(名师整理)数学七年级竞赛试题及答案解析
(名师整理)数学七年级竞赛试题及答案解析
七年级下学期数学竞赛试卷(满分150,时间90分钟)一、单选题。
1.在方程中,二元一次方程有()A.1个B.2个C.3个D.4个2.某店在开学初用880元购进若干个学生专用科学计算器,按每个50元出售,很快就销售一空,据了解学生还急需3倍数量这种计算器,由于量大,每个进价比上次优惠1元,该店又用2580元购进所需计算器,该店第一次购进计算器的单价为( )A.20元B.42元C.44元D.46元3.不等式组的解集为( )A.2≤x<3 B.2<x<3 C.x<3 D.x≥24.关于x的不等式组只有3个整数解,则a的取值范围是()A .B .C .D .5.在2018﹣2019赛季英超足球联赛中,截止到3月12号止,蓝月亮曼城队在联赛前30场比赛中只输4场,其它场次全部保持不败.共取得了74个积分暂列积分榜第一位.已知胜一场得3分,平一场得1分,负一场得0分,设曼城队一共胜了x场,则可列方程为()1A.3x+(30﹣x)=74 B.x+3 (30﹣x)=74C.3x+(26﹣x)=74 D.x+3 (26﹣x)=746.不等式的解集为()A .B .C .D .7.若则下列不等式不正确的是A .B .C .D .8.如图,数轴上表示某不等式组的解集,则这个不等式组可能是()A .B .C .D .9.已知是二元一次方程组的解,那么的值是( )A.0 B.5 C.-1 D.110.下列方程组不是二元一次方程组的是( )A .B .C .D .11.某校开展丰富多彩的社团活动,每位同学可报名参加1~2个社团,现有25位同学报名参加了书法社或摄影社,已知参加摄影社的2人数比参加书法社的人数多5人,两个社团都参加的同学有12人.设参加书法社的同学有x人,则()A.x+(x﹣5)=25 B.x+(x+5)+12=25C.x+(x+5)﹣12=25 D.x+(x+5)﹣24=2512.一元二次方程x2+2x=0的根是()A.2 B.0 C.0或2 D.0或﹣2 13.不等式x﹣1<2的解集在数轴上表示正确的是()A .B .C .D .14.已知方程组和有相同的解,则a-2b 的值为()A.15 B.14 C.12 D.1015.下列不等式中一定成立的是()A.3a>2a B.a>-2a C.a+2<a+3 D .<二、填空题。
数竞赛试题及答案七年级
数竞赛试题及答案七年级试题一:计算题题目:计算下列表达式的值:1. \( 3x + 2y \) 当 \( x = 2 \) 且 \( y = 3 \)2. \( \frac{1}{2}a^2 - \frac{1}{4}ab + \frac{1}{8}b^2 \) 当\( a = 4 \) 且 \( b = 2 \)答案:1. 将 \( x = 2 \) 和 \( y = 3 \) 代入 \( 3x + 2y \),得到\( 3 \times 2 + 2 \times 3 = 6 + 6 = 12 \)。
2. 将 \( a = 4 \) 和 \( b = 2 \) 代入 \( \frac{1}{2}a^2 -\frac{1}{4}ab + \frac{1}{8}b^2 \),得到 \( \frac{1}{2} \times 4^2 - \frac{1}{4} \times 4 \times 2 + \frac{1}{8} \times 2^2 = 8 - 2 + 0.5 = 6.5 \)。
试题二:应用题题目:小明骑自行车从家到学校,速度为每小时15公里。
如果小明提前30分钟出发,他能否在7点之前到达学校?答案:假设小明家到学校的距离为 \( d \) 公里。
根据题意,小明提前30分钟出发,即他有 \( 1 \) 小时 \( 30 \) 分钟的时间骑行。
因此,他可以在 \( 7 \) 点之前到达学校的条件是 \( d \leq 15 \times 1.5 \) 公里。
计算得 \( d \leq 22.5 \) 公里。
所以,如果小明家到学校的距离不超过22.5公里,他就能在7点之前到达学校。
试题三:几何题题目:一个直角三角形的两条直角边分别为3厘米和4厘米,求斜边的长度。
答案:根据勾股定理,直角三角形的斜边长度 \( c \) 可以通过以下公式计算:\( c = \sqrt{a^2 + b^2} \),其中 \( a \) 和 \( b \) 是两条直角边的长度。
初一数学竞赛试卷及答案解析
初一数学竞赛试卷及答案解析二、填空题1、 有理数a ,b ,c 在数轴上的位置如图所示,化简=------+c c a b b a 11.2、 三个互不相等的有理数,既可以表示为1,a +b ,a 的形式,又可以表示为0,ab ,b 的形式,则a 1992+b 1993=_________. 3、 计算:=-------++-+-)100011)(99911()511)(411)(311)(211(10201970198019902000 . 4、 已知,1||,1||≤≤y x 且u =|x +y |+|y +1|+|2y -x -4|,则u 的最大值和最小值之和等于___________.5、 有理数4.0,5.10,31,0,1.0,21,8,3---+-中,所有正数的和填在下式的〇中,所有负数的和填中下式的□中,并计算出下式的结果填在等号右边的横线上.〇÷□= .6、 已知a = -1,则1+)8)(8(2)6)(6(2)4)(4(2765432a a a a a a ++++++++ +)14)(14(2)12)(12(2)10)(10(21312111098a a a a a a ++++++++=___________。
7、 a 是自然数,且a a 22=,则a = 。
8、 能够使不等式成立的x 的{(|x |-x )(1+x )<0}取值x 范围是_____。
参考答案二、填空题1、 -2解:由图可见,)(00,0b a b a b a b a +-=+⇒<+⇒<<, 又)1(10110--=-⇒<-⇒<<b b b b ,)(00c a c a c a c a --=-⇒<-⇒<<. 由图可知c c c c -=-⇒>-⇒<11011, 所以c c a b b a ------+11)1()]([)]1([)(c c a b b a --------+-=)1()()1()(c c a b b a ---+-++-=211-=+--+-+--=c c a b b a .2、 2解:由于三个互不相等的有理数,既可表示为1,a +b ,a 的形式,又可以表示为0,a b ,b 的形式,也就是说这两个三数组分别对应相等,于是可以判定,a +b 与a 中间有一个为0,a b 与b 中有一个为1,但若a =0,会使a b 没意义,所以a 0≠,只能是a +b =0,即a = -b ,又a 0≠得a b = -1,由于0, a b ,b 为两两不相等的有理数,在a b = -1的情况下,只能是b =1,于是a = -1.