八年级数学第三章图形的平移与旋转练习题及答案全套

合集下载

北师大八年级下《第三章图形的平移与旋转》单元测试(含答案)

北师大八年级下《第三章图形的平移与旋转》单元测试(含答案)

第三章图形的平移与旋转一、旋转题1.如图,所给图形中是中心对称图形但不是轴对称图形的是()A. B. C. D.2.用放大镜将图形放大,应该属于()A. 平移变换B. 相似变换C. 对称变换D. 旋转变换3.将点M(﹣1,﹣5)向右平移3个单位长度得到点N,则点N所处的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AB=8,将△ABC沿CB向右平移得到△DEF.若四边形ABED 的面积等于8,则平移距离等于()A. 2B. 4C. 8D. 165.如图,OA=OB=6cm,线段OB从与OA重合的位置开始沿逆时针方向旋转120°,在旋转过程中,设AB的中点为P(当OA与OB重合时,记点P与点A重合),则点P运动的路径长为()A. 6cmB. 4πcmC. 2πcmD. 3cm6.如图,Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC绕点A顺时针旋转90°得到(点B′与点B是对应点,点C′与点C是对应点),连结CC′,则∠CC′B′的度数是()A. 45°B. 30°C. 25°D. 15°7.如图,等腰直角三角形ABC的直角边AB的长为6cm,将△ABC绕点A逆时针旋转15°后得到△AB′C′,AC 与B′C′相交于点H,则图中△AHC′的面积等于()A. 12﹣6B. 14﹣6C. 18﹣6D. 18+68.如图所示是“福娃欢欢”的五幅图案,②,③,④,⑤哪一个图案可以通过平移图案①得到()A. ②B. ③C. ④D. ⑤9.如图,在正方形ABCD中,AB=3,点E在CD边上,DE=1,把△ADE绕点A顺时针旋转90°,得到△ABE′,连接EE′,则线段EE′的长为()A. B. C. 4 D.10.如图,△ABC是等边三角形,D为BC边上的点,∠BAD=15°,△ABD经旋转后到达△ACE的位置,那么旋转了( ).A. 75°B. 60°C. 45°D. 15°二、填空题11.在等边三角形、正方形、直角三角形、等腰梯形中,既是轴对称图形,又是中心对称图形的是________ .12.在△ABC中,∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB'C',则∠B'AC=________.13.如图,△ABC沿射线AC方向平移2cm得到△A′B′C′,若AC=3cm,则A′C=________ cm.14.点P(﹣2,1)向上平移2个单位后的点的坐标为________15.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm.将线段DC沿着CB的方向平移7cm得到线段EF,点E,F分别落在边AB,BC上,则△EBF的周长为________ cm.16.某景点拟在如图的矩形荷塘上架设小桥,若荷塘中小桥的总长为100米,则荷塘周长为________m.三、解答题17.如图所示,有一条宽相等的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,若要硬化这条小路,且每平方米造价50元,则需要多少元钱?18.请把下面的小船图案先向上平移3格,再向右平移4格,最后为这个图案配上一句简短的解说词.19.每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,①把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,②以原点O为对称中心,再画出与△A1B1C1关于原点O对称的△A2B2C2.参考答案一、旋转题C BD A C D C D A B二、填空题11.正方形12.17°13.114.(﹣2,3)15.1316.200三、解答题17.解:在矩形ABCD中,AF∥EC,又∵AF=EC,∴四边形AECF是平行四边形.在Rt△ABE中,AB=60,AE=100,根据勾股定理得BE=80,∴EC=BC﹣BE=4,所以这条小路的面积S=EC•AB=4×60=240(m2).240×50=1200元.答:需要1200元钱18.解:如图所示:解说词:两只小船在水中向前滑行19.解:如图所示:。

(精练)北师大版八年级下册数学第三章 图形的平移与旋转含答案

(精练)北师大版八年级下册数学第三章 图形的平移与旋转含答案

北师大版八年级下册数学第三章图形的平移与旋转含答案一、单选题(共15题,共计45分)1、下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.2、下列图形中,是轴对称图形但不是中心对称图形的是()A. B. C. D.3、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.4、下列各网格中的图形是用其图形中的一部分平移得到的是()A. B. C.D.5、下列图形中,是轴对称图形但不是中心对称图形的是()A. B.C. D.6、下列交通标志图案中,是中心对称图形的是()A. B. C. D.7、下列四个图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.8、下列图形是中心对称图形的是()A. B. C. D..9、下列图形中可以由一个基础图形通过平移变换得到的是()A. B. C. D.10、如图,将△ABC沿边BC向右平移2个单位长度得到△DEF,若AC的长为3个单位长度,则四边形ACFD的周长为()A.6B.10C.8D.1211、如图,将正方形图案绕中心O旋转180°后,得到的图案是()A. B. C. D.12、如图的方格纸中,左边图形到右边图形的变换是()A.向右平移7格B.以AB的垂直平分线为对称轴作轴对称变换,再以AB 为对称轴作轴对称变换C.绕AB的中点旋转180°,再以AB为对称轴作轴对称D.以AB为对称轴作轴对称,再向右平移7格13、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.14、下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形15、将点 A( 2, -1) 向左平移 3 个单位长度,再向上平移 4 个单位长度得到点 B ,则点B 的坐标是()A.(5, 3)B.( -1, 3)C.( -1, -5)D.(5, -5)二、填空题(共10题,共计30分)16、在直角坐标系中,△ABC的顶点坐标是A(﹣1,2)、B(﹣3,1)、C (0,﹣1).(1)若将△ABC向右平移2个单位得到,画出△A′B′C′,A点的对应点A′的坐标是________ .(2)若将△A′B′C′绕点C′按顺时针方向旋转90°后得到△A1B1C′,则A′点的对应点A1的坐标是________ .(3)直接写出两次变换过程中线段BC扫过的面积之和为________ .17、将一个自然数旋转180°后,可以发现一个有趣的现象,有的自然数旋转后还是自然数.例如,808,旋转180°后仍是808.又如169旋转180°后是691.而有的旋转180°后就不是自然数了,如37.试写一个五位数,使旋转180°后仍等于本身的五位数________.(数字不得完全相同)18、如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连结CE,CF,若∠CEF=α,则tanα=________.19、如图,已知面积为1的正方形ABCD的对角线相交于点O,过点O任作一条直线分别交AD,BC于E,F,则阴影部分的面积是________20、一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF∥AB,那么n的值是________.21、如图所示,P是等边△ABC内一点,△BMC是由△BPA旋转所得,则∠PBM=________度.22、中,,,,将此三角形绕点旋转,当点落在直线上的点处时,点落在点处,此时点到直线的距离为________.23、如图,已知在矩形0ABC中,0A=3,OC=2,以边OA,OC所在的直线为轴建立平面直角坐标系xOy,反比例函数y= (x>0)的图象经过点B,点P(t,0)是x轴正半轴上的动点,将点B绕点P顺时针旋转90°,使点B恰好落在反比例y= (x>0)的图象上,则t的值是________。

北师大八年级下《第3章图形的平移与旋转》单元测试题含答案试卷分析详解

北师大八年级下《第3章图形的平移与旋转》单元测试题含答案试卷分析详解

第三章图形的平移与旋转一、选择题1.点P(-2,-3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A.(-3,0)B.(-1,6)C.(-3,-6)D.(-1,0)2..下列说法正确的是()A.平移不改变图形的形状和大小,而旋转改变图形的形状和大小B.平移和旋转都不改变图形的形状和大小C.图形可以向某方向平移一定距离,也可以向某方向旋转一定距离D.在平移和旋转图形的过程中,对应角相等,对应线段相等且平行3.如图,将边长为4的等边△沿边BC向右平移2个单位得到△,则四边形的周长为()A.12B.16C.20D.244.如图,在正方形中,,点在上,且,点是上一动点,连接,将线段绕点逆时针旋转90°得到线段.要使点恰好落在上,则的长是()A.1B.2C.3D.45.如图,在平面直角坐标系中,将点M(2,1)向下平移2个单位长度得到点N,则点N的坐标为()A.(2,-1) B.(2,3) C.(0,1) D.(4,1)第5题图第7题图第8题图6.已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a,b的值是() A.a=5,b=1 B.a=-5,b=1C.a=5,b=-1 D.a=-5,b=-17.如图,把△ABC绕点C顺时针旋转35°得到△A′B′C,A′B′交AC于点D.若△A′DC=90°,则△A的度数为()A.45° B.55° C.65° D.75°8.如图,在6×4的方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是(B)A.点M B.点N C.点P D.点Q9.如图所示的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有()A.4个B.3个C.2个D.1个10.如图,在Rt△ABC中,△C=90°,△ABC=30°,AB=8,将△ABC沿CB方向向右平移得到△DEF.若四边形ABED的面积为8,则平移距离为()A.2 B.4 C.8 D.1611.如图,Rt△ABC向右翻滚,下列说法正确的有()(1)△→△是旋转;(2)△→△是平移;(3)△→△是平移;(4)△→△是旋转.A.1个B.2个C.3个D.4个12.如图,在等边△ABC中,点D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°得到△BAE,连接ED.若BC=5,BD=4,则下列结论错误的是()A.AE△BCB.△ADE=△BDCC.△BDE是等边三角形D.△ADE的周长是9二、填空题1.将点A(2,1)向左平移3个单位长度得到的点B的坐标是________.2.如图,将△ABC绕着点C顺时针方向旋转50°后得到△A′B′C.若△A=40°,△B′=110°,则△BCA′的度数是________.第2题图第3题图3.如图,将△ABC沿直线AB向右平移后到达△BDE的位置,若△CAB=50°,△ABC=100°,则△CBE的度数为________.4.如图,香港特别行政区区徽由五个相同的花瓣组成,它是以一个花瓣为“基本图案”通过连续四次旋转组成的,这四次旋转中旋转角度最小是________度.第4题图第5题图5.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm,将线段DC沿着CB的方向平移7cm得到线段EF,点E,F分别落在AB,BC上,则△EBF的周长为________cm.6.如图,A,B两点的坐标分别为(-2,0),(0,1),将线段AB平移到线段A1B1的位置.若A1(b,1),B1(-1,a),则b-a=________.第6题图第8题图7.在等腰三角形ABC中,△C=90°,BC=2cm,如果以AC的中点O为旋转中心,将△ABC旋转180°,点B落在B′处,则BB′的长度为________.8.如图,Rt△ABC中,AC=5,BC=12,则其内部五个小直角三角形的周长之和为________.三、解答题1.如图,经过平移,△ABC的顶点移到了点D,作出平移后的△DEF.2.如图,△ABO与△CDO关于O点中心对称,点E,F在线段AC上,且AF=CE.求证:FD=BE.3.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫作格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB′C′;(2)画出△AB′C′向左平移4格后的△A′B″C″;(3)计算线段AB在变换到AB′的过程中扫过区域的面积.4.如图,在Rt△ABC中,△ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF△CD,求证:△BDC=90°.5.如图,Rt△ABC中,△ACB=90°,AC=3,AB=5,将△ABC沿AB边所在直线向右平移3个单位,记平移后的对应三角形为△DEF.(1)求DB的长;(2)求此时梯形CAEF的面积.6.如图,4×4网格图都是由16个相同小正方形组成,每个网格图中有4个小正方形已涂上阴影,请在空白小正方形中,按下列要求涂上阴影.(1)在图△中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形;(2)在图△中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形,但不是中心对称图形.7.两块等腰直角三角形纸片AOB和COD按图△所示放置,直角顶点重合在点O处,AB=25.保持纸片AOB不动,将纸片COD绕点O逆时针旋转α(0°<α<90°)角度,如图△所示.(1)在图△中,求证:AC=BD,且AC△BD;(2)当BD与CD在同一直线上(如图△)时,若AC=7,求CD的长.答案一、选择题ABBCA DBBAA CB二、填空题1.(-1,1)2.80°3.30°4.725.136.-57.25cm8.30三、解答题1.解:如图,△DEF即为所求.(8分)2.证明:△△ABO与△CDO关于O点中心对称,△OB=OD,OA=OC.△AF=CE,△OF =OE.(3分)在△DOF和△BOE中,OD=OB,△DOF=△BOE,OF=OE,△△DOF△△BOE(SAS),(6分)△FD=BE.(8分)3.解:(1)如图所示,△AB ′C ′即为所求.(3分) (2)如图所示,△A ′B ″C ″即为所求.(6分)(3)△AB =42+32=5,(8分)△线段AB 在变换到AB ′的过程中扫过区域的面积为半径为5的圆的面积的14,即14×π×52=254π.(10分)4.(1)解:补全图形,如图所示.(4分)(2)证明:由旋转的性质得△DCF =90°,DC =FC ,△△DCE +△ECF =90°.(5分)△△ACB=90°,△△DCE +△BCD =90°,△△ECF =△BCD .△EF △DC ,△△EFC +△DCF =180°,△△EFC =90°.(6分)在△BDC 和△EFC 中,⎩⎪⎨⎪⎧DC =FC ,△BCD =△ECF ,BC =EC ,△△BDC △△EFC (SAS),△△BDC =△EFC =90°.(8分) 5.解:(1)△将△ABC 沿AB 边所在直线向右平移3个单位到△DEF ,△AD =BE =CF =3.△AB =5,△DB =AB -AD =2.(3分)(2)过点C 作CG △AB 于点G .在△ACB 中,△△ACB =90°,AC =3,AB =5,△由勾股定理得BC =AB 2-AC 2=4.(6分)由三角形的面积公式得12AC ·BC =12CG ·AB ,△3×4=5×CG ,解得CG =125.(8分)△梯形CAEF 的面积为12(CF +AE )×CG =12×(3+5+3)×125=665.(10分)6.解:(1)如图所示.(5分)(2)如图所示.(10分)7.(1)证明:如图,延长BD 交OA 于点G ,交AC 于点E .(1分)△△AOB 和△COD 是等腰直角三角形,△OA =OB ,OC =OD ,△AOB =△COD =90°,△△AOC +△AOD =△DOB +△DOA ,△△AOC =△DOB .(3分)在△AOC 和△BOD 中,⎩⎪⎨⎪⎧OA =OB ,△AOC =△BOD ,OC =OD ,△△AOC △△BOD ,△AC =BD ,△CAO =△DBO .(5分)又△△DBO +△OGB =90°,△OGB =△AGE ,△△CAO +△AGE =90°,△△AEG =90°,△AC △BD .(2)解:由(1)可知AC =BD ,AC △BD .△BD ,CD 在同一直线上,△△ABC 是直角三角形.由勾股定理得BC =AB 2-AC 2=252-72=24.(10分),△CD =BC -BD =BC -AC =17.。

(必考题)初中数学八年级数学下册第三单元《图形的平移与旋转》测试卷(包含答案解析)

(必考题)初中数学八年级数学下册第三单元《图形的平移与旋转》测试卷(包含答案解析)

