ABAQUS帮助文档轮胎磨损例子翻译
(完整版)Abaqus帮助文档整理汇总,推荐文档
Abaqus 使用日记Abaqus标准版共有“部件(part)”、“材料特性(propoterty)”、“装配(assemble)”、“计算步骤(step)”、“交互(interaction)”、“加载(load)”、“单元划分(mesh)”、“计算(job)”、“后处理(visualization)”、“草图(sketch)”十大模块组成。
建模方法:一个模型(model)通常由一个或几个部件(part)组成,“部件”又由一个或几个特征体(feature)组成,每一个部分至少有一个基本特征体(base feature),特征体可以是所创建的实体,如挤压体、切割挤压体、数据点、参考点、数据轴,数据平面,装配体的装配约束、装配体的实例等等。
1.首先建立“部件”(1)根据实际模型的尺寸决定部件的近似尺寸,进入绘图区。
绘图区根据所输入的近似尺寸决定网格的间距,间距大小可以在edit菜单sketcher options选项里调整。
(2)在绘图区分别建立部件中的各个特征体,建立特征体的方法主要有挤压、旋转、平扫三种。
同一个模型中两个不同的部件可以有同名的特征体组成,也就是说不同部件中可以有同名的特征体,同名特征体可以相同也可以不同。
部件的特征体包括用各种方法建立的基本特征体、数据点(datum point)、数据轴(datum axis)、数据平面(datum plane)等等。
(3)编辑部件可以用部件管理器进行部件复制,重命名,删除等,部件中的特征体可以是直接建立的特征体,还可以间接手段建立,如首先建立一个数据点特征体,通过数据点建立数据轴特征体,然后建立数据平面特征体,再由此基础上建立某一特征体,最先建立的数据点特征体就是父特征体,依次往下分别为子特征体,删除或隐藏父特征体其下级所有子特征体都将被删除或隐藏。
××××特征体被删除后将不能够恢复,一个部件如果只包含一个特征体,删除特征体时部件也同时被删除×××××2.建立材料特性(1)输入材料特性参数弹性模量、泊松比等(2)建立截面(section)特性,如均质的、各项同性、平面应力平面应变等等,截面特性管理器依赖于材料参数管理器(3)分配截面特性给各特征体,把截面特性分配给部件的某一区域就表示该区域已经和该截面特性相关联3.建立刚体(1)部件包括可变形体、不连续介质刚体和分析刚体三种类型,在创建部件时需要指定部件的类型,一旦建立后就不能更改其类型。
ABAQUS帮助文档
初始损伤对应于材料开始退化,当应力或应变满足于定义的初始临界损伤准则,则此时退化开始。
Abaqus 的Damage for traction separation laws 中包括:Quade Damage、Maxe Damage、Quads Damage、Maxs Damage、Maxpe Damage、Maxps Damage 六种初始损伤准则,其中前四种用于一般复合材料分层模拟,后两种主要是在扩展有限元法模拟不连续体(比如crack 问题)问题时使用。
前四种对应于界面单元的含义如下:Maxe Damage 最大名义应变准则:Maxs Damage 最大名义应力准则:Quads Damage 二次名义应变准则:Quade Damage 二次名义应力准则最大主应力和最大主应变没有特定的联系,不同材料适用不同准则就像强度理论有最大应力理论和最大应变理论一样~ABAQUS帮助文档10.7.1 Modeling discontinuities as an enriched feature using the extended finite element method 看看里面有没有你想要的Defining damage evolution based on energy dissipated during the damage process根据损伤过程中消耗的能量定义损伤演变You can specify the fracture energy per unit area, , to be dissipated during the damage process directly.您可以指定每单位面积的断裂能量,在损坏过程中直接消散。
Instantaneous failure will occur if is specified as 0.瞬间失效将发生However, this choice is not recommended and should be used with care because it causes a sudden drop in the stress at the material point that can lead to dynamic instabilities.但是,不推荐这种选择,应谨慎使用,因为它会导致材料点的应力突然下降,从而导致动态不稳定。
汽车轮胎稳态滚动中的磨损分析专题资料集锦
轮胎磨损与车轮定位关系研究和探讨.rar 借鉴已有的理论基础和科研成果,主要从摩擦学、宏观动力学的角度来研究轮 胎的磨损及非正常磨损。通过相关理论和方法,进行较为系统和科学的研究, 发现可‘针对不同的悬架形式的定位参数和特点预见和预防车轮的非正常磨 损,也可以通过不同的胎面磨损现象来判断悬架、转向系统的机件故障,为以 减少轮胎非正常磨损为目的的轮胎和悬架的设计和维修保养提供理论分析和 操作指导。
K、开合次数、硬度、材料、Bottom Die移动速度以及温度间的关系,为
建立磨损模型打下了坚实的基础。(3)通过UG建立斜平面导向活络模中套 耐磨板及弓形座的三维造型,将其导入到Deform-3D中并根据真实工况设
置边界条件进行磨损模拟,最终确定磨损系数K的值。(4)根据均匀设计理
论,将修正系数a、b、c设计为十二水平。结合回归分析理论及Deform的 模拟最终确定修正系数的值。
全钢子午线轮胎活络模磨损模型的研究.rar
(1)从斜平面导向活络模的结构、运动、准配准则及试压检测要求等几个 方面论述了活络模的加工要求及使用性能;详细的总结了斜平面导向活络 模在硫化生产中容易出现的问题及相应的解决措施。(2)通过有限元分析 软件Deform-3D的模拟,分析总结了磨损量与修正系数a、b、c、磨损系数
子午线轮胎胎面花纹块滑动磨损有限元分析.pdf
以205/55R16半钢子午线轮胎为参考轮胎,通过建立带纵向和横向简单花纹的 轮胎模型,使用ABAQUS/Standard进行了轮胎自由滚动、制动工况的有限元分 析,分析了与胎面磨损分布相关的粘着滑移区域随滚动角速度变化的分布情况 。结果显示:轮胎在制动状态下,胎面各花纹块沿滑动方向前端出现接触大变 形。但由于整体轮胎模型胎面花纹部分网格较粗糙,计算得到的花纹块变形受 力分布特征不够准确。为此,采用整体到局部的分析方法,建立采用精细网格 的二维平面应变花纹块模型,由整体轮胎模型提供其简化边界条件,使用 ABAQUS/explicit进行了滑动的热力耦合有限元分析。结果显示:采用精细网 格的局部花纹块模型能反映出滑动前端卷曲大变形以及表面卷曲自接触的变 形特征。最后,通过模拟ABS(防抱死制动系统)控制下轮胎胎面花纹块磨损过
abaqus帮助文档_sheardamage
abaqus帮助文档_sheardamageShear damageThe Shear damage initiation criterion is a model for predicting the onset of damage due to shear band localization. The model assumes that the equivalent plastic strain at the onset of damage is a function of the shear stress ratio and strain rate. The shear criterion can be used in conjunction with the Mises, Johnson-Cook, Hill, and Drucker-Prager plasticity models, including equation of state.1. From the menu bar in the Edit Material dialog box, select MechanicalDamage for Ductile Metals Shear Damage.(For information on displaying the Edit Material dialog box, see ?Creating or editing a material,?Section 12.7.1.)2. Enter the material parameter, .3. To define material damage data that depend on temperature, toggleon Use temperature-dependent data.A column labeled Temp appears in the Data table.4. To define behavior data that depend on field variables, click the arrowsto the right of the Number of field variables field to increase ordecrease the number of field variables.Field variable columns appear in the Data table.5. Enter damage parameters in the Data table:Fracture StrainEquivalent fracture strain at damage initiation.Shear Stress RatioThe shear stress ratio is defined as , where q is the Mises equivalent stress, p is the pressure stress, and is the maximum shear stress.Strain RateThe equivalent plastic strain rate, .TempTemperature, .Field nPredefined field variables.You may need to expand the dialog box to see all the columns inthe Data table. For detailed information on how to enter data, see ?Entering tabular data,?Section 3.2.7.6. Select Suboptions Damage Evolution to define the materialdegradation that takes place once damage begins.For more information, see “Damage evolution.”7. Click OK to exit the material editor.。
Abaqus User Subroutines Reference Guide 用户材料子程序帮助文档
1.1.41 UMATUser subroutine to define a material's mechanical behavior.Product: Abaqus/StandardWarning: The use of this subroutine generally requires considerable expertise. Y ou arecautioned that the implementation of any realistic constitutive model requires extensivedevelopment and testing. Initial testing on a single-element model with prescribedtraction loading is strongly recommended.References“User-defined mechanical material behavior,” Section 26.7.1 of the Abaqus Analysis User's Guide“User-defined thermal material behavior,” Section 26.7.2 of the Abaqus Analysis User's Guide*USER MA TERIAL“S D V I N I,” Section 4.1.11 of the Abaqus V erification Guide“U M A T and U H Y P E R,” Section 4.1.21 of the Abaqus V erification GuideOv erv iewUser subroutine U M A T:can be used to define the mechanical constitutive behavior of a material;will be called at all material calculation points of elements for which the material definition includes auser-defined material behavior;can be used with any procedure that includes mechanical behavior;can use solution-dependent state variables;must update the stresses and solution-dependent state variables to their values at the end of theincrement for which it is called;must provide the material Jacobian matrix, , for the mechanical constitutive model;can be used in conjunction with user subroutine U S D F L D to redefine any field variables before they are passed in; andis described further in “User-defined mechanical material behavior,” Section 26.7.1 of the AbaqusAnalysis User's Guide.Storage of stress and strain componentsIn the stress and strain arrays and in the matrices D D S D D E, D D S D D T, and D R P L D E, direct components are stored first, followed by shear components. There are N D I direct