所以a 1992+b 1993=(-1)1992+(1)1993=1+1=2.3、 1000000 解:)10001)(9991()51)(41)(31)(21(10201970198019902000-------++-+- 100099999999854433221)1020()19701980()19902000(⋅⋅⋅⋅⋅⋅-++-+-= 10001)10101010(10100÷++++= 个 10001000⨯=1000000=.4、 10解:因为11,11,1,1||≤≤-≤≤-∴≤≤y x y x 从而y x x y y y 24|42|,1|1|-+=--+=+, 当0≤+y x 时, 52)2941)(+=-+++++=x y x y y x u .11≤≤-x ,73≤≤∴u ,又当1,1=-=y x 时, 3=u ;当1,1-=-=y x 时, 7=u ,即u 的最大值为7,最小值为3,则u 的最大值与最小值的和等于10.5、 417403- 解:〇中填的数是:3013135311.0)8(=++++, □中填的数是:10913)4.0()10()21()3(-=-+-+-+-, 而4174031391030403)10139()30403()10913(301313-=⨯-=÷-=-÷.6、 1541 解: 原式=1++-+-+=⨯+⨯+⨯+⨯+⨯+⨯)7151()5131(113152111329112792572352 (15411541151311)151131()131111()11191()9171=+=-+=-+-+-+-.7、 2或4解:a 为自然数,要使 a a 22= ①由于①右边只有质因数2,所以①左边也只能有质因数2,即m a 2=,m 为自然数。
七年级数学竞赛试题(含答案)-
七年级数学竞赛试题一、选择题:1、已知152004+-=a ,则a 是( )A 、合数B 、质数C 、偶数D 、负数 2若7a+9|b|=0,则a b 2一定是( )A 、正数B 、负数C 、非负数D 、非正数3、a 与b 之和的倒数的2003次方等于1,a 的相反数与b 之和的2005次方也等于1,则a 2003+b 2004=( )A 、22005B 、2C 、1D 、04、如图1,三角形ABC 的底边BC 长3厘米,BC 边上的高是2厘米,将三角形以每秒3厘米的速度沿高的方向向上移动2秒,这时,三角形扫过的面积是( )平方厘米。
A 、21B 、19C 、17D 、155、小明的妈妈春节前去市场买了3公斤葡萄和2公斤苹果,花了8元钱,春节后,再去市场买这两种水果,由于葡萄每公斤提价5角钱,苹果每公斤降3角钱,买7公斤葡萄和5公斤苹果共花了21元,则春节后购物时,(葡萄、苹果)每公斤的价格分别是( )元。
A 、(2.5,0.7) B 、(2,1) C 、(2,1.3) D 、(2.5,1)6、当1-=x 时,代数式8322+-bx ax 的值为18,这时,代数式269+-a b =( ) A 、28 B 、—28 C 、32 D 、—327、The sum or n different postitive integers is less than 50.The greatest possible value of n is ( )A 、10B 、9C 、8D 、7 (英汉小词典positive integer :正整数) 8、已知∠A 与∠B 之和的补角等于∠A 与∠B 之差的余角,则∠B=( )A 、75°B 、60°C 、45°D 、30°9、如图2,一个正方体的六个面上分别标有数字1,2,3,4,5,6。
根据图中三种状态所显示的数字,“?”表示的数字是( ) A 、1 B 、2 C 、4 D 、6 二、填空题:10、若正整数x ,y 满足2004x=15y ,则x+y 的最小值是___________;11、数列1,1,2,3,5,8,13,21,34,55,…的排列规律:前两个数是1,从第3个数开始,每一个数都是它前两个数的和,这个数列叫做斐波契数列,在斐波契数列前2004个数中共有___________个偶数。
初中数学竞赛试题及答案解析
初中数学竞赛试题二、填空题1、 41-的负倒数与4-的倒数之和等于 . 2、 甲、乙、丙、丁四个数之和等于90-.甲数减4-,乙数加4-,丙数乘4-,丁数除以4-彼此相等.则四个数中的最大的一个数比最小的一个数大 .3、 已知a 1999=,则=-+---+-200133314232323a a a a a a .4、 填数计算:〇中填入的最小的自然数.△中填入最小的非负数.□中填入不小于5-且小于3的整数的个数.将下式的计算结果写在等号右边的横线上.(〇+□)⨯△= .5、 从集合}5,4,1,2,3{---中取出三个不同的数,可能得到的最大乘积填在□中,可能得到的最小乘积填在〇中,并将下式计算的结果写在等号右边的横线上.-(-□)÷〇= .6、 计算:=------------)4151()3141()2131(1)4151()3141()2131(1 . 7、 x 是有理数,则22195221100++-x x 的最小值是 . 8、 如图,C 是线段AB 的中点,D 是线段AC 的中点.已知图中所有线段的长度之和为23,则线段AC 的长度为.9、 在1000到5000之间同时被24,36,30整除的最小整数是_________,最大整数是__________.10、 一个有理数的倒数的相反数的3倍是31,那么这个有理数是 . 11、 一个有理数的二次幂大于这个有理数,那么这样的有理数的取值范围是 .12、 若8919+=+=+c b a ,则=-+-+-222)()()(a c c b b a .13、 a 1的倒数是51-,那么=a _____. 14、 小丽写出三个有理数,其中每两个有理数的平均值分别是326,217,7,那么这三个有理数的平均值是 .15、 计算:=--+-)36173)(72.0()722(125.11.16、 m ,y 互为相反数,n 和y 互为倒数,则5)(y my n -的值是_____.17、 已知1171=x ,则3)114(3)711)(1(2++--x x x 的值是 . 18、 已知52,32<-<-b a a b .则化简98272-+++-----b a a b a b 所得的结果是 .19、 m ,n 是正整数,mn =120,则m +n 可能取到的最小值是_____.20、 若a=1997,则7122----+a a a a 的值是 .21、 若x = -0.239,则199********-------++-+-x x x x x x 的值等于_____.参考答案二、填空题1、 417- 解:41-的负倒数为411--,4-的倒数为41-, 二者之和为:411--+41-417414-=--=.2、 204解:设等数为a ,则 90)4()4()]4([)]4([-=-⨯+-+--+-+a a a a 即90412-=-a ,∴ a =40, 因此,甲数为36,乙数为44,丙数为-10,丁数为-160,其中,最大数-最小数=44-(-160)=204.3、 4000000 解:当a 1999=时,142314232323-+-=-+-a a a a a a=-+-200133323a a a 200133323-+-a a a ,所以,原式=142323-+-a a a )2001333(23-+--a a a2000200019992000)1(20002+⨯=++=++=a a a a400000020002000=⨯=.4、 0解:〇中填1,△中0,□填8. []⎣⎦⎡⎤00)81(=⨯+.5、 ⎣⎦⎡⎤2160)30(-=÷-- 解:由-3,-2,-1,4,5中任取三个相乘可得10种不同的乘积,它们是:124)1)(3(,205)2)(3(,244)2)(3(,6)1)(2)(3(=⋅--=⋅--=⋅--=---,105)1)(2(,84)1)(2(,6054)3(,155)1)(3(=⋅--=⋅---=⋅⋅-=⋅--,2054)1(,4054)2(-=⋅⋅--=⋅⋅-,最大乘积是30,最小的乘积是-60.