卤代烃及亲核取代反应

合集下载

卤代烃亲核取代反应

卤代烃亲核取代反应
一氯甲烷的水解:
7
毕节学院化学系
2. 双分子亲核取代反应 (SN2) 机理及其立体化学
一氯甲烷的水解:
CH3Cl + OH
-
60oC H2O
CH3OH + Cl-
反应速率 = k2[CH3Cl][OH-]
No. 1
[ CH3Cl ] 0.0010
[OH-] 1.0
Rate(mol L-1 s-1) 4.9×10-7
3
C
V = K ( 3 3 C - Br CH )
14
毕节学院化学系
3. 单分子亲核取代反应 (SN1) 机理及其立体化学
SN1反应历程 是一个多步反应
15
毕节学院化学系
3. 单分子亲核取代反应 (SN1) 机理及其立体化学
形成碳正离子时,中心碳原子由原来的sp3杂化的四面体构型转为sp2杂化 三角形的平面构型,三个基团在一个平面上,键角接近120℃,碳上还有 一个空p轨道,与亲核试剂成键。一旦成键,碳原子的结构又从三角形的 平面结构转变为四面体结构。
通过亲核取代反应:
1.可生成许多类型的有机物 2.由卤代烃提供烷基,形成C-C键,增长碳链 3.改变化合物构型,提高化合物生物活性
5
毕节学院化学系
伯卤代烷的水解速率
叔卤代烷的水解
与卤代烷的浓度成正比
只与卤代烷的浓度成正比
与碱的浓度也成正比
与碱的浓度基本没有关系
S N2
6
SN1
毕节学院化学系
2. 双分子亲核取代反应 (SN2) 机理及其立体化学
(c)
SN 2
H3C H
OH
H NHR
CH3
+

第七章 卤代烃 亲核取代反应

第七章 卤代烃 亲核取代反应

CH3CH2CH2CH3
n-C8H17Br + LiAlH4
O
C8H18
第四节 亲核取代反应和消除反应机理
一 亲核取代反应机理 (一)双分子亲核取代反应(SN2)机理
以 CH3Br NaOH-H2O CH3OH + Br- 为例: 反应速率方程: v=k[CH3Br][OH-]
反应机理:
HH HHOO ++ HH CC BBrr
(三)单分子亲核取代反应(SN1)
CH3 CH3 C Br + OH-
CH3
CH3 CH3 C OH + Br-
CH3
V = K (CH3)3 C - Br
第一步:
(H3C)3C Br
第二步:
(CH3)3C+ + OH-
δ+ δ -
(H3C)3C Br
δ+ δ(H3C)3C OH
(CH3)3C+ + Br- 慢
绝对乙醚——无水、无乙醇的乙醚。
RMgX + O2
RMgX+ CO2
ROMgX H2O ROH
RCOOMgX H2O RCOOH H
HHOOHH RR′-′-OOHH
OOHH RR--HH ++ MMgg
XX OORR RR--HH ++ MMgg XX
RRMMggXX ++
RR′C′COOOOHH RR--HH ++ MMgg OOCCOORR′′ XX
第七章 卤代烷 亲核取代反应
第一节 结构、分类和命名
一、结构
X
C
X=F,Cl,Br,I

卤代烃亲核取代反应历程

卤代烃亲核取代反应历程

Substrate
Nucleophile
亲核试剂(Nucleophile): H O
RO
NC
O
H
H
N
H
H
H
两个典型反应为例:
1) H3C Br + OH-
H3C OH + Br-
动力学特征: υ = k [ H3CBr ] [ OH- ], 二级反应;
2) (CH3)3C
Br + OH-
(CH3)3C
HH
(4)瓦尔登转化
E
H
HO
Br
H H
反应历程
图1 SN2 反应势能图
二、亲核反应历程:SN1
(CH3)3C
Br + OH-
(CH3)3C OH + Br-

(CH3)3C-Br
(CH3)3C
Br
(CH3)3C+ + OH 快
(CH3)3C+ + Br
(CH3)3C
OH
ΔE2
ΔE1

H3)3C-Br
SN1
(1)两步反应 (2)单分子反应: υ= K [ R-X ] (3)生成碳正离子中间体 (4)构型翻转 + 构型保持
一切有利于过渡态形成的因素, 均有利于SN2
一切有利于中间体形成的因素, 均有利于SN1
(CH3)3C ++ OH-
δ+
[ (CH3)3C
δ-
OH ]
(CH3)3C + + Br- (CH3)3C OH
(2) 决定反应速率的一步为单分子反应: v = k [ (CH3)3CBr ]

卤代烃—亲核取代反应(有机化学课件)