and N S H R engineering shear components. The order of the components is defined in “Conventions,” Section 1.2.2 of the Abaqus Analysis User's Guide. Since the number of active stress and strain components varies between element types, the routine must be coded toprovide for all element types with which it will be used.Defining local orientationsIf a local orientation (“Orientations,” Section 2.2.5 of the Abaqus Analysis User's Guide) is used at the same point as user subroutine U M A T, the stress and strain components will be in the local orientation; and, in the case of finite-strain analysis, the basis system in which stress and strain components are stored rotates with the material.StabilityY ou should ensure that the integration scheme coded in this routine is stable—no direct provision is made to include a stability limit in the time stepping scheme based on the calculations in U M A T.Convergence rateD D S D DE and—for coupled temperature-displacement and coupled thermal-electrical-structural analyses—D D S D D T, D R P L D E, and D R P L D T must be defined accurately if rapid convergence of the overall Newton scheme is to be achieved. In most cases the accuracy of this definition is the most important factor governing the convergence rate. Since nonsymmetric equation solution is as much as four times as expensive as the corresponding symmetric system, if the constitutive Jacobian (D D S D D E) is only slightly nonsymmetric (for example, a frictional material with a small friction angle), it may be less expensive computationally to use a symmetric approximation and accept a slower convergence rate.An incorrect definition of the material Jacobian affects only the convergence rate; the results (if obtained) are unaffected.Special considerations for various element typesThere are several special considerations that need to be noted.A v ailability of deformation gradientThe deformation gradient is available for solid (continuum) elements, membranes, and finite-strain shells(S3/S3R, S4, S4R, SAXs, and SAXAs). It is not available for beams or small-strain shells. It is stored as a 3× 3 matrix with component equivalence D F G R D0(I,J). For fully integrated first-order isoparametric elements (4-node quadrilaterals in two dimensions and 8-node hexahedra in three dimensions) the selectively reduced integration technique is used (also known as the technique). Thus, a modified deformation gradientis passed into user subroutine U M A T. For more details, see “Solid isoparametric quadrilaterals and hexahedra,”Section 3.2.4 of the Abaqus Theory Guide.Beams and shells that calculate transv erse shear energyIf user subroutine U M A T is used to describe the material of beams or shells that calculate transverse shear energy, you must specify the transverse shear stiffness as part of the beam or shell section definition to define the transverse shear behavior. See “Shell section behavior,” Section 29.6.4 of the Abaqus Analysis User's Guide, and “Choosing a beam element,” Section 29.3.3 of the Abaqus Analysis User's Guide, for informationon specifying this stiffness.Open-section beam elementsWhen user subroutine U M A T is used to describe the material response of beams with open sections (for example, an I-section), the torsional stiffness is obtained aswhere J is the torsional constant, A is the section area, k is a shear factor, and is the user-specified transverse shear stiffness (see “Transverse shear stiffness definition” in “Choosing a beam element,” Section29.3.3 of the Abaqus Analysis User's Guide).E lements w ith hourglassing modesIf this capability is used to describe the material of elements with hourglassing modes, you must define the hourglass stiffness factor for hourglass control based on the total stiffness approach as part of the element section definition. The hourglass stiffness factor is not required for enhanced hourglass control, but you can define a scaling factor for the stiffness associated with the drill degree of freedom (rotation about the surface normal). See “Section controls,” Section 27.1.4 of the Abaqus Analysis User's Guide, for information on specifying the stiffness factor.Pipe-soil interaction elementsThe constitutive behavior of the pipe-soil interaction elements (see “Pipe-soil interaction elements,” Section 32.12.1 of the Abaqus Analysis User's Guide) is defined by the force per unit length caused by relative displacement between two edges of the element. The relative-displacements are available as “strains” (S T R A N and D S T R A N). The corresponding forces per unit length must be defined in the S T R E S S array. The Jacobian matrix defines the variation of force per unit length with respect to relative displacement.For two-dimensional elements two in-plane components of “stress” and “strain” exist (N T E N S=N D I=2, andN S H R=0). For three-dimensional elements three components of “stress” and “strain” exist (N T E N S=N D I=3, and N S H R=0).Large volume changes with geometric nonlinearityIf the material model allows large volume changes and geometric nonlinearity is considered, the exact definition of the consistent Jacobian should be used to ensure rapid convergence. These conditions are most commonly encountered when considering either large elastic strains or pressure-dependent plasticity. In the former case, total-form constitutive equations relating the Cauchy stress to the deformation gradient are commonly used; in the latter case, rate-form constitutive laws are generally used.For total-form constitutive laws, the exact consistent Jacobian is defined through the variation in Kirchhoff stress:Here, J is the determinant of the deformation gradient, is the Cauchy stress, is the virtual rate of deformation, and is the virtual spin tensor, defined asFor rate-form constitutive laws, the exact consistent Jacobian is given byUse with incompressible elastic materialsFor user-defined incompressible elastic materials, user subroutine U H Y P E R should be used rather than user subroutine U M A T. In U M A T incompressible materials must be modeled via a penalty method; that is, you must ensure that a finite bulk modulus is used. The bulk modulus should be large enough to model incompressibility sufficiently but small enough to avoid loss of precision. As a general guideline, the bulk modulus should be about – times the shear modulus. The tangent bulk modulus can be calculated fromIf a hybrid element is used with user subroutine U M A T, Abaqus/Standard will replace the pressure stress calculated from your definition of S T R E S S with that derived from the Lagrange multiplier and will modify the Jacobian appropriately.For incompressible