∴ ⎣⎦⎡⎤2160)30(-=÷--.6、 137 解:)4151()3141()2131(1)4151()3141()2131(1------------ )4151()3141()2131(1)]4151([)]3141([)]2131([1---------------= )4151()3141()2131(1)4151()3141()2131(1-------+-+-+= 41513141213114151314121311+-+-+--+-+-+= 13710131075121151211==-++-=.7、 1715 解:一般解法是分三种情况讨论:(1)当22195-<x 时 ,,(2)当22110022195≤≤-x 时 ,,(3)当221100>x 时 ,.综合(1),(2),(3)可得,最小值是1715.最简单的解法是:根据绝对值的几何意义,22195221100++-x x 表示数轴上x 对应的点P 到22195-对应的点A 和221100对应的点B 的距离之和,易知当P 在线段AB 上时,P A +PB 最小值为2211001715)22195(=--.8、 1373 解:设线段AC 的长度为x ,则AD =2x ,则AB =2x ,DC =2x ,DB =x 23,CB =x ,所以 232321221=+++++x x x x x x ,即23213=x .∴13731346==x .即AB 长度为1373.9、 4680解:24,30,36三个数的最小公倍数是360,10803360=⨯,∴大于10000且能被24,30,36整除的最小整数是1080,又36010805000⋅+>n ,其中n 为自然数,解得9810<n .∴取10=n ,得4680360101080=⋅+.∴具有这种性质的最大整数是4680.10、 -9解:利用还原算法:某数a 的3倍是31,显然91=a ,而91应是一个有理数倒数的相反数,所以这个有理数的倒数为91-,故这个有理数是-9.11、 大于1的有理数和负有理数解:画出数轴如图.大于1的有理数的二次幂大于它自身;1的二次幂等于1;大于0且小于1的有理数的二次幂小于它本身;0的二次幂是0;负有理数的二次幂是正数,大于它自身.综上可知,二次幂大于其自身的有理数的范围,是大于1的有理数和负有理数.12、 222解:由8919+=+=+c b a 得:11,1,10=--=--=-a c c b b a .∴+-+-22)()(c b b a =-2)(a c 222121110011)1()10(222=++=+-+-.13、 51- 解:a 1的倒数是51-,那么a 1=-5,51-=a .14、 1817 解:设小丽写出的三个有理数为x ,y ,z ,则3262,2172,72=+=+=+z y z x y x , 所以15,340,14=+=+=+x z z y y x ,三式相加,3127)(2=++z y x , 则1817181273==++z y x .15、 -14 解:因为2179167212518511.125(2)(0.72)(3)73687100367214-+--=-+=-+=-. 所以原分式的值为-14.16、 0解:由m 和y 互为相反数,知m = -y ,由n 和y 互为倒数,知道0,0≠≠y n 且yn 1= ∴0=-=-y y y y y m y n ,故5)(ym y n -=0. ∴17、 38 解:由1171=x ,可知2114,1171=+=-x x ,所以原式= 37772(1117)322113838111111-+=+=.18、 -6解:由32<-a b ,得03272<--<--a b a b .由52<-b a ,得052>+-a b ,得 05282>+->+-a b a b .而853)2()2(=+<-+-=+b a a b a b . 089<-+<-+∴a b b a98272-+++-----b a a b a b9)()82()72(-+-+----=b a a b a b987+--=6-=.19、 22解:由222)(1204)(4)(n m n m mn n m -+⋅=-+=+当2)(n m -愈小时,2)(n m +越小,从而m +n 也愈小,m 、n 为120的约数,且n m -要最小,由53222120⋅⋅⋅⋅==mn所以,当m =12,n =10时,m +n =22为最小值.20、 4000解:当a =1997时,0719971997,011997199722>-->-+7122----+a a a a)7()1(22----+=a a a a7122++--+=a a a a62+=a4000619972=+⋅=.21、 999解:由b a x <≤,可得a b a x b x -=---,则原式)19961997()23()1(---++---+--=x x x x x x)19961997()23()01(-++-+-=个99921998111=÷+++= 999=.。
(名师整理)数学七年级竞赛试题及答案解析
1数学能力竞赛试题卷一、填空题(本大题共18个小题20空,每空6分,共120分) 1.计算139×0.568+1772×0.284=__________2.关于x 、y 、z 的单项式2a b c x y z 的次数是10(a 、b 、c 是正整数),则这样的单项式共有____个.3.已知a 是质数,b 是奇数,且2a b =2019,则a +b =_____.4.如图,△ABC 的面积是10,AB =7,AC =5,将点C 对折到点E ,点E 恰好落在AB 边上,则△BDE 的面积为____.(第4题)D BC(第8题)…………………………11211214141613131212125.现在4点整,再过___分钟,分针和时针第一次重合.6.一跳蚤在数轴上从0K 点开始,第1次向左跳1个单位,紧接着第2次向右跳3个单位,第3次向左跳5个单位,第4次向右跳7个单位,…,依次规律跳下去,当它跳第100次落下时,落点处离原点O 的距离是52个单位,则跳蚤的初始位置表示的数0K 为_____.27.m 为正整数,已知关于x 、y 的二元一次方程组2103213mx y x y +=⎧⎨+=⎩有正整数解,则m =______.8.如图所示的数阵叫“莱布尼兹调和三角形”,它是由整数的倒数组成的,第n 行有n 个数,且两端的数都为1n,每个数是它下一行左右相邻两数的和,则第8行第3个数(从左往右数)为)________.(第11题)F第10题图 第11题第12题9.设M =2x +-x ,则M 的取值范围是_________.10.如图,在44⨯的正方形网格中已有2个正方形涂黑,再选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置共有_____处.11.如图,长方形ABCD 的长为8,宽为5,E 是AB 的中点,点E 在BC 上,已知△DEF 的面积为16,则△BEF 的面积为_______. 12.按上面的程序计算,若开始输入的值x 为大于10的正数,最后输出的结果为656,则满足条件的x 的值是_______.13.如图四边形ABCD 为正方形,三角形EAB 为等边三角形,那么∠ECA =____度.3(第13题)EA B第13题图第14题图14.正整数按上图规律排列,则第28行第26列的数字为_______. 15.五位数336xy 是某个自然数的平方,则x y =______.16.