出。

mos 管恒流源电路可以分为两类:一类是电压控制型,另一类是电流控制型。

电压控制型恒流源电路的栅极电压是恒定的,而电流控制型恒流源电路的栅极电流是恒定的。

mos 管恒流源电路的应用领域非常广泛。

例如,在电源系统中,恒流源电路可以用于提供稳定的输出电流,以保证电源系统的稳定运行。

在放大器中,恒流源电路可以提供稳定的偏置电流,以保证放大器的稳定性和线性度。

随着电子技术的不断发展,mos 管恒流源电路也在不断进步。

未来,mos
管恒流源电路将朝着更小、更轻、更节能的方向发展,以满足电子设备对恒流源电路的不断增长的需求。

总的来说,mos 管恒流源电路是一种重要的电子电路,它在现代电子技术和仪器中发挥着重要的作用。

五种经典电路详解

五种经典电路详解

五种经典电路详解电路图是电⼦⼯程师必学的基本技能之⼀,本⽂集合了稳压电源、DCDC转换电源、开关电源、充电电路、恒流源相关的经典电路资料,为⼯程师提供最新鲜的电路图参考资料,超全超详细,只能帮你到这了!⼀、稳压电源1、3~25V电压可调稳压电路图此稳压电源可调范围在3.5V~25V之间任意调节,输出电流⼤,并采⽤可调稳压管式电路,从⽽得到满意平稳的输出电压。

⼯作原理:经整流滤波后直流电压由R1提供给调整管的基极,使调整管导通,在V1导通时电压经过RP、R2使V2导通,接着V3也导通,这时V1、V2、 V3的发射极和集电极电压不再变化(其作⽤完全与稳压管⼀样)。

调节RP,可得到平稳的输出电压,R1、RP、R2与R3⽐值决定本电路输出的电压值。

元器件选择:变压器T选⽤80W~100W,输⼊AC220V,输出双绕组AC28V。

FU1选⽤1A,FU2选⽤3A~5A。

VD1、VD2选⽤ 6A02。

RP选⽤1W左右普通电位器,阻值为250K~330K,C1选⽤3300µF/35V电解电容,C2、C3选⽤0.1µF独⽯电容,C4选⽤ 470µF/35V电解电容。

R1选⽤180~220Ω/0.1W~1W,R2、R4、R5选⽤10KΩ、1/8W。

V1选⽤2N3055,V2选⽤ 3DG180或2SC3953,V3选⽤3CG12或3CG80。

2、10A3~15V稳压可调电源电路图⽆论检修电脑还是电⼦制作都离不开稳压电源,下⾯介绍⼀款直流电压从3V到15V连续可调的稳压电源,最⼤电流可达10A,该电路⽤了具有温度补偿特性的,⾼精度的标准电压源集成电路TL431,使稳压精度更⾼,如果没有特殊要求,基本能满⾜正常维修使⽤,电路见下图。

其⼯作原理分两部分,第⼀部分是⼀路固定的5V1.5A稳压电源电路,第⼆部分是另⼀路由3⾄15V连续可调的⾼精度⼤电流稳压电路。

第⼀路的电路⾮常简单,由变压器次级8V交流电压通过硅桥QL1整流后的直流电压经C1电解电容滤波后,再由5V三端稳压块LM7805不⽤作任何调整就可在输出端产⽣固定的5V1A稳压电源,这个电源在检修电脑板时完全可以当作内部电源使⽤。

运放恒流源电路详解

运放恒流源电路详解

运放恒流源电路详解一、引言运放恒流源电路是一种常见的电子电路,用于产生一个稳定的恒定电流源。

它广泛应用于各种电路设计中,例如电流源、电流比较器、电流控制器等。

本文将详细介绍运放恒流源电路的原理、设计和应用。

二、原理运放恒流源电路是利用运放的高开环增益和负反馈原理来实现稳定的恒定电流源。

这种电路通常由一个运放、一个电阻和一个负载组成,如下图所示:+--| R |--+| |Vref --- R1 R2 Vout| |+---+---+|FeedbackResistor•Vref为参考电压,用于确定输出电流的大小。