pressure-sensitive materials the element choice is particularly important when using user subroutine U M A T. In particular, first-order wedge elements should be avoided. For these elements the technique is not used to alter the deformation gradient that is passed into user subroutine U M A T, which increases the risk of volumetric locking.Increments for which only the Jacobian can be definedAbaqus/Standard passes zero strain increments into user subroutine U M A T to start the first increment of all the steps and all increments of steps for which you have suppressed extrapolation (see “Defining an analysis,”Section 6.1.2 of the Abaqus Analysis User's Guide). In this case you can define only the Jacobian (D D S D D E).Utility routinesSeveral utility routines may help in coding user subroutine U M A T. Their functions include determining stress invariants for a stress tensor and calculating principal values and directions for stress or strain tensors. These utility routines are discussed in detail in “Obtaining stress invariants, principal stress/strain values and directions, and rotating tensors in an Abaqus/Standard analysis,” Section 2.1.11.U ser subroutine interfaceS U B R O U T I N E U M A T(S T R E S S,S T A T E V,D D S D D E,S S E,S P D,S C D,1R P L,D D S D D T,D R P L D E,D R P L D T,2S T R A N,D S T R A N,T I M E,D T I M E,T E M P,D T E M P,P R E D E F,D P R E D,C M N A M E,3N D I,N S H R,N T E N S,N S T A T V,P R O P S,N P R O P S,C O O R D S,D R O T,P N E W D T,4C E L E N T,D F G R D0,D F G R D1,N O E L,N P T,L A Y E R,K S P T,K S T E P,K I N C)CI N C L U D E'A B A_P A R A M.I N C'C H A R A C T E R*80C M N A M ED I ME N S I O N S T R E S S(N T E N S),S T A T E V(N S T A T V),1D D S D D E(N T E N S,N T E N S),D D S D D T(N T E N S),D R P L D E(N T E N S),2S T R A N(N T E N S),D S T R A N(N T E N S),T I M E(2),P R E D E F(1),D P R E D(1),3P R O P S(N P R O P S),C O O R D S(3),D R O T(3,3),D F G R D0(3,3),D F G R D1(3,3)user coding to define D D S D D E,S T R E S S,S T A T E V,S S E,S P D,S C Dand, if necessary,R P L,D D S D D T,D R P L D E,D R P L D T,P N E W D TR E T U R NE N DV ariables to be definedIn all situationsD D S D D E(N TE N S,N T E N S)Jacobian matrix of the constitutive model, , where are the stress increments and are the strain increments. D D S D D E(I,J) defines the change in the I th stress component at the end of the time increment caused by an infinitesimal perturbation of the J th component of the strain increment array.Unless you invoke the unsymmetric equation solution capability for the user-defined material,Abaqus/Standard will use only the symmetric part of D D S D D E. The symmetric part of the matrix iscalculated by taking one half the sum of the matrix and its transpose.S T R E S S(N T E N S)This array is passed in as the stress tensor at the beginning of the increment and must be updated in this routine to be the stress tensor at the end of the increment. If you specified initial stresses (“Initial conditions in Abaqus/Standard and Abaqus/Explicit,” Section 34.2.1 of the Abaqus Analysis User's Guide), this array will contain the initial stresses at the start of the analysis. The size of this array depends on the value of N T E N S as defined below. In finite-strain problems the stress tensor has already been rotated to account for rigid body motion in the increment before U M A T is called, so that only the corotational part of the stress integration should be done in U M A T. The measure of stress used is “true” (Cauchy) stress.S T A T E V(N S T A T V)An array containing the solution-dependent state variables. These are passed in as the values at thebeginning of the increment unless they are updated in user subroutines U S D F L D or U E X P A N, in which case the updated values are passed in. In all cases S T A T E V must be returned as the values at the end of the increment. The size of the array is defined as described in “Allocating space” in “User subroutines:overview,” Section 18.1.1 of the Abaqus Analysis User's Guide.In finite-strain problems any vector-valued or tensor-valued state variables must be rotated to account for rigid body motion of the material, in addition to any update in the values associated with constitutivebehavior. The rotation increment matrix, D R O T, is provided for this purpose.S S E,S P D,S C DSpecific elastic strain energy, plastic dissipation, and “creep” dissipation, respectively. These are passed in as the values at the start of the increment and should be updated to the corresponding specific energy values at the end of the increment. They have no effect on the solution, except that they are used forenergy output.Only in a fully coupled thermal-stress or a coupled thermal-electrical-structural analysisR P LV olumetric heat generation per unit time at the end of the increment caused by mechanical working of the material.D D S D D T(N TE N S)V ariation of the stress increments with respect to the temperature.D R P L D E(N TE N S)V ariation of R P L with respect to the strain increments.D R P L D TV ariation of R P L with respect to the temperature.Only in a geostatic stress procedure or a coupled pore fluid diffusion/stress analysis for pore pressure cohesive elementsR P LR P L is used to indicate whether or not a cohesive element is open to the tangential flow of pore fluid. Set R P L equal to 0 if there is no tangential flow; otherwise, assign a nonzero value to R P L if an element is open.Once opened, a cohesive element will remain open to the fluid flow.V ariable that can be updatedP N E W D TRatio of suggested new time increment to the time increment being used (D T I M E, see discussion later in this section). This variable allows you to provide input to the automatic time incrementation algorithms in Abaqus/Standard (if automatic time incrementation is chosen). For a quasi-static procedure the automatic time stepping that Abaqus/Standard uses, which is based on techniques for integrating standard creep laws (see “Quasi-static analysis,” Section 6.2.5 of the Abaqus Analysis User's Guide), cannot becontrolled from within the U M A T subroutine.P N E W D T is set to a large value before each call to U M A T.If P N E W D T is redefined to be less than 1.0, Abaqus/Standard must abandon the time increment andattempt it again with a smaller time increment. The suggested new time increment provided to theautomatic time integration algorithms is P N E W D T × D T I M E, where the P N E W D T used is the minimum value for all calls to user subroutines that allow redefinition of P N E W D T for this iteration.If P N E W D T is given a value that is greater than 1.0 for all calls to user subroutines for this