如图,平面上有A 、B 、C 、D 、E 、F 、G 这七个点,其中A 、B 、C 和D 、E 、F 及B 、G 、E 分别在同一条直线上,那么以这7个点中的3个点为顶点的三角形有____个.第16题CD(第17题)17.在上面3×3的方阵图中每行,每列及对角线上的3个数(或代数式)的和都相等,则a =___,b =___18.已知实数1a 、2a 、3a 、…、n a 满足1a =1×2×3=6,1a +2a +3a +…+n a =n ×(n +1)×(n +2),则n a =______(用关于n 的代数式表示);11a +21a +…+1na =______. 二、解答题(本大题共2小题,每小题15分,共30分)19.两盒糖果共176块,从第二个盒子中取出16块放入第一个盒子中,这时第一个盒子中糖果的块数比第二个盒子中糖果的块数的m倍(m为大于1的整数)多31块,那么第一个盒子中原来有糖果多少块?20.唐老鸭与米老鼠进行5000米赛跑,米老鼠的速度是每分钟125米,唐老鸭的速度是每分钟100米.唐老鸭手中掌握着一种迫使米老鼠倒退的电子遥控器,通过这种遥控器发出第n次指令,米老鼠就以原速度的n×20%倒退一分钟,然后再按原来的速度继续前进,如果唐老鸭想在比赛中获胜,那么它通过遥控器发出指令的次数至少应是多少次?4。
七年级数学竞赛试题及答案
七年级数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. -12. 如果一个数的3倍加上5等于这个数的5倍减去9,那么这个数是:A. 3B. 4C. 5D. 63. 一个长方形的长是14厘米,宽是10厘米,那么它的周长是多少厘米?A. 24B. 28C. 48D. 564. 下列哪个分数是最接近0.5的?A. 1/2B. 3/5C. 4/7D. 5/95. 一个数的75%是60,那么这个数是多少?A. 80B. 120C. 160D. 2006. 一个班级有48名学生,其中2/3是男生,那么这个班级有多少名女生?A. 16B. 24C. 32D. 407. 一个数除以3的商加上2等于这个数除以4的商,这个数是多少?A. 6B. 9C. 12D. 158. 下列哪个数是质数?A. 2B. 4C. 6D. 89. 一个长方体的体积是120立方厘米,长是10厘米,宽是6厘米,那么它的高是多少厘米?A. 1B. 2C. 3D. 410. 下列哪个表达式的结果是一个整数?A. (1/2) + (1/3)B. (1/2) + (1/4)C. (1/3) + (1/6)D. (1/4) + (1/5)二、填空题(每题4分,共40分)11. 一个数的1/4加上它的1/2等于______。
12. 如果5个连续的整数的和是45,那么中间的数是______。
13. 一个数的2倍与7的和是35,那么这个数是______。
14. 一个等腰三角形的两个底角都是70度,那么它的顶角是______度。
15. 一本书的价格是35元,如果打8折出售,那么现价是______元。
16. 一辆汽车以每小时60公里的速度行驶,2小时后它行驶了______公里。
17. 一个数的3/4加上它的1/2等于5,那么这个数是______。
18. 一个长方体的长、宽、高分别是8厘米、6厘米和5厘米,那么它的表面积是______平方厘米。
七年级超难数学竞赛题带解析
七年级超难数学竞赛题带解析一、代数部分。
1. 已知a,b为有理数,且a + b√(2)=(1 - √(2))^2,求a^b的值。
- 解析:- 先将(1-√(2))^2展开,根据完全平方公式(a - b)^2=a^2 - 2ab+b^2,这里a = 1,b=√(2),则(1-√(2))^2=1-2√(2)+2 = 3 - 2√(2)。
- 因为a + b√(2)=3 - 2√(2),所以a = 3,b=-2。
- 那么a^b = 3^-2=(1)/(9)。
2. 若x^2 - 3x + 1 = 0,求x^4+(1)/(x^4)的值。
- 解析:- 由x^2 - 3x + 1 = 0,因为x = 0不满足方程,所以方程两边同时除以x得x-3+(1)/(x)=0,即x+(1)/(x)=3。
- 对x+(1)/(x)=3两边平方得(x +(1)/(x))^2=x^2+2+(1)/(x^2)=9,所以x^2+(1)/(x^2)=7。
- 再对x^2+(1)/(x^2)=7两边平方得(x^2+(1)/(x^2))^2=x^4 + 2+(1)/(x^4)=49,所以x^4+(1)/(x^4)=47。
3. 化简(1)/(1×2)+(1)/(2×3)+(1)/(3×4)+·s+(1)/(2019×2020)。
- 解析:- 因为(1)/(n(n + 1))=(1)/(n)-(1)/(n + 1)。
- 所以原式=(1-(1)/(2))+((1)/(2)-(1)/(3))+((1)/(3)-(1)/(4))+·s+((1)/(2019)-(1)/(2020))- 去括号后中间项都可以消去,得到1-(1)/(2020)=(2019)/(2020)。
4. 已知a^2 + b^2=6ab,且a>b>0,求(a + b)/(a - b)的值。
- 解析:- 因为a^2 + b^2 = 6ab,所以(a + b)^2=a^2+2ab + b^2=8ab,(a - b)^2=a^2-2ab + b^2 = 4ab。
七年级下册数学竞赛题和经典题含解答共20题
七年级下册数学竞赛题和经典题含解答共10题1. 题目:甲、乙两个正整数的和是300,差是120,求甲、乙两个数分别是多少?解答:设甲的数为x,乙的数为y。
根据题意,我们可以得到以下两个方程:x + y = 300 (方程1)x - y = 120 (方程2)解方程组得到甲的数x = 210,乙的数y = 90。
2. 题目:某数的4倍减去该数的2倍等于30,求这个数。
解答:设这个数为x。
根据题意,我们可以得到以下方程:4x - 2x = 30化简得到2x = 30解方程得到x = 153. 题目:一个正整数加上自身的平方等于140,求这个正整数。
解答:设这个正整数为x。
根据题意,我们可以得到以下方程:x + x²= 140化简得到x²+ x - 140 = 0解方程得到x = 10 或x = -14,由题目要求为正整数,所以x = 10。
4. 题目:一个三位数加上它的逆序数等于1333,求这个三位数。
解答:设这个三位数为xyz。
根据题意,我们可以得到以下方程:100x + 10y + z + 100z + 10y + x = 1333化简得到101x + 20y + 101z = 1333由于101为质数,所以x和z只能为1,y只能为6。
解方程得到x = 1,y = 6,z = 1,所以这个三位数为161。
5. 题目:甲、乙两个数的和是90,差是20,求甲、乙两个数分别是多少?解答:设甲的数为x,乙的数为y。
根据题意,我们可以得到以下两个方程:x + y = 90 (方程1)x - y = 20 (方程2)解方程组得到甲的数x = 55,乙的数y = 35。
6. 题目:某个三位数的百位数是7,个位数是2,且各位上的数字之和是13,求这个三位数。
解答:设这个三位数为xyz。
根据题意,我们可以得到以下方程:x = 7 (百位数是7)z = 2 (个位数是2)x + y + z = 13 (各位上的数字之和是13)代入得到7 + y + 2 = 13解方程得到y = 4所以这个三位数为742。
七年级数学竞赛试卷及答案解析