一、选择题1.下列图形中,是中心对称图形的是( )A .B .C .D . 2.下列图形中,既是中心对称又是轴对称图形的是( )A .B .C .D .3.推进生态文明建设,实行垃圾分类和资源化利用是每个公民义不容辞的责任.下列四幅图是垃圾分类标志图案,每幅图案下配有文字说明.则四幅图案中既是轴对称图形,又是中心对称图形的是( )A .有害垃圾B .可回收物C .厨余垃圾D .其他垃圾4.把点()P x,y 绕原点顺时针旋转270°,点P 的对应点的坐标是( )A .(),y x -B .(),x y --C .(),y x -D .(),x y 5.下列图形中既是中心对称图形又是轴对称图形的是( )A .B .C .D . 6.下列四种多边形:①等边三角形;②正方形;③正五边形;④正六边形.其中,既是轴对称图形又是中心对称图形的个数为( )A .1B .2C .3D .47.下列图形中,是中心对称图形的有( )A .1个B .2个C .3个D .4个8.下列标志既是轴对称图形又是中心对称图形的是( )A .B .C .D . 9.下列标志中是中心对称图形的是( )A .B .C .D . 10.如图所示图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 11.怀化是一个多民族聚居的地区,民俗文化丰富多彩.下面是几幅具有浓厚民族特色的图案,其中既是轴对称图形又是中心对称图形的是( )A .B .C .D .12.如图所示,在ABC ∆中,70CAB ∠=︒,将ABC ∆绕点A 旋转到AB C ''∆的位置,使得C A AB '⊥,则BAB '∠的度数为( )A .10︒B .20︒C .30D .50︒二、填空题13.已知点P(-3,2)关于原点的对称点是_______.14.若点()1,5P m -与点()3,2Q n -关于原点成中心对称,则m n +的值为______. 15.如图,在平面直角坐标系xOy 中,点A (2,m )绕坐标原点O 逆时针旋转90°后,恰好落在图中阴影区域(包括边界)内,则m 的取值范围是_____.16.两块大小相同,含有30°角的三角板如图水平放置,将△CDE 绕点C 按逆时针方向旋转,当点E 的对应点E′恰好落在AB 上时,△CDE 旋转的角度是______度.17.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,2),且|a ﹣8b -0,将线段PQ 向右平移a 个单位长度,其扫过的面积为24,那么a+b+c 的值为_____. 18.如图,在ABC 中,60,BAC ∠=︒将ABC 绕着点A 顺时针旋转40︒后得到,ADE 则BAE ∠的度数为_______.19.如图,将周长为8个单位的三角形ABC 沿BC 方向平移2个单位得到三角形DEF ,则四边形ABFD 的周长为_______个单位.20.在 ABC 内的任意一点 ()P a b , 经过平移后的对应点为 ()1P cd ,,已知 ()32A , 在经过此次平移后对应点 1A 的坐标为 ()51-,,则 c d a b +-- 的值为________________.三、解答题21.如图,已知ABC 的三个顶点的坐标分别为(5,0)A -,(2,3)B -,(1,0)C -.(1)画出ABC 关于原点O 成中心对称的图形A B C ''';(2)将ABC 绕原点O 顺时针旋转90︒,画出对应的A B C ''''''△,并写出点B ''的坐标_____________.22.如图,ABC 中,90C ∠=︒.ABC 绕点B 逆时针旋转,旋转角为α,点C '为点C 的对应点.(1)请用尺规作图法画出旋转后的A BC ''△;(2)若90α=︒,3BC =,4AC =.求A A '的长.23.如图,已知等边三角形,ABC O 为ABC ∆内一点,连接,,OA OB OC ,将 BAO ∆绕点B 旋转至BCM ∆.(1)依题意补全图形;(2)若5OA =,6OB =,OC =,求 OCM ∠的度数.24.综合与探究:如图,在ABC ,AB AC =,CAB α∠=,(1)操作与证明:如图①,点D 为边BC 上一动点.连接AD ,将线段AD 绕点A 逆时针旋转角度α至AE 的位置,连接DE ,CE .求证:BD CE =;(2)探究与发现:如图②,当90α=︒时,点D 变为BC 延长线上一动点,连接AD ,将线段AD 绕点A 按照逆时针旋转角度α至AE 位置,连接DE ,CE .可以发现:线段BD 和CE 的数量关系是______;(3)判断与思考:判断(2)中的线段BD 和CE 的位置关系,并说明理由.25.如图,在平面直角坐标系中有ABC :(1)已知111A B C △和ABC 关于y 轴对称,在图中画出111A B C △;(2)将111A B C △沿x 轴向右平移4个单位,在图中画出平移后的222A B C △; (3)222A B C △和ABC 关于某条直线l 对称,在图中画出对称轴l .26.如图,在平面直角坐标系中,已知ABC 的三个顶点的坐标分别为)(3,5A -,)(2,1B -,)(1,3C -.(1)ABC 的面积是______.(2)画出ABC 绕着点O 按顺时针方向旋转90°得到的222A B C △.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A 、不是中心对称图形,故本选项不符合题意;B 、是中心对称图形,故本选项符合题意;C、不是中心对称图形,故本选项不符合题意;D、不是中心对称图形,故本选项不符合题意.故选:B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.D解析:D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,不是中心对称图形.D、是轴对称图形,也是中心对称图形;故选:D.【点睛】本题考查中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,3.A解析:A【分析】根据轴对称图形与中心对称图形的概念可知.【详解】A选项既是轴对称图形也是中心对称图形B选项不是轴对称图形也不是中心对称图形C选项是轴对称图形而不是中心对称图形D选项不是中心对称图形也不是轴对称图形故选A【点睛】本题考查轴对称及中心对称的定义,掌握中心对称图形与轴对称图形的概念,要注意:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.C解析:C【分析】根据旋转中心为点O,旋转方向顺时针,旋转角度270°,作出点P的对应点P′,可得所求点的坐标.【详解】解:设P(x,y)在第一象限,作PA⊥x轴于点A.作P'B⊥x轴于点B.∵点()P x,y 绕原点顺时针旋转270°,∴∠90P OP '=︒∴90P OB POA '∠+∠=︒∵90P POA ∠+∠=︒∴∠P P OB '=∠在△OAP 和△OBP'中,90PAO P BO P BOP OP OP ∠∠'︒⎧⎪∠∠'⎨⎪'⎩====, ∴△OAP ≌△P'BO ,∴OB=PA=y ,P'B=OA=x ,∵点()P x,y 绕原点顺时针旋转270°,则P'的坐标是(-y ,x ).故选:C .【点睛】本题考查了坐标与图形的旋转,全等三角形的判定与性质,正确的作出图形是解题的关键.5.A解析:A【分析】本题利用轴对称图形和中心对称图形的概念求解即可,轴对称图形:沿某一直线折叠后直线两旁的部分互相重合;中心对称图形:将一个图形绕着中心点旋转180°后能与自身重合的图形叫做中心对称图形;【详解】A 、此图形既是中心对称图形,也是轴对称图形故此选项正确;B 、此图形是中心对称图形,但不是轴对称图形故此选项不正确;C 、此图形是轴对称图形,但不是中心对称图形故此选项不正确;D 、此图形是轴对称图形,但不是中心对称图形故此选项不正确;故选:A .【点睛】本题考查了轴对称图形和中心对称图形的概念,正确理解它们的概念是解题的关键;6.B解析:B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】①正三角形是轴对称图形不是中心对称图形;②正方形即是轴对称图形又是中心对称图形;③正五边形是轴对称图形不是中心对称图形;④正六边形即是轴对称图形又是中心对称图形,故选:B.【点睛】本题考查了中心对称图形和轴对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图形重合.7.B解析:B【分析】根据中心对称图形的概念求解.【详解】解:第一个图形是中心对称图形;第二个图形不是中心对称图形;第三个图形是中心对称图形;第四个图形不是中心对称图形.故共2个中心对称图形.故选:B.【点睛】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.8.A解析:A【分析】根据中心对称图形与轴对称图形的概念判断即可.【详解】解:A、既是轴对称图形,又是中心对称图形.故正确;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、不是轴对称图形,也不是中心对称图形.故错误.故选:A.【点睛】本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.9.B解析:B【分析】根据中心对称图形的定义即可解答.【详解】解:A、是轴对称图形,不是中心对称的图形,不合题意;B、是中心对称图形,符合题意;C、既不是轴对称图形,也不是中心对称的图形,不合题意;D、是轴对称图形,不是中心对称的图形,不合题意.故选:B.【点睛】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.10.B解析:B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形.故不符合题意;B、是轴对称图形,也是中心对称图形.故符合题意;C、不是轴对称图形,是中心对称图形.故不符合题意;D、不是轴对称图形,也不是中心对称图形.故不符合题意.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.11.C解析:C【分析】直接利用轴对称图形和中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、既是中心对称图形也是轴对称图形,故此选项正确;D、是轴对称图形,但不是中心对称图形,故此选项错误.故选C.【点睛】此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.12.B解析:B【分析】先求出∠C′AC的度数,然后根据旋转的性质即可求得答案.【详解】'⊥,∵C A AB∴∠C′AB=90°,∵∠CAB=70°,∴∠C′AC=∠C′AB-∠CAB=20°,∵∠BAB′与∠C′AC都是旋转角,∴∠BAB′=∠C′AC=20°,故选B.【点睛】本题考查了旋转的性质,求出∠C′AC的度数是解题的关键.二、填空题13.(3-2)【分析】根据关于原点对称点的坐标变化规律求解即可【详解】解:关于原点对称的两个点横坐标互为相反数纵坐标也互为相反数所以P(-32)关于原点的对称点是(3-2)故答案为:(3-2)【点睛】本解析:(3,-2)【分析】根据关于原点对称点的坐标变化规律求解即可.【详解】解:关于原点对称的两个点横坐标互为相反数,纵坐标也互为相反数,所以P(-3,2)关于原点的对称点是(3,-2),故答案为:(3,-2).【点睛】本题考查了关于原点对称坐标变化,熟记点在坐标系中的几何变换的坐标变化规律是解题关键.14.5【分析】根据关于原点对称的点的横坐标互为相反数纵坐标互为相反数可得答案【详解】解:∵点P(m-15)与点Q(32-n)关于原点对称∴m-1=-32-n=-5解得:m=-2n=7则m+n=-2+7=解析:5【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:∵点P(m-1,5)与点Q(3,2-n)关于原点对称,∴m-1=-3,2-n=-5,解得:m=-2,n=7,则m+n=-2+7=5.故答案为:5.【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.15.﹣3≤m≤﹣25【分析】如图将阴影区域绕着点O顺时针旋转90°与直线x=2交于CD两点则点A(2m)在线段CD上结合点CD的纵坐标即可求出m的取值范围【详解】如图将阴影区域绕着点O顺时针旋转90°与解析:﹣3≤m≤﹣2.5.【分析】如图,将阴影区域绕着点O顺时针旋转90°,与直线x=2交于C,D两点,则点A(2,m)在线段CD上,结合点C,D的纵坐标,即可求出m的取值范围.【详解】如图,将阴影区域绕着点O顺时针旋转90°,与直线x=2交于C,D两点,则点A(2,m)在线段CD上,又∵点D的纵坐标为﹣2.5,点C的纵坐标为﹣3,∴m的取值范围是﹣3≤m≤﹣2.5,故答案为﹣3≤m≤﹣2.5.【点睛】考查旋转的性质,根据旋转的性质,画出图形是解题的关键.16.30【分析】根据旋转性质及直角三角形两锐角互余可得△E′CB是等边三角形从而得出∠ACE′的度数再根据∠ACE′+∠ACE´=90°得出△CDE旋转的度数【详解】解:根据题意和旋转性质可得:CE´=解析:30【分析】根据旋转性质及直角三角形两锐角互余,可得△E′CB是等边三角形,从而得出∠ACE′的度数,再根据∠ACE′+∠ACE´=90°得出△CDE旋转的度数.【详解】解:根据题意和旋转性质可得:CE´=CE=BC,∵三角板是两块大小一样且含有30°的角,∴∠B=60°∴△E′CB是等边三角形,∴∠BCE′=60°,∴∠ACE′=90°﹣60°=30°,故答案为:30.【点睛】本题考查了旋转的性质、等边三角形的判定和性质,本题关键是得到△ABC等边三角形.17.16【分析】利用非负数的性质可求出b的值a=c进而可得PQ的长再根据平移的性质和平行四边形的面积公式即可求出a进一步即可求出答案【详解】解:∵|a﹣c|+=0又∵|a﹣c|≥0≥0∴a﹣c=0b﹣8解析:16【分析】利用非负数的性质可求出b的值,a=c,进而可得PQ的长,再根据平移的性质和平行四边形的面积公式即可求出a,进一步即可求出答案.【详解】解:∵|a﹣0,又∵|a﹣c|≥0,∴a﹣c=0,b﹣8=0,∴a=c,b=8,∴P(a,8),Q(a,2),∴PQ=6,∵线段PQ向右平移a个单位长度,其扫过的面积为24,a⨯=,解得a=4,∴624∴a=c=4,∴a+b+c=4+8+4=16.故答案为:16.【点睛】本题考查了非负数的性质、图形与坐标以及平移的性质等知识,正确理解题意、熟练掌握上述知识是解题的关键.18.100°【分析】根据旋转角可得∠CAE=40°然后根据∠BAE=∠BAC+∠CAE代入数据进行计算即可得解【详解】解:∵△ABC绕着点A顺时针旋转40°后得到△ADE∴∠CAE=40°∵∠BAC=6解析:100°【分析】根据旋转角可得∠CAE=40°,然后根据∠BAE=∠BAC+∠CAE,代入数据进行计算即可得解.【详解】解:∵△ABC绕着点A顺时针旋转40°后得到△ADE,∴∠CAE=40°,∵∠BAC=60°,∴∠BAE=∠BAC+∠CAE=60°+40°=100°.故答案为:100°.【点睛】本题考查旋转的性质,是基础题,确定出∠CAE=40°是解题关键.19.12【分析】根据平移前后图形的大小不发生改变可知AC=DF题意中平移的距离为2个单位长度即AD=CF=2由此可得到四边形ABCF的周长可拆解为三角形的周长和平移距离的2倍的和进行求解【详解】∵采用平解析:12【分析】根据平移前后图形的大小不发生改变,可知AC=DF,题意中平移的距离为2个单位长度即AD=CF=2,由此可得到四边形ABCF的周长可拆解为三角形的周长和平移距离的2倍的和进行求解.【详解】∵采用平移得到的△DEF,∴AC=DF∵平移距离为2个单位长度∴AD=CF=2∵△ABC周长为8个单位长度∴AB+BC+AC=AB+BC+DF=8∴四边形ABFD的周长为AB+BF+FD+AD=(AB+BC+DF)+AD+CF=8+2+2=12.故答案为:12.【点睛】考查平移的性质以及平移的距离的知识点,学生掌握平移不变性是解题的关键,并准确表示出平移的距离才可解出题目.20.-1【分析】由A(32)在经过此次平移后对应点A1的坐标为(5-1)可得△ABC的平移规律为:向右平移2个单位向下平移3个单位由此得到结论【详解】解:由A(32)在经过此次平移后对应点A1的坐标为(解析:-1【分析】由A (3,2)在经过此次平移后对应点A 1的坐标为(5,-1),可得△ABC 的平移规律为:向右平移2个单位,向下平移3个单位,由此得到结论.【详解】解:由A (3,2)在经过此次平移后对应点A 1的坐标为(5,-1)知c=a+2、d=b -3, 即c -a=2、d -b=-3,则c+d -a -b=2-3=-1,故答案为:1-.【点睛】本题考查的是坐标与图形变化——平移,牢记平面直角坐标系内点的平移规律:上加下减、右加左减是解题的关键.三、解答题21.(1)图见解析;(2)图见解析,(3,2).【分析】(1)利用关于原点对称的点的坐标特征写出A '、B '、C '点的坐标,然后描点即可; (2)利用网格特点和旋转的性质画出A 、B 、C 的对应点A ''、B ''、C '',根据图象可得点B ''的坐标.【详解】解:(1)如图,A B C '''为所作;(2)如图,A B C ''''''△为所作,点B ''的坐标为(3,2).故答案为(3,2).【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.22.(1)作图见解析,(2)52【分析】(1)作BA′=BA ,A′C′=AC 即可;(2)根据勾股定理求出AB ,由旋转可知,△AB A′是等腰直角三角形,根据勾股定理可求A A '.【详解】解:(1)旋转后的A BC ''△如图所示;(2)∵90C ∠=︒,3BC =,4AC =, ∴2222435AB AC BC =+=+=,由旋转可知,∠ABA′=90°,AB=A′B=5,22225552AA AB A B ''=+=+=.【点睛】本题考查了旋转作图和性质,勾股定理,解题关键是熟练运用旋转性质和勾股定理. 23.(1)见解析;(2)90°【分析】(1)根据题目的条件要求直接补全图形即可;(2)连接OM ,易证BCM ∆为等边三角形,再根据勾股定理的逆定理即可证明OMC 是直角三角形,进而可求出 OCM ∠的度数.【详解】解:(1) 依题意补全图形、如图所示:(2)如图示,连接OMABC ∆为等边三角形、60ABC ︒∴∠=BAO ∆旋转得到BCM ∆,5OA 6OB =, 5MC OA ,6MBOB , 60OBM ABC ︒∠=∠= OBM ∴∆为等边三角形、 6OM OB在OMC ∆中,1OC =,5MC = 6OM =222156 222OC MC OM ∴==90OCM ︒∴∠=,【点睛】本题考查旋转变换,等边三角形的性质和判定,勾股定理的逆定理等知识,灵活运用所学知识解决问题是解题的关键.24.(1)见解析;(2)BD CE =;(3)BD CE ⊥,理由见解析【分析】(1)由旋转的性质得AD AE =,DAE CAB ∠=∠,从而证明BAD CAE ≌,即可得到结论;(2)同第(1)小题的方法,证明BAD CAE ≌,即可得到结论;(3)先证明BAD CAE ≌,从而得45B ACE ∠=∠=︒,进而即可得到结论.【详解】(1)证明:由旋转可知,AD AE =,DAE CAB α∠=∠=∴CAB CAD DAE CAD ∠-∠=∠-∠,则BAD CAE ∠=∠在BAD 和CAE 中∵AB AC =,BAD CAE ∠=∠,AD AE =∴()BAD CAE SAS ≌△△ ∴BD CE =(2)由旋转可知,AD AE =,DAE CAB α∠=∠=,∴CAB CAD DAE CAD ∠+∠=∠+∠,则BAD CAE ∠=∠在BAD 和CAE 中∵AB AC =,BAD CAE ∠=∠,AD AE =∴()BAD CAE SAS ≌△△ ∴BD CE =,故答案是:BD CE =;(3)BD CE ⊥理由如下:∵90CAB α∠==︒,AB AC =.∴45B ACB ∠=∠=︒由旋转,可得AD AE =,90DAE CAB ∠=∠=︒∴CAB CAD DAE CAD ∠+∠=∠+∠,则BAD CAE ∠=∠在BAD 和CAE 中∵AB AC =,BAD CAE ∠=∠,AD AE =∴()BAD CAE SAS ≌△△ ∴45B ACE ∠=∠=︒∴90BCE ACB ACE ∠=∠+∠=︒∴BD CE ⊥【点睛】本题主要考查全等三角形的判定和性质,等腰三角形的性质,掌握SAS 证明三角形全等,是解题的关键.25.(1)见解析;(2)见解析;(3)见解析.【分析】(1)利用关于y 轴对称点的性质得出对应点位置进而得出答案;(2)直接利用平移的性质得出对应点位置进而得出答案;(3)直接利用轴对称的性质得出对称轴的位置进而得出答案.【详解】解:(1)如图所示:(2)如图所示;(3)如图所示.【点睛】此题主要考查了轴对称变换以及平移变换,正确得出对应点位置是解题关键.26.(1)3;(2)见解析【分析】(1)用割补法即可得出△ABC的面积;(2)依据旋转的性质,找出A、B、C的对应点A2、B2、C2,然后用线段顺次连接即可得到△ABC绕着点O按顺时针方向旋转90°得到的△A2B2C2.【详解】解:(1)△ABC的面积是2×4-12×2×2-12×4×1-12×1×2=3,故答案为:3;(2)如图,【点睛】本题考查了作图-旋转变换,根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.。

北师大版八年级下册数学第三章 图形的平移与旋转含答案(学生专用)