卤代烃—亲核取代反应(有机化学课件)
卤代烃的亲 核取代反应
卤代烃在有机合成的多种用途
灭火器
制冷剂
管材
薄膜
墙板地板
日用品
目录CONTENT来自01亲核取代反应
02
亲核取代反应实例
01
亲核取代反应
亲核取代反应 1.卤代烷结构分析
导入动画
结论:卤代烃的取代是一个亲核取代的过程。
亲核取代反应 2. 定义 亲核取代反应(SN):
有机化合物分子中的原子或原子团被亲核试剂取代的反应。
2. 被烷氧基取代
卤代烷与醇钠作用,卤原子被烷氧基取代而生成醚类化合物。
+ R X
△ R'ONa
+ ROR'
NaX
Williamson 醚合成法
伯卤代烷 > 仲卤代烷 > 叔卤代烷
亲核取代反应实例
3. 被氰基取代
卤代烷与氰化钠或氰化钾在乙醇溶液中共热回流,卤原子被氰基(—CN)取代,
得到腈。
乙醇
+ RX
亲核取代反应实例
6. 卤化物的互换
氯代烷或溴代烷的丙酮溶液与碘化钠共热,可生成氯化钠和溴化钠沉淀。
丙酮
+ RCl NaI
丙酮
+ RBr NaI
+ RI
NaCl
+ RI
NaBr
卤代烷的 定性鉴定
伯卤代烷>仲卤代烷>叔卤代烷
小结
100% 80% 60% 40% 20%
R-X
NaOH
ROH 醇类
R’ONa ROR’ 醚类
NaCN
+ RCN
NaX
乙醇
+ CH 3CH 2CH 2Cl
NaCN

有机化学基础知识点整理卤代烃的消除反应和亲核取代反应

有机化学基础知识点整理卤代烃的消除反应和亲核取代反应

有机化学基础知识点整理卤代烃的消除反应和亲核取代反应有机化学基础知识点整理:卤代烃的消除反应和亲核取代反应有机化学中,卤代烃是一类重要的化合物。

它们包含有一个或多个卤素原子,如氯、溴、或碘,与碳原子相连。

在有机合成和反应中,卤代烃经常被用作起始物质或中间体。

在本文中,我们将重点介绍卤代烃的消除反应和亲核取代反应两个重要的基础知识点。

一、卤代烃的消除反应卤代烃的消除反应是指在适当的条件下,卤素原子与相邻碳原子之间的化学键断裂,从而形成一个双键或三键,并且卤素原子被去除。

常见的消除反应有β-消除反应和氢化物消除反应。

1. β-消除反应β-消除反应是指当卤代烃的邻碳上有一个或多个氢原子时,卤素和一个氢原子同时被去除,形成一个双键。

常见的β-消除反应有氢氧化钠和氨水处理。

例如,当2-溴丙烷与氢氧化钠反应时,产物为丙烯和溴化钠:CH3CHBrCH3 + NaOH → CH2=CHCH3 + NaBr + H2O2. 氢化物消除反应氢化物消除反应是指当卤代烃中没有邻碳上的氢原子时,卤素与一个氢化物离子(如乙醇钠)同时被去除,形成烯烃。

例如,当1,2-二溴乙烷与乙醇钠反应时,产物为乙烯和溴化钠:CH2Br-CH2Br + 2 NaOEt → CH2=CH2 + 2 NaBr + EtOH二、卤代烃的亲核取代反应卤代烃的亲核取代反应是指一个亲核试剂与卤代烃发生反应,亲核试剂的亲电子进攻和取代卤素原子,形成一个新的化合物。

亲核取代反应是有机合成中最常见的反应之一。

1. SN1 亲核取代反应SN1 亲核取代反应是指在两步反应中,第一步生成一个稳定的卤代烷离子,然后在第二步中,亲核试剂攻击离子,取代卤素原子。

SN1亲核取代反应通常发生在三级卤代烷上,存在亲核试剂的浓度低的情况下。

例如,当溴代异丙基反应生成异丙基碳离子,然后氢氧化钠攻击碳离子,形成异丙醇:(CH3)3C-Br + NaOH → (CH3)3C-OH + NaBr2. SN2 亲核取代反应SN2 亲核取代反应是指在一步反应中,亲核试剂直接攻击卤素原子,并取代它。

有机化学基础知识点卤代烃的亲核取代反应

有机化学基础知识点卤代烃的亲核取代反应

有机化学基础知识点卤代烃的亲核取代反应有机化学是研究碳和碳间的化学反应的学科,其中一个重要的分支就是亲核取代反应。

卤代烃是有机化合物中重要的一类化合物,它们在亲核取代反应中起着重要的作用。

本文将介绍卤代烃的亲核取代反应的基本概念、机理和应用。

一、卤代烃的定义及分类卤代烃是指由卤素(如氯、溴、碘等)取代了烃分子中的一个或多个氢原子的有机化合物。

根据卤素取代的位置和数量,卤代烃可以分为一卤代烃、二卤代烃、三卤代烃等多种。

二、亲核取代反应的基本概念亲核取代反应是指一个亲核试剂(通常是带有孤对电子的离子或分子)与一个电子亲和性较强的底物发生反应,亲核试剂中的亲电子攻击底物中的亲电子,从而取代底物中的原子或官能团。

三、亲核取代反应的机理1. SN1机理:一步解离加亚离子生成SN1反应是一种两步反应,首先底物发生解离生成一个稳定的离子化合物(亚离子),然后亲核试剂攻击亚离子生成产物。