七年级数学竞赛试卷二、填空题1、 =+-+-+++-+-+|6||6|)9()9()9()9()1()1( . 2、 已知有理数a ,b ,c 同时满足下列两式:①15452=++c b a ②1437=++c b a ,那么c b a 24++=_____________3、 一次数学测验满分是100分,全班38名学生平均分是67分,如果去掉A ,B ,C ,D ,E五人的成绩,其余人的平均分是62分,那么这次测验中,C 的成绩是_____分.4、 已知有理数a ,b 的和a +b 及差a -b 在数轴上如图所示:则化简|2a+b |-2|a |-|b -7|,得到的值是___________.5、 在-44,-43,-42…,1995,1996这一串连续的整数中,前100个连续整数的和等于_____________.6、 自然数m ,n 是两个不同的质数,m +n +mn 的最小值是p ,则222p n m + = . 7、 若a 、b 互为相反数,c 、d 互为负倒数,则3231996)()(cd b a ++= .参考答案二、填空题1、 -2解: 21)1()1()1(|6||6|)9()9()9()9()1()1(-=+-+-+-=+-+-+++-+-+2、 9 解:由①、②两式可得327,35c b c a -=-=, 于是9232735424=+-+-⨯=++c c c c b a 。
3、 100解:设A ,B ,C ,D ,E 分别得分为a ,b ,c ,d ,e .则 ,62538)(6738=-++++-⨯e d c b a 因此 a +b +c +d +e =500 由于最高满分为100分,因此a =b =c =d =e =100,即C得100分.4、 -7解:图中可见,0<a -b <1,a +b <-1所以2a <0,因此a <0,若b ≥0,则a -b <0与a -b >0不符,所以b <0.此时2a +b <0,b -7<0.所以|2a +b |-2|a |-|6-7|=-(2a +b )-2(-a )-[-(-b -7)]=-2a -b +2a +b -7=-7.5、 550解:这前100个连续整数是-44,-43,…,-1,0,1,…,43,44,…,54,55, 其中前89个整数之和(-44)+(-43)+…+0+…+43+44=0后11个数之和是45+46+…+54+55=550,所以一连串整数,前100个的和等于550. 6、 12113 解:m ,n 都是质数,要m +n +mn 取最小值,只能m ,n 取2和3,所以.113232=⨯++=p因此原式=121131132222=+.7、 -1解:因为a 、b 互为相反数,所以a +b =0,c 、d 互为负倒数,所以cd =-1.因此 所求原式=0+(-1)= -1.。
数学竞赛试题初一及答案
数学竞赛试题初一及答案一、选择题(每题3分,共15分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 32. 如果一个数的平方等于该数本身,那么这个数可能是:A. 0B. 1C. -1D. 以上都是3. 一个圆的半径是5厘米,那么它的周长是多少厘米?A. 10πB. 15πC. 20πD. 25π4. 以下哪个表达式的结果等于0?A. 3 - 3B. 2 × 0C. 5 ÷ 5D. 4 + 05. 如果一个角的补角是它的3倍,那么这个角的度数是:A. 45°B. 60°C. 90°D. 120°二、填空题(每题2分,共10分)6. 一个数的相反数是它本身的数是______。
7. 一个数的绝对值是它本身的数是非负数,那么这个数是______或______。
8. 一个三角形的内角和等于______度。
9. 如果一个数的平方根是它本身,那么这个数是______或______。
10. 一个数的立方等于它本身,这个数是______、______或______。
三、计算题(每题5分,共20分)11. 计算下列表达式的值:(3 + 5) × (7 - 2)。
12. 计算下列表达式的值:(-2)³ - 3 × 2²。
13. 计算下列表达式的值:√(49) + √(16)。
14. 计算下列表达式的值:(-1)⁴ - 2²。
四、解答题(每题10分,共30分)15. 一个长方形的长是15厘米,宽是10厘米,求它的周长和面积。
16. 一个直角三角形的两条直角边分别是3厘米和4厘米,求它的斜边长度。
17. 一个数列的前三项是1,3,6,求这个数列的第四项。
五、证明题(每题25分,共25分)18. 证明:在一个直角三角形中,如果一个锐角是另一个锐角的两倍,那么较小的锐角的度数是30°。
答案:一、选择题1. B2. D3. C4. A5. D二、填空题6. 07. 正数,08. 1809. 0,110. 0,1,-1三、计算题11. 6412. -813. 714. 3四、解答题15. 周长:(15 + 10) × 2 = 50厘米;面积:15 × 10 = 150平方厘米。
(名师整理)数学七年级竞赛试题及答案解析
七年级上数学竞赛试题(考试时间:90分钟满分:100分)学校班级姓名一、选择题(每小题3分,共30分)1.已知,且a>b,那么a+b的值等于()A. 或B. 或C. 或D. 或2.如图,数轴上每个刻度为1个单位长,则A,B分别对应数a,b,且b-2a=7,那么数轴上原点的位置在()A. A 点B. B 点C. C 点D. D 点3.下列语句中:(1)线段AB就是A,B两点间的距离;(2)画射线AB=10cm;(3)A,B两点之间的所有连线中,最短的是A,B两点间的距离;(4)在直线上取A,B,C三点,使得AB=5cm,BC=2cm,则AC=7cm。
其中正确的有()A.1 个B.2 个C.3 个D.4 个4.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂重物的质量x(kg)有下面的关系,( )A.y=x +12B.y=0.5x+12C.y=0.5x+10D.y=x+10.55.港珠澳大桥于2018年10月24日正式通车,该工程总投资额为1269亿元,将1269亿用科学记数法表示为().A.12.69×1010B.1.269×1011C.1.269×1012D.0.1269×10136.若(m-2)x|2m-3|=6是关于x的一元一次方程,则m的值是()A. 1B. 任何数 C. 2 D. 1或27.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是()A. B. C.D.8.如图,两只蚂蚁以相同的速度沿两条不同的路径,同时从A出发爬到B,则( )122503.002.003.05.09.0x 4.0-=+-+x xA.乙比甲先到B.甲和乙同时到C.甲比乙先到D.无法确定9.如图,线段AB 和线段CD 的重合部分CB 的长度是线段AB 长的,M 、N 分别是线段AB 和线段CD 的中点,AB=18,MN=13,则线段AD 的长为( ) A. 31 B. 33 C. 32 D. 34 10.如图所示的立方体,如果把它展开,可以是下列图形中的( )A. B. C. D.二、填空题(每小题3分,共24分)11.数轴上表示-2的点距离3个长度单位的点所表示的数是________. 12.钟表上的时间是2时30分,此时时针与分针所成的夹角是________ 度. 13.