北师大版八年级下册数学第三章 图形的平移与旋转含答案(学生专用)

北师大版八年级下册数学第三章图形的平移与旋转含答案一、单选题(共15题,共计45分)1、如图下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2、线段AB经过平移得到线段CD,若CD=5cm,则AB等于()A.3cmB.4cmC.5cmD.6cm3、如图,将周长为5的△ABC沿BC方向平移了1个单位长度得到△DEF,连接AD,则四边形ABFD的周长为()A.5B.6C.7D.84、下列车标,可看作图案的某一部分经过平移所形成的是 ( )A. B. C. D.5、下列是四个汽车标志图案,其中可看作由“基本图案”经过平移得到的是()A. B. C. D.6、下列说法错误的是()A.矩形的对角线相等B.正方形的对称轴有四条C.平行四边形既是中心对称图形又是轴对称图形D.菱形的对角线互相垂直且平分7、经过平移或旋转不可能将甲图案变成乙图案的是()A. B. C. D.8、下列电视台的台标,是中心对称图形的是()A. B. C. D.9、将下列图案通过平移后可以得到的图案是()A. B. C. D.10、观察下列图形,是中心对称图形的是()A. B. C. D.11、下列图形既是轴对称图形,又是中心对称图形的是()A. B. C. D.12、下列电视台的台标,是中心对称图形的是()A. B. C. D.13、下列图形中,是中心对称图形的是( )A. B. C. D.14、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.15、如图,在△ABC中,∠ABC=90°,将△ABC沿AB方向平移AD的长度得到△DEF,已EF=8,BE=3,CG=3,则图中阴影部分的面积是()A.12.5B.19.5C.32D.45.5二、填空题(共10题,共计30分)16、如图,三角形DEF是三角形ABC沿射线BC平移的得到的,BE=2,DE与AC 交于点G,且满足DG=2GE.若三角形CEG的面积为1,CE=1,则点G到AD的距离为________.17、如图,与都是直角三角形,,点在上,.如果经顺时针旋转后能与重合,那么旋转中心是点________,旋转了________度.18、如图,往竖直放置的在A处山短软管连接的粗细均匀细管组成的“U形装置中注入一定量的水,水面高度为9cm,现将右边细管绕A处顺时针方向旋转60°到AB位置,则AB中水柱的长度为________cm.19、如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转到△A′B′C,使得点A′恰好落在AB上,则旋转角度为________.20、如图,将△ABC沿射线AC平移得到△DEF,若AF=17,DC=7,则AD=________21、如图,已知∠AOB=45°,将射线OA绕点O逆时针旋转α°(0 α 360),得到射线OA′.若OA′⊥OB,则α的值是________.22、钟表的时针匀速旋转一周需12小时,则时针经过3小时后,时针所转过的角度为________,如果时针从12时开始,绕中心旋转了120°,则它所指向的具体数字是________.23、“梅花朵朵迎春来”,下面四个图形是由小梅花摆成的一组有规律的图案,按图中规律,第n个图形中小梅花的个数是________.24、在图中,是由基本图案多边形ABCDE旋转而成的,它的旋转角为________.25、如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转________次,每次旋转________度形成的.三、解答题(共5题,共计25分)26、如图所示,△ABC平移后得到了△DEF,D在AB上,若∠A=26°,∠E=74°,求∠1,∠2,∠F,∠C的度数.27、如图,已知A(-2,-3),B(-3,-1),C(-1,-2)是平面直角坐标系中三点.(1)请你画出ABC关于原点O对称的A1B1C1;(2)请写出点A关于y轴对称的点A2的坐标.若将点A2向上平移h个单位,使其落在A1B1C1内部,指出h的取值范围.28、找出图中的旋转中心,说出旋转多少度能与原图形重合?并说出它是否是中心对称图形.29、在四边形ABCD中,对角线AC、BD相交于点O,将△COD绕点O按逆时针方向旋转得到△C1OD1,旋转角为θ(0°<θ<90°),连接AC1、BD1, AC1与BD1交于点P.(1)如图1,若四边形ABCD是正方形.①求证:△AOC1≌△BOD1.②请直接写出AC1与BD1的位置关系.(2)如图2,若四边形ABCD是菱形,AC=5,BD=7,设AC1=kBD1.判断AC1与BD1的位置关系,说明理由,并求出k的值.(3)如图3,若四边形ABCD是平行四边形,AC=5,BD=10,连接DD1,设AC1=kBD1.请直接写出k的值和AC12+(kDD1)2的值.30、在下面的正方形网格中,每个小正方形的边长为1.(1)直接写出图①共有多少条对称轴;(2)图②中的阴影图案可以看成是由某个基本图形绕着一个点依次旋转一定的角度后得到的.请在图中标出这个点;(3)利用图③的方格,设计一个新图案,要求与图①②的图案都不相同,但面积相同,且能沿某条直线分割后两旁的图形完全相同.(在图④中把你画的图案涂成阴影并画出分割线)参考答案一、单选题(共15题,共计45分)1、D2、C3、C4、B5、B6、C7、C8、D9、A10、D11、D12、D13、C14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。

八年级数学下册《第三章图形的平移与旋转》单元测试题含答案

八年级数学下册《第三章图形的平移与旋转》单元测试题含答案

第三章图形的平移与旋转第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.下列英文字母既是中心对称图形又是轴对称图形的是( )图12.如图2所示的各组图形中,由图形甲变成图形乙,既能用平移,又能用旋转的是( )图23.如图3,如果将△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,那么线段A′B与线段AC的关系是( )图3A.互相垂直 B.相等C.互相平分 D.互相垂直且平分4.如图4,将△PQR先向右平移2个单位长度,再向下平移3个单位长度,则顶点P 平移后的坐标是( )图4A.(-2,-4) B.(-2,4) C.(2,-3) D.(-1,-3)5.已知A(-1,3),B(2,-3)两点,现将线段AB平移至A1B1,如果A1(a,1),B1(5,-b),那么a b的值是( )A .16B .25C .32D .496.如图5所示,将边长为2的正方形ABCD 沿对角线AC 向右平移,使点A 移至线段AC 的中点A ′处,得到新正方形A ′B ′C ′D ′,则新正方形与原正方形重叠部分(图中阴影部分)的面积是( )图5A. 2B.12 C .1 D.147.如图6所示,在△ABC 中,AB =4,BC =6,∠B =60°,将△ABC 沿射线BC 的方向平移,得到△A ′B ′C ′,再将△A ′B ′C ′绕点A ′逆时针旋转一定角度后,点B ′恰好与点C 重合,则平移的距离和旋转角的度数分别为( )图6A .4,30°B .2,60°C .1,30°D .3,60°8.如图7,在△ABC 中,∠CAB =75°,在同一平面内,将△ABC 绕点A 旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠BAB ′的度数为( )图7A .30°B .35°C .40°D .50°9.如图8,将△ABC 绕点C (0,1)旋转180°得到△A ′B ′C ,若点A 的坐标为(a ,b ),则点A ′的坐标是( )图8A .(-a ,-b )B .(-a ,-b -1)C .(-a ,-b +1)D .(-a ,-b +2) 10.如图9所示,在Rt △ABC 中,∠ACB =90°,∠B =30°,AC =1,且AC 在直线l 上,将△ABC 绕点A 顺时针旋转到位置①,可得到点P 1,此时AP 1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+3;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+3……按此规律继续旋转,直到得到点P为止,则AP等于( )图9A.+673 3 B.+672 3 C.+672 3 D.+673 3第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.有下列运动:①物体随传送带的移动;②踢足球时,足球的移动;③轻轨列车在笔直轨道上行驶;④从书的某一页翻到下一页时,这一页上的某个图形的移动.其中属于平移现象的有________.(将所有正确的序号都填上)12.如图10,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC 于点D.若∠A′DC=90°,则∠A=________°.图1013.如图11,在平面直角坐标系中,点A的坐标为(-1,2),点C的坐标为(-3,0),先将点C绕点A逆时针旋转90°,再向下平移3个单位长度,此时点C的对应点的坐标为________.图1114.如图12,在等边三角形ABC中,AB=10,D是BC的中点,将△ABD绕点A旋转后得到△ACE,则线段DE的长为________.图1215.如图13,在△ABC中,∠C=90°,AC=BC=2,将△ABC绕点A顺时针旋转60°到△AB′C′的位置,连接C′B,则C′B的长为________.图1316.有两张完全重合的长方形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到长方形AMEF(如图14①),连接BD,MF,此时他测得∠ADB=30°.小红同学用剪刀将△BCD 与△MEF剪去,与小亮同学探究.他们将△ABD绕点A顺时针旋转得到△AB1D1,AD1交MF于点K(如图②),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,旋转角β的度数为________.图14三、解答题(共52分)17.(6分)青花瓷是我国民族艺术瑰宝之一,它以洁白细腻的胎体、晶莹透明的釉色、幽靓浓艳的纹饰、华美丰富的造型而闻名于世,它的清新雅丽、质朴率真最能代表中华民族含蓄而豪迈的民族风格,因而素有“国瓷”之誉.请欣赏下面这幅青花瓷图案,试用两种方法分析图案的形成过程.图1518.(6分)如图16,在△ABC和△ADE中,点E在BC边上,∠BAC=∠DAE,∠B=∠D,AB=AD.(1)求证:△ABC≌△ADE;(2)如果∠AEC=75°,将△ADE绕着点A逆时针旋转一定角度(小于90°)后与△ABC重合,求这个旋转角的大小.图1619.(6分)如图17,桌面内,直线l上摆放着两个大小相同的三角板,它们中较大锐角的度数为60°.将△ECD沿直线l向左平移到△E′C′D′的位置,使点E′落在AB上,P 为AC与E′D′的交点,试解决下列问题:(1)求∠CPD′的度数;(2)求证:AB⊥E′D′.图1720.(6分)如图18,△ABC是边长为3的等边三角形,将△ABC沿直线BC向右平移BC 的长度,得到△DCE,连接BD,交AC于点F.(1)猜想AC与BD的位置关系,并证明你的结论;(2)求线段BD的长.图1821.(6分)如图19,用等腰直角三角板画∠DOB=45°,并将三角板沿OB方向平移到如图所示的△AMB处后,再将三角板绕点M逆时针旋转22°得到△EMC,EM与OD交于点D,求此时三角板的斜边与射线OD的夹角∠ODM的度数.图1922.(6分)如图20所示,在平面直角坐标系中,有一直角三角形ABC,且A(0,5),B(-5,2),C(0,2),△AA1C1是由△ABC经过旋转变换得到的.图20(1)由△ABC旋转得到△AA1C1的旋转角的度数是多少?并写出旋转中心的坐标;(2)请你画出仍以(1)中的旋转中心为旋转中心,将△AA1C1按顺时针,△ABC按逆时针各旋转90°后得到的两个三角形,并写出△AA1C1按顺时针旋转90°后点A1的对应点A2的坐标;(3)利用变换前后所形成的图案证明勾股定理(设△ABC的两直角边长分别为a,b,斜边长为c).23.(8分)如图21所示,△ABC,△ECD都是等边三角形.(1)试确定AE,BD之间的大小关系;(2)如果把△CDE绕点C按逆时针方向旋转到如图②所示的位置,那么(1)中的结论还成立吗?请说明理由.图2124.(8分)如图22,在正方形ABCD中,E为BC上任意一点,将△ABE旋转后得到△CBF.(1)指出旋转中心和旋转角的度数;(2)判断AE与CF的位置关系;(3)如果正方形的面积为18 cm2,△BCF的面积为4 cm2,那么四边形AECD的面积是多少?图221.D 2.C 3.D 4.A 5.C 6.B7.B 8.A 9.D 10.D11.①③12.55 13.(1,-3) 14.5 3 15.3-1 16.60°或15°17.解:(答案不唯一)方案一:以一个花瓣为基本图案,依次旋转45°,90°,135°,180°,225°,270°,315°可得到整个图案;方案二:以相邻两个花瓣为基本图案,依次旋转90°,180°,270°可得到整个图案.18.解:(1)证明:在△ABC和△ADE中,∵∠BAC=∠DAE,AB=AD,∠B=∠D,∴△ABC≌△ADE.(2)∵△ABC≌△ADE,∴AC与AE是一组对应边,∴∠CAE为旋转角.∵AE=AC,∠AEC=75°,∴∠ACE=∠AEC=75°,∴∠CAE=180°-75°-75°=30°.即旋转角为30°.19.解:(1)由平移的性质知DE∥D′E′,∴∠CPD′=∠CED=60°.(2)证明:由平移的性质知CE∥C′E′,∠CED=∠C′E′D′=60°,∴∠BE′C′=∠BAC=30°,∴∠BE′D′=90°,∴AB⊥E′D′.20.解:(1)AC⊥BD.证明如下:∵△DCE是由△ABC平移而得到的,∴△DCE≌△ABC,AC∥DE.又∵△ABC是等边三角形,∴BC=CD=CE=DE,∠DCE=∠CDE=60°,∴∠DBC=∠BDC=30°,∴∠BDE=90°,∴DE⊥BD.∵AC∥DE,∴AC⊥BD.(2)在Rt△BED中,∵BE=6,DE=3,∴BD=BE2-DE2=62-32=3 3.21.解:∵三角板绕点M逆时针旋转了22°,∴∠BMC=22°.∵∠DMC=45°,∴∠OMD=180°-45°-22°=113°.又∵∠DOB=45°,∴∠ODM=180°-113°-45°=22°,即此时三角板的斜边与射线OD的夹角∠ODM的度数是22°.22.解:(1)旋转角为90°,旋转中心的坐标为(-1,1).(2)如图所示,点A1的对应点A2的坐标为(-2,-3).(3)证明:设AC=a,BC=b,则正方形AA1A2B的面积为c2,正方形C1C2C3C的面积为(b -a)2,由图可得c2-(b-a)2=4×12 ab,即c2-b2+2ab-a2=2ab,∴c2=a2+b2. 23.解:(1)在△ACE和△BCD中,∵AC=BC,∠ACE=∠BCD=60°,CE=CD,∴△ACE≌△BCD,∴AE=BD.(2)成立.理由如下:∵∠ACB=∠ECD=60°,∴∠ACE=∠BCD.在△ACE和△BCD中,∵AC=BC,∠ACE=∠BCD,CE=CD,∴△ACE≌△BCD,∴AE=BD.24.解:(1)旋转中心是点B,旋转角是90°.(2)如图,延长AE交CF于点M.∵△CBF是由△ABE旋转得到的,∴△CBF≌△ABE,∴∠FCB=∠EAB.∵∠AEB=∠CEM,∴∠BAE+∠AEB=∠FCB+∠CEM.∵四边形ABCD是正方形,∴∠ABE=90°,∴∠BAE+∠AEB=90°,∴∠FCB+∠CEM=90°,∴∠CME=90°,∴AE⊥CF.(3)∵△CBF≌△ABE,△CBF的面积为4 cm2,∴△ABE的面积为4 cm2.∵正方形的面积为18 cm2,∴四边形AECD的面积为14 cm2.11/ 11。

(必考题)初中数学八年级数学下册第三单元《图形的平移与旋转》测试卷(答案解析)

(必考题)初中数学八年级数学下册第三单元《图形的平移与旋转》测试卷(答案解析)