•R1和R2是电阻,用于确定反馈电压和输出电流之间的关系。

•Feedback Resistor是负载电阻,用于产生稳定的输出电流。

当输入电压Vref变化时,运放将调整输出电压Vout,使得负载电阻两端的电压保持不变。

这样,由恒流源电路输出的电流就能够保持恒定。

三、设计设计运放恒流源电路的关键是合理选择电阻值和参考电压。

以下是一个简单的设计步骤:1. 确定负载电流首先确定所需的输出电流。

根据应用要求和电路需求,确定输出电流的大小。

2. 选择参考电压根据所需的输出电流和参考电压之间的关系,选择合适的参考电压值。

3. 选择电阻选择合适的电阻值,使得负载电流和参考电压之间的关系满足要求。

4. 确定运放类型根据设计要求,选择合适的运放类型。

常用的运放类型有单电源运放和双电源运放,选择时需要考虑电源供电方式和输出要求等因素。

5. 确定运放参数根据所选运放的参数,确定运放的增益、输入电阻和输出电阻等特性。

四、应用运放恒流源电路广泛应用于各种电子电路设计中,下面是一些常见的应用场景:1. 电流源运放恒流源电路可以用作独立的电流源,提供稳定的电流输出。

2. 电流比较器将两个运放恒流源电路连接在一起,可以实现电流比较功能。

3. 电流控制器运放恒流源电路可以用于电流控制,将输出电流限制在一定范围内。

4. 自适应电源将运放恒流源电路与其他电源电路结合使用,可以实现自适应电源功能。

运放恒压源恒流源电路

运放恒压源恒流源电路

图1-36是用运放构成的可控双向恒流源电路。

电路中,运放A1接成同相输入放大器,它的闭环增益很低,以得到深度负反馈,运放A2接成电压跟随器,它把输出电压Vsc传到A1的同相输入端,在这里与输入信号电压Vsr相加。

由于A2做同相输入放大器,其输入阻抗很高,输入偏置电流可忽略,流过R0的电流基本上就是输出电流Isc。

由此可见,Isc的极性取决于信号电压Vsc的极性,其大小可由Vsr和R0调节。

它是由于测量晶体管的β值和二极管的反向击穿电压时,需要的电流大小及方向都可控的恒流源电路。

图1-37是采用三个运放构成的可调电流源电路,输出电流可以保持在适当的精度范围内。

电路使用的有源防窥来使R1两端压降等于输入端所加的基准电压Vref,因此输出电流等于Vref/R1.为使R1两端电压保持恒定,由差分放大器A2通过射随器A3监测R1两端电压,此蒂娜呀经A2的输出加到比较器A1的反相输入端,由A1将它与基准电压Vref进行比较,使A1的输出电压增加或减小,直至达到平衡为止,于是Vr1=Vref。

射随器A3具有很高的输入阻抗,不会给流过R1的电流带来附加的负载电流。

由于控制环路的延时较长,故用C1对A3进行频率补偿,只要满足R2=R3=R4=R5,就会获得很好的性能。

若要改变输出电流,可将R1换成总阻值与之相近的串联固定电阻与可变电阻,调节可变电阻即可改变输出电流。

图1-38是采用运放构成的提供精密基准电压的电路。

电路中,R1、R2、R3、VDw接成桥路,运放A1的两输入端接在一对对角线上。

在电桥平衡时,R2上的电压Vr2等于稳压管VDw 的5.6V稳定电压,因A1的输入阻抗很高,所以,R2上的电流绝大部分流向R3,即为5.6V,所以输出端恶意提供11.2V的基准电压Vsc。

若Vsc变动,A1可迅速将其调整。

假设Vsc升高,则Vr2可升高同样的幅度,而Vr因R2、R3的分压,升高的幅度较小,所以Vr2>Vr3,Vsc回降。

6种最常用恒流源电路的分析与比较

6种最常用恒流源电路的分析与比较

6种最常用恒流源电路的分析与比较
恒流电路有很多场合不仅需要场合输出阻抗为零的恒流源,也需要输入阻抗为无限大的恒流源,以下是几种单极性恒流电路。

类型1:
特征:使用运放,高精度
输出电流:Iout=Vref/Rs
类型2:
特征:使用并联稳压器,简单且高精度
输出电流:Iout=Vref/Rs
检测电压:根据Vref不同(1.25V或2.5V)
类型3:
特征:使用晶体管,简单,低精度
输出电流:Iout=Vbe/Rs
检测电压:约0.6V
类型4:
特征:减少类型3的Vbe的温度变化,低、中等精度,低电压检测
输出电流:Iout=Vref/Rs
输出电流:由JEFT决定
检测电压:与JEFT有关。