该反应通常发生在底物分子稳定性高、溶剂极性较好的情况下。

2. SN2机理:一步亲核取代反应SN2反应是一种一步反应,亲核试剂直接攻击底物中的亲电子,并取代底物中的原子或官能团。

该反应通常发生在底物分子稳定性较低、溶剂极性较差的情况下。

四、亲核取代反应的常见类型1. 取代反应:亲核试剂取代底物中的某个原子或官能团,生成新的化合物。

2. 还原反应:亲核试剂还原底物中的卤素原子,生成新的化合物。

常见的还原剂包括金属或金属还原剂。

3. 重排反应:在亲核取代反应中,底物分子的结构重新排列形成新的化合物。

五、卤代烃亲核取代反应的应用卤代烃亲核取代反应在有机合成中有着广泛的应用。

通过选择合适的亲核试剂和底物,可以合成具有特定化学活性和生物活性的化合物。

六、实例分析:氯代甲烷的亲核取代反应氯代甲烷(CH3Cl)作为一种常见的卤代烃,可以通过亲核取代反应合成其他化合物。

例如,当氯代甲烷与氢氧化钠(NaOH)反应时,氯离子(Cl-)被羟基离子(OH-)取代,生成甲醇(CH3OH)和氯化钠(NaCl)。

卤代烃亲核取代和消除、和金属反应

卤代烃亲核取代和消除、和金属反应

六, 卤代烃的亲核取代反应、消除反应及和金属的反应卤代烃的亲和取代和消除是有机化学中的难点,希望同学们能比较仔细地阅读本部分内容。

这里有一些内容和一般的教科书中介绍的有所不同。

6-1 卤代烃的亲核取代反应,S N1和S N2在有机化学反应中,常常把反应物分为底物和试剂。

在讨论卤代烃的反应中,卤代烃就是底物。

本节主要讨论卤代烷作为底物的取代反应。

卤代烷就是烷烃中的一个氢为卤素取代的“结构为RX(R=烷基,X=卤素)的化合物,又称为烷基卤[化物],P5。

”取代反应就是“分子中某一原子或基团被另一原子或基团替换的基元或分步反应,P86。

”卤代烷的亲核取代反应就是富电子的或带负电荷的试剂把卤代烃中卤素取代下来的反应。

这个反应在合成中非常有用。

例如:RX + Na+ -OH −→ROH + Na+X-RX + Na+ -OR’−→ROR’ + Na+X-制醚的重要方法,称为Williamson醚合成法RX + Na+ -CN −→RCN + Na+X-制腈的重要方法RX + Na+ -C≡CH −→RC≡CH + Na+X-把炔键引入分子从上面的几个反应来看,钠离子没有在反应中起作用,起作用的是-OH、-OR、-CN、-C≡CH等负离子。

是这些负离子把卤素负离子取代了下来。

在这个反应中卤代烷中的卤素是带着一对电子成为卤素负离子离去的,叫做离去基团。

如果把带负电荷的亲核试剂写成Nu-而把离去基团写成-L。

那么卤代烷的亲核取代反应就可以拓展为:R-L + Nu-−→RNu + L-这实际上可看成是一个广义的酸碱反应。

只要是带负电荷的亲核试剂Nu-的碱性比取代下来的离去基团L-的碱性强,这种反应就能发生。

亲核试剂可以是:HO-、RO-、CN-、HC≡C-、RCOO-、CH3COC-HCOOC2H5(以后会知道这就是乙酰乙酸乙酯的合成法)、C2H5OOCC-HCOOC2H5(丙二酸二乙酯合成法)……如果把上面的氧原子换成硫原子,又是一批亲核试剂。

卤代烃的反应方程式

卤代烃的反应方程式

卤代烃的反应方程式卤代烃是一类化合物,其分子中含有卤素原子(氯、溴、碘等)与碳原子相连接。

在有机化学中,卤代烃的反应种类繁多,可以发生取代反应、消除反应、重排反应等。

1. 取代反应:卤代烃中的卤素原子可以被其他官能团或原子所取代,产生新的化合物。

常见的取代反应有亲核取代反应和电子亲合性取代反应。

(1)亲核取代反应:亲核试剂(如氢氧根离子、氨等)攻击卤代烃中的卤素原子,卤素原子离去形成一个亲核试剂连接的新官能团。

例如,氢氧根离子与卤代烃发生SN2反应,生成醇类化合物。

例如,甲基氯与氢氧根离子反应,生成甲醇:CH3Cl + OH- -> CH3OH + Cl-(2)电子亲合性取代反应:电子亲合性试剂(如亲电试剂)攻击卤代烃中的卤素原子,卤素原子离去形成一个亲电试剂连接的新官能团。

例如,溴乙烷与氢氧化钠反应,生成乙醇。

例如,溴乙烷与氢氧化钠反应,生成乙醇:CH3CH2Br + NaOH -> CH3CH2OH + NaBr2. 消除反应:卤代烃中的卤素原子与相邻的氢原子发生反应,形成卤素分子和不饱和化合物。

常见的消除反应有β消除和α消除。

(1)β消除反应:卤素原子与相邻的氢原子发生反应,形成卤素分子和不饱和化合物。

例如,氯乙烷在碱性条件下发生β消除反应,生成乙烯。

例如,氯乙烷在碱性条件下发生β消除反应,生成乙烯:CH3CH2Cl -> CH2=CH2 + HCl(2)α消除反应:卤素原子与相邻的氢原子发生反应,形成卤素分子和不饱和化合物。

例如,2-溴丁烷在碱性条件下发生α消除反应,生成丁烯。

例如,2-溴丁烷在碱性条件下发生α消除反应,生成丁烯:CH3CH2CH2CH2Br -> CH2=CHCH2CH3 + HBr3. 重排反应:卤代烃分子中的碳原子重新排列,形成不同结构的化合物。