iteration and the increment converges in this iteration, Abaqus/Standard may increase the time increment. The suggestednew time increment provided to the automatic time integration algorithms is P N E W D T × D T I M E, where the P N E W D T used is the minimum value for all calls to user subroutines for this iteration.If automatic time incrementation is not selected in the analysis procedure, values of P N E W D T that aregreater than 1.0 will be ignored and values of P N E W D T that are less than 1.0 will cause the job to terminate. V ariables passed in for informationS T R A N(N T E N S)An array containing the total strains at the beginning of the increment. If thermal expansion is included in the same material definition, the strains passed into U M A T are the mechanical strains only (that is, thethermal strains computed based upon the thermal expansion coefficient have been subtracted from the total strains). These strains are available for output as the “elastic” strains.In finite-strain problems the strain components have been rotated to account for rigid body motion in the increment before U M A T is called and are approximations to logarithmic strain.D S T R A N(N TE N S)Array of strain increments. If thermal expansion is included in the same material definition, these are the mechanical strain increments (the total strain increments minus the thermal strain increments).T I M E(1)V alue of step time at the beginning of the current increment or frequency.T I M E(2)V alue of total time at the beginning of the current increment.D T I M ETime increment.T E M PTemperature at the start of the increment.D TE M PIncrement of temperature.P R E D E FArray of interpolated values of predefined field variables at this point at the start of the increment, based on the values read in at the nodes.D P RE DArray of increments of predefined field variables.C M N A M EUser-defined material name, left justified. Some internal material models are given names starting with the “ABQ_” character string. To avoid conflict, you should not use “ABQ_” as the leading string for C M N A M E. N D INumber of direct stress components at this point.N S H RNumber of engineering shear stress components at this point.N T E N SSize of the stress or strain component array (N D I + N S H R).N S T A T VNumber of solution-dependent state variables that are associated with this material type (defined asdescribed in “Allocating space” in “User subroutines: overview,” Section 18.1.1 of the Abaqus Analysis User's Guide).P R O P S(N P R O P S)User-specified array of material constants associated with this user material.N P R O P SUser-defined number of material constants associated with this user material.C O O RD SAn array containing the coordinates of this point. These are the current coordinates if geometricnonlinearity is accounted for during the step (see “Defining an analysis,” Section 6.1.2 of the Abaqus Analysis User's Guide); otherwise, the array contains the original coordinates of the point.D R O T(3,3)Rotation increment matrix. This matrix represents the increment of rigid body rotation of the basis system in which the components of stress (S T R E S S) and strain (S T R A N) are stored. It is provided so that vector-or tensor-valued state variables can be rotated appropriately in this subroutine: stress and straincomponents are already rotated by this amount before U M A T is called. This matrix is passed in as a unit matrix for small-displacement analysis and for large-displacement analysis if the basis system for thematerial point rotates with the material (as in a shell element or when a local orientation is used).C E L E N TCharacteristic element length, which is a typical length of a line across an element for a first-order element;it is half of the same typical length for a second-order element. For beams and trusses it is a characteristic length along the element axis. For membranes and shells it is a characteristic length in the referencesurface. For axisymmetric elements it is a characteristic length in the plane only. For cohesiveelements it is equal to the constitutive thickness.D F G R D0(3,3)Array containing the deformation gradient at the beginning of the increment. If a local orientation is defined at the material point, the deformation gradient components are expressed in the local coordinate system defined by the orientation at the beginning of the increment. For a discussion regarding the availability of the deformation gradient for various element types, see “Availability of deformation gradient.”D F G R D1(3,3)Array containing the deformation gradient at the end of the increment. If a local orientation is defined at the material point, the deformation gradient components are expressed in the local coordinate system defined by the orientation. This array is set to the identity matrix if nonlinear geometric effects are not included in the step definition associated with this increment. For a discussion regarding the availability of thedeformation gradient for various element types, see “Availability of deformation gradient.”N O E LElement number.N P TIntegration point number.L A Y E RLayer number (for composite shells and layered solids).K S P TSection point number within the current layer.K S T E PStep number.K I N CIncrement number.Example: Using more than one user-defined mechanical material modelTo use more than one user-defined mechanical material model, the variable C M N A M E can be tested for different material names inside user subroutine U M A T as illustrated below:I F(C M N A M E(1:4).E Q.'M A T1')T H E NC A L L U M A T_M A T1(argument_list)E L S E I F(C M N A M E(1:4).E Q.'M A T2')T H E NC A L L U M A T_M A T2(argument_list)E N D I FU M A T_M A T1 and U M A T_M A T2 are the actual user material subroutines containing the constitutive material models for each material M A T1 and M A T2, respectively. Subroutine U M A T merely acts as a directory here. The argument list may be the same as that used in subroutine U M A T.Example: Simple linear viscoelastic materialAs a simple example of the coding of user subroutine U M A T, consider the linear, viscoelastic model shown in Figure 1.1.41–1. Although this is not a very useful model for real materials, it serves to illustrate how to code the routine.Figure 1.1.41–1 Simple linear viscoelastic model.The behavior of the one-dimensional model shown in the figure iswhere and are the time rates of change of stress and strain. This can be generalized for small straining of an isotropic solid asandwhereand , , , , and are material constants ( and are the Lamé constants).A simple, stable integration operator for this equation is