一、选择题1.下列图形中既是轴对称图形,又是中心对称图形的是( )A .B .C .D .2.下列图形既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.如图,在Rt ABC ∆中,,AC BC D E =、是斜边AB 上两点,且45DCE ∠=︒,将ACD ∆绕点C 顺时针旋转90︒后,得到BCF ∆,连接EF ,下列结论中:①45ECF ∠=︒;②ACD ∆≌BCE ∆;③CE 平分DCF ∠;④222AD BE DE +=;正确的有( )个A .1个B .2个C .3个D .4个4.如图,在△ABC 中,AB=3,BC=5.2,∠B=60°,将△ABC 绕点A 逆时针旋转△ADE ,若点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .0.8B .2C .2.2D .2.85.下列图案中,是中心对称图形的是( )A .B .C .D . 6.下列四个图形是word 软件中的自选图形,其中既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 7.如图,将ABC 绕点C 逆时针旋转得到DEC ,若点D 刚好落在边AB 上,CB 与DE 交于点F ,120,20ACB E ∠=︒∠=︒,则ADC ∠的度数为( )A .40︒B .50︒C .55︒D .60︒ 8.在奔驰、宝马、丰田、三菱等汽车标志图形中,为中心对称图形的是( ) A . B . C . D .9.点(1,2)A m --与点(3,1)B n +关于原点对称,则m n +=( )A .1B .-1C .-5D .5 10.如图,ABC 面积为2,将ABC 沿AC 方向平移至DFE △,且AC=CD ,则四边形AEFB 的面积为( )A .6B .8C .10D .1211.下列语句说法正确的是 ( )A .两锐角分别相等的两个直角三角形全等B .经过旋转,对应线段平行且相等C .一个命题是真命题,它的逆命题一定也是真命题D .两条直角边分别相等的两直角三角形全等12.如图,在ABC 中,70,30B BAC ∠=︒∠=︒,将ABC 绕点C 顺时针旋转得到,EDC 当点B 的对应点D 恰好落在AC 上时,连接,AE 则AED ∠的度数为( )A .40B .35C .25D .20二、填空题13.把直线3y x =-向上平移后得到直线AB ,若直线AB 经过点(,)C a b ,且36,a b +=则直线AB 的表达式为_______14.如图,点D 是等腰直角三角形 ABC 内一点,AB =AC ,若将△ABD 绕点A 逆时针旋转到△ACE 的位置,则∠AED 的度数为________________.15.如图,P 是等边△ABC 内一点,PA =4,PB =3PC =2,则ABC 的边长为________.16.在平面直角坐标系xoy 中,已知点A(2,3),若将OA 绕原点O 逆时针旋转90°得到OA′, 则点A′的坐标是____________.17.如图,ABC ∆沿着由点B 到点E 的方向,平移到DEF ∆.若10BC =,6EC =,则平移的距离为__________.18.如图,在△ABC 中,∠C =90°,△ABC 绕点A 按顺时针方向旋转26°得到△AED ,若AD //BC ,则∠BAE =______°.19.如图,将△AOB 绕点O 按逆时针方向旋转50°后得到△COD ,如果∠AOB =15°,那么∠AOD 的度数为_____.20.如图,在ABC ∆中,8AB =,6AC =,30BAC ∠=,将ABC ∆绕点A 逆时针旋转60得到11AB C ∆,连接1BC ,则1BC 的长为__________.三、解答题21.如图,在ABC 中,1AB =,45BAC ∠=︒,3AC =.将ABC 绕点B 逆时针旋转一个角α,得到A BC ''△,点A 恰好在A C ''边上.(1)求α的度数;(2)求AC '的长.22.如图网格中,AOB 的顶点均在格点上,点A 、B 的坐标分别是(3,2)A 、()1,3B .(1)点A 关于点O 中心对称点的坐标为(_______,_______);(2)AOB 绕点O 顺时针旋转90︒后得到11AOB ,在方格纸中画出11AOB ,并写出点1B 的坐标(______,_______);(3)在y 轴上找一点P ,使得PA PB +最小,请在图中标出点P 的位置,并求出这个最小值.23.如图,在边长为8的等边ABC 中,点D 是AB 的中点,点E 是平面上一点,且线段2DE =,将线段EB 绕点E 顺时针旋转60°得到线段EF ,连接AF .(1)如图1,当2BE =时,求线段AF 的长;(2)将线段BE 绕点B 旋转得到图2,求证:AF CE =.24.如图,ABC 在平面直角坐标系内,顶点的坐标分别为()4,4A -,()2,5B -,()2,1C -.(1)平移ABC ,使点C 移到点()12,4C --,画出平移后的111A B C △,并写出点1A ,1B 的坐标;(2)画出与ABC 关于原点对称的图形.25.在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (-2,1),B (-4,5),C (-5,2).(1)画出△ABC 关于y 轴对称的△A 1B 1C 1;(2)画出△ABC 关于原点O 成中心对称的△A 2B 2C 2;(3)求△A 2B 2C 2的面积.26.在平面直角坐标系中,ABC 的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将ABC 绕着点A 顺时针旋转90°,画出旋转后得到的11AB C △,并直接写出点11,B C 的坐标.(2)在(1)得到的图形中,1∠=BAC ______度,连结1B C ,作1AB C 的高CD ,求CD 长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据轴对称图形与中心对称图形的概念结合各图形的特点求解即可.【详解】解:A 、是中心对称图形,不是轴对称图形,故本选项不合题意;B 、不是中心对称图形,但是轴对称图形,故本选项不合题意;C 、是中心对称图形,又是轴对称图形,故本选项合题意;D 、既不是中心对称图形,也不是轴对称图形,故本选项不符合题意;故选:C .【点睛】本题考查了中心对称图形和轴对称图形的知识,注意掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.B解析:B【分析】根据轴对称图形和中心对称图形的定义进行判定即可;【详解】A 、是轴对称图形不是中心对称图形,故不符合题意;B 、既是轴对称图形又是中心对称图形,故符合题意;C 、是轴对称图形不是中心对称图形,故不符合题意;D 、是轴对称图形不是中心对称图形,故不符合题意;故选:B .【点睛】本题考查了轴对称图形和中心对称图形,正确理解轴对称图形和中心对称图形的定义是解题的关键;3.C解析:C【分析】①根据旋转的性质可得出∠BCF=∠ACD ,由∠ACB=90°,∠DCE=45°,可得出∠BCF+∠BCE=∠ECF=45°,即可判断①;②根据旋转的性质可得出△ACD ≌△BCF ,不能推出ACD ∆≌BCE ∆,即可判断②; ③根据∠DCE=∠ECF=45°,根据角平分线定义即可判断③;④根据全等三角形的判定求出△AED ≌△AFD ,推出DE=EF ,求出∠EBF=90°,根据勾股定理推出即可.【详解】解:∵在Rt △ABC 中,BC=AC ,∴∠A=∠CBA=45°,①由旋转,可知:∠BCF=∠ACD ,∵∠ACB=90°,∠DCE=45°,∴∠ACD+∠BCE=45°,∴∠BCF+∠BCE=∠ECF=45°,故①正确;②由旋转,可知:△ACD ≌△BCF ,不能推出ACD ∆≌BCE ∆,故②错误;③∵∠DCE=∠ECF=45°,∴CE 平分∠DCF ,故③正确;④由旋转可知:AD=BF ,∠CBF=∠A=45°,∵∠CBA=45°,∴∠EBF=90°,由勾股定理得:BF 2+BE 2=EF 2,即AD 2+BE 2=EF 2,在△CDE 和△CFE 中,CE CE DCE ECF CD CF =⎧⎪∠=∠⎨⎪=⎩, ∴△CDE ≌△CFE (SAS ),∴DE=EF ,∴AD 2+BE 2=DE 2,故选:C .【点睛】本题考查了全等三角形的判定、相似三角形的判定、勾股定理、等腰直角三角形以及旋转的性质,逐一分析四条结论的正误是解题的关键.4.C解析:C【分析】根据旋转的性质得到△ABD 为等边三角形,得到BD=AB=3,再根据线段和差计算得到答案即可.【详解】∵△ABC 绕点A 逆时针旋转△ADE ,∴AB=AD ,∵∠B=60°,∴△ABD 为等边三角形,即BD=AB=3,∴CD=BC-BD=5.2-3=2.2;故选:C .【点睛】此题考查旋转的性质,等边三角形的判定及性质,线段的和差计算,掌握旋转的性质证得△ABD 为等边三角形是解题的关键.5.A解析:A【分析】根据中心对称图形的概念解答.【详解】A 、是中心对称图形,故本选项符合题意;B 、不是中心对称图形,故本选项不符合题意;C 、不是中心对称图形,故本选项不符合题意;D 、不是中心对称图形,故本选项不符合题意;故选:A .【点睛】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.6.C解析:C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A 、是轴对称图形,不是中心对称图形,故此选项不合题意;B 、是轴对称图形,不是中心对称图形,故此选项不合题意;C 、既是轴对称图形,又是中心对称图形,故此选项符合题意;D 、是轴对称图形,不是中心对称图形,故此选项不合题意.故选:C .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.7.A解析:A【分析】先根据旋转的性质可得,20AC CD B E =∠=∠=︒,再根据三角形的内角和定理可得40A ∠=︒,然后根据等腰三角形的性质即可得.【详解】由旋转的性质得:,AC CD B E =∠=∠,120,20ACB E ∠=︒∠=︒,12041801800ACB B AC A B E ∠-∠=︒∠-∠∴∠==︒-=︒-︒,又AC CD =,40A ADC ∠∴=∠=︒,故选:A .【点睛】本题考查了旋转的性质、三角形的内角和定理、等腰三角形的性质,熟练掌握旋转的性质是解题关键.8.B解析:B【分析】据中心对称图形的概念,结合图形特征即可求解.【详解】A 、不是中心对称图形,故此选项错误;B 、是中心对称图形,故此选项正确;C 、不是中心对称图形,故此选项错误;D 、不是中心对称图形,故此选项成文;故选:B .【点睛】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.9.B解析:B【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.【详解】解:∵点(1,2)A m --与点(3,1)B n +关于原点对称,∴1312m n -=-⎧⎨+=⎩, ∴21m n =-⎧⎨=⎩, ∴211m n +=-+=-;故选:B .【点睛】本题考查了关于原点 对称的点的坐标,两点关于原点对称,则两点的横、纵坐标都是互为相反数.10.C解析:C【分析】如图(见解析),先根据平移的性质可得//AE BF ,2BF AD AC ==,DE AC =,再根据平行线的性质可得BEF 的边BF 上的高等于BG ,然后根据三角形的面积公式分别求出ABE △和BEF 的面积即可得出答案.【详解】如图,过点B 作BG AE ⊥于点G ,连接BE , ABC 面积为2,122AC BG ∴⋅=,即4AC BG ⋅=, 由平移的性质得://AE BF ,BF AD =,DE AC =,AC CD =,2BF AD AC CD AC ∴==+=,3AE AD DE AC =+=,113622ABE S AE BG AC BG ∴=⋅=⋅⋅=, //AE BF ,BEF ∴的边BF 上的高等于BG ,112422BEF S BF BG AC BG ∴=⋅=⋅⋅=, ∴四边形AEFB 的面积为6410ABE BEF S S +=+=,故选:C .【点睛】本题考查了平移的性质、平行线间的距离、三角形的面积公式等知识点,熟练掌握平移的性质是解题关键.11.D解析:D【分析】利用直角三角形全等、旋转的性质、逆命题分别判断后即可确定正确的选项.【详解】A 、两锐角分别相等的两个直角三角形不一定全等,原命题是假命题;B 、经过旋转,对应线段相等,原命题是假命题;C 、一个命题是真命题,它的逆命题不一定是真命题,原命题是假命题;D 、两条直角边分别相等的两直角三角形一定全等,是真命题;故选:D .【点睛】本题考查了命题与定理的知识,解题的关键是了解直角三角形全等、旋转的性质、逆命题等知识,难度不大.12.D解析:D【分析】由三角形内角和定理可得∠ACB =80°,由旋转的性质可得∠ACE =∠ACB =80°,AC =CE ,∠BAC =∠CED =30°,由等腰三角形的性质得到∠AEC =50°,由角的和差即可求解.【详解】解:∵∠B =70°,∠BAC =30°,∴∠ACB =80°,∵将△ABC 绕点C 顺时针旋转得△EDC ,∴∠ACE =∠ACB =80°,AC =CE ,∠BAC =∠CED =30°,∴∠CEA =50°,∴∠AED =∠AEC -∠CED =20°,故选:D .【点睛】本题考查了旋转的性质,等腰三角形的性质,掌握旋转的性质是本题的关键.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.【分析】利用平移规律列式计算即可【详解】设直线y=-3x 向上平移了m 个单位∴直线的解析式为y=-3x+m ∵直线经过点∴b=-3a+m ∵∴b=-3a+6∴-3a+m=-3a+6∴m=6∴直线AB 的解析解析:36y x =-+.【分析】利用平移规律,列式计算即可.【详解】设直线y= -3x 向上平移了m 个单位,∴直线的解析式为y= -3x+m ,∵直线AB 经过点(,)C a b ,∴b=-3a+m ,∵36,a b +=∴b=-3a+6,∴-3a+m=-3a+6,∴m=6,∴直线AB 的解析式为y=-3x+6,故答案为:y=-3x+6.【点睛】本题考查了一次函数的平移,熟记平移规律,灵活确定函数的表达式是解题的关键. 14.45°【分析】如图由题意可以判断为等腰直角三角形即可解决问题【详解】解:由旋转变换的性质知:;为直角三角形∴∴为等腰直角三角形故答案为【点睛】该题考查了旋转变换的性质及其应用问题;应牢固掌握旋转变换 解析:45°【分析】如图,由题意可以判断ADE 为等腰直角三角形,即可解决问题.【详解】解:由旋转变换的性质知:EAD CAB ∠=∠,AE AD =; ABC 为直角三角形,90CAB ∴∠=︒,∴90EAD ∠=︒,∴ADE 为等腰直角三角形,45AED ∴∠=︒,故答案为45︒.【点睛】该题考查了旋转变换的性质及其应用问题;应牢固掌握旋转变换的性质.15.2【分析】作BH ⊥PC 于H 如图把△ABP 绕点B 顺时针旋转60°得到△CBD 连接PD 可判断△PBD 为等边三角形利用勾股定理的逆定理可证明△PCD 为直角三角形∠CPD=90°易得∠BPC=150°利用平解析:27【分析】作BH ⊥PC 于H ,如图,把△ABP 绕点B 顺时针旋转60°得到△CBD ,连接PD ,可判断△PBD 为等边三角形,利用勾股定理的逆定理可证明△PCD 为直角三角形,∠CPD=90°,易得∠BPC=150°,利用平角等于有∠BPH=30°,在Rt △PBH 中,根据含30度的直角三角形三边的关系可计算出BH 和PH 的长,在Rt △BCH 中,根据勾股定理即可求解.【详解】解:作BH ⊥PC 于H ,如图,∵△ABC 为等边三角形,∴BA=BC ,∠ABC=60°,∴把△ABP 绕点B 顺时针旋转60°得到△CBD ,连接PD ,如图,∴CD=AP=4,BD=BP=3∠PBD=60°,∴△PBD 为等边三角形,∴PD=PB=3∠BPD=60°,在△PDC 中,∵PC=2,PD=3CD=4,∴PC 2+PD 2=CD 2,∴△PCD 为直角三角形,∠CPD=90°,∴∠BPC=∠BPD+∠CPD=150°,∴∠BPH=30°,在Rt △PBH 中,∵∠BPH=30°,PB=23, ∴BH=12PB=3,PH=3BH=3, ∴CH=PC+PH=2+3=5, 在Rt △BCH 中,BC 2=BH 2+CH 2= (3)2+52=28,∴BC=27,∴ABC 的边长为27.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质与勾股定理的逆定理.16.【分析】先作出图形然后写出坐标即可【详解】解:如图:则A′的坐标是故答案是【点睛】本题主要考查了坐标与图形的旋转变换根据题意正确画出图形成为解答本题的关键解析:()3,2-【分析】先作出图形,然后写出坐标即可.【详解】解:如图:则A′的坐标是()3,2-.故答案是()3,2-.【点睛】本题主要考查了坐标与图形的旋转变换,根据题意正确画出图形成为解答本题的关键. 17.4【分析】观察图象发现平移前后BE 对应CF 对应根据平移的性质易得平移的距离为BE=BC-EC=4进而可得答案【详解】由题意平移的距离为BE=BC-EC=10-6=4故答案为:4【点睛】本题考查了平移解析:4【分析】观察图象,发现平移前后,B、E对应,C、F对应,根据平移的性质,易得平移的距离为BE=BC-EC=4,进而可得答案.【详解】由题意平移的距离为BE=BC-EC=10-6=4,故答案为:4.【点睛】本题考查了平移的性质,经过平移,对应点所连的线段平行(或在同一直线上)且相等,对应线段平行(或在同一直线上)且相等,对应角相等.本题关键要找到平移的对应点.任何一对对应点所连线段的长度都等于平移的距离.18.38【分析】由旋转的性质可得∠DAB=∠EAC=26°由平行线的性质可得∠B=∠DAB=26°由直角三角形的性质可得∠BAC=64°即可求解【详解】解:∵ABC绕点A按顺时针方向旋转26°得到AED解析:38【分析】由旋转的性质可得∠DAB=∠EAC=26°,由平行线的性质可得∠B=∠DAB=26°,由直角三角形的性质可得∠BAC=64°,即可求解.【详解】解:∵ABC绕点A按顺时针方向旋转26°得到AED,∴∠DAB=∠EAC=26°,∵AD//BC,∴∠B=∠DAB=26°,∵∠C=90°,∴∠BAC=64°,∴∠BAE=∠BAC-∠EAC=64°-26°=38°,故答案为:38°.【点睛】本题考查了旋转的性质,平行线的性质,直角三角形,灵活运用这些性质进行推理是本题的关键.19.65°【分析】首先根据旋转变换的性质求出∠AOC的度数结合∠AOB=15°即可解决问题【详解】解:由题意及旋转变换的性质得:∠AOC=∠BOD=50°∵∠AOB=15°∴∠AOD=50°+15°=6解析:65°【分析】首先根据旋转变换的性质求出∠AOC的度数,结合∠AOB=15°,即可解决问题.【详解】解:由题意及旋转变换的性质得:∠AOC=∠BOD=50°,∵∠AOB=15°,∴∠AOD=50°+15°=65°,故答案为:65°.【点睛】本题主要考查了旋转变换的性质及其应用问题,熟练掌握旋转的性质是解题的关键. 20.【分析】根据旋转的性质可得出在中利用勾股定理求解即可【详解】解:∵∴∵将绕点逆时针旋转得到∴∴∴在中故答案为:【点睛】本题考查的知识点是旋转的性质以及勾股定理利用旋转的性质得出是解此题的关键解析:10【分析】根据旋转的性质可得出11116,30,60AC BAC B AC BA A B C ==∠=∠=︒∠=︒,在1ABC ∆中利用勾股定理求解即可.【详解】解:∵8AB =,6AC =,30BAC ∠=,∴1116,30AC BAC B AC AC ==∠=∠=︒,∵将ABC ∆绕点A 逆时针旋转60得到11AB C ∆,∴160BAB ∠=︒∴190BAC ∠=︒∴在1ABC ∆中,110BC ===.故答案为:10.【点睛】本题考查的知识点是旋转的性质以及勾股定理,利用旋转的性质得出190BAC ∠=︒是解此题的关键. 三、解答题21.(1)90°;(2)3【分析】(1)由旋转的性质求解即可;(2)根据勾股定理求出A A '【详解】解:(1)由旋转得到:ABC A BC ''∆≅∆∴45BA C BAC ''∠=∠=︒ ,1A B AB '==,3A C AC ''==∴45BAA BA A ''∠=∠=︒∴90ABA '∠=︒,即=90α︒(2)在Rt ABA '∆中,AA '===∴AC '=3A C A A '''-=【点睛】本题主要考查了旋转的性质及勾股定理,掌握旋转的性质是解答此题的关键.22.(1)-3,-2;(2)作图见解析;3,-1;(3)点P 的位置见解析;2AB =.【分析】(1)由与点A 关于点O 中心对称点的特征是横纵坐标符号改变点,(3,2)A ,,可得点A 关于点O 中心对称点的坐标为(-3,-2);(2)把点A 、B 顺时针旋转90°对应点分别为A 1、B 1,连结OA 1、OB 1、A 1B 1,则11AOB 为所求如图,由点B 1到y 轴距离=点B 到x 轴的距离,点B 1到x 轴距离=点B 到y 轴的距离,由()1,3B ,点B 1在第四象限,可得点B 1坐标为(3,-1);(3)作点B 关于y 轴的对称点B ',连接AB '交y 轴于点P ,由 ()1,3B .可求(1,3)B '-, 由PB=PB′可知PA PB +=PA+PB′≤AB′,当点A 、P 、B′在同一直线时最短由勾股定理AB '==【详解】解:(1)∵与点A 关于点O 中心对称点的特征是横纵坐标符号改变,∵点(3,2)A ,∴点A 关于点O 中心对称点的坐标为(-3,-2),故答案为:-3,-2;(2)把点A 、B 顺时针旋转90°对应点分别为A 1、B 1,连结OA 1、OB 1、A 1B 1,则11AOB 为所求如图,点B 1到y 轴距离=点B 到x 轴的距离,点B 1到x 轴距离=点B 到y 轴的距离,∵()1,3B ,点B 1在第四象限,∴点B 1坐标为(3,-1);(3)作点B 关于y 轴的对称点B ',连接AB '交y 轴于点P ,B 的坐标是()1,3B .则(1,3)B '-,PB=PB′,PA PB +=PA+PB′≤AB′,当点A 、P 、B′在同一直线时最短,∵(3,2)A ,(1,3)B '-,∴AB '==【点睛】本题考查中心对称,三角形旋转,轴对称以及两点之间线段最短,掌握中心对称,三角形旋转,轴对称以及两点之间线段最短,关键是利用轴对称作点B关于y轴对称,两B′P。