常见的重排反应有醇脱水重排、烷基迁移重排等。

(1)醇脱水重排:醇类化合物在高温条件下发生脱水反应,形成烯烃类化合物。

卤代烃亲核取代和消除反应机理

卤代烃亲核取代和消除反应机理

亲核取代反应历程卤代烃的亲核取代反应是一类重要反应,由于这类反应可用于各种官能团的转变,在有机合成中具有广泛的用途,因此,对其反应历程的研究也就比较重要。

在亲核取代反应中,研究最多的是卤代烃的水解,在反应的动力学、立体化学,以及卤代物的结构,溶剂等对反应速率的影响等都有不少的资料。

根据化学动力学的研究及许多实验表明,卤代烃的亲核取代反应是按两种历程进行的,即双分子亲核取代反应(S N 2反应)和单分子亲核取代反应(S N 1反应)。

一、双分子亲核取代反应(S N 2反应)实验证明:伯卤代烃的水解反应为S N 2历程。

RCH 2Br+OH -→RCH 2OH+Br -,v =k [RCH 2Br]·[OH -],v 为水解速率,k 为水解常数。

因为RCH 2Br 的水解速率与RCH 2Br 和OH -的浓度有关,所以叫做 双分子亲核取代反应(S N 2反应)。

1.S N 2反应机理:亲核试剂(Nu -)从离去基团(L)的背面进攻中心碳原子。

当亲核试剂与中心碳原子之间逐渐成键时,离去基团与中心碳原子之间的键逐渐断裂,新键的形成和旧键的断裂是同步进行的协同过程,其反应过程如下所示。

反应物(sp 3) 过渡态(sp 2)产物(sp 3) 2.S N 2反应的能量变化,可用反应进程-势能曲线图表示如下:S N 2反应进程中的能量变化3.S N 2反应的立体化学:背面进攻和构型翻转。

(1)背面进攻反应:在S N 2反应中,亲核试剂Nu -可以从离去基团的同一边或离去基团的背面进攻中心碳原子(C δ+)。

若从离去基团的同一边进攻,则亲核试剂与带负电荷的离去基团(L δ-)之间,除空间障碍外,还因同种电荷相互排斥使反应活化能升高,不利于反应的进行。

若从离去基团的背面进攻,则反应活化能较低,容易形成相对较稳定的过渡态,反应易于进行。

(2)构型翻转:在S N 2反应中,中心碳原子由反应底物时的sp 3杂化转变为过渡态时的sp 2杂化,这时亲核试剂与离去基团分布在中心碳原子的两边,且与中心碳原子处在同一直线上,中心碳原CδδNu C + L -δδNu C + L δδNu C + L -Nu子与它上面的其他三个基团处于同一平面内。

第六章 卤代烃 亲核取代反应.

第六章 卤代烃 亲核取代反应.

R-C CR' 炔 上述反应都是由试剂的负离子部分或未共用 电子对去进攻C—X键中电子云密度较小的碳 原子而引起的。
P99
1°加NaOH是为了加快反应的进行,是反 应完全。 2°此反应是制备醇的一种方法,但制一 般醇无合成价值,可用于制取引入OH比 引入卤素困难的醇。

RCH2-X + NaOH
CH3CHCl Ph
OHH2O
CH3CHOH Ph
87% 外消旋 13% 构型转化
较大的外消旋化百分比说明主要发生了SN1反应。 离子对机制解释:
RX
R+X紧密离子对
R+
X-
R+ + X 自由碳正离子
溶剂分离子对
在紧密离子对中R+ 和X -之间尚有一定键连,因此仍保持原 构型,亲核试剂只能从背面进攻,导致构型翻转。 在溶剂分隔离子对中,离子被溶剂隔开,如果亲核试剂介入 溶剂的位置进攻中心碳,则产物保持原构型,由亲核试剂介入 溶剂的背面进攻,就发生构型翻转。当反应物全部离解成离子 后再进行反应,就只能得到外消旋产物。
SN1反应的另一个特点:反应伴有重排。
CH3 CH3-C-CH-CH3 H3C Br
H2O -H
+
H2O
CH3 CH3-C-CH-CH3
+ 重排
SN1 OH CH3- C- CH- CH3 H3C CH3
CH3 C- CH CH3 H3C CH3
+
H3 C
例 (S)-3-甲基-3-溴己烷在水-丙酮中反应, 结果旋光性消失的 实验事实。
3- 甲基 -5- 氯庚烷 3- 氯 -5- 甲基庚烷 × 4- 甲基 -2- 氯己烷
H3C

卤代烃

卤代烃

卤代烃及金属有机化合物一.亲核取代反应:1水解反应:卤代烷与水作用发生水解反应,产物是醇和相应的卤化氢。

由于离去基X-的亲核性及碱性比水分子强,所以卤代烷的水解反应是可逆反应。

为了使水解反应进行完全,加入碱OH-则反应为不可逆,这是由于碱性强弱次序为:OH>X>H2O。

卤代烷在碱性条件下的水解是强喊取代了弱碱。

离去基X-的碱性越小,就越易于被HO-取代。

相同烷基不同卤原子的卤代烷,它们的水解反应活性是:RI>RBr>RCl >RF-2.醇解反应与醇钠作用卤代烷与醇钠在相应醇溶液中反应,卤原子被烷氧基(—OR)取代生成醚。

这种方法常用下合成不对称的醚,称为Williamson法合成醚;但此方法对所使用的卤代烷有限制,一般是使用伯卤代烷,而不能使用叔卤代烷,否则得到的主产物将不是醚而是烯烃。