现在网购越来越多地成为人们的一种消费方式,刚刚过去的2015年的“双11”网上促销活动中,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为____ ____.14.观察下列算式:21=2、22=4、23=8、24=16、25=32、26=64、27=128、28=256….观察后,用你所发现的规律写出223的末位数字是________. 15.已知m=,n=, 则代数式(m+2n )﹣(m ﹣2n )的值为________16.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是________.18.你会玩“二十四点”游戏吗?现有“2,-3,-4, 5,”四个数,每个数用且只用一次进行加、减、乘、除,使其结果为24,写出你的算式(只写一个即可):________=24. 17.如图,OA ⊥OC ,OB ⊥OD ,下面结论:①∠AOB=∠COD ;②∠AOB+∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC-∠COD=∠BOC 中,正确的有________ (填序号).三、计算题(共3题;共15分)19.解方程:20.计算:(1)×24-×(-2.5)×(-8).(2).四、解答题(共5题;共31分)21.设B为线段AC上的一点,AB=8cm,BC=2cm,M、N分别为AB、AC的中点.求MN的长.22.已知a,b互为相反数,c,d互为倒数,m的倒数等于本身,求代数式的值.23.小李到某城市行政中心大楼办事,假定乘电梯向上一楼记为+1,向下一楼记为–1.小李从1楼出发,电梯上下楼层依次记录如下(单位:层):+5,–3,+10,–8,+12,–6,–10.(1)请你通过计算说明小李最后是否回到出发点1楼;3(2)该中心大楼每层高2.8m,电梯每上或下1m需要耗电0.1度.根据小李现在所处的位置,请你算一算,当他办事时电梯需要耗电多少度?24.如图,直线AB、CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.25.坟中安葬着丢番图,多么令人惊讶,他忠实地记录了所经历的道路.上帝给予的童年占六分之一,又过了十二分之一,两颊长胡,再过七分之一,点燃结婚的蜡烛,五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入坟墓,悲伤只有用数论研究去弥补,又过四年,他也走完了人生的旅途。
初一数学上竞赛试题及答案
初一数学上竞赛试题及答案【试题一】题目:若a, b, c是正整数,且满足a + b + c = 30,a > b > c,求所有可能的(a, b, c)组合。
【答案】解答:首先,我们知道a, b, c是正整数,且a > b > c。
由于a + b + c = 30,我们可以从c = 1开始尝试,逐渐增加c的值,同时减少a 和b的值,直到满足a > b > c的条件。
1. 当c = 1时,b = 29 - a,此时a的最大值为28,但a不能等于28,因为a > b,所以a的最大值为27,此时b = 2。
2. 当c = 2时,b = 28 - a,此时a的最大值为26,但a不能等于26,所以a的最大值为25,此时b = 3。
3. 以此类推,我们可以找到所有满足条件的组合。
最终,所有可能的(a, b, c)组合为:(27, 2, 1), (26, 4, 1), (25, 3, 2), (24, 6, 1), (23, 5, 2), (22, 8, 1), (21, 7, 2), (20, 10, 1), (19, 9, 2), (18, 12, 1), (17, 11, 2), (16, 14, 1), (15, 13, 2)。
【试题二】题目:一个圆的半径为r,求圆的面积。
【答案】解答:圆的面积公式为 \( A = \pi r^2 \),其中A是面积,r是半径。
【试题三】题目:若一个数的平方根是4,求这个数。
【答案】解答:如果一个数的平方根是4,那么这个数就是 \( 4^2 \),即16。
【试题四】题目:一个班级有40名学生,其中男生人数是女生人数的2倍,求男生和女生各有多少人。
【答案】解答:设女生人数为x,男生人数为2x。
根据题意,我们有x + 2x = 40,解这个方程得到x = 20。
所以,女生有20人,男生有40 - 20 = 20人。
【试题五】题目:一个数列的前三项分别为1, 2, 3,从第四项开始,每一项都是前三项的和。
(名师整理)数学七年级竞赛试题及答案解析
17年级数学竞赛试题本卷满分:150分 考试时间:120分钟一、选择题:(本大题共10小题,每小题3分,共30分) 1. 如图,BC ⊥AE 于点C ,CD ∥AB,∠B=55°,则∠1的度数为( ) A . 55 ° B . 45 ° C . 35 ° D .25 ° 2.下列运算中 ,正确的是( )A .5236)3(a a a =-B . 313a a a a =∙÷-C .141222-=--a a )( D .510600006.0-⨯= 3.若单项式 42312y x y x b a b a -+与 可以合并,则a,b 的值为( ) A .3,1 B .-3,1 C . 3,-1 D .-3,-14. 计算 2018201722)()(-+- 的结果是( )A . -2B . 2C . 20172D .20172-5. 若方程组 ⎩⎨⎧=++=+3313y x k y x 的解满足x+y>0,则k 的取值范围是( )A . k >4B . K>-4C . k <4D .K<-426. 某商品的进价为900元,出售时标价为1650元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于,最多打( ) A . 6折 B .7折 C . 8折 D .9折7.已知 ⎩⎨⎧-=-=23y x 是方程组 ⎩⎨⎧=-=+21by mx my ax 的解,则a,b 之间的数量关系是 ( )A .4b-9a=1B . 3a+2b=1C . 4b-9a=-1D .9a+4b=18. 不等式组 ⎩⎨⎧+>>11m x x 的解是 x>1 ,则m 的取值范围是( )A .1≥mB . 1≤mC . 0≥mD .0≤m9.关于x 的不等式 x-b>0 恰好有两个负整数解,则b 的取值范围是 ( )A . 23-<<-bB .23-≤<-bC . 23-≤≤-bD .23-<≤-b 10. 已知M=(a+2)(2a-5) ,N= (a+3)(a-4) ,其中a 为任意数,则M,N 的大小关系是( )A . M>NB . M<NC . M=ND .无法确定二、填空题:(本大题共10小题,每小题4分,共40分)311.一个多边形的每一个内角都为140°,则这个多边形的边数是____________.12.已知三角形的三边长分别为4,a,8则这个三角形有两条边相等,那么它的周长为 .13.如图,将四边形纸片ABCD 的右下角向内折出ΔPC ´R ,其中∠B=120°,∠D=40°,恰使C ´P ∥AB,RC ´∥AD ,则∠C= .14.如图,AD为ΔABC 的中线,BE 为ΔABD 的中线,若ΔABC 的面积为40,BD=5,则ΔBDE 中BD 边上的高的长 . 15.长和宽分别为a,b 的长方形的周长为14,面积为10,则=+22ab b a ×× .16.已知9)2=+b a (,4)2=-b a ( ,那么 =+22b a ab= .17若关于x 的不等式组⎩⎨⎧>->+1312x a x 的解集为1<x<3,则a= . .第13题图第14题图418.写出一个以 ⎩⎨⎧-==11y x 为解的二元一次方程组 . 19.若a - b=1,则代数式 ab b a 222--的值为 . 20.运行程序如图所示,规定“从输入一个值x ”到“结果是否大于95”为一次程序操作,如果程序操作进行了二次才停止,那么x 的取值范围是 .三、解答题:(本大题共80分) 21.(8分)计算:(1) 200820070252.09131)()()()(--++-- (2)22)2()2y x y x -+(22.(8分)分解因式(1) a ax ax 8822-+- (2)2224)1x x -+( 23.( 8 分)解方程组(1) ⎩⎨⎧=-=+12542y x y x (2)⎪⎩⎪⎨⎧=-+=++=-182251z y x z y x y x524.( 8 分)如图,ΔABC 中,∠ACB=∠AED,∠1=∠2 , FH ⊥AB 垂足为H,则CD 与AB 有什么位置关系?为什么?25.( 8 分)解不等式组,并把它的解集在数轴上表示出来。