(典型题)初中数学八年级数学下册第三单元《图形的平移与旋转》测试卷(有答案解析)

(典型题)初中数学八年级数学下册第三单元《图形的平移与旋转》测试卷(有答案解析)

一、选择题1.下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.下面是几种病毒的形态模式图,这些图案中既不是轴对称图形也不是中心对称图形的是()A.B.C.D.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.矩形B.等边三角形C.正五边形D.角'''关于原点O成中心对称的是()4.在平面直角坐标系xOy中,ABC与A B CA.B.C.D .5.下列图形中既是中心对称图形又是轴对称图形的是( )A .B .C .D . 6.点(1,2)A m --与点(3,1)B n +关于原点对称,则m n +=( )A .1B .-1C .-5D .57.如图,点O 为平面直角坐标系的原点,点A 在x 轴上,OAB 是边长为4的等边三角形,以O 为旋转中心,将OAB 按顺时针方向旋转60°,得到OA B ''△,那么点A '的坐标为( )A .(2,23)B .(2,4)-C .(2,22)-D .(2,23)- 8.下列图形中,是中心对称图形,但不是轴对称图形的是( )A .B .C .D . 9.下列说法错误的是( )A .对顶角相等B .两直线平行,同旁内角相等C .平移不改变图形的大小和形状D .同一平面内,垂直于同一直线的两条直线平行10.将ABC ∆沿BC 方向平移3个单位得DEF ∆,若ABC ∆的周长等于20,则四边形ABFD 的周长为( )A .28B .26C .24D .2011.如图,四边形ABCD 与四边形FGHE 关于一个点成中心对称,则这个点是( )A .O 1B .O 2C .O 3D .O 412.如图,线段AD 由线段AB 绕点A 按逆时针方向旋转90得到,EFG ∆由ABC ∆沿CB 方向平移得到,且直线EF 过点D .则BDF ∠=( )A .30B .45C .50D .60二、填空题13.如果规定:在平面内,将一个图形绕着某一点旋转一定的角度(小于周角)后能和自身重合,就称此图形为旋转对称图形那么下列图形中:①正三角形;②正方形;③正六边形是旋转对称图形,且有一个旋转角为90︒的是______(填序号).14.如图,在平面直角坐标系中,点A ,B ,C 的坐标分别为()0,1,()1,0,()1,0-,一个电动玩具从坐标原点O 出发,第一次跳跃到点1P ,使得点1P 与点O 关于点A 成中心对称;第二次跳跃到点2P ,使得点1P 与点2P 关于点B 成中心对称;第三次跳跃到点3P ,使得点3P 与点2P 关于点C 成中心对称,第四次跳跃到点4P ,使得点4P 与点3P 关于点A 成中心对称;第五次跳跃到点5P ,使得点5P 与点4P 关于点B 成中心对称……照此规律重复下去,则点2021P 的坐标为_________.15.已知点P(-3,2)关于原点的对称点是_______.16.如图,在平面直角坐标系中,第1次将边长为1的正方形OABC 绕点O 逆时针旋转45°后,得到正方形OA 1B 1C 1;第2次将正方形OA 1B 1C 1绕点O 逆时针旋转45°后,得到正方形OA 2B 2C 2;.....按此规律,绕点O 旋转得到正方形OA 2020B 2020C 2020,则点B 2020的坐标为______.17.如图,ODC ∆是由OAB ∆绕点O 顺时针旋转40︒后得到的图形,若点D 恰好落在AB 上,且105AOC ∠=︒,则C ∠的度数是_______.18.如图所示,大长方形的长为8cm ,宽为4cm ,则阴影部分的面积是________.19.如图,将△ABC 沿BC 方向平移1个单位得到△DEF ,若△ABC 的周长等于8,则四边形ABFD 的周长等于_______.20.已知:如图,在AOB ∆中,9034AOB AO cm BO cm ︒∠===,,,将AOB ∆绕顶点O ,按顺时针方向旋转得到11A OB ∆,线段1OB 与边AB 相交于点D ,则线段1B D 最大值为=________cm三、解答题21.如图,点E 是等边△ABC 内一点,3EA =,2EC =,1EB .求BEC ∠的度数.22.如图网格中,AOB 的顶点均在格点上,点A 、B 的坐标分别是(3,2)A 、()1,3B .(1)点A 关于点O 中心对称点的坐标为(_______,_______);(2)AOB 绕点O 顺时针旋转90︒后得到11AOB ,在方格纸中画出11AOB ,并写出点1B 的坐标(______,_______);(3)在y 轴上找一点P ,使得PA PB +最小,请在图中标出点P 的位置,并求出这个最小值.23.ABC 在平面直角坐标系中的位置如图所示.(1)请作出ABC 关于y 轴对称的111A B C △,并写出111,,A B C 三点的坐标:1A _______,1B ________,1C _________;(2)将ABC 向右平移6个单位长度,作出作出平移后的222A B C △;(3)观察111A B C △与222A B C △,它们是否关于某直线对称?若是,请在图上画出这条对称轴.24.如图1是实验室中的一种机械装置,BC 在地面上,所在等腰直角三角形ABC 是固定支架,机械臂AD 可以绕点A 旋转,同时机械臂DM 可以绕点D 旋转,已知90,6,1∠=︒==BAC AD DM .(1)在旋转过程中,①当A 、D 、M 三点在同一直线上时,直接写出线段AM 的长;②当以A 、D 、M 为顶点的三角形是直角三角形时,求AM 的长;(2)如图2,把机械臂AD 顺时针旋转90︒,点D 旋转到点E 处,连结DE ,当135,7∠=︒=AEC CE 时,求BE 的长.25.如图所示,在正方形网格中,ABC 的顶点坐标分别为()2,4,()1,2,()4,1.请在所给直角坐标系中按要求画图和解答下列问题:(1)以点P 为旋转中心,将ABC 按逆时针方向旋转90︒得到A B C ''',请在图中画出A B C ''',并写出点B 的对应点B '的坐标为_________.(2)在y 轴上求作一点M ,使MA MB +的值最小,点M 的坐标为_________.26.如图,在边长为1个单位长度的小正方形组成的网格中,给出了△ABC 和点D (A ,B ,C ,D 是网格线交点).(1)画出一个△DEF ,使它与△ABC 全等,且点D 与点A 是对应点,点E 与点B 是对应点,点F 与点C 是对应点(要求:△DEF 是由△ABC 经历平移、旋转得到的,两种图形变化至少各一次).(2)在(1)的条件下,网格中建立平面直角坐标系,写出点C 和点F 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据轴对称图形与中心对称图形的概念结合各图形的特点求解即可.【详解】解:A、是中心对称图形,不是轴对称图形,故本选项不合题意;B、不是中心对称图形,但是轴对称图形,故本选项不合题意;C、是中心对称图形,又是轴对称图形,故本选项合题意;D、既不是中心对称图形,也不是轴对称图形,故本选项不符合题意;故选:C.【点睛】本题考查了中心对称图形和轴对称图形的知识,注意掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.C解析:C【分析】根据轴对称图形和中心对称图形的定义进行判定即可;【详解】A、是轴对称图形不是中心对称图形,故不符合题意;B、是轴对称图形不是中心对称图形,故不符合题意;C、既不是轴对称图形也不是中心对称图形,故符合题意;D、既是轴对称图形又是中心对称图形,故不符合题意;故选:C.【点睛】本题考查了轴对称图形和中心对称图形,正确理解轴对称图形和中心对称图形的定义是解题的关键;3.A解析:A【分析】根据轴对称图形与中心对称图形的概念依次判断即可得.【详解】解:A. 矩形是轴对称图形,也是中心对称图形.故正确.B. 等边三角形是轴对称图形,不是中心对称图形.故错误;C. 正五边形是轴对称图形,不是中心对称图形.故错误;D. 角是轴对称图形,不是中心对称图形.故错误;故选:A.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.D解析:D【分析】根据关于y轴对称的点的坐标特征对A进行判断;根据关于x轴对称的点的坐标特征对B 进行判断;根据关于原点对称的点的坐标特征对C、D进行判断.【详解】解:A、△ABC与△A'B'C'关于y轴对称,所以A选项不符合题意;B、△ABC与△A'B'C'关于x轴对称,所以B选项不符合题意;C、△ABC与△A'B'C'关于(-12,0)对称,所以C选项不符合题意;D、△ABC与△A'B'C'关于原点对称,所以D选项符合题意;【点睛】本题考查了中心对称:把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.中心对称的性质:关于中心对称的两个图形能够完全重合;关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.5.A解析:A【分析】本题利用轴对称图形和中心对称图形的概念求解即可,轴对称图形:沿某一直线折叠后直线两旁的部分互相重合;中心对称图形:将一个图形绕着中心点旋转180°后能与自身重合的图形叫做中心对称图形;【详解】A、此图形既是中心对称图形,也是轴对称图形故此选项正确;B、此图形是中心对称图形,但不是轴对称图形故此选项不正确;C、此图形是轴对称图形,但不是中心对称图形故此选项不正确;D、此图形是轴对称图形,但不是中心对称图形故此选项不正确;故选:A.【点睛】本题考查了轴对称图形和中心对称图形的概念,正确理解它们的概念是解题的关键;6.B解析:B【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.【详解】解:∵点(1,2)A m --与点(3,1)B n +关于原点对称,∴1312m n -=-⎧⎨+=⎩, ∴21m n =-⎧⎨=⎩, ∴211m n +=-+=-;故选:B .【点睛】本题考查了关于原点 对称的点的坐标,两点关于原点对称,则两点的横、纵坐标都是互为相反数.7.D解析:D【分析】根据旋转得到A '与点B 重合,过点B 作BC AO ⊥于点C ,利用等边三角形的性质求出OC 和BC 的长,得到坐标.【详解】解:如图,AOB 绕着点O 顺时针旋转60︒得到OA B ''△,此时A '与点B 重合, 过点B 作BC AO ⊥于点C ,∵△OAB 是边长为4的等边三角形,∴AB=BO ,BC AO ⊥,∴AC=OC=2, 根据勾股定理,2216423BC BO OC =-=-=,∴()2,23A '-.故选:D .【点睛】本题考查图形的旋转和等边三角形的性质,解题的关键是掌握等边三角形的性质. 8.B解析:B【分析】根据轴对称图形与中心对称图形的概念判断即可.【详解】A、不是中心对称图形,是轴对称图形,不符合题意;B、是中心对称图形,但不是轴对称图形,符合题意;C、既是中心对称图形,又是轴对称图形,不符合题意;D、不是中心对称图形,是轴对称图形,不符合题意;故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后和原图形重合.9.B解析:B【分析】根据图形的有关性质和变化解题.【详解】根据平行线的性质,两直线平行,同旁内角互补,所以B错误;由对顶角的性质知A正确;由平移的性质知C正确;由垂直的性质知D正确.故选B.【点睛】本题考查图形的有关性质和变化,准确记忆图形的性质和图形变化的性质是解题关键.10.B解析:B【分析】先根据平移的性质得AD=CF=3,AC=DF,然后AB+BC+AC=20,通过等线段代换计算四边形ABFD的周长.【详解】解:∵△ABC沿BC方向平移3个单位得△DEF,∴AD=CF=3,AC=DF,∵△ABC的周长等于20,∴AB+BC+AC=20,∴四边形ABFD的周长=AB+BF+DF+AD=AB+BC+CF+AC+AD=20+3+3=26.故选:B.【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.11.A解析:A【分析】连接任意两对对应点,连线的交点即为对称中心.【详解】如图,连接HC和DE交于O1,故选A.【点睛】此题考查了中心对称的知识,解题的关键是了解成中心对称的两个图形的对应点的连线经过对称中心,难度不大.12.B解析:B【分析】由旋转的性质得,AD=AB,∠ABD=45°,再由平移的性质即可得出结论.【详解】解:∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB,∴∠ABD=45°,∵△EFG是△ABC沿CB方向平移得到,∴AB∥EF,∴∠BDF=∠ABD=45°;故选B【点睛】此题主要考查了图形的平移与旋转,平行线的性质,等腰直角三角形的判定和性质.二、填空题13.②【分析】根据旋转的性质判断出正三角形正方形和正六边形的旋转角找出旋转角是的图形即可【详解】①正三角形的最小旋转角是;②正方形的最小旋转角是;③正六边形的最小旋转角是故答案为:②【点睛】本题考查了旋解析:②【分析】根据旋转的性质判断出正三角形,正方形和正六边形的旋转角,找出旋转角是90︒的图形即可.【详解】①正三角形的最小旋转角是120︒;②正方形的最小旋转角是90︒;③正六边形的最小旋转角是60︒故答案为:②.【点睛】本题考查了旋转对称图形的知识,解答本题的关键是掌握旋转角的定义,求出每个图形的旋转角.14.(-20)【分析】计算出前几次跳跃后点P1P2P3P4P5P6P7的坐标可以得出规律继而可求出点的坐标【详解】解:根据题意得:点P1(02)P2(2-2)P3(-42)P4(40)P5(-20)P6解析:(-2,0)【分析】计算出前几次跳跃后,点P1、P2、P3、P4、P5、P6、P7的坐标,可以得出规律,继而可求出P的坐标.点2021【详解】解:根据题意得:点P1(0,2)、P2(2,-2)、P3(-4,2)、P4(4,0)、P5(-2,0)、P6(0,0)、P7(0,2),,∴每6次为一个循环,÷=,∵202163365∴点P的坐标与点P5的坐标相同,即为(-2,0),2021故答案为:(-2,0).【点睛】此题考查坐标的变化规律探究,中心对称的定义,正确掌握中心对称的定义确定点的坐标,发现规律并运用解决问题是解题的关键.15.(3-2)【分析】根据关于原点对称点的坐标变化规律求解即可【详解】解:关于原点对称的两个点横坐标互为相反数纵坐标也互为相反数所以P(-32)关于原点的对称点是(3-2)故答案为:(3-2)【点睛】本解析:(3,-2)【分析】根据关于原点对称点的坐标变化规律求解即可.【详解】解:关于原点对称的两个点横坐标互为相反数,纵坐标也互为相反数,所以P(-3,2)关于原点的对称点是(3,-2),故答案为:(3,-2).【点睛】本题考查了关于原点对称坐标变化,熟记点在坐标系中的几何变换的坐标变化规律是解题关键.16.(-1-1)【分析】根据图形可知:点B在以O为圆心以OB为半径的圆上运动由旋转可知:将正方形OABC绕点O逆时针旋转45°后得到正方形OABC相当于将线段OB绕点O逆时针旋转45°可得对应点B的坐标解析:(-1,-1)【分析】根据图形可知:点B在以O为圆心,以OB为半径的圆上运动,由旋转可知:将正方形OABC绕点O逆时针旋转45°后得到正方形O A1B1C1,相当于将线段OB绕点O逆时针旋转45°,可得对应点B的坐标,根据规律发现是8次一循环,可得结论.【详解】解:∵四边形OABC是正方形,且OA=1,∴B(1,1);连接OB,由勾股定理得:OB= 2,由旋转得:OB= OB1= OB2=OB3= (2)∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O=∠B1O B2=…=45°,逆时针旋转45°,依次得到∠AOB=∠BO B1∴B(0,2),B2(-1,1),B3(-2,0),B4(-1,-1),…,发现是8次一循1环,所以2020÷8=252 (4)∴点B的坐标为(-1,1).2020故答案为(-1,-1).【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角。