对于不同的卤代烷,卤原子被取代的难易次序是:Rl>RBr>RCI》RF。

3.氨解反应:氨与卤代烷发生亲核取代反应,结果在碳原予上引人了一个氨基生成伯胺。

伯胺属有机弱碱,它与生成的卤化氢结合形成盐,当这个盐与强碱作用时,则得到游离的伯胺。

4.氰解反应卤代烷与氰化钠或氰化钾作用,则卤原子被氰基(一CN)取代生成睛(R—CN)。

通常是由伯或仲卤代烷的醇溶液与氰化钠作用来合成睛的。

卤代烷转变成睛后,分子中增加了一个碳原子,这是有机合成中增长碳链的方法之一。

在以上反应中,卤代烷的活性都是RI>RBr>RCl >RF,与三级卤代烷反应时基本都是烯烃。

-5卤离子交换反应(鉴别氯代烃或者溴代烃)在丙酮中,氯代烷和溴代烷分别与碘化钠反应,则生成碘代烷。

这是由于碘化钠溶于丙酮,则生而氯化钠和溴化钠不溶于丙酮,从而有利于反应的进行。

氯代烷和溴代烷的活性次序是1°> 2°> 3°。

碘化钠的丙酮溶液很稳定,且操作方便。

故此反应可用于检验氯代烷和溴代烷。

6..与硝酸银作用(推测卤代烃可能结构)卤代烷与硝酸银的乙醇溶液反应,生成卤化银沉淀:不同的卤代烷,其活性次序也是RI>RBr>RCl;当卤原子相同而烷基结构不同时,其活性次序为:3°>2°>1。

几种重要的卤代烃

几种重要的卤代烃

RI + NaBr NaCl
不溶于丙酮
RBr > RCl
不同结构卤代烷的活性顺序:
CH2X
CH2=CHCH 2X
1o > 2o >3o
现象: 室温, 立即沉淀:
50 oC, 3 分钟沉淀:
1o溴代烷
1o氯代烷
CH2X CH2=CHCH 2X
2o溴代烷
50 oC , 长时间才沉淀: 3o卤代烷
Cl
乙烯型卤代烃和苯型卤代烃不反应 卤素活性顺序: RI>RBr>RCl
SN2表示双分子反应。该亲核取代反 应的控速步(慢的一步)由两种分子 控制。
H
HH
HO
H C Br
δ
δ
HO C Br
H
过渡态
H
慢,决速步
H
HO C H Br H
SN1表示单分子反应。反应是分两步 进行的。

1) R-X
R
决速步
消除反应的方向
E1、E2消除反应生成的烯烃,一般以双键旁 取代烷基多的烯烃为主,这称为扎依切夫律。
CH3 CH3CH2CCH3
Br
C2H5OK C2H5OH
CH3 CH3CH=CCH3
71%
CH3CH2C=CH2 29% CH3
3.消除反应小结
反应类型
卤代烷
反应条件
1o b-C上无支链 空阻大的碱
强碱,高温,弱极性利于消除反应,反之, 利于亲核取代反应
-C-Mg键是高度极性键,接近于离子键,格 氏 试剂在反应中相当与一个负碳离子,可起亲 核试剂与强碱的作用。
R Mg X
B 格氏试剂的反应 (a)与带有活泼氢化合物的反应

卤代烃亲核取代反应

卤代烃亲核取代反应

4、被硝酸根(-ONO2)取代
_
5、被烃氧基(-OR)取代
RNu X
H2O NaCN/醇
NaOR'
卤代烃的合成意义
ROH + HX
NaOH
RX
ROH + HX
RCN + NaX H2O/H+ RCOOH
ROR' + NaX Williamson合成混醚
NH3
RNH2 + NH4X 氨ān、胺àn、铵ǎn
变快 变快 不变
1.SN1反应机理
(CH3)3C Br + OH
(CH3)3C OH + Br
υ= K[(CH3)3CBr]

(1) (CH3)3C Br
δδ
(CH3)3C Br
(CH3)3C + Br

sp3
Sp3~sp2
过渡态A
空助效应 sp2

(2) (CH3)3C + OH
两侧进攻
δδ
(CH3)3C OH
卤代烃:
饱和卤代烃 不饱和卤代烃 芳香卤代烃
RCH2X
RCH CHX
2、命名
普通命名法:
卤(代)某烃
Br
X
烃基 + 卤素
某 基 卤 CH2 CH CH2Br
俗名
CHCl3
比较复杂的卤代烃一般用系统命名法
CH3I
甲基碘
CH2 CH Br
乙烯基溴
Cl 烯丙基氯
Br
丙烯基溴
Cl
2-甲基-4-氯-1-丁烯
(R)-3-甲基-3-己醇 外
构型保持


CH3

第八章卤代烃亲核取代反应(6学时)

第八章卤代烃亲核取代反应(6学时)

+ Me 3C
③ 反应过程的能量变化
O H M CBr e+ 3
-
④ 中心C原子的变化
3 C : S P 2 s p 3 S P
反应进程
+ M CO e B 3
玲 制作
+ + + + H C CH > H C CH > CH 3 2 H C C > 3 3 3
CH 3 CH 3
CH 3
# 14
⑤ 烃基结构对SN1的影响 RX RX 1 ° 2 ° RX RX : 3 ° CH X 3
外 消 旋 体
16
R 2
R 3
玲 制作