the central difference operator:where f is some function, is its value at the beginning of the increment, is the change in the function over the increment, and is the time increment.Applying this to the rate constitutive equations above givesandso that the Jacobian matrix has the termsandThe total change in specific energy in an increment for this material iswhile the change in specific elastic strain energy iswhere D is the elasticity matrix:No state variables are needed for this material, so the allocation of space for them is not necessary. In a morerealistic case a set of parallel models of this type might be used, and the stress components in each model might be stored as state variables.For our simple case a user material definition can be used to read in the five constants in the order , , , , and so thatThe routine can then be coded as follows:S U B R O U T I N E U M A T(S T R E S S,S T A T E V,D D S D D E,S S E,S P D,S C D,1R P L,D D S D D T,D R P L D E,D R P L D T,2S T R A N,D S T R A N,T I M E,D T I M E,T E M P,D T E M P,P R E D E F,D P R E D,C M N A M E,3N D I,N S H R,N T E N S,N S T A T V,P R O P S,N P R O P S,C O O R D S,D R O T,P N E W D T,4C E L E N T,D F G R D0,D F G R D1,N O E L,N P T,L A Y E R,K S P T,K S T E P,K I N C)CI N C L U D E'A B A_P A R A M.I N C'CC H A R A C T E R*80C M N A M ED I ME N S I O N S T R E S S(N T E N S),S T A T E V(N S T A T V),1D D S D D E(N T E N S,N T E N S),2D D S D D T(N T E N S),D R P L D E(N T E N S),3S T R A N(N T E N S),D S T R A N(N T E N S),T I M E(2),P R E D E F(1),D P R E D(1),4P R O P S(N P R O P S),C O O R D S(3),D R O T(3,3),D F G R D0(3,3),D F G R D1(3,3)D I ME N S I O N D S T R E S(6),D(3,3)CC E V A L U A T E N E W S T R E S S T E N S O RCE V=0.D E V=0.D O K1=1,N D IE V=E V+S T R A N(K1)D E V=D E V+D S T R A N(K1)E N D D OCT E R M1=.5*D T I M E+P R O P S(5)T E R M1I=1./T E R M1T E R M2=(.5*D T I M E*P R O P S(1)+P R O P S(3))*T E R M1I*D E VT E R M3=(D T I M E*P R O P S(2)+2.*P R O P S(4))*T E R M1ICD O K1=1,N D ID S T RE S(K1)=T E R M2+T E R M3*D S T R A N(K1)1+D T I M E*T E R M1I*(P R O P S(1)*E V2+2.*P R O P S(2)*S T R A N(K1)-S T R E S S(K1))S T R E S S(K1)=S T R E S S(K1)+D S T R E S(K1)E N D D OCT E R M2=(.5*D T I M E*P R O P S(2)+P R O P S(4))*T E R M1II1=N D ID O K1=1,N S H RI1=I1+1D S T RE S(I1)=T E R M2*D S T R A N(I1)+1D T I M E*T E R M1I*(P R O P S(2)*S T R A N(I1)-S T R E S S(I1)) S T R E S S(I1)=S T R E S S(I1)+D S T R E S(I1)E N D D OCC C R E A T E N E W J A C O B I A NCT E R M2=(D T I M E*(.5*P R O P S(1)+P R O P S(2))+P R O P S(3)+12.*P R O P S(4))*T E R M1IT E R M3=(.5*D T I M E*P R O P S(1)+P R O P S(3))*T E R M1ID O K1=1,N TE N SD O K2=1,N TE N SD D S D D E(K2,K1)=0.E N D D OE N D D OCD O K1=1,N D ID D S D D E(K1,K1)=TE R M2E N D D OCD O K1=2,N D IN2=K1–1D O K2=1,N2D D S D D E(K2,K1)=TE R M3D D S D D E(K1,K2)=TE R M3E N D D OE N D D OT E R M2=(.5*D T I M E*P R O P S(2)+P R O P S(4))*T E R M1II1=N D ID O K1=1,N S H RI1=I1+1D D S D D E(I1,I1)=TE R M2E N D D OCC T O T A L C H A N G E I N S P E C I F I C E N E R G YCT D E=0.D O K1=1,N TE N ST D E=T D E+(S T R E S S(K1)-.5*D S T R E S(K1))*D S T R A N(K1)E N D D OCC C H A N G E I N S P E C I F I C E L A S T I C S T R A I N E N E R G YCT E R M1=P R O P S(1)+2.*P R O P S(2)D O K1=1,N D ID(K1,K1)=T E R M1E N D D OD O K1=2,N D IN2=K1-1D O K2=1,N2D(K1,K2)=P R O P S(1)D(K2,K1)=P R O P S(1)E N D D OE N D D OD E E=0.D O K1=1,N D IT E R M1=0.T E R M2=0.D O K2=1,N D IT E R M1=T E R M1+D(K1,K2)*S T R A N(K2)T E R M2=T E R M2+D(K1,K2)*D S T R A N(K2)E N D D OD E E=D E E+(T E R M1+.5*T E R M2)*D S T R A N(K1)E N D D OI1=N D ID O K1=1,N S H RI1=I1+1D E E=D E E+P R O P S(2)*(S T R A N(I1)+.5*D S T R A N(I1))*D S T R A N(I1)E N D D OS S E=S S E+D E ES C D=S C D+T D E– D E ER E T U R NE N D。
abaqus 轮胎建模教程
Abaqus 轮胎建模教程简介Abaqus是一种强大的有限元分析软件,常用于模拟复杂的结构力学问题。
在这个教程中,我们将介绍如何使用Abaqus进行轮胎建模和分析。
轮胎是车辆中至关重要的部件之一,建立准确的轮胎模型可以帮助我们更好地理解轮胎的性能和行为。
步骤1:创建轮胎几何模型在Abaqus中,我们可以使用多种方法来创建几何模型。
在这个教程中,我们将使用简单的方法来创建轮胎的二维轮廓。
首先,打开Abaqus软件并创建一个新的模型。
接下来,选择创建几何模型的方法。
我们可以使用Abaqus 提供的绘图工具,也可以导入已经准备好的CAD模型。
在这个教程中,我们将使用绘图工具来创建轮胎几何模型。
创建几何模型的关键是确定轮胎的基本形状,例如总体尺寸、轮胎壁厚、胎纹等。
我们可以根据实际需求和数据来定义这些参数。
在实际应用中,通常需要使用更复杂的方法来获取轮胎几何参数。
完成轮胎几何模型的创建后,我们可以对其进行进一步的编辑和调整,以确保其符合设计要求。
在Abaqus中,我们可以使用各种编辑工具来修改几何模型的各个方面。
步骤2:设置轮胎材料属性完成轮胎几何模型的创建后,我们需要为轮胎指定材料属性。
Abaqus提供了许多预定义的材料模型,我们可以根据实际材料的力学性质来选择合适的材料模型。
在设定材料属性时,我们需要指定材料的弹性模量、泊松比、密度等参数。
这些值通常可以从实验数据或文献中获取。
Abaqus还允许我们定义材料的非线性行为,例如超弹性和塑性行为。
步骤3:创建轮胎网格完成轮胎几何模型和材料属性的设置后,我们需要对轮胎进行网格划分。
网格划分决定了模型在有限元分析中的精度和计算效率。
Abaqus提供了多种网格划分方法,例如等尺度划分和非等尺度划分。
我们可以根据实际需求和计算资源来选择合适的网格划分方法。
在网格划分过程中,我们还可以调整网格的密度和形状,以进一步优化有限元模型的精度和计算效率。
步骤4:定义轮胎加载条件在进行轮胎分析之前,我们需要定义轮胎的加载条件。
ABAQUS帮助文档翻译
节选-ABAQUS帮助文档翻译 reference to: user manual 18.62008-10-10 12:5918.6 理解自适应网格(adaptive meshing)自适应网格可以通过移动独立的材料网格(allowing the mesh to move independently of the material),让你在整个分析过程中即使发生大变形,也能保持高质量的网格。
通常自适应网格只移动节点,网格的拓扑并不改变。
注意:通常自适应网格多用在Dynamic (动态分析),Explicit and Dynamic(显示动态分析), Temp-disp, Explicit 中。
定义模型中某个区域采用自适应网格的设置:other-->Adaptive Mesh Domain 自适应网格的选项控制设置:Other--〉Adaptive Mesh Controls 通常,在每一个step中只能有一个自适应网格区域。
21.2.1 ABAQUS/Standard defines contact between two bodies in terms of two surfaces that may interact; these surfaces are called a “contact pair.”ABAQUS/Standard defines “self-contact,” which is available only in two-dimensional analysis, in terms of a single surface. [if gte vml 1]><![endif][if !vml][endif]Figure 21.2.1–1 Contact and interaction discretization. 从the first surface (the “slave” surface)的节点向the second surface (the “master” surface)做垂线,寻找最近的垂线的垂足,The interaction is then discretized between the point on the master surface and the slave node. Strict master-slave contact 在这种关系下,主面的节点可以穿入从面(副面),但副面不可以穿入主面。
ABAQUS帮助文档轮胎磨损例子翻译_New
ABAQUS帮助文档轮胎磨损例子翻译_NewABAQUS帮助文档轮胎磨损例子翻译外胎是由胎体、缓冲层(或称带束层)、胎面、胎侧和胎圈组成1、Bead:胎唇部;2、sidewall:胎侧;3、tread:胎面;4belt:缓冲层;5、carcass:胎体帘布层。
3.1.8 Tread wear simulation using adaptive meshing in Abaqus/Standard 3.1.8使用自适应网格在Abaqus/Standard中进行轮胎磨损仿真分析软件:Abaqus/Standard这个例子在Abaqus/Standard中使用自适应网格技术对稳态滚动的轮胎进行建模。
这次分析使用类似“Steady-state rolling analysis of a tire”Section 3.1.2来建立稳态滚动轮胎的接地印迹和状态。
接着,进行稳态传输分析来计算和推测持续分析步,在稳态过程中产生一个近似瞬态磨损解。
问题描述和建模轮胎描述和有限元建模和“Import of asteady-state rolling tire,”Section 3.1.6一样,但是有一些不一样,在这里需要指出。
由于这次分析的中心是轮胎磨损,所以胎面建模需要更加精细。
另外台面使用线性弹性材料模型来避免超弹性材料在网格自适应过程中不收敛。
图1所示的是轴对称175SR14轮胎的一半模型。
橡胶层用CGAX4和 CGAX3单元建模。
加强层使用带有rebar层的SFMGAX1单元模拟。
橡胶层和加强层之间潜入单元约束。
橡胶层的弹性模量为6Mpa,泊松比为0.49。
剩下的轮胎部分用超弹性材料模型模拟。
多应变能使用系数C10=10^6,C01=0和D1=2*10^8。
用来模拟骨架纤维的刚性层和径向成0°,弹性模量为9.87Gpa。
压缩系数设置成受拉系数的百分之一。
名义应力应变数据用马洛超弹性模型定义材料本构关系。
3.1.8在Abaqus-tandard中使用自适应网格的胎面磨损模拟