八年级数学第三章图形的平移与旋转练习题及答案全套

八年级数学第三章图形的平移与旋转练习题及答案全套

情景再现:你对以上图片熟悉吗?请你回答以下几个问题:(1)汽车中的乘客在乘车过程中,身高、体重改变了吗?乘客所处的地理位置改变了吗?(2)传送带上的物品,比如带有图标的长方体纸箱,向前移动了20米,它上面的图标移动了多少米?(3)以上都是我们常见的平移问题,认真想一想,你还能举一些平移的例子吗?1.如图1,面积为5平方厘米的梯形A′B′C′D′是梯形ABCD经过平移得到的且∠ABC=90°.那么梯形ABCD的面积为________,∠A′B′C =________.图12.在下面的六幅图中,(2)(3)(4)(5)(6)中的图案_________可以通过平移图案(1)得到的.图23.请将图3中的“小鱼”向左平移5格.图34.请欣赏下面的图形4,它是由若干个体积相等的正方体拼成的.你能用平移分析这个图形是如何形成的吗?§3.1图形的平移与旋转一、填空:1、如下左图,△ABC 经过平移到△A ′B ′C ′的位置,则平移的方向是______,平移的距离是______,约厘米______.2、如下中图,线段AB 是线段CD 经过平移得到的,则线段AC 与BC 的关系为( ) A.相交 B.平行 C.相等 D.平行且相等3、如下右图,△ABC 经过平移得到△DEF ,请写出图中相等的线段______,互相平行的线段______,相等的角______.(在两个三角形的内角中找)4、如下左图,四边形ABCD 平移后得到四边形EFGH ,则:①画出平移方向,平移距离是_______;(精确到0.1cm )②HE=_________,∠A=_______,∠A=_______. ③DH=_________=_______A=_______.5、如下右图,△ABC 平移后得到了△DEF ,(1)若∠A=28º,∠E=72º,BC=2,则∠1=____º,∠F=____º,EF=____º;(2)在图中A 、B 、C 、D 、E 、F 六点中,选取点_______和点_______,使连结两点的线段与AE 平行.6、如图,请画出△ABC 向左平移4格后的△A 1B 1C 1,然后再画出△A 1B 1C 1向上平移3格后的△A 2B 2C 2,若把△A 2B 2C 2看成是△ABC 经过一次平移而得到的,那么平移的方向是______,距离是____的长度. 二、选择题:7、如下左图,△ABC 经过平移到△DEF 的位置,则下列说法:①AB ∥DE ,AD=CF=BE ; ②∠ACB=∠DEF ; ③平移的方向是点C 到点E 的方向; ④平移距离为线段BE 的长. 其中说法正确的有( ) A.个 B.2个 C.3个 D.4个8、如下右图,在等边△ABC 中,D 、E 、F 分别是边BC 、AC 、AB 的中点,则△AFE 经过平移可以得到( ) A.△DEF B.△FBD C.△EDC D.△FBD 和△EDC三、探究升级:1、如图,△ABC 上的点A 平移到点A 1,请画出平移后的图形△A 1B 1C 1.3、 △ABC 经过平移后得到△DEF ,这时,我们可以说△ABC 与△DEF 是两个全等三角形,请你说出全等三角形的一些特征,并与同伴交流.4、如下图中,有一块长32米,宽24米的草坪,其中有两条宽2米的直道把草坪分为四块,则草坪的面积是______.5、利用如图的图形,通过平移设计图案,并用一句诙谐、幽默的词语概括你所画的图形.§3.3图形的平移与旋转§3.2图形的平移与旋转一、填空、选择题:1、图形的旋转是由____和____决定的,在旋转过程中位置保持不动的点叫做____,任意一对对应点与旋转中心连线所成的角叫做_____.2、如下图,如果线段MO绕点O旋转90°得到线段NO,在这个旋转过程中,旋转中心是_______,旋转角是_______,它时______°.3、如图,在下列四张图中不能看成由一个平面图形旋转而产生的是()4、请你先观察图,然后确定第四张图为( )4、如下左图,△ABC绕着点O旋转后得到△DEF,那么点A的对应点是_______,线段AB 的对应线段是_____,_____的对应角是∠F. 6、如下中图,△ABC与△BDE都是等腰三角形,若△ABC经旋转后能与△BDE重合,则旋转中心是________,旋转了______°.7、如下右图,C是AB上一点,△ACD和△BCE 都是等边三角形,如果△ACE经过旋转后能与△DCB重合,那么旋转中心是_______,旋转了______°,点A的对应点是_______.二、解答题:8、如图11.4.7,△ABC绕顶点C旋转某一个角度后得到△A′B′C,问:(1)旋转中心是哪一点?(2)旋转角是什么?(3)如果点M是BC的中点,那么经过上述旋转后,点M转到了什么位置?9、观察下列图形,它可以看作是什么“基本图形”通过怎样的旋转而得到的?三、探究升级10、如图,△ACE、△ABF都是等腰三角形,∠BAF=∠CAE=90°,那么△AFC是哪一点为旋转中心,旋转多少度之后能与另一个三角形重合?点F的对应点是什么?一、选择题1.平面图形的旋转一般情况下改变图形的()§3.4图形的平移与旋转A.位置B.大小C.形状D.性质 2.9点钟时,钟表的时针和分针之间的夹角是( )A.30° B .45° C.60° D.90°3.将平行四边形ABCD 旋转到平行四边形A ′B ′C ′D ′的位置,下列结论错误的是( )A.AB =A ′B ′B.AB ∥A ′B ′C.∠A =∠A ′D.△ABC ≌△A ′B ′C ′ 二、填空题4.钟表上的指针随时间的变化而移动,这可以看作是数学上的_______.5.菱形ABCD 绕点O 沿逆时针方向旋转到四边形D C B A '''',则四边形D C B A ''''是________.6.△ABC 绕一点旋转到△A ′B ′C ′,则△ABC 和△A ′B ′C ′的关系是_______.7.钟表的时针经过20分钟,旋转了_______度. 8.图形的旋转只改变图形的_______,而不改变图形的_______. 三、解答题9.下图中的两个正方形的边长相等,请你指出可以通过绕点O 旋转而相互得到的图形并说明旋转的角度.10.在图中,将大写字母H 绕它右上侧的顶点按逆时针方向旋转90°,请作出旋转后的图案.11.如图,菱形A ′B ′C ′D ′是菱形ABCD 绕点O 顺时针旋转90°后得到的,你能作出旋转前的图形吗?12.Rt △ABC ,绕它的锐角顶点A 分别逆时针旋转90°、180°和顺时针旋转90°, (1)试作出Rt △ABC 旋转后的三角形; (2)将所得的所有三角形看成一个图形,你将得到怎样的图形?13.如图,将右面的扇形绕点O 按顺时针方向旋转,分别作出旋转下列角度后的图形: (1)90°;(2)180°;(3)270°.你能发现将扇形旋转多少度后能与原图形重合吗?14.如图,分析图中的旋转现象,并仿照此图案设计一个图案.看一看:下列三幅图案分别是由什么“基本图形”经过平移或旋转而得到的?1.§3.5图形的平移与旋转2.3.试一试:怎样将下图中的甲图变成乙图?做一做:1、如图①,在正方形ABCD 中,E 是AD 的中点,F 是BA 延长线上的一点,AF =21AB , (1)△ABE ≌△ADF .吗?说明理由。

(好题)初中数学八年级数学下册第三单元《图形的平移与旋转》测试卷(含答案解析)

(好题)初中数学八年级数学下册第三单元《图形的平移与旋转》测试卷(含答案解析)