(名师整理)数学七年级竞赛试题及答案解析
1七年级第 二学期数学竞赛试题选择题(每题3分,满分30分)1. 若01-<<a ,则2,1,a aa a ,2a ,a1从小到大排列正确的是 ( )A .aa a 12<< B .21a a a <<C .21a a a <<D .aa a 12<< 2.下列运用等式的性质变形正确的是( ).A .若y x =,则55+=-y xB .若b a =,则bc ac =C .若a b cc=,则b a 32= D .若y x = ,则x y aa= 3.已知有理数a ,b 在数轴上对应的两点分别是A ,B.请你将具体数值代入a ,b ,充分实验验证:对于任意有理数a ,b ,计算A , B 两点之间的距离正确的公式一定是( )A .a b -B .||||a b +C .||||a b -D .||a b - 4.若A 和B 都是3次多项式,则A+B 一定是( ) A 、6次多项式 B 、3次多项式C 、次数不高于3次的多项式D 、次数不低于3次的多项式 5.一个多项式与2x -2x +1的和是3x -2,则这个多项式为( )A .2x -5x +3B .-2x +x -1C .-2x +5x -3D .2x -5x -1326.若2237y y ++的值为8,则2469y y +-的值是( ). A .2 B .-17 C .-7 D .77.一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是( ) (A )2010 (B )2011 (C )2012 (D )20138.六个整数的积36=⋅⋅⋅⋅⋅f e d c b a ,f e d c b a 、、、、、 互不相等,则f e d c b a +++++ 的和可能是( ).A .0B .10C .6D .89.把100个苹果分给若干个小朋友,每个人至少分得一个,且每个人分得的数目不同,那么最多有( )人. A.11 B. 12 C. 13 D.14 10.方程120072005 (35153)=⨯++++x x x x的解是x 等于( ) A.20072006 B.20062007 C. 10032007 D.20071003二、填空题(每题3分,满分24分)11.如果b a ⋅<0,那么=++ababb b a a. … …红 黄 绿 蓝 紫 红 黄 绿 黄 绿 蓝 紫312.如果3()480a a x +++=是关于x 的一元一次方程,那么21a a +-= .13.在图中每个小方格内填入一个数,使每一行、每一列都有1、2、3、4、5.那么右下角的小方格内填入的数是 .(1)451(2)321(3)53?14.如上图,一个正方体的每个面分别标有数字1,2,3,4,5,6.根据图•中该正方体三种状态所显示的数据,可推出“?”处的数字是 . 15.将一张长方形的纸对折,如图所示可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折10次可以得到 条折痕。
(名师整理)数学七年级竞赛试题及答案解析
初一数学竞赛试卷班级:姓名:座号:一、选择题(每小题3分,共30分)1、(-1)2002是()A.最大的负数B.最小的非负数C.最小的正整数D.绝对值最小的整数2、如图,长方形ABCD恰好可分成7个形状大小相同的小长方形,如果小长方形的面积是3,则长方形ABCD的周长是()A.17B.18C.19D.3173、已知x是169的平方根,且2x=+,则y的值是()y2x3143A.11B.±11C. ±15D.65或34、已知351.1=1.147,31.15=2.472,3151.0=0.532 5,则31510的值是()A.24.72B.53.25C.11.47D.114.75、已知x、y为有理数,且P()y x,的坐标满足22yx+=0,则点P必在()12A.原点上B.x 轴正半轴上C.y 轴正半轴上D.x 轴负半轴上6、经过两点A (2,3)、B (-4,3)作直线AB ,则直线AB ( ) A.平行于x 轴 B.平行于y 轴 C.经过原点 D.无法确定7、要使两点()111,y x P 、()222,y x P 都在平行于y 轴的某一直线上,那么必须满足( )A .21x x =B .21y y =C .21y x =D .21y y = 8、若关于x 的方程(x-2)+3k=3x k+的解是负数,则k 的取值范围是( )A .k>34B .k≥34C .k<34D .k≤349、已知非零实数a ,b 满足24242a b a -++=,则a b +等于( ).A .-1B .0C .1D .2 10、若10=++y x x ,12=-+y y x ,则y x +的值为( )3A .518B .-2C .22D .111 二、填空题(每小题3分,共24分)11、已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561…请你推测320的个位数是 .12、三个实数按从小到大排列为1x ,2x ,3x ,把其中每两个数作和得到三个数分别是14,17,33,则2x = . 13、如图,AB ∥DC ,∠B=40°,∠D=25°,则∠1等于 . 14、如图,已知AB ∥DC ,∠α= .15、如图,若要在长32m ,宽20m 的长方形地面上修筑同样宽2米的道路,余下的部分修草坪,草坪的面积是______ m 2A BDC1AB 120°α25°CD4(第13题) (第14题)(第15题)16、小成编写了一个如下程序:输入x →2x →立方根→倒数→算术平方根→21,则x 为______________ 17、3211x y +=的正整数解是___________. 18、若,32,23+=+=a y a x 且y x >>2,则a 的取值范围是 .三、解答题(每小题7分,共14分)19、已知,如图,CD ⊥AB 于D ,EF ⊥AB 于F ,∠1=∠2,判断DG与BC 的位置关系,并说明理由。
(名师整理)数学七年级竞赛试题及答案解析
初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。
2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x²,x3都是单项式.两个单项式x3,x²之和为x3+x²是多项式,排除A。