3.1.8 Tread wear simulation using adaptive meshing in Abaqus/Standard3.1.8在Abaqus / Standard中使用自适应网格的胎面磨损模拟Product: Abaqus/StandardThis example illustrates the use of adaptive meshing in Abaqus/Standard as part of a technique to model treadwear in a steady rolling tire. The analysis follows closely the techniques used in “Steady-state rolling analysis of a tire,” Section 3.1.2, to establish first the footprint and then the state of the steady rolling tire. These steps are then followed by a steady-state transport step in which a wear rate is calculated and extrapolated over the duration ofthe step, providing an approximate consideration of the transient process of wear in this steady-state procedure.本示例说明了在Abaqus / Standard中使用自适应网格划分作为用于对稳定滚动轮胎中的胎面磨损进行建模的技术的一部分。
该分析紧接着使用在“轮胎的稳态滚动分析”第3.1.2节中使用的技术,以首先建立轮胎的足迹,然后建立稳定滚动轮胎的状态。
2abaqus里的单词翻译包括音标方便记忆
Modeling space['mɒdəlɪŋ] [speɪs]模型空间2D planar['pleɪnə]二维平面Axisymmetric[,æksisɪ'mɛtrɪk]轴对称Type[taɪp]类型Deformable[,di'fɔ:məbl]可变形Discrete rigid[dɪ'skriːt] ['rɪdʒɪd]离散刚性Analytical rigid[ænə'lɪtɪk(ə)l] ['rɪdʒɪd] 解析刚性Eulerian 欧拉None available [nʌn] [ə'veɪləb(ə)l]没有可选的项Base feature [beɪs] ['fiːtʃə]基本特征Shape[ʃeɪp]形状Solid ['sɒlɪd]实体Shell [ʃel]壳Wire [waɪə]线Extrusion [ɪk'struːʒn]拉伸Revolution [revə'luːʃ(ə)n]旋转Sweep [swiːp]扫描Approximate size [ə'prɒksɪmət] [saɪz]大约尺寸Cancel ['kæns(ə)l]取消Planar ['ple ɪn ə] 平面Coordinates [k əu'ɔ:dineits] 坐标 Include twist [ɪn'kluːd] [tw ɪst] 包括扭曲Part manager [p ɑːt] ['mæn ɪd ʒə] 部件管理Description [dɪ'skrɪpʃ(ə)n]描述Status ['steɪtəs]状态Update validity [ʌp'deɪt] [və'lɪdɪtɪ]更新有效性Ignore invalidity [ɪg'nɔː] [,ɪnvə'lɪdəti] 忽略无效性Dismiss [dɪs'mɪs]关闭Shape [ʃeɪp]加工Feature ['fiːtʃə]特征The model database recovery operation has completed 模型“model1-1”已创建。
3.1.8在Abaqus-tandard中使用自适应网格的胎面磨损模拟
3.1.8 Tread wear simulation using adaptive meshing in Abaqus/Standard3.1.8在Abaqus / Standard中使用自适应网格的胎面磨损模拟Product: Abaqus/StandardThis example illustrates the use of adaptive meshing in Abaqus/Standard as part of a technique to model treadwear in a steady rolling tire. The analysis follows closely the techniques used in “Steady-state rolling analysis of a tire,” Section 3.1.2, to establish first the footprint and then the state of the steady rolling tire. These steps are then followed by a steady-state transport step in which a wear rate is calculated and extrapolated over the duration ofthe step, providing an approximate consideration of the transient process of wear in this steady-state procedure.本示例说明了在Abaqus / Standard中使用自适应网格划分作为用于对稳定滚动轮胎中的胎面磨损进行建模的技术的一部分。
该分析紧接着使用在“轮胎的稳态滚动分析”第3.1.2节中使用的技术,以首先建立轮胎的足迹,然后建立稳定滚动轮胎的状态。
_考虑耐磨性能的+7[1].00R16轮胎结构优化设计
Altair 2009 HyperWorks 技术大会论文集考虑耐磨性能的7.00R16轮胎结构优化设计张 弛1 隆有明上海轮胎研究所1Altair 2009 HyperWorks 技术大会论文集考虑耐磨性能的7.00R16 轮胎结构优化设计 7.00R16 Series Tire Structural Optimization Considering Wear Performance张 弛1 隆有明 (上海轮胎研究所)摘要: 由于轮胎磨耗特性比较复杂,在表征磨耗性能时,一般以胎面接地压力分布的均匀性来衡量。
本文对 7.00R16 系列的载重轮胎进行优化分析,通过对三个目标函数进行优化比较,以轮胎四 个主要的结构设计参数为设计变量,包括带束层宽度、胎冠弧 h值、胎肩厚度、胎体帘布反包高度,并 利用 HyperMesh 的 HyperMorph 功能,对轮胎四个结构 设计参数进行修改, 得到形状设计变量,并以 此来进行轮胎印迹优化。
最后给出了最佳磨耗的 7.00R16 系列轮胎结构。
关键字: 偏度估计值,磨耗,HyperMorph,HyperStudy,接地压力 Abstract: Due to the complex characteristics of tire wear, as a general rule, it considers theuniform distribution of contact pressure between the road and the tire as the criterion of tire wear. By minimizing the difference between maximum contact pressure and the minimum contact pressure, the skew estimated value of contact pressure and contact area, the uniform distribution of contact pressure is achieved. The main parameters of tire structure include the followed four terms: the width of belt, the value of h, the thickness of tire shoulder,the anti-packets height of carcass cord. The morph function in HyperMesh is used to create the regional domains and handles on the tire finite element model. In this paper, 7.00R16 series heavy tire is used to analysis and the optimized tire structure of wear performance is achieved.Key words: Wear, HyperMorph, HyperStudy, Contact Pressure引言轮胎作为车辆的关键部位,在工作状态下承受周期性的载荷作用,包含车辆的垂直压力,以及 与路面之间的摩擦力。
Abaqus在轮胎中应用的10大算例
第三讲. 模拟接触 .................................................................................................................................13
接触分析中的一般考虑 ....................................................................................................................13 接触面的定义 .................................................................................................................................... 13 有限滑动中面需要考虑的一些问题 ................................................................................................13
abaqus帮助文档_法向摩擦
Specifying pressure-overclosure relationships for mechanical contact property optionsYou can define a constitutive model for the contactpressure-overclosure relationship that governs the motion of the surfaces in a mechanical contact analysis. For more information,see �Contact pressure-overclosure relationships,�Section 35.1.2 of the Abaqus Analysis User's Manual.To specify contact pressure-overclosure relationships:1. From the main menu bar, select Interaction Property Create.2. In the Create Interaction Property dialog box that appears, do thefollowing:∙Name the interaction property. For more information aboutnaming objects, see �Using basic dialog boxcomponents,�Section 3.2.1.∙Select the Contact type of interaction property.3. Click Continue to close the Create Interaction Property dialog box.4. From the menu bar in the contact property editor, select MechanicalNormal Behavior.5. From the Pressure-Overclosure field, select “Hard” Contact to usethe classical Lagrange multiplier method of constraint enforcement in an Abaqus/Standard analysis and to use penalty contact enforcement in an Abaqus/Explicit analysis.You can also toggle off Allow separation after contact if you want toprevent surfaces from separating once they have come into contact.This method is applicable only to Abaqus/Standard analyses.If you select “Hard” Contact, you can also customize settings for theconstraint enforcement method. For more information about constraintenforcement methods, see �Contact constraint enforcement methods in Abaqus/Explicit,�Section 36.2.3 of the Abaqus Analysis User'sManual. To specify these settings, select an option from the Constraint enforcement method list and do the following:a. Select Default to enforce constraints using a contactpressure-overclosure relationship.b. Select Augmented Lagrange (Standard) to enforce contactconstraints using the augmented Lagrange method. This methodis applicable only to Abaqus/Standard analyses.If you select this option, specify the following additional settings from the Contact Stiffness options:∙From the Stiffness value field, either select Usedefault to have Abaqus calculate the penalty contactstiffness automatically or select Specify and enter apositive value for the penalty contact stiffness.