三、亲核取代与消除反应的关系
单分子E1历程消除反应:
1 1 R R 慢 + +X R-CH -C R-CH -C-X 2 2 2 R 2 R
1 1 HR R - + β α +快 +H R CC O OH R-CH=C 2 2 2 R H 或 H C R 或 H C OH 25 2 5
SN2,由于环的影响,亲核试剂不得从背面进攻中心C原子; SN1,由于环的限制,要离解成碳正离子的平面结构,比较困难。 #
15
二、SN1和SN2的立体化学
1.SN2的立体化学(Walden转化)
R 1 CL N u+ R 2 R 3 N u
δ
-
R 1
C L
δ
-
R 1 C N u R 2 R 3
R 2 R 3
第六章 卤代烃 亲核取代反应(4学时) [目的要求]:
1. 掌握卤代烃的命名 , 了解卤代烃的分类。 2. 掌握卤代烃的性质和制备; 3. 理解亲核取代反应历程; 4. 了解一些重要的卤代烃的用途。

卤代烃—亲核取代反应机理(有机化学课件)

卤代烃—亲核取代反应机理(有机化学课件)
(CH3)3C-Br + OH- →(CH3)3C-OH + Br-
υ=k [(CH3)3CBr]
导入动画
磺化反应 2. SN1历程的特点
反应分两步进行 在反应中有活性中间体—碳正离子生成,有可能发生重排反应 为1级反应ν=k[R-X]
磺化反应 练一练
写出2,2-二甲基-3-溴丁烷的水解历程
03
双分子亲核取代 反应(SN2)
双分子亲核取代反应(SN2) 1. 溴甲烷的水解历程
CH3Br + OH-
CH3OH
= k[CH3Br][OH-]
υ=k [CH3Br][OH-]
+ Br-
双分子亲核取代反应(SN2)
1. 溴甲烷的水解历程
C—O 键部
分形成
过渡态
Cr HO
亲核试剂从远离Br 的一边进攻底物
Br fastHO
中心碳构型转化
双分子亲核取代反应(SN2) 2. SN2历程的特点
反应一步完成,属于协同反应 v=k[CH3X][OH-],为二级反应 构型转化(Valden inversion)
小结
100% 80 % 60 % 40 % 20 %
卤代烃亲核 取代机理
导入
卤代烃不仅在有机合成中有广泛的应 用,而且在有机化学理论研究方面也 占有重要的地位。
01
亲核取代反应
目录
CONTENT
02
单分子亲核取 代反应( SN1 )
03
双分子亲核取 代反应(SN2)
01
亲核取代反应
亲核取代反应
02
单分子亲核取 代反应(SN1)
单分子亲核取代反应(SN1) 1. 叔丁基溴的水解历程

有机化学基础知识点整理卤代烃的消除与亲核取代反应

有机化学基础知识点整理卤代烃的消除与亲核取代反应

有机化学基础知识点整理卤代烃的消除与亲核取代反应有机化学基础知识点整理:卤代烃的消除与亲核取代反应在有机化学中,卤代烃是一类重要的有机化合物,它们是由一个或多个卤素(如氯、溴、碘等)取代有机骨架上的氢原子而形成的化合物。

卤代烃具有许多重要的反应和应用。

本文将重点讨论卤代烃的消除与亲核取代反应的基础知识点。

1. 卤代烃的消除反应卤代烃的消除反应是指在适当的条件下,通过引入一个或多个还原剂或碱性条件,使卤代烃中的卤素离子(如Cl-、Br-等)脱离有机分子,从而得到一个双键或多重键的反应过程。

常见的卤代烃消除反应有:(一)脱卤反应(Dehalogenation)脱卤反应是指通过还原剂作用或碱性条件下,将卤素原子从卤代烃中移除的反应过程。

最常见的脱卤反应是氯代烃的脱氯反应和溴代烃的脱溴反应,其中最典型的脱卤反应是氯代烃的脱氯反应。

脱氯反应的机理可以分为两种类型:亲核脱氯和还原脱氯。

亲核脱氯是指由亲核试剂(如HO-、CN-等)进攻卤素原子,形成亲核取代产物。

还原脱氯是指由还原剂(如金属钠、金属锂等)反应产生亲电负荷,攻击卤素原子,生成亲电取代产物。

脱溴反应与脱氯反应类似,但脱溴反应的反应条件较温和,通常需要溶剂和催化剂的存在。

(二)脱卤取代反应(Elimination substitution)脱卤取代反应是指卤化烃与碱性条件下(如强碱NaOH)反应,经过脱卤步骤后,再发生亲核取代反应的过程。