一、选择题1.在平面直角坐标系中,A (0,3),B (4,0),把△AOB 绕点O 旋转,使点A ,B 分别落在点A ′,B ′处,若A ′B ′∥x 轴,点B ′在第一象限,则点A 的对应点A ′的坐标为( ) A .(912,55-) B .(129,55-) C .(1612,55-) D .(1216,55-) 2.将点(3,1)绕原点顺时针旋转90︒得到的点的坐标是( )A .(3,1)--B .(1,3)-C .(3,1)-D .(1,3)- 3.下面是几种病毒的形态模式图,这些图案中既不是轴对称图形也不是中心对称图形的是( )A .B .C .D .4.如图,将矩形ABCD 绕点C 顺针旋转90°到矩形A B C D ''''的位置,若4,2AB AD ==,则图中阴影部分的面积为( )A .4233π- B .4433π- C .8233π- D .8433π- 5.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 6.在平面直角坐标系xOy 中,ABC 与A B C '''关于原点O 成中心对称的是( ) A . B .C.D.7.如图,点A,B的坐标分别为(1,1)、(3,2),将△ABC绕点A按逆时针方向旋转90°,得到△A'B'C',则B'点的坐标为()A.(﹣1,3)B.(-1,2)C.(0,2)D.(0,3)8.在奔驰、宝马、丰田、三菱等汽车标志图形中,为中心对称图形的是()A.B.C.D.9.在线段,直角三角形,平行四边形,长方形,正五角星,正方形,等边三角形中,既是轴对称图形,又是中心对称图形的图形有()A.3个B.4个C.5个D.6个10.如图,点D是等腰直角三角形ABC内一点,AB=AC,若将△ABD绕点A逆时针旋转到△ACE的位置,则∠AED的度数为()A.25°B.30°C.40°D.45°11.如图,已知ABC 和A B C '''关于点O 成中心对称,则下列结论错误的是( ).A .ABC ABC '''∠=∠B .AOB A OB ''∠=∠C .AB A B ''=D .OA OB '= 12.如图,△ABC 沿线段BA 方向平移得到△DEF ,若AB =6,AE =2.则平移的距离为( )A .2B .4C .6D .8二、填空题13.如图,在Rt ABC 和Rt CDE △中,90ACB DCE ∠=∠=︒,30A ∠=︒,45E ∠=︒,B ,C ,E 三点共线,Rt ABC △ 不动,将Rt CDE △绕点C 逆时针旋转()0360a α︒<<︒,当DE //BC 时,α=____________.14.如图,在△ABC 中,∠BAC =105°,将△ABC 绕点A 逆时针旋转得到△AB ′C ′.若点B 恰好落在BC 边上,且AB ′=CB ′,则∠C ′的度数为_____°.15.平面直角坐标系xOy 中,先作出点P (2,3)-关于y 轴的对称点,再将该对称点先向下平移1个单位,再向左平移2个单位得到点P 1,称为完成一次图形变换,再将点P 1进行同样的图形变换得到点P 2,以此类推,则点P 2020的坐标为___________.16.如图,在ABC ∆中,90,3,4ACB AC BC ∠=︒==,将ABC ∆绕点C 顺时针旋转90︒得到'''A B C ∆,若P 为AB 边上一动点,旋转后点P 的对应点为点P',则线段'PP 长度的取值范围是________.17.如图,在平面直角坐标系xOy 中,点A (2,m )绕坐标原点O 逆时针旋转90°后,恰好落在图中阴影区域(包括边界)内,则m 的取值范围是_____.18.点P (m +2,2m +1)向右平移1个单位长度后,正好落在y 轴上,则m =_____. 19.已知:如图,在AOB ∆中,9034AOB AO cm BO cm ︒∠===,,,将AOB ∆绕顶点O ,按顺时针方向旋转得到11A OB ∆,线段1OB 与边AB 相交于点D ,则线段1B D 最大值为=________cm20.已知等边△ABC 的边长为4,点P 是边BC 上的动点,将△ABP 绕点A 逆时针旋转60°得到△ACQ ,点D 是AC 边的中点,连接DQ ,则DQ 的最小值是_____.三、解答题21.已知:如图1,AOB 和COD 都是等边三角形.(1)求证:①AC =BD ;②∠APB =60°;(2)如图2,在AOB 和COD 中,OA =OB ,OC =OD ,∠AOB =∠COD =α,则AC 与BD 间的等量关系为 ,∠APB 的大小为22.如图1,已知ABC 中,1,90,AB BC ABC ==∠=︒把一块含30角的直角三角板DEF 的直角顶点D 放在AC 的中点上(直角三角板的短直角边为,DE 长直角边为DF ),将直角三角板DEE 绕D 点按逆时针方向旋转.(1)在图1中.DE 交AB 于,M DF 交BC 于N .①求证:DM DN =;②在这一过程中,直角三角板DEF 与三角形ABC 的重叠部分为四边形,DMBN 请说明四边形DMBN 的面积是否发生变化?若发生变化,请说明如何变化的;若不发生变化,请求出其面积.(2)继续旋转至如图2的位置,延长AB 交DE 于,M 延长BC 交DF 于,N DM DN =是否仍然成立?(请写出结论,不用证明.)(3)继续旋转至如图3的位置,延长FD 交BC 于N ,延长ED 交AB 于,M DM DN =是否仍然成立?(请写出结论,不用证明.)23.如图,在平面直角坐标系中,已知ABC 的三个顶点坐标分別是()2,1A -,()1,2B -,()3,3C -(1)将ABC 向上平移4个单位长度得到111A B C △,请画出111A B C △;(2)请画出与ABC 关于y 轴对称的222A B C △;(3)请写出1A 、2A 的坐标.24.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,ABC 的顶点均在格点上,点A 的坐标是(3,1)--.(1)将ABC 关于x 轴对称得到111A B C △,画出111A B C △,并写出点1B 的坐标; (2)把111A B C △平移,使点B 平移到2(3,4)B ,请作出111A B C △平移后的222A B C △,并写出2A 的坐标;(3)已知ABC 中有一点(,)D a b ,求222A B C △中的对应点2D 的坐标.25.如图,在正方形ABCD 中,点E 是AB 边上的一点(与A ,B 两点不重合),将BCE 绕着点C 旋转,使CB 与CD 重合,这时点E 落在点F 处,联结EF .(1)按照题目要求画出图形;(2)若正方形边长为3,1BE =,求AEF 的面积;(3)若正方形边长为m ,BE n =,比较AEF 与CEF △的面积大小,并说明理由. 26.如图,已知ABC 的三个顶点在小方格顶点上(小方格的边长为1个单位长度),按下列要求画出图形和回答问题:(1)在图中画出:ABC 绕点C 按顺时针方向旋转90︒后的图形111A B C △; (2)在图中画出:(1)中的111A B C △关于直线MN 的轴对称的图形222A B C △; (3)在(2)中的222A B C △可以用原ABC 通过怎样的一次运动得到的?请你完整地描述这次运动的过程.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】设A′B′交y轴于T′,利用勾股定理可求出A′B′的长度,再利用三角形面积公式求出OT的长度,最后再利用勾股定理即可求出A′T′的长度,即可求出A′点坐标.【详解】解:如图,设A′B′交y轴于T′.∵A(0,3),B(4,0),∴OA=3,OB=4,∵∠A ′OB ′=90°,OT'⊥A ′B ′,OA =OA ′=3,OB =OB ′=4,∴AB =A ′B ′=22OA OB +=2234+=5,∵A OB S ''=12•OA ′•OB ′=12•A ′B ′•OT ′, ∴OT ′=125, ∴A ′T ′=22OA OT '-=221293()55-=, ∴A ′(-95,125). 故选:A .【点睛】 本题考查坐标与图形的变化-旋转,熟练利用勾股定理解直角三角形以及三角形的面积公式是解答本题的关键.2.B解析:B【分析】根据旋转的性质即可确定点坐标.【详解】解:点绕原点旋转90度的坐标变换规律:横、纵坐标互换位置,且纵坐标变为相反数, 则点(3,1)绕原点O 顺时针旋转90°得到的点的坐标为(1,-3),如图,故选:B .【点睛】本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°. 3.C解析:C【分析】根据轴对称图形和中心对称图形的定义进行判定即可;【详解】A 、是轴对称图形不是中心对称图形,故不符合题意;B 、是轴对称图形不是中心对称图形,故不符合题意;C 、既不是轴对称图形也不是中心对称图形,故符合题意;D 、既是轴对称图形又是中心对称图形,故不符合题意;故选:C .【点睛】本题考查了轴对称图形和中心对称图形,正确理解轴对称图形和中心对称图形的定义是解题的关键;4.C解析:C【分析】连接CE ,由矩形的性质可知90A B C A D C ''''∠=∠=︒,在Rt EB C '中,可证4,2CE CD AB CB BC AD ''======,结合余弦定义解得60ECB '∠=︒,继而由正弦定义解得23B E '=,最后根据阴影面积=扇形DCE 面积Rt EB C '-面积解题.【详解】解:连接CE ,矩形A B CD '''中,90A B C A D C ''''∠=∠=︒在Rt EB C '中,4,2CE CD AB CB BC AD ''======21cos 42B C ECB CE ''∠=== 60ECB '∴∠=︒3sin 60B E CE '∴︒== 23B E '∴=22604160418=22323360236023S B C B E πππ⨯⨯''∴-⋅=-⨯⨯=-阴影, 故选:C .【点睛】本题考查旋转、特殊角的三角函数值、扇形面积等知识,是重要考点,难度较易,掌握相关知识是解题关键.5.A解析:A【分析】根据轴对称图形和中心对称图形的定义即可判断结论;【详解】A是轴对称图形也是中心对称图形,故本项正确;B不是轴对称图形,也不是中心对称图形,故本项错误;C是轴对称图形不是中心对称图形,故本项错误;D不是轴对称图形,是中心对称图形,故本项错误;故选:A.【点睛】本题考查轴对称图形,中心对称图形,熟记相关概念是解题的关键.6.D解析:D【分析】根据关于y轴对称的点的坐标特征对A进行判断;根据关于x轴对称的点的坐标特征对B 进行判断;根据关于原点对称的点的坐标特征对C、D进行判断.【详解】解:A、△ABC与△A'B'C'关于y轴对称,所以A选项不符合题意;B、△ABC与△A'B'C'关于x轴对称,所以B选项不符合题意;C、△ABC与△A'B'C'关于(-12,0)对称,所以C选项不符合题意;D、△ABC与△A'B'C'关于原点对称,所以D选项符合题意;【点睛】本题考查了中心对称:把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.中心对称的性质:关于中心对称的两个图形能够完全重合;关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.7.D解析:D【分析】根据题意画出图形,然后结合直角坐标系即可得出B'的坐标.【详解】解:如图,根据图形可得:点B′坐标为(0,3),故选:D.【点睛】本题考查了旋转作图的知识及旋转后坐标的变化,解答本题的关键是根据题意所述的旋转三要素画出图形,然后结合直角坐标系解答.8.B解析:B【分析】据中心对称图形的概念,结合图形特征即可求解.【详解】A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项成文;故选:B.【点睛】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.9.A解析:A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:线段,长方形,正方形是轴对称图形,也是中心对称图形,符合题意;正五角星,等边三角形是轴对称图形,不是中心对称图形,不符合题意;平行四边形不是轴对称图形,是中心对称图形,不符合题意;直角三角形既不是轴对称图形,也不是中心对称图形,不符合题意.共3个既是轴对称图形又是中心对称图形.故选:A.【点睛】考查了中心对称图形与轴对称图形的概念,判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形的关键是要寻找对称中心,旋转180度后与原图重合.10.D解析:D【分析】由题意可以判断△ADE 为等腰直角三角形,即可解决问题.【详解】解:如图,由旋转变换的性质知:∠EAD=∠CAB ,AE=AD ;∵△ABC 为直角三角形,∴∠CAB=90°,△ADE 为等腰直角三角形,∴∠AED=45°,故选:D .【点睛】该题考查了旋转变换的性质及其应用问题;应牢固掌握旋转变换的性质.11.D解析:D【分析】根据三角形和中心对称的性质求解,即可得到答案.【详解】∵ABC 和A B C '''关于点O 成中心对称∴ABC A B C '''∠=∠AOB A OB ''∠=∠AB A B ''=OA OA '=OB OB '=∴OA OB '=错误,其他选项正确故选:D .【点睛】本题考查了三角形和中心对称图形的知识;解题的关键是熟练掌握三角形和中心对称图形的性质,从而完成求解.12.B解析:B【分析】根据平移变换的性质解决问题即可.【详解】解:∵AB =6,AE =2,∴BE =AB ﹣AE =6﹣2=4,∴平移的距离为4,故选:B.【点睛】此题考查平移的要素:距离,平移前后对应点所连的线段的长度即为平移的距离.二、填空题13.45º或225º【分析】根据旋转方向与旋转角的度数范围可得当DE ∥BC 时画出两种符合条件的图形分别利用平行线的性质与三角形内角得定理即可求得相应的旋转角的度数【详解】解:此题可分两种情况:如图1:∵解析:45º或225º【分析】根据旋转方向与旋转角的度数范围,可得当DE ∥BC 时,画出两种符合条件的图形,分别利用平行线的性质与三角形内角得定理即可求得相应的旋转角的度数.【详解】解:此题可分两种情况:如图1:∵90DCE ∠=︒,45E ∠=︒,∴45D ∠=︒.∵DE ∥BC ,∴45BCD D ∠=∠=︒.∵90ACB ∠=︒.∴45ACD ACB BCD ∠=∠-∠=︒.即旋转角α的度数为45º.如图2:∵DE ∥BC ,∴45BCE E ∠=∠=︒.∴225?ACD ACB BCE DCE ∠=∠+∠+∠=.即旋转角α的度数为225º.综上所述,旋转角α的度数为45º或225º.故答案为:45º或225º.【点睛】此题考查了旋转角的计算,掌握旋转角的定义并能运用平行线的性质正确求出旋转角的度数是解题的关键.14.25【分析】由旋转的性质可得∠C=∠CAB=AB 由等腰三角形的性质可得∠C=∠CAB ∠B=∠ABB 由三角形的外角性质和三角形内角和定理可求解【详解】解:∵AB=CB ∴∠C=∠CAB ∴∠ABB=∠C+解析:25【分析】由旋转的性质可得∠C=∠C',AB=AB',由等腰三角形的性质可得∠C=∠CAB',∠B=∠AB'B ,由三角形的外角性质和三角形内角和定理可求解.【详解】解:∵AB'=CB',∴∠C=∠CAB',∴∠AB'B=∠C+∠CAB'=2∠C ,∵将△ABC 绕点A 按逆时针方向旋转得到△AB'C',∴∠C=∠C',AB=AB',∴∠B=∠AB'B=2∠C ,∵∠B+∠C+∠CAB=180°,∴3∠C=180°-105°,∴∠C=25°,∴∠C'=∠C=25°,故答案为:25.【点睛】本题考查了旋转的性质,等腰三角形的性质,灵活运用这些的性质解决问题是本题的关键.15.【分析】按程序先作y 轴对称求出点坐标横坐标-2纵坐标-1完成一次图形变换求出P 变换后的坐标找出几次变换后规律奇次变换点的横坐标x=0偶次变换点的横坐标x=-2纵坐标变一次下移一个单位【详解】解:完成解析:(2,2017)--【分析】按程序先作y 轴对称,求出点坐标,横坐标-2,纵坐标-1,完成一次图形变换求出P 变换后的坐标,找出几次变换后规律奇次变换点的横坐标x=0,偶次变换点的横坐标x=-2,纵坐标变一次下移一个单位.【详解】解:完成1次图形变换,点P (2,3)-关于y 轴的对称点(2,3),横坐标2-2=0,纵坐标3-1=2,P 1(0,2),完成2次图形变换,点P 1 (0,2)关于y 轴的对称点(0,2),横坐标0-2=-2,纵坐标2-1=1,P 2(-2,1),完成3次图形变换,点P 2(-2,1)关于y 轴的对称点(2,1),横坐标3-3=0,纵坐标1-1=0,P 3(0,0),完成4次图形变换,点P 3(0,0)关于y 轴的对称点(0,0),横坐标0-2=-2,纵坐标0-1=-1,P 4(-2,-1),……,完成2020次图形变换,点P 2019(0,3-2019)关于y 轴的对称点(0,-2016),横坐标0-2=-2,纵坐标-2016-1=-2017,P 2020(-2,-2017).故答案为:(-2,-2017).【点睛】本题考查图形规律探索问题,掌握图形程序变换的轴对称性质和平移特征,关键是找到变换规律奇次变换点的横坐标x=0,偶次变换点的横坐标x=-2,纵坐标变一次下移一个单位.16.【分析】过点C 作CH ⊥AB 于H 利用勾股定理求出AB 结合直角三角形的面积即可求出CH 由旋转易得为等腰直角三角形从而得出求出CP 的取值范围即可求出结论【详解】解:过点C 作CH ⊥AB 于H ∵在中∴AB=∵=解析:5PP '≤≤【分析】过点C 作CH ⊥AB 于H ,利用勾股定理求出AB ,结合直角三角形的面积即可求出CH ,由旋转90︒易得PCP '△为等腰直角三角形,从而得出PP '=,求出CP 的取值范围即可求出结论.【详解】解:过点C 作CH ⊥AB 于H ,∵在ABC 中,90,3,4ACB AC BC ∠=︒==∴225AC BC +∵ABC S =12AC·BC=12AB·CH ∴12×3×4=12×5CH 解得CH=125由旋转90︒易得PCP '△为等腰直角三角形, 所以2PP CP '=, ∵P 在线段AB 上移动,故当点P 与点B 重合时,CP 最大值等于CB 等于4;当点P 与点H 重合时,CP 最小值等于CH 等于125, ∴1222425CP ≤≤则122425PP '≤≤ 故答案为:122425PP '≤≤ 【点睛】此题考查的是勾股定理、旋转的性质、等腰直角三角形的性质,掌握勾股定理、旋转的性质、等腰直角三角形的性质是解题关键.17.﹣3≤m≤﹣25【分析】如图将阴影区域绕着点O 顺时针旋转90°与直线x =2交于CD 两点则点A (2m )在线段CD 上结合点CD 的纵坐标即可求出m 的取值范围【详解】如图将阴影区域绕着点O 顺时针旋转90°与解析:﹣3≤m≤﹣2.5.【分析】如图,将阴影区域绕着点O 顺时针旋转90°,与直线x =2交于C ,D 两点,则点A (2,m )在线段CD 上,结合点C,D 的纵坐标,即可求出m 的取值范围.【详解】如图,将阴影区域绕着点O 顺时针旋转90°,与直线x =2交于C ,D 两点,则点A (2,m )在线段CD 上,又∵点D 的纵坐标为﹣2.5,点C 的纵坐标为﹣3,∴m 的取值范围是﹣3≤m ≤﹣2.5,故答案为﹣3≤m ≤﹣2.5.【点睛】考查旋转的性质,根据旋转的性质,画出图形是解题的关键.18.-3【详解】点P (m+22m+1)向右平移1个单位长度后正好落在y 轴上则故答案为:-3解析:-3【详解】点P (m+2,2m+1)向右平移1个单位长度后(3,21)m m ++ ,正好落在y 轴上,则30,3m m +==-故答案为:-319.【分析】根据已知条件由勾股定理可得AB=5当时OD 最小由等积法可得代入数据可得即可求出线段最大值【详解】在中∴AB=∵∴OD 最小时最大当时OD 最小即OD 为的高∴即解得:∴线段最大值为:=cm 故答案为 解析:85【分析】根据已知条件由勾股定理可得AB=5,当1B O AB ⊥时,OD 最小,由等积法可得AO OB AB OD =,代入数据可得125OD =,即可求出线段1B D 最大值. 【详解】 在Rt AOB 中,34AO cm BO cm ==,,∴22345+=,∵11B D B O OD =-,14B O BO cm ==,∴OD 最小时,1B D 最大,当1B O AB ⊥时,OD 最小,即OD 为AOB 的高,∴AO OB AB OD =,即345OD ⨯=, 解得:125OD =, ∴线段1B D 最大值为:1245-=85cm , 故答案为:85. 【点睛】 本题主要考查了勾股定理,线段的最值问题,根据图形分析线段取得最值的情况是解题的关键.20.【分析】根据旋转的性质即可得到∠BCQ =120°当DQ ⊥CQ 时DQ 的长最小再根据勾股定理即可得到DQ 的最小值【详解】解:如图由旋转可得∠ACQ =∠B =60°又∵∠ACB =60°∴∠BCQ =120°∵ 解析:3【分析】根据旋转的性质,即可得到∠BCQ =120°,当DQ ⊥CQ 时,DQ 的长最小,再根据勾股定理,即可得到DQ 的最小值.【详解】解:如图,由旋转可得∠ACQ =∠B =60°,又∵∠ACB =60°,∴∠BCQ =120°,∵点D 是AC 边的中点,∴CD =2,当DQ ⊥CQ 时,DQ 的长最小,此时,∠CDQ =30°,∴CQ =12CD =1, ∴DQ 22213-=,∴DQ 的最小值是3,故答案为3.【点睛】本题主要考查线段最小值问题,关键是利用旋转、等边三角形的性质及勾股定理求解.三、解答题21.(1)①见解析,②见解析;(2)AC =BD ,α【分析】(1)①根据△AOB 和△COD 都是等边三角形,求出∠AOC=∠BOD ,根据SAS 推出△AOC ≌△BOD ,根据全等三角形的性质得出AC=BD ;②由△AOC ≌△BOD ,可得∠CAO=∠DBO ,根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB ,推出∠APB=∠AOB 即可;(2)根据∠AOB=∠COD=α,求出∠AOC=∠BOD ,根据SAS 推出△AOC ≌△BOD ,根据全等三角形的性质得出AC=BD ,∠CAO=∠DBO ,根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB ,推出∠APB=∠AOB 即可.【详解】证明:(1)①∵△AOB 和△COD 都是等边三角形,∴OA=OB ,OC=OD ,∠AOB =∠COD =60°,∴∠AOC =∠BOD ,在△AOC 和△BOD 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOD (SAS ),∴AC =BD ,∠CAO =∠DBO ,②设AC 与BO 交于E ,∵△AOC ≌△BOD ,∴∠CAO =∠DBO ,∵∠AEO=∠BEP ,∴∠CAO+∠AOB =∠DBO+∠APB ,∴∠APB =∠AOB =60°.(2)AC=BD ,∠APB=α,理由如下:∵∠AOB=∠COD=α,∴∠AOC=∠BOD ,在△AOC 和△BOD 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOD ,∴AC=BD ,∠CAO=∠DBO ,设AC 与BO 交于E ,∵∠AEO=∠BEP ,∴∠CAO+∠AOB=∠DBO+∠APB ,∴∠APB=∠AOB=α,故答案为AC=BD ,α.【点睛】本题考查三角形旋转,三角形全等判定与性质,三角形内角和,掌握三角形旋转,三角形全等判定与性质,三角形内角和是解题关键.22.(1)①见解析;②不变,14;(2)成立;(3)成立 【分析】(1)连接BD ,证明△DMB ≌△DNC .根据已知,全等条件已具备两个,再证出∠MDB=∠NDC ,用ASA 证明全等,四边形DMBN 的面积不发生变化,因为它的面积始终等于△ABC 面积的一半;(2)成立.同样利用(1)中的证明方法可以证出△DMB ≌△DNC ;(3)结论仍然成立,方法同(1).【详解】解:()1①如图,连接DB ,在Rt ABC ∆中,,,AB BC AD DC ==45,90,45A C BDC ABD CBD ∴∠=∠=︒∠=︒∠=∠=︒45,ABD C ∴∠=∠=︒,DB DC AD ∴==90,MDB BDN CDN BDN ∠+∠=∠+∠=,MDB NDC ∴∠=∠,BMD CND ∴∆≅∆DM DN ∴=;②四边形DMBN 的面积不发生变化;由①知,,BMD CND ∆≅∆BMD CND S S ∆∴∆=DBN DMB DBN DNC DMBN S S S S S ∆∆∆∆∴=+=+四边形 1111112224DBC ABC S S ∆∆===⨯⨯⨯= ()2DM = DN 仍然成立.理由如下:连接BD 由(1)知BD ⊥AC ,BD= CD ,∴∠ABD=∠ACB = 45°,∴∠ABD+∠MBD= 180°,∠ACB+∠NCD= 180°,∴∠MBD=∠NCD ,∵BD ⊥AC ,∴∠MDB +∠MDC = 90° ,又∠NDC +∠MDC = 90°,∴∠MDB=∠NDC ,在△MDB 和△NDC 中,∵∠MBD=∠NCD ,BD= CD ,∠MDB= ∠NDC.∴△MDB ≌△NDC (ASA)∴DM = DN ,()3DM = DN 成立,理由如下:连接BD ,由(1) 知BD ⊥AC ,BD= AD ,∴∠BAD=∠ABD = 45°,∴∠MBD=∠NCD= 45°,∵BD ⊥AC ,∴∠MDB +∠NDB = 90° ,又∠NDC +∠NDB = 90°,∴∠MDB=∠NDC ,在△MDB 和△NDC 中∵∠MBD=∠NCD ,BD= CD ,∠MDB= ∠NDC.∴△MDB ≌△NCD (ASA),∴DM = DN .【点睛】本题考查了利用ASA 求三角形全等,还运用了全等三角形的性质,等腰直角三角形的性质,及等腰三角形三线合一定理,勾股定理和面积公式的利用等知识.23.(1)见解析;(2)见解析;(3)1(2,3)A ,2(2,1)--A .【分析】(1)根据平移的性质先作出三角形三个顶点,然后连线作图;(2)根据轴对称的性质,先做出三角形三个顶点关于x 轴的对称点,然后连线作图; (3)根据图形写出相应的点的坐标【详解】解:(1)如图所示:111A B C △,即为所求:(2)如图所示:222A B C △,即为所求:(3)1(2,3)A ,2(2,1)--A .【点睛】本题考查平移及轴对称作图,认真审题,正确作出图形对应的顶点是解题关键. 24.(1)图见解析,点B 1的坐标为(-2,4);(2)图见解析,A 2的坐标为(2,1);(3)D 2的坐标为(a+5,-b ).【分析】(1)分别作出点A 、B 、C 关于x 轴对称得到的对应点,再顺次连接可得;(2)根据B 1(-2,4)和2(3,4)B ,可得平移方式为向右平移5个单位,分别作出△A 1B 1C 1向右平移5个单位所得对应点,再顺次连接可得;(3)根据图形的变换方式即可得出D 点的变换方式,从而可得点2D 的坐标.【详解】解:(1)如图所示,△A 1B 1C 1即为所求,点B 1的坐标为(-2,4);(2)如图所示,△A 2B 2C 2即为所求,A 2的坐标为(2,1);(3)△A 2B 2C 2中的对应点D 2的坐标为(a+5,-b ).【点睛】本题考查坐标与图形变换—轴对称和平移.理解点的变换和对应图形变换的关系是解题关键.25.(1)见解析;(2)4;(3)CEF AEF S S >△△,见解析【分析】(1)根据题意去旋转BCE ,画出图象;(2)由旋转的性质得1DF BE ==,求出AE 和AF 的长,即可求出AEF 的面积; (3)用(2)的方法表示出AEF 的面积,再用四边形AECF 的面积减去AEF 的面积得到CEF △的面积,比较它们的大小.【详解】(1)如图所示:(2)根据旋转的性质得1DF BE ==,∴312AE =-=,314AF =+=, ∴142AEF S AE AF ∆=⨯⨯=; (3)根据旋转的性质得DF BE n ==, 221111()()2222AEF AE AF m S n m n m n =⨯⨯=-+=-△, ∵CBE CDF S S =△△,∴AECF ABCD S S =四边形四边形, ∴2222211112222CEF AEF AECF S S S m m n m n ⎛⎫=-=⎪⎝--=+⎭四边形△△, ∵0n >, ∴222211112222m n m n +>-, ∴CEF AEF S S >△△.【点睛】本题考查旋转的性质,解题的关键是掌握图形旋转的性质,以及利用割补法求三角形面积的方法.26.(1)图见解析;(2)图见解析;(3)将ABC 沿着BC 翻折一次可得到222A B C △.【分析】(1)先根据旋转的定义画出点111,,A B C ,再顺次连接即可得;(2)先根据轴对称的定义画出点222,,A B C ,再顺次连接即可得; (3)先根据旋转和轴对称的性质可得1122A B B A A B ==,1122AC C C A A ==,BC 与22B C 重合,再根据翻折的定义即可得.【详解】(1)先根据旋转的定义画出点111,,A B C ,再顺次连接即可得111A B C △,如图所示: (2)先根据轴对称的定义画出点222,,A B C ,再顺次连接即可得222A B C △,如图所示: (3)由旋转和轴对称的性质得:1122A B B A A B ==,1122AC C C A A ==,BC 与22B C 重合,则将ABC 沿着BC 翻折一次即可得到222A B C △.【点睛】本题考查了画旋转图形、画轴对称图形、图形的翻折,熟练掌握图形的运动是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