∙Specify a factor by which to multiply the chosen penalty stiffness in the Stiffness scale factor field.∙Specify the Clearance at which contact pressure is zero. The default value is 0.c. Select the Penalty (Standard) constraint enforcement method toenforce contact constraints using the penalty method. Thismethod is applicable only to Abaqus/Standard analyses.If you select this option, specify the following additional settings from the Contact Stiffness options:∙From the Behavior field, either select Linear to use the linear penalty method for the enforcement of the contactconstraint or select Nonlinear to use the nonlinearpenalty method for the enforcement of the contactconstraint. For more information, see �Penalty method”in “Contact constraint enforcement met hods inAbaqus/Standard,�Section 36.1.2 of the AbaqusAnalysis User's Manual.∙Specify the contact stiffness.▪For the linear penalty method, specify the contactstiffness in the Stiffness value field. You canselect Use default to have Abaqus calculate thepenalty contact stiffness automatically or you canselect Specify and enter a positive value for thelinear penalty stiffness.▪For the nonlinear penalty method, specify thecontact stiffness in the Maximum stiffnessvalue field. You can select Use default to haveAbaqus calculate the penalty contact stiffnessautomatically or you can select Specify and entera positive value for the final nonlinear penaltystiffness.∙Specify a factor by which to multiply the chosen penalty stiffness in the Stiffness scale factor field.∙For the nonlinear penalty method, you can specify values for the following options:▪Enter the ratio of the initial penalty stiffness overthe final penalty stiffness in the Initial/Finalstiffness ratio field.▪Enter the scale factor for the upper quadratic limit ,which is equal to the scale factor times thecharacteristic contact facet length, in the Upperquadratic limit scale factor field.▪Enter the ratio (−)/(−) that defines the lowerquadratic limit in the Lower quadratic limitratio field.∙Specify the Clearance at which contact pressure iszero. The default value is 0.d. Select Direct (Standard) to enforce contact constraints directlywithout approximation or use of augmentation iterations.From the Pressure-Overclosure field, select Exponential to define an exponential pressure-overclosure relationship. If you select this option, specify the following:. Enter the contact pressure at zero clearance, , and theclearance at which the contact pressure is zero, , in the datatable.a. Specify the limit on the contact stiffness that the model canattain, (applies only for Abaqus/Explicit analyses).∙Choose Infinite (no slip) to set equal to infinity forkinematic contact and equal to the default penaltystiffness for penalty contact.∙Choose Specify, and enter a value for the maximumstiffness.From the Pressure-Overclosure field, select Linear to define a linear pressure-overclosure relationship. If you select this option, specify the following:∙Enter a positive value for the slope of the pressure-overclosure curve, k, in the Contact stiffness field.From the Pressure-Overclosure field, select Tabular to define a piecewise-linear pressure-overclosure relationship in tabular form. If you select this option, specify the following:∙Enter data in ascending order of overclosure to define theoverclosure as a function of pressure. The data table must beginwith a zero pressure. The pressure-overclosure relationship isextrapolated beyond the last overclosure point by continuing thesame slope.From the Pressure-Overclosure field, select Scale Factor (General Contact, Explicit) to define a piecewise-linear pressure-overclosure relationship based on scaling the default contact stiffness. This option isavailable only for the general contact algorithm in Abaqus/Explicit. If you select this option, specify the following:. To define the overclosure measure as a percentage of theminimum element size, select factor in the Overclosure fieldand enter a positive value .a. To define the overclosure measure directly, select measure inthe Overclosure field and enter a positive value .b. Enter a value, , greater than one to define the geometric scalingof the “base” stiffness in the Contact stiffness scalefactor field.c. Enter a positive value to define an additional scale factor forthe “base” default contact stiffness in the Initial stiffness scalefactor field. The default value is 1.Click OK to create the contact property and to exit the Edit Contact Property dialog box. Alternatively, you can select another contact property option to define from the menus in the Edit Contact Property dialog box.。
最新2534-VUMAT用户子程序翻译ABAQUS帮助手册汇总
最新2534-VUMAT用户子程序翻译ABAQUS帮助手册汇总2534-V U M A T用户子程序翻译A B A Q U S帮助手册25.3.4 VUMATUser subroutine to define material behavior.定义材料本构用户子程序Product: ABAQUS/ExplicitWarning: The use of this user subroutine generally requires considerable expertise. You are cautioned that the implementation of any realistic constitutive model requires extensivedevelopment and testing. Initial testing on a single-element model with prescribed traction loading is strongly recommended.注意:用户子程序的使用通常需要一定的专长。
用户需要知道执行任何实际的本构模型需要大量的试验数据。
强烈建议用户对用户子程序进行在指定拉力作用下单个单元的验证测试。
The component ordering of the symmetric and nonsymmetric tensors for the three-dimensional case using C3D8R elements is different from the ordering specified in “Three-dimensional solid element library,” Section 14.1.4, and the ordering used in ABAQUS/Standard.C3D8R单元三维轴对称及非轴对称张量成分顺序与“Three-dimensional solid element library,” Section 14.1.4及ABAQUS/Standard中指定的顺序不同。
abaqus在轮胎中应用的10大算例
abaqus在轮胎中应用的10大算例轮胎是汽车中非常重要的部件之一,它直接影响着车辆的操控性能、舒适性和安全性。
为了更好地研究轮胎的性能和行为,许多工程师和研究人员利用有限元分析软件Abaqus来进行轮胎模拟。
在这篇文章中,我们将介绍10个在轮胎中应用Abaqus的算例,从而深入了解轮胎的性能和行为。
1. 轮胎接地模型在轮胎模拟中,准确地描述轮胎与路面的接触非常重要。
通过Abaqus的接触算法,可以建立轮胎与路面之间的接触模型,研究轮胎在不同路面上的接地性能。
2. 轮胎结构分析轮胎的结构对其性能有着重要影响。
利用Abaqus的弹性力学分析功能,可以对轮胎的内部结构进行分析,了解不同材料和结构参数对轮胎性能的影响。
3. 轮胎热分析在高速行驶或制动时,轮胎会产生大量的热量。
利用Abaqus的热分析功能,可以模拟轮胎在不同工况下的温度分布,从而评估轮胎的热耐久性和性能变化。
4. 轮胎静态载荷分析轮胎在停车和静止状态下也会受到一定载荷的作用。
通过Abaqus的静态分析功能,可以模拟轮胎在不同载荷下的形变和应力分布,为轮胎设计和使用提供参考。
5. 轮胎动态载荷分析在行驶过程中,轮胎会受到复杂的动态载荷作用,如转弯、加速和制动等。
利用Abaqus的动态分析功能,可以模拟轮胎在不同工况下的动态响应和应力变化,为轮胎的操控性能评估提供依据。
6. 轮胎磨耗分析轮胎的磨耗会直接影响其使用寿命和性能。
通过Abaqus的摩擦接触分析功能,可以模拟轮胎与路面之间的摩擦磨耗过程,研究不同工况下轮胎的磨耗规律和寿命预测。
7. 轮胎破坏分析轮胎在使用过程中可能会出现破裂、爆胎等失效情况。
利用Abaqus的破坏力学分析功能,可以模拟轮胎在不同载荷下的破坏行为,评估轮胎的安全性和可靠性。
8. 轮胎振动分析轮胎在行驶过程中会产生振动,影响车辆的舒适性和操控性。
通过Abaqus的动态分析功能,可以模拟轮胎的振动响应,了解不同工况下轮胎的振动特性和减振措施的效果。
ABAQUS中的损伤模型
本周主要是研究了ABAQUS中自带的损伤模型。
关于弹塑性力学的内容,感觉再看下去会跑偏,故先回归损伤力学。
主要阅读ABAQUS用户帮助手册及一些用ABAQUS建立损伤模型的相关文献。