这种反应可以通过消除反应和亲核取代反应的竞争来进行选择性的控制。

一般情况下,通过调整反应条件可以实现消除反应或亲核取代反应的倾向性。

2. 卤代烃的亲核取代反应亲核取代反应是指通过一个亲核试剂(如氨、水、醇等)攻击卤代烃的卤素原子,从而取代卤素形成新的有机化合物的过程。

常见的亲核取代反应有:(一)氢氧化反应(Hydrolysis)氢氧化反应是指卤代烃与水或氢氧化物反应,主要形成醇类化合物或醚类化合物。

氢氧化反应可分为酸性水解和碱性水解两种。

卤代烃及亲核取代反应

卤代烃及亲核取代反应

2.波谱特征
红外光谱
红外特征吸收峰是C-X键的振动吸收,都在指纹 区,其中C-F 键的吸收频率在1400~1000 cm-1, C-Cl键为800~600 cm-1,C-Br 键为600~500
cm-1,而C-I 键的吸收频率在500 cm-1附近。
C-X
溴乙烷的红外光谱
பைடு நூலகம்
C-Br
核磁共振谱
1H-NMR谱中,卤素电负性较大,因此与卤素直接相连的碳上的 氢的化学位移移向低场
RX + NaCN
RCN + NaX
增长碳链的方法.变为羧基等官能团
(CH2O)n HCl
NaCN CH2Cl
CH2CN
CH2CN
H+ ,H2O
CH2COOH
3.与醇钠作用 ( Nu=RO-)
RX + RONa
ROR' + NaX
Williamson醚合成法; RX——伯卤烷。
ONa
O
+
Br
4.与氨作用 ( Nu=NH3)
3.从醇制备
醇与氢卤酸
回 流 , 6h OH + HBr
74%
醇与卤化磷
Br + H2O
CH3CH2CHCH 3 + PBr3 OH
CH 3CH2CHCH3 + P(OH) 3 Br
醇与亚硫酰氯
ROH + SOCl2
RCl + SO2 + HCl
8.4 卤代烷的化学性质
δ+ C
δX
C-X键是极性共价键
(CH3)3CBr + OH― → (CH3)3COH + Br―

卤代烃及亲核取代反应

卤代烃及亲核取代反应

β α R-CH-CH2
H X
NaOH
C2H5OH
R-CH=CH2 + H2O +NaX
6
消除反应是指从有机分子中消去简单小分子(如 H2O,HX,NH3 等)的反应。 消除 β-碳上质子的反应,称为β-消除反应。 如果分子内含有几种β-H 时,实验证明,主要消除含氢较少的碳上的氢,生成双键碳 上连有较多取代基的烯烃,这一经验规则称 Saytzeff 规则。例如:
图 8-1 溴乙烷的红外光谱
3
图 8-2 碘苯的红外光谱 H-NMR 谱中,卤素电负性较大,因此与卤素直接相连的碳上的氢的化学位移移向低场 (见表 7-3) 。图 8-3 为苄基溴的 1H-NMR 谱。
(b)
(b)
1
CH2Br
(a)
(a)
图 8-3 苄基溴的 1H-NMR 谱 8.3 卤代烷的制备 在光照或高温作用下,烷烃与卤素发生游离基取代反应生成卤代烷(见 5.3,5.4 节) , 但常常得到混合物。工业上,可以通过调节原料的比例和反应条件,来制备一氯甲烷和四氯 化碳。 烯烃或炔烃与卤素或卤化氢的加成可以制得卤代烷(见 4.1 节) 。例如:
1
CH3 CH3-CH-CH3 Br 异溴丙烷 或异丙基溴 CH3-C-CH3 Cl 三级氯丁烷 或叔丁基氯 CH3CH2CH2I C6H5Cl
正碘丙烷 或正丙基碘
氯苯
有些多卤代烷有其特别的名称,例如 CHCl3 称为氯仿,CHI3 称为碘仿。 2. 系统命名法 卤代烃可以看作是烃的衍生物,把卤原子作为取代基,烃作为母体。有多个取代基时, 按次序规则排列各取代基,卤原子序数较大,一般列在后面。对于不饱和卤代烃,编号时, 应尽可能使不饱和键的位次为最低。有立体构型时,标明其立体构型,放在全名称之前。例 如: CH3CH2CHCHCH2CH3 CH3CH-CHCH3 Br Cl Cl CH3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多卤代烃: 如
根据卤素所连碳的类型可分为伯、仲、叔卤代烃。
伯卤代烃(一级卤代烃): 如 仲卤代烃(二级卤代烃): 如 CH3CH2Br CH3CHCH3
CH3 CH3
叔卤代烃(三级卤代烃):