情景再现:你对以上图片熟悉吗?请你回答以下几个问题:(1)汽车中的乘客在乘车过程中,身高、体重改变了吗?乘客所处的地理位置改变了吗?(2)传送带上的物品,比如带有图标的长方体纸箱,向前移动了20米,它上面的图标移动了多少米?(3)以上都是我们常见的平移问题,认真想一想,你还能举一些平移的例子吗?1.如图1,面积为5平方厘米的梯形A′B′C′D′是梯形ABCD经过平移得到的且∠ABC=90°.那么梯形ABCD的面积为________,∠A′B′C =________.图12.在下面的六幅图中,(2)(3)(4)(5)(6)中的图案_________可以通过平移图案(1)得到的.图23.请将图3中的“小鱼”向左平移5格.图34.请欣赏下面的图形4,它是由若干个体积相等的正方体拼成的.你能用平移分析这个图形是如何形成的吗?§3.1图形的平移与旋转一、填空:1、如下左图,△ABC 经过平移到△A ′B ′C ′的位置,则平移的方向是______,平移的距离是______,约厘米______.2、如下中图,线段AB 是线段CD 经过平移得到的,则线段AC 与BC 的关系为( ) A.相交 B.平行 C.相等 D.平行且相等3、如下右图,△ABC 经过平移得到△DEF ,请写出图中相等的线段______,互相平行的线段______,相等的角______.(在两个三角形的内角中找)4、如下左图,四边形ABCD 平移后得到四边形EFGH ,则:①画出平移方向,平移距离是_______;(精确到0.1cm )②HE=_________,∠A=_______,∠A=_______. ③DH=_________=_______A=_______.5、如下右图,△ABC 平移后得到了△DEF ,(1)若∠A=28º,∠E=72º,BC=2,则∠1=____º,∠F=____º,EF=____º;(2)在图中A 、B 、C 、D 、E 、F 六点中,选取点_______和点_______,使连结两点的线段与AE 平行.6、如图,请画出△ABC 向左平移4格后的△A 1B 1C 1,然后再画出△A 1B 1C 1向上平移3格后的△A 2B 2C 2,若把△A 2B 2C 2看成是△ABC 经过一次平移而得到的,那么平移的方向是______,距离是____的长度. 二、选择题:7、如下左图,△ABC 经过平移到△DEF 的位置,则下列说法:①AB ∥DE ,AD=CF=BE ; ②∠ACB=∠DEF ; ③平移的方向是点C 到点E 的方向; ④平移距离为线段BE 的长. 其中说法正确的有( ) A.个 B.2个 C.3个 D.4个8、如下右图,在等边△ABC 中,D 、E 、F 分别是边BC 、AC 、AB 的中点,则△AFE 经过平移可以得到( ) A.△DEF B.△FBD C.△EDC D.△FBD 和△EDC三、探究升级:1、如图,△ABC 上的点A 平移到点A 1,请画出平移后的图形△A 1B 1C 1.3、 △ABC 经过平移后得到△DEF ,这时,我们可以说△ABC 与△DEF 是两个全等三角形,请你说出全等三角形的一些特征,并与同伴交流.4、如下图中,有一块长32米,宽24米的草坪,其中有两条宽2米的直道把草坪分为四块,则草坪的面积是______.5、利用如图的图形,通过平移设计图案,并用一句诙谐、幽默的词语概括你所画的图形.§3.3图形的平移与旋转§3.2图形的平移与旋转一、填空、选择题:1、图形的旋转是由____和____决定的,在旋转过程中位置保持不动的点叫做____,任意一对对应点与旋转中心连线所成的角叫做_____.2、如下图,如果线段MO绕点O旋转90°得到线段NO,在这个旋转过程中,旋转中心是_______,旋转角是_______,它时______°.3、如图,在下列四张图中不能看成由一个平面图形旋转而产生的是()4、请你先观察图,然后确定第四张图为( )4、如下左图,△ABC绕着点O旋转后得到△DEF,那么点A的对应点是_______,线段AB 的对应线段是_____,_____的对应角是∠F. 6、如下中图,△ABC与△BDE都是等腰三角形,若△ABC经旋转后能与△BDE重合,则旋转中心是________,旋转了______°.7、如下右图,C是AB上一点,△ACD和△BCE 都是等边三角形,如果△ACE经过旋转后能与△DCB重合,那么旋转中心是_______,旋转了______°,点A的对应点是_______.二、解答题:8、如图11.4.7,△ABC绕顶点C旋转某一个角度后得到△A′B′C,问:(1)旋转中心是哪一点?(2)旋转角是什么?(3)如果点M是BC的中点,那么经过上述旋转后,点M转到了什么位置?9、观察下列图形,它可以看作是什么“基本图形”通过怎样的旋转而得到的?三、探究升级10、如图,△ACE、△ABF都是等腰三角形,∠BAF=∠CAE=90°,那么△AFC是哪一点为旋转中心,旋转多少度之后能与另一个三角形重合?点F的对应点是什么?一、选择题1.平面图形的旋转一般情况下改变图形的()§3.4图形的平移与旋转A.位置B.大小C.形状D.性质 2.9点钟时,钟表的时针和分针之间的夹角是( )A.30° B .45° C.60° D.90°3.将平行四边形ABCD 旋转到平行四边形A ′B ′C ′D ′的位置,下列结论错误的是( )A.AB =A ′B ′B.AB ∥A ′B ′C.∠A =∠A ′D.△ABC ≌△A ′B ′C ′ 二、填空题4.钟表上的指针随时间的变化而移动,这可以看作是数学上的_______.5.菱形ABCD 绕点O 沿逆时针方向旋转到四边形D C B A '''',则四边形D C B A ''''是________.6.△ABC 绕一点旋转到△A ′B ′C ′,则△ABC 和△A ′B ′C ′的关系是_______.7.钟表的时针经过20分钟,旋转了_______度. 8.图形的旋转只改变图形的_______,而不改变图形的_______. 三、解答题9.下图中的两个正方形的边长相等,请你指出可以通过绕点O 旋转而相互得到的图形并说明旋转的角度.10.在图中,将大写字母H 绕它右上侧的顶点按逆时针方向旋转90°,请作出旋转后的图案.11.如图,菱形A ′B ′C ′D ′是菱形ABCD 绕点O 顺时针旋转90°后得到的,你能作出旋转前的图形吗?12.Rt △ABC ,绕它的锐角顶点A 分别逆时针旋转90°、180°和顺时针旋转90°, (1)试作出Rt △ABC 旋转后的三角形; (2)将所得的所有三角形看成一个图形,你将得到怎样的图形?13.如图,将右面的扇形绕点O 按顺时针方向旋转,分别作出旋转下列角度后的图形: (1)90°;(2)180°;(3)270°.你能发现将扇形旋转多少度后能与原图形重合吗?14.如图,分析图中的旋转现象,并仿照此图案设计一个图案.看一看:下列三幅图案分别是由什么“基本图形”经过平移或旋转而得到的?1.§3.5图形的平移与旋转2.3.试一试:怎样将下图中的甲图变成乙图?做一做:1、如图①,在正方形ABCD 中,E 是AD 的中点,F 是BA 延长线上的一点,AF =21AB , (1)△ABE ≌△ADF .吗?说明理由。

(2)阅读下列材料:如图②,把△ABC 沿直线平移线段BC 的长度,可以变到△ECD 的位置;如图③,以BC 为轴把△ABC 翻折180°,可以变到△DBC 的位置;如图④,以点A 为中心,把△ABC 旋转180°,可以变到△AED 的位置,像这样其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状大小的图形变换,叫做三角形的全等变换.图① 图②图③ 图④请回答下列问题:(1)在图①中,可以通过平移、翻折、旋转中的哪一种方法,使△ABE 变到△ADF 的位置? (2)指出图①中线段BE 与DF 之间的关系.2、如图11.7.8,已知P 是正方形ABCD 内一点,以B 为旋转中心,把△PBC 沿逆时针方向旋转90º得到△P ′BA ,连结PP ′,求P ′PB 的度数.一、选择题1.国旗上的四个小五角星,通过怎样的移动可以相互得到( )§3.6图形的平移与旋转A.轴对称B.平移C.旋转D.平移和旋转2.起重机将重物垂直提起,这可以看作为数学上的()A.轴对称B.平移C.旋转D.变形二、填空题3.广告设计人员进行图案设计,经常将一个基本图案进行轴对称、平移和_______等.4.将点A绕另一个点O旋转一周,点A在旋转过程中所经过的路线是_______.5.以等腰直角△ABC的斜边AB所在的直线为对称轴,作这个△ABC的对称图形△CAB ,则所得到的四边形ACBC′一定是_______.6.国际奥委会会旗上的五环图案可以看作一个基本图案______经过______运动得到.7.利用电脑,在同一页面上对某图形进行复制,得到一组图案,这一组图案可以看作是一个基本图形通过_______得到的.三、解答题8.如图,是一个可以自由转动的圆盘,圆盘被分成6个全等的扇形.它可以看作是由什么“基本图案”通过怎样的旋转得到的?9.如图,一栅栏顶部是由全等的三角形组成,下部分是由全等的矩形组成.请你运用平移、旋转、轴对称分析说明这个图形的形成过程.10.请你分析下面图案的形成过程.11.下图是两个全等的直角三角形,请问怎样将△BCD变成△EAB?12.以一直角三角形为“基本图形”,利用旋转而得到一个风车风轮图案.你能设计出几种风车风轮图案呢?请将你的图案画出来,完成后与同学进行交流.13.将底边水平放置的等腰三角形沿底边的垂直平分线分别向上、向下平移1厘米,得到一组等腰三角形,连同垂直平分线形成的图案你能给出它的含义吗?将得到的图案作为“基本图案”作两次适当的平移形成一组图案.这一组图案又有什么意义呢?14.请充分发挥你的想象力,任意设计一个有意义的图案,将图案画在下面的空白处.完成后与同学交流你的作品.一、填空题(每小题3分,共24分)1.图形的平移、旋转、轴对称中,其相同的性质是_________.单元测试图形的平移与旋转2.经过平移,对应点所连的线段____________.3.经过旋转,对应点到旋转中心的距离___________.4.△ABC平移到△A′B′C′,那么S△ABC______S△A′B′C′.5.等边三角形绕着它的三边中线的交点旋转至少______度,能够与本身重合.6.甲图向上平移2个单位得到乙图,乙图向左平移2个单位得到丙图,丙图向下平移2个单位得到丁图,那么丁图向______平移______个单位可以得到甲图.7.边长为4 cm的正方形ABCD绕它的顶点A旋转180°,顶点B所经过的路线长为______cm.8.9点30分,时钟的时针和分针的夹角是______.二、解答题(9、10小题每小题5分,11~21小题每小题6分,共76分)9.请画一个圆,画出圆的直径AB,分析直径AB两侧的两个半圆可以怎样相互得到?10.作线段AB和CD,且AB和CD互相垂直平分,交点为O,AB=2C D.分别取OA、OB、OC、OD的中点A′、B′、C′、D′,连结CA′、DA′、CB′、DB′、AC′、AD′、BC′、BD′得到一个四角星图案.将此四角星沿水平方向向右平移2厘米,作出平移前后的图形.11.在下面的正方形中,以右上角顶点为旋转中心,按逆时针旋转一定角度后使之与原图形成轴对称. 12.过等边三角形的中心O向三边作垂线,将这个三角形分成三部分.这三部分之间可以看作是怎样移动相互得到的?你知道它们之间有怎样的等量关系吗?13.如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B 的点C,连结AC并延长到D,使CD=CA.连结BC并延长到E,使CE=CB.连结DE,那么量出DE的长,就是A、B的距离,为什么?线段DE可以看作哪条线段平移或旋转得到.14.画线段AB,在线段AB外取一点O,作出线段AB绕点O旋转180°后所得的线段A′B′.请指出AB和A′B′的关系,并说明你的理由.15.如图,四边形ABCD是平行四边形.(1)图中哪些线段可以通过平移而得到;(2)图中哪些三角形可以通过旋转而得到.16.同学们用直尺和三角板画平行线,这种画平行线的方法利用了怎样的移动?由此我们得出了什么结论?17.如图,△ABC通过平移得到△ECD,请指出图形中的等量关系.18.请你指出△BDA通过怎样的移动得到△CAE . 19.如图,你能说明△ABC通过怎样的移动可以得到△BAD吗?20.请你以“植树造林”为题,以等腰三角形为“基本图形”利用平移设计一组有意义的图案,完成后与同学进行交流.21.由一个半圆(包含半圆所对的直径)和一个长方形组成一个“蘑菇”图形,将此图形作为“基本图形”经过两次平移后得到一组图案.这样的图案是否可作为公园中“凉亭”的标志呢?请你设计一下这个标志.3.1参考答案情景再现:1.(1)不发生变化(2)20米(3)略习题1、1.5平方厘米∠A′B′C′=90°2、(4)3、略4、略3.2参考答案:一填空:1、点A到点A′的方向,线段A A′的长度,2;2、D;3、AB=DE、AC=DF、BC=EF、BE=CF,AB∥DE、AC∥DF,∠A=∠D、∠B=∠DEF、∠ACB=∠F;4、(1)略;(2)DA,∠E,∠B;(3)CG,BF,AE;5、(1)72,80,2;(2)C、F;6、略;二、选择题:7、B;8、D;探究升级1、略; 2、略;4、660米2;5、略3.3参考答案:一、填空题:1.旋转中心、旋转的角度,旋转中心,旋转角;2.点O ,∠MON ,90;3.B ;4.A ;5.点D ,线段DE ,∠C ;6.点B ,45;7.点C ,60,点D ;二、解答题:8.(1)点C ;(2)∠BCB ′或∠ACA ′;(3)点M 转到了B ′C 的中点位置上;9、图形(1)是通过一条线段绕点O 旋转360°而得到的;图形(2)可以看作是“一个Rt △ABC ”绕线段AC 旋转360°而得到的;图形(3)将矩形ABCD 绕AD 旋转一周而得到的.三、探究升级:10、△AFC 以点A 为旋转中心,旋转90度后能与△ABE 重合,点F 的对应点是点B ;3.4.参考答案一、1.A 2.D 3.B二、4.旋转 5.菱形 6.全等 7.10 8.位置 形状和大小三、9.△OAE 和△OBF ,△OEB 和△OFC ,△OAB 和△OBC ,旋转的角度为90° 10~14.略 3.5参考答案 看一看:第一幅图是由基本图形“A ”经过平移或旋转而得到的.第二幅图是由基本图形“B ”再旋转而得到的.第三幅图是由基本图形“”向上旋转180°再向下平移而得到的. 试一试:将甲图向右平移一定距离再顺时针旋转一定角度而得到的. 做一做:1、(1)解:∵ABCD 为正方形∴AB =AD ,∠DAB =∠DAF =90°又∵AF =21AB ,AE =21AD ∴AF =AE ,∴△ADF ≌△ABE(2)ⅰ将△ABE 绕点A 逆时针旋转90°而得到△AFD ,ⅱBE =DF 2、45度;3.6参考答案: 一、1.D 2.B二、3.旋转 4.圆 5.正方形 6.圆环 四次平移 7.平移三、8~10.略 11.△DCB 先以C 为旋转中心逆时针旋转90°,然后再向右平移,使点C 与A 重合 12.略 13.树 森林 14.略 单元测试参考答案一、1.图形的形状、大小不变,只改变图形的位置2.平行且相等3.相等4.等于5.1206.右 27.4π8.105°二、9.绕圆心旋转180°或以直线AB 为对称轴翻折 10~11.略12.旋转120°,它们是全等四边形,面积相等,对应线段、对应角相等13.△ABC ≌△DCE ,AB =DE ,线段DE 可看作AB 绕点O 旋转180°得到14.AB ∥A ′B ′,且AB =A ′B ′,△AOB ≌△A ′OB ′15.(1)AB 和DC ,AD 和BC (2)△AOB 和△COD ,△BOC 和△DOA ,△ABC 和 △CDA ,△ABD 和△CDB16.平移,平行公理:同位角相等两直线平行17.AB =EC ,AC =ED ,BC =CD ,∠A =∠E ,∠B =∠ECD ,∠ACB =∠D ,∠A =∠ACE18.△BDA 先绕点A 逆时针旋转,使DA 和AB 在一条直线上,然后再以过A 点垂直AB 的直线为对称轴作它的对称图形.(或将△BDA 绕点A 顺时针旋转∠CAB ,再以AE 为对称轴翻折)19.先将△ABC 沿直线AB 向左平移,使点B 与点A 重合,然后再以过A 点且垂直于AB 的直线为对称轴翻折. 20~21.略。

相关文档
最新文档