[1]Abaqus Analysis User’s Manual[2]婴幼儿摇椅金属底座的破裂分析.2010 Abaqus Taiwan Users’ Conference.[3]曹明,ABAQUS损伤塑性模型损伤因子计算方法研究.[4]Failure Modeling of Titanium 6Al-4V and Aluminum 2024-T3 With the Johnson-Cook Material Model另外,在Abaqus Example Problems Manual中有考虑损伤的模拟薄板铝材在准静态荷载和动力荷载下的累进失效分析的操作范例,还没来得及看。
ABAQUS中包括延性金属损伤、服从Traction-Separation法则的损伤、纤维增强复合物的损伤、弹性体损伤。
实际上对于混凝土还有塑性损伤模型,东南大学的曹明[3]对该模型有详尽描述。
在此仅讨论金属损伤模型。
对于损伤的主菜单,定义的是损伤的萌发模型,子选项为损伤的演化。
先来谈谈损伤的萌发模型。
1、损伤萌发模型延性金属损伤包括柔性损伤、Johnson-Cook损伤、剪切损伤、FLD损伤、FLSD 损伤、M-K损伤、MSFLD损伤。
服从Traction-Separation法则的损伤是针对Cohesive Element(黏着单元),应该不适合厚钢板结构,不予考虑。
纤维增强复合物损伤不考虑。
弹性体损伤针对于类似橡胶类物质,不考虑。
对于延性金属损伤,剪切损伤模型用于预测剪切带局部化引起的损伤,FLD、FLSD、MSFLD、M-K损伤都是用于预测金属薄片成型引起的损伤,故现在只剩柔性损伤和Johnson-Cook损伤符合厚钢板结构的损伤研究。
柔性损伤和Johnson-Cook损伤都是一类模型,预测由于延性金属内部空隙成核、成长、集结引起的损伤萌生。
磨损英语作文范文模板
磨损英语作文范文模板英文回答:Wear and Tear。
Wear and tear is a term used to describe the gradual damage or deterioration of something over time due to regular use or exposure to the elements. It can refer to both physical objects and intangible things such as relationships or emotions.Physical Wear and Tear。
Physical wear and tear is the gradual decline in the condition of an object due to repeated use, friction, or exposure to environmental factors. It can manifest in various ways, such as:Scratches。
Dents。
Rust。
Fading。
Cracking。
For example, a car will experience wear and tear over time due to regular driving and exposure to weather conditions. The paint may fade, the tires may wear down, and the engine may experience wear and tear due to friction and heat.Intangible Wear and Tear。
Wear and tear can also apply to intangible things, such as relationships and emotions. Over time, relationships can experience strain due to conflicts, misunderstandings, or lack of communication. This can lead to a gradual decline in the intimacy and connection between the individuals involved.Similarly, emotions can also experience wear and tear. Constant exposure to stress, anxiety, or negative experiences can take a toll on our emotional well-being. This can lead to a gradual decline in our ability to cope with challenges and maintain a positive outlook on life.Preventing Wear and Tear。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
外胎是由胎体、缓冲层(或称带束层)、胎面、胎侧和胎圈组成1、Bead:胎唇部;2、sidewall:胎侧;3、tread:胎面;4belt:缓冲层;5、carcass:胎体帘布层。
3.1.8 Tread wear simulation using adaptive meshing in Abaqus/Standard3.1.8使用自适应网格在Abaqus/Standard中进行轮胎磨损仿真分析软件:Abaqus/Standard这个例子在Abaqus/Standard中使用自适应网格技术对稳态滚动的轮胎进行建模。
这次分析使用类似“Steady-state rolling analysis of a tire”Section 3.1.2来建立稳态滚动轮胎的接地印迹和状态。
接着,进行稳态传输分析来计算和推测持续分析步,在稳态过程中产生一个近似瞬态磨损解。
问题描述和建模轮胎描述和有限元建模和“Import of a steady-state rolling tire,”Section 3.1.6一样,但是有一些不一样,在这里需要指出。
由于这次分析的中心是轮胎磨损,所以胎面建模需要更加精细。
另外台面使用线性弹性材料模型来避免超弹性材料在网格自适应过程中不收敛。
图1所示的是轴对称175SR14轮胎的一半模型。
橡胶层用CGAX4和CGAX3单元建模。
加强层使用带有rebar层的SFMGAX1单元模拟。
橡胶层和加强层之间潜入单元约束。
橡胶层的弹性模量为6Mpa,泊松比为0.49。
剩下的轮胎部分用超弹性材料模型模拟。
多应变能使用系数C10=10^6,C01=0和D1=2*10^8。
用来模拟骨架纤维的刚性层和径向成0°,弹性模量为9.87Gpa。
压缩系数设置成受拉系数的百分之一。
名义应力应变数据用马洛超弹性模型定义材料本构关系。
Belt fibers材料的拉伸弹性模量为172.2Gpa。
压缩系数设置成拉伸系数的的百分之一。
Belt的纤维走向在轴向±20°内。
旋转前面的轴对称一半模型可得到局部三位模型,如图2所示。
我们关注轮胎印迹区域的网格。
将局部模型镜像后可得到完整的三维模型。
自适应网格在轮胎磨损计算中的局限性在这个例子中使用自适应网格必须严格遵守以下条件:1、圆柱网格不支持自适应网格并且在本例子也没有使用2、由于梯度状态变量的变形错误严重,自适应网格使用超弹性材料时表现很差。
因此胎面用弹性材料定义3、在自适应网格的范围内不能用包含刚性层的嵌入网格。
4、自适应网格通过网格几何特征来决定自适应网格在自由面光滑的方向,网格几何的特征通常不容易和描述的磨损方向一致。
因此,下面将讨论到,通常你需要做额外的工作来明确地描述磨损的方向。
加载分析分为5个阶段,用轴对称模型开始,以使用symmetric model generation生成的完整三维模型结束。
前4阶段和“Steady-state rolling analysis of a tire,” Section 3.1.2和类似。
1、对称充气:轮胎内部施加200kpa的压力,中间平面使用对称条件。
2、一半三维接地印迹分析:轴对称模型沿着对称轴旋转。
3、完整的三维模型接地印迹分析:一半三维模型镜像生成完整的三维模型4、稳态滚动:在稳定速度32km/h车速进行完整模型分析,这是轮胎的滚动速度为25rad/s。
这些条件符合制动工况,本次分析考虑惯性和迟滞作用。
5、胎面磨损分析:胎面磨损分析在最后一步进行,本次分析轮胎速度保持为一定值,考虑轮胎表面的磨损,使用损耗的摩擦能来计算磨损。
惯性和迟滞同样是本次分析中的考虑因素。
本次分析在车速32km/h的情况下,持续进行3.6*10^6秒,轮胎前进32000公里。
最后的分析为磨损分析,来预测磨损或者面消融,根据稳态侧倾轮胎得到评估。
我们关注由磨损评估结果得到的轮胎外形的改变;因此我们需要介绍在稳态过程中允许瞬态效果的建模假设。
基本的假设是用当前实时持续的滚动角速度来解释稳态前进分析步。
我们认为在任何时候轮胎滚动时轮胎的磨损造成的轮胎外形变化仅仅有很小的效果。
因此在整个分析步的每一步稳态的结果都是合适的。
有了这些假设,我们就能同时考虑两个不同时间范围的效果:短的轮胎转动时间范围和长的轮胎寿命时间范围。
磨损模型为了举例说明磨损的过程,假设磨损率是局部接触压力和滑移率的线性函数,进行一个简单的磨损例子。
尽管我们能计算这些工程量,由于在稳态移动状态下使用欧拉公式,他们必须应用于胎面流线来模拟轮胎周长磨损。
磨损率计算磨损模型如下:q是体积损失量或者磨损量;k是无量纲磨损系数;H是材料硬度;P是接触压力;A是接触面积;Y是接触滑移率。
在这里我们可以认为用PAy描述摩擦耗损率。
对于轮胎橡胶,我们假设磨损系数k=10^-3,材料硬度H=2GPa。
下面开发的目标是材料的磨损表达式能应用于磨损分析的节点上。
首先,考虑用一条带状物围绕着轮胎,带状物的中心用包含胎面花纹的有序节点来定义。
这条中心线是以和每个节点联系的辅助面的任意一边作为边界。
这样的带状物包含轮胎与路面接触的所有面。
我们认为发生在带状物上的磨损是均匀的;因此我们用下式表达整个带状物的磨损率,其中t是时间,x是当前配置位置。
因为我们使用欧拉稳态传输处理,现在表达式可以表示为只依赖于时间的方程,其中S是沿着流线的位置,T(s)是带状物在S位置的宽度。
我们也可以见表达式q写成局部材料衰减率的函数,在整个带状物的离散化方程的处理的结果相等,得到其中h是节点的消融速度,A是节点的接触区域。
这个方程表明沿着带状物h是不均匀的,推导出的结论是带状物进入和离开接地印迹的宽度是不一样的。
然而,因为我们为了维持一个合理的轮胎磨损后的结构,我们假定节点消融的速度是均匀的。
设个假定使得如下表达式成立:再次假定沿着带状物宽度方向的变化可以忽略,既Ti=T,同时认为节点接触区域,则表达式可以简化为没有接地面积的方程:磨损过程实现用曲面消融速度的磨损量方程,现在我们可以在稳态移动分析中应用磨损分析了。
用户子程序UMESHMOTION用来指定轮胎外表面节点的磨损速度向量。
UMESHMOTION用来定义自适应网格约束速度和用来连接自适应网格,每个收敛的增量步之后使用网格光滑技术。
通过子程序指定胎面节点的消融速度,自适应网格技术用来调整橡胶层内部的节点来保持好的网格网格形状。
为了积累沿着每个胎面花纹的磨损量,必须在子程序中记录沿着花纹的节点编号。
使用一个公共模块变量记录,公共模块记录属于集合NADAPT(图4)的节点和那些在整个模型横截面(0°)的参照点。
普通模块变量同时也包括将模型旋转和镜像后节点的编号方式,和参考截面一起,完整地描述了轮胎表面的节点编号。
如下的变量需要在外部公共模块中定义:1、nStreamlines:轮胎磨损分析中整个参考截面的节点数。
2、nGenElem:在模型中沿着带状物体网格划分的数目。
3、nRevOffset:通过*SYMMETRIC MODEL GENERATION, REVOLVE指定节点偏移。
4、nReflOffset:通过*SYMMETRIC MODEL GENERATION, REFLECT指定节点偏移。
(如果模型不用镜像,这个参数设置为0)。
5、jslnodes:在参考截面下所有可能发生磨损的节点的节点信息数组。
这个数组的大小为(2,nStreamlines)。
每个流线的第一个分量是“根节点”的节点编号(节点a在下面讨论),根节点是指在参考截面上细化流线部分的节点。
第二个分量是指提供磨损方向的节点(节点b在下面讨论)。
第二个分量仅仅在胎面的拐角处需要,将他设置成等于在参考截面的节点编号来定义磨损的方向。
对于不在胎面拐角处的节点,第二个分量设置等于0。
那些远离胎面拐角的节点将沿着局部坐标系的3方向进行磨损。
磨损表达式的变量通过函数GETVRN和GETVRMAVGATNODE从分析数据库中获得。
P从变量CSTRESS中获得;y从变量CDISP中获得;由带状物的节点坐标决定,从变量COORD中获得。
磨损运动的方向磨损速率h是网格约束矢量变量ULOCAL的分量。
这个变量通过在局部坐标系ALOCAL中定义的默认网格光滑运动传递到用户子程序中,这个局部坐标系测量出当前节点在曲面的法向。
3的方向根据在节点附近网格表面法向的平均值定义为外法向的方向。
在绝大部分情况下,这个法向方向对于描述和这个方向相反的消融和节点衰减的磨损结果是足够的。
然而,在胎面拐角的区域,这个平均的法向方向不能准确的描述磨损的方向。
这种情况下的法向应该像Figure 3.1.8–5所示,它计算如下:假设a是胎面拐角的节点。
就有可能辨认出在胎面边上的节点b。
在这种情况下,磨损的方向就是矢量ab。
因为知道节点a和节点b的坐标,磨损方向就能通过整体坐标系计算得到,也就能转化为局部坐标系(ALOCAL)的方向。
结果和讨论轮胎模型仿真分析持续进行3.6×106s或者1000小时,等价于在32km/h下行驶32000公里。
下图表示的是轮胎磨损效果的轮廓结果。
下面第二个图片表示的是新轮胎和磨损后轮胎接地印迹分布的情况。
3.1.2 Steady-state rolling analysis of a tire3.1.2 轮胎稳态转动分析产品:Abaqus/Standard本例子在abaqus中使用*STEADY STATE TRANSPORT来建立转动轮胎和刚性平面之间的稳定动态接触模型。
稳态运动分析使用局部参考坐标系,在这个局部参考坐标系中使用欧拉方法来描述刚性体的旋转运动,用拉格朗方法描述变形。
这个运动学描述将稳态的移动接触问题转化为一个纯粹的依赖于空间的仿真。
因此,仅仅需要在接触的区域建立精确的网格——稳态运动通过网格传输材料。
在*STEADY STATE TRANSPORT分析中考虑的因素有:摩擦、惯性和累积效果。
本次分析的目的是获得在地面速度10.0km/h(2.7778m/s)时,相对于平面刚性面不用的侧偏角时轮胎175SR14自由转动的平衡解决方案。
侧偏角是指轮胎前进方向和轮胎中心平面的夹角。
在侧偏角为0°时,轮胎直线行驶。
为了对比测试,我们也进行轮胎在直径在1.5m 的刚性圆柱上旋转的分析。
圆柱以 3.7 rad/s的速度旋转,也就是圆柱表面的瞬时速度为10km/h(2.7778m/s)。
另外一个工况是在轮胎自由转动的情况下检测由轮胎外倾角引起地外倾推力。
本工况允许我们计算外倾推力刚度。
施加到轮胎中心轴的扭矩为0时的平衡状态被称为自由转动状态。
轮胎中心轴的扭矩不为0是的平衡状态被称为驱动或者制动状态。
制动状态:轮胎的角速度足够小以至于轮胎和路面之间的所有或者部分的接触点发生滑动,同时作用在轮胎上的总扭矩与轮胎自由转动的角速度方向相反。