CH3-C-I
CH3
8.1.2 命名 1. 普通命名法 简单的卤代烃可以把烷基做母体, 称"卤某烃";也可以看作是烃基的卤代物。例如:
2- 甲基-3-氯丁烷
3-氯-4-溴丁烷
CH CCHCHCH3 Cl CH3
CH3CH=CHCH2CH2Cl
5-氯-2-戊烯
H
4-甲基-3-氯-1-戊炔
CH3CH2 (CH3)2CH C=C Cl CH3
CH2CH2CCH2CH3 Br CH3
(S)-3-甲基-1-溴戊烷
Cl CH2Cl
(E)-4-甲基-3-乙基-2-氯-2-戊烯
一些常见卤代烷的物理常数
名称 溴甲烷 溴乙烷 1-溴丙烷 2-溴丙烷 1-溴丁烷 2-溴丁烷 叔丁基溴 二溴甲烷 三溴甲烷 四溴化碳 沸点/℃ 3.6 38.4 71.0 59.4 101.6 91.2 73.1 99 151 189.5 1.440 1.335 1.310 1.276 1.258 1.261 1.222 2.49 2.89 3.42 相对密度 d420 名称 碘甲烷 碘乙烷 碘丙烷 2-碘丙烷 1-碘丁烷 2-碘丁烷 异丁基碘 叔丁基碘 二碘甲烷 三碘甲烷 四碘化碳 沸点/℃ 42.4 72.3 102.5 89.5 130.5 120 121 100 分解 180 分解 升华 升华 3.325 4.008 4.32 相对密度 d420 2.279 1.933 1.747 1.705 1.617 1.595 1.605
第 8 章 卤代烃及亲核取代反应
烃分子中的氢原子被卤素取代后的化合物称为卤代烃。 一般用 RX 表示, 其中X代表F、 Cl、Br、I。 8.1 卤代烃的分类和命名 8.1.1 分类 通常,按烃基结构的不同可将卤代烃分为饱和卤代烃、不饱和卤代烃以及卤代芳烃。
饱和卤代烃:如 CH3Cl
Br
CH2=CH-CH2 Br Cl CH C-CH2CH2I CH2=CH Cl
不饱和卤代烃: 如 CH2=CH-CH2-CH2Br
卤代芳烃: 如
F
CH2Cl
CH2CH2Br
根据卤素的数目,又可将卤代烃分为一、二和多卤代烃。
一卤代烃: 如 CH 2CH2Br I Cl 二卤代烃:如 CH 2CH2CH2 Br CHBr 3 Br F2C=CF2 CH 2=CH-C-CH3 Cl
相对密度 d420
异丁基溴 91.4
卤代烃的红外特征吸收峰是 C-X 键的振动吸收,都在指纹区,其中 C-F 键的吸收频 率在 1400~1000 cm-1,C-Cl 键为 800~600 cm-1,C-Br 键为 600~500 cm-1,而 C-I 键 的吸收频率在 500 cm-1 附近。例如,溴乙烷的 C-Br 键伸缩振动吸收峰在 561 cm-1(见图 8-1) ,碘苯的 C-I 键的吸收峰在 500 cm-1(见图 8-2) 。
2
些常见卤代烷的物理常数。 所有的卤代烃均不溶与水, 但能溶于大多数有机溶剂中。此外,卤代烃通常有令人不愉 快的气味,其蒸气有毒, 尤其是碘代烃毒性较大。 表 8-1
名称 氯甲烷 氯乙烷 1-氯丙烷 2-氯丙烷 1-氯丁烷 2-氯丁烷 异丁基氯 叔丁基氯 二氯甲烷 三氯甲烷 四氯化碳 沸点/℃ -24.2 12.3 46.6 34.8 78.4 68.3 68.8 50.7 40 61 77 0.890 0.859 0.884 0.871 0.875 0.840 1.336 1.489 1.595
图 8-1 溴乙烷的红外光谱
3
图 8-2 碘苯的红外光谱 H-NMR 谱中,卤素电负性较大,因此与卤素直接相连的碳上的氢的化学位移移向低场 (见表 7-3) 。图 8-3 为苄基溴的 1H-NMR 谱。
(b)(b)1Fra bibliotekCH2Br
(a)
(a)
图 8-3 苄基溴的 1H-NMR 谱 8.3 卤代烷的制备 在光照或高温作用下,烷烃与卤素发生游离基取代反应生成卤代烷(见 5.3,5.4 节) , 但常常得到混合物。工业上,可以通过调节原料的比例和反应条件,来制备一氯甲烷和四氯 化碳。 烯烃或炔烃与卤素或卤化氢的加成可以制得卤代烷(见 4.1 节) 。例如:
1
CH3 CH3-CH-CH3 Br 异溴丙烷 或异丙基溴 CH3-C-CH3 Cl 三级氯丁烷 或叔丁基氯 CH3CH2CH2I C6H5Cl
正碘丙烷 或正丙基碘
氯苯
有些多卤代烷有其特别的名称,例如 CHCl3 称为氯仿,CHI3 称为碘仿。 2. 系统命名法 卤代烃可以看作是烃的衍生物,把卤原子作为取代基,烃作为母体。有多个取代基时, 按次序规则排列各取代基,卤原子序数较大,一般列在后面。对于不饱和卤代烃,编号时, 应尽可能使不饱和键的位次为最低。有立体构型时,标明其立体构型,放在全名称之前。例 如: CH3CH2CHCHCH2CH3 CH3CH-CHCH3 Br Cl Cl CH3
CH2=CHCH2Cl + HBr BrCH2 CH2CH2Cl 低温 CH2=CH-CH=CH2 + Br2 15 oC 高温 45 oC Cl CH3C CH + 2Cl2 CH3-C-CH3 Cl CH2-CH-CH=CH2 Br Br
反-1-氯甲基-4-氯环己烷
8.2 卤代烷的物理性质及波谱特征 由于卤原子的电负性较大(见 1.3.4 节表) ,与碳相连时,碳卤键(C→X)强烈极化, 因此,卤代烃为偶极分子。 例如: CH3→F CH3→Cl CH3→Br CH3→I 偶极矩μ(D) 1.82 1.94 1.79 1.64 (气相) 氟的电负性最大, 但氟甲烷的偶极矩比氯甲烷的偶极矩还小, 这是因为碳与氟处于同一周期, 氟原子的体积比碳原子小,所以 C-F 键长(0.139nm)比 C-Cl 键长(0.176nm)小得多。偶 极矩μ=q×d, 键长越短,其正负电荷中心的距离也就越短,故 CH3F 的偶极矩比 CH3Cl 小。 碘甲烷的偶极矩小是因为碘的电负性小。 卤代烃分子之间存在偶极-偶极相互作用,即极性力。分子的极性越大,其极性力越大, 相应的熔、沸点也越高。卤素的相对质量较大,因此卤代烃的相对密度较大。表 8-1 列出一
相关文档
最新文档