两个单项式x²,2x2之和为3x2是单项式,排除B。
两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。
3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数1C.没有最大的负整数D.没有最大的非负数答案:C解析:最大的负整数是-1,故C错误。
4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( ) A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。
6.有四种说法:甲.正数的平方不一定大于它本身;2乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故丙错误。
7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上可以排除A、B、C,应选D。
8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )A.乘以同一个数B.乘以同一个整式3C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
七年级上学期数学竞赛试卷
(时量:70分钟 总分:100分)
学校 班级 座号 姓名
一、耐心填一填。
(每小题3分 共30分)
1、已知数轴上的点A 到原点的距离是2个单位长度,那么数轴上到A 点的距离是3个单位长度的点所表示的数有 个。
2、方程x +1=﹣1 与方程2x -k=-x 有相同的解,则k= 。
3、若a、b是互为相反数,则a+2a+…+49a+50a+50b+49b+…+2b+b= _________。
4、用“⊿”定义运算对于任意有理数m 、b 都有m ⊿b=2b +m 。
例如:7⊿4=24+7=23。
则(-9)⊿(-2)= 。
5、如果
x x n
m -+-7123
1与是同类项,则m 、 n 满足的关系是 。
6、正四面体有 个顶点, 条棱。
7、2010年全国总人口控制在14.3亿以内,用科学记数法表示这个数为 。
8、右边图形是用等长的木棒搭成
的,请观察填表:
9、在今年5月份的奥
2
运火炬传递接力赛中,某城市运动员若干人参加10千米火炬接力长跑,男运动员每人跑1500米,女运动员跑800米,已知女运动员比男运动员多1人,则男运动员有 人。
10、已知 2-+b a +b 2=0,则ab 2 = 。
二、细心选一选(每小题3分 共30分)
11、代数式b a 22+的值 ( )
A 、大于零
B 、大于2
C 、等于零
D 、大于或等于零 12、若长方形的一边长为3a+2b ,另一边比它大a -b ,那么它的周长是( )
A 、14a+6b
B 、7a+3b
C 、10a+10b
D 、12a+8b
13、下列式子不是代数式的是( )
A 、xy+4
B 、a+bx
C 、-8+2=-6
D 、
x
1+5 14、下列说法错误的是( )
A 、正方形有四条棱
B 、看墙上的挂图,距离越远,视角越小
C 、“气温零上5℃”与“气温零下5℃”是相反意义的量。
D 、正八边形中每条边都相等,每个角都相等。
15、学生问老师:“您今年多大了”老师风趣地说:“我像你这么大的时候,你才出生,
你到我这么大时,我已经36岁了,”那么老师和学生的年龄分别是( )
3
A 、24、12
B 、 24、11
C 、 25、11
D 、 26、10
16、一张试卷25道题,若做对一题得4分,做错一题倒扣1分,小红做完所有题后得
70分。
则她做对了 ( ) 道题。
A 、17
B 、 18
C 、 19
D 、 20 17、若a+b <0, ab <0,则下列式子成立的是( )
A 、a<0,b <0且a≠b
B 、a <0,b >0且a <b
C 、a <0<b ,且-a >b
D 、a >0,b >0且b <a 18、下列说法正确的是( )
A 、数轴上原点的位置一定要选择数轴的中点。
B 、如果实数a > b ,则在数轴上表示a 的点比表示b 的点距原点较远。
C 、任何有理数都可以用数轴上唯一一个点表示出来。
D 、两个有理数,绝对值大的数较大。
19、下列判断中,正确的个数为( )
(1)1是最小的自然数; (2)正数、零、负数统称为有理数; (3)-32 的底数为-3; (4)a 、b 互为相反数,则a+b=0;
(5)当x=3
2时,3222
x
A 、1个
B 、2个
C 、3个
D 、4个
E 、5个
4
20、笼子里共有x 只鸡和(13-x )只兔,鸡兔同笼共有脚36只,则笼子里鸡的数量
为( ) A 7只
B
8只
C 9只
D 10只
三、解答题:(给你知识的空间,让你自由飞翔)共40分 21、计算 (10分,每小题5分) (1)(
18
7
436597--+ )×(-36) (2)()()()[]
5326
112
3100---+-⨯-
-
22、(5分)先化简,再求值:()⎪⎭
⎫
⎝
⎛-
--y x y x 2
1322,其中x=20,y=10。
23、(5分)在做七巧板时,用边长为10cm 的正方形制作,请计算出七部分中的两个
小三角形、正方形以及平行四边形的面积之和。
24、(10分)古时一财主生日,有人作打油诗形容当时场面:“二人一碗饭,三人一
碗羹,四人一碗肉,一共六十五碗,请你来算一算,问来客多少人?”你能知道这个财主请了多少客人吗?
25.(10分)在一条河中有甲、乙两船,现同时从A顺流而下,乙船到B地时接到通知要立即返回到C地执行任务,甲船继续顺流而行,已知甲、乙两船在静水中的速
5
度都是7.5千米/小时,水流速度是2.5千米/小时,A、C两地间的距离为10千米,如果乙船由A经B再到C共用4小时,问乙船从B到C时,甲船驶离B地多远?
6
湘教版七年级上学期数学竞赛试卷答卷
一.耐心填一填。
(3×10=30分)
1.; 2.; 3.; 4.;5.; 6. 、;7. ;8.、、;9. ;10. 。
二.细心选一选。
(3×10=30分)
三.解答题。
(共40分)
21.(1)(5分)(2)(5分)
22.(5分)23.(5分)
24.(10分)25.(10分)
7
8
参考答案
一.耐心填一填。
(3×10=30分)
1. 4 ; 2. -6 ; 3. 0 ; 4. -5 ;
5. m+n=6 ; 6. 4 、 6 ; 7. 1.43×109; 8. 7 、 9 、 2n+1 ; 9. 4 ; 10. 0 。
二.细心选一选。
(3×10=30分)
题号 11 12 13 14 15 16 17 18 19 20 答案
D
A
C
B
A
C
C
C
A
B
三. 解答题。
(共40分) 21.(1)
(2)
22.
23.
24.
25.
解:原式=-28-30+27+14
=-58+41
=-17
解:原式= )598(6
1
1++-⨯-- = 66
1
1⨯-- = -1-1
= -2
解:原式= y x y x +--62
x 4-=
当x=20时, 原式=-4×20=-80
解:如左图所示, 所求面积=BDE ABC S S ∆∆- =552
110102
1
⨯⨯-⨯⨯ =37.5
解:设共有x 名客人,依题意可得:
1
11解:如图25-1,设AB=x 千米,有:
45
.25.710
5.25.7=-+++x x ,解之得
320=x .此时甲驶离B 地
10
20+
图25-1
图25-2
9。