几种三极管恒流源

几种三极管恒流源

几种三极管恒流源三极管搭恒流源的几种形式。

用稳压管稳定三极管基极的电压,此电压经过发射结钳位之后降低0.7V,此时发射极电压也是稳定的,发射极电压除以发射极电阻就得到恒定电流。

如图,在红点处接负载,负载电流恒定为5mA。

通过调节发射极电阻阻值或者换用不同稳压值的稳压管可以实现负载电流大小的调节。

电流计算公式:用两个二极管钳位,稳定基极电压1.4V。

其余的分析和稳压管一样。

不管是配合稳压管还是二极管搭恒流源,它们的原理都一样,我们要挖掘出精髓出来,往后遇到这种原理图才能做到举一反三,这里恒流设计的精髓就是稳定三极管的基极电压!因为稳定基极电压之后通过射极钳位,再通过射极电阻将稳定的电压转化为稳定的电流,这样就实现了恒流!它们通用的电流计算公式如下:掌握了稳定基极电压这个原理,就可以拓展出很多恒流设计电路了,比如用TL431或者用DA来做个参考电压,或者用3个二极管钳位都可以了!总结出精髓后自己就可以从模仿转向自行设计了,这种感觉是不是很酷!再来一个不一样的,由两个NMOS构成的恒流源。

说一下我对这个电路的理解:这个其实本质是个过流保护电路。

动态过程基极电流通过,右管打开,将电流放大之后,当负载电流大于0.7mA,在发射极电阻上形成0.7V电压达到左管导通阈值,左管开启。

左管开启,右管基极被拉到地,导致右管关闭。

右管关闭,没了电流左管基极被拉到地,又导致左管关闭,左管关闭又导致右管打开。

往复循环,动态稳定时候就是左管基极电压达到开通阈值0.7V,这是个平衡点。

这个过程还是有点复杂的,所以看不懂也没关系,可以这么来理解:两个三极管在导通关断的动态平衡下,右侧管子基极等效成稳定在1.4V,射极稳定0.7V,这样也可以和上面总结出来的精髓也有异曲同工之妙了。

电流计算公式可以这么直接算:前面说了我认为这是一个过流保护电路,基极电流要足够大,经过右管放大之后能在发射极电阻上形成0.7V压降,这个过程才能成立。

六种常见恒流源电路图与解析

六种常见恒流源电路图与解析

六种常见恒流源电路图与解析
时间:2011-07-24 21:42:44 来源:作者:
对比几种V/I电路,凡是没有三极管之类的单向器件,都可以实现交流恒流,加了三极管之后就只能做单向直流恒流了。

当然可以用功率放大器扩展输出电流。

第四和第五种是建立在正负反馈平衡的基础上的,电阻的误差而失去平衡,会影响恒流输出特性,也就是说,输出电流会随负载变化。

而其他几种电路中电阻的误差只会影响输出电流的值,而不会影响输出特性。

如果输出电流大,或者嫌三极管的集电极电流和发射极电流不相等,可以把三极管换成MOSFET。

在工作中需要用到恒流源电路,应急中找电路图自己搭建了一个,下面是六种常见恒流源电路解析:
这几种电路都可以在负载电阻RL上获得恒流输出;
第一种由于RL浮地,一般很少用;
第二种RL是虚地,也不大使用;
第三种虽然RL浮地,但是RL一端接正电源端,比较常用;
第四种是正反馈平衡式,是由于负载RL接地而受到人们的喜爱;
第五种和第四种原理相同,只是扩大了电流的输出能力,人们在使用中常常把电阻R2取的比负载RL大的多,而省略了跟随器运放;
第六种是本人设计的对地负载的V/I转换电路;
后边两种是恒流源电路。

几种由运放构成的恒流源的电路接法

几种由运放构成的恒流源的电路接法

几种由运放构成的恒流源的电路接法
这几种电路都可以在负载电阻RL上获得恒流输出
第一种由于RL浮地,一般很少用
第二种RL是虚地,也不大使用
第三种虽然RL浮地,但是RL一端接正电源端,比较常用
第四种是正反馈平衡式,是由于负载RL接地而受到人们的喜爱第五种和第四种原理相同,只是扩大了电流的输出能力,人们在使用中常常把电阻R2取的比负载RL大的多,而省略了跟随器运放第五种是本人想的电路,也是对地负载
后边两种是恒流源电路
对比几种V/I电路,凡是没有三极管只类的单向器件,都可以实现交流恒流,加了三极管之后就只能做单向直流恒流了
第四和第五是建立在正负反馈平衡的基础上的,如果由于电阻的误差而失去平衡,会影响恒流输出特性,也就是说,输出电流会随负载变化
而其他几种电阻的误差只会影响输出电流的值,而不会影响输出特性
如果输出电流大,或者嫌三极管的集电极电流和发射极电流不相等,可以把三极管换成MOSFET。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几种简单的恒流源电路
恒流电路有很多场合不仅需要场合输出阻抗为零的恒流源,也需要输入阻抗为无限大的恒流源,以下是几种单极
性恒流电路:
类型1:
特征:使用运放,高精度
输出电流:Iout=Vref/Rs
类型2:
特征:使用并联稳压器,简单且高精度
输出电流:Iout=Vref/Rs
检测电压:根据Vref不同(1.25V或2.5V)
类型3:
特征:使用晶体管,简单,低精度
输出电流:Iout=Vbe/Rs
检测电压:约0.6V
类型4:
特征:减少类型3的Vbe的温度变化,低、中等精度,低电压检测
输出电流:Iout=Vref/Rs
检测电压:约0.1V~0.6V
类型5:
特征:使用JE FT,超低噪声
输出电流:由JE FT决定
检测电压:与JE FT有关
其中类型1为基本电路,工作时,输入电压Vref与输出电流成比例的检测电压Vs(Vs=Rs×Iout)相等,如图5所
示,
图5
注:Is=IB+Iout=Iout(1+1/hFE)其中1/hFE为误差
若输出级使用晶体管则电流检测时会产生基极电流分量这一误差,当这种情况不允许时,可采用图6所示那样采
用FE T管
图6
Is=Iout-IG
类型2,这是使用运放与Vref(2.5V)一体化的并联稳压器电路,由于这种电路的Vref高达2.5V,所以电源利
用范围较窄
类型3,这是用晶体管代替运放的电路,由于使用晶体管的Vbe(约0.6V)替代Vref的电路,因此,Vbe的温
度变化毫无改变地呈现在输出中,从而的不到期望的精度
类型4,这是利用对管补偿Vbe随温度变化的电路,由于检测电压也低于0.1V左右,应此,电源利用范围很宽类型5,这是利用J-FE T的电路,改变Rgs 可使输出电流达到漏极饱和电流IDSS,由于噪声也很小,因此,在噪声成为问题时使用这种电路也有一定价值,在该电路中不接RGS,则电流值变成IDSS,这样,J-FE T接成二极管形
式就变成了“恒流二极管”
以上电路都是电流吸收型电路,但除了类型2以外,若改变Vref极性与使用的半导体元件,则可以变成电流吐
出型电路。

1.由7805组成的恒流电路,电路图如下图1所示:
电流I=Ig+VOUT/R,Ig的电流相对于Io是不能忽略的,且随Vout,Vi n及环境温度的变化而变化,所以
这个电路在精度要求有些高的场合不适用。

2.由LM317组成的恒流电路如图2所示,I=Iadj+Vref/R(Vref=1.25),Iadj的输出电流是微安级的所
以相对于Io可以忽略不计,由此可见其恒流效果较好。

3.由P Q30RV31组成的恒流电路如图3所示,I=Vref/R(Vref=1.25),他的恒流会更好,另外他是低压差稳
压IC。

相关文档
最新文档