基于单片机的心电图仪系统设计说明

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简易心电图仪的设计方案

设计者:汪仨王彪鲁成华谭桂仁华超柱康

摘要

心电图是临床疾病诊断中常用的辅助手段。心电数据采集系统是心电图检查仪的关键部件。人体心电信号的主要频率围为0.05Hz~100Hz,幅度约为0~4mV,信号十分微弱。由于心电信号常混杂有其它生物电信号,加之体外以50Hz工频干扰为主的电磁场的干扰,使得心电噪声背景较强,测量条件比较复杂。为了不失真地检出有临床价值的干净心电信号,往往要求心电数据采集系统具有高精度、高稳定性、高输入阻抗、高共模抑制比、低噪声及强抗干扰能力等性能。本设计利用89C51和A/D转换以及多路模拟开关设计了一种符合上述要求的多路心电数据采集系统。

一、方案的提出与比较

1、方案的提出

图1所示是一个心电数据系统的组成框图,其中心电信号由专用电极拾取后送入前置放大器初步放大,并在对各干扰信号进行一定抑制后送入带通滤波器,以滤除心电频率围以外的干扰信号。主放大器可将滤波后的信号进一步放大到合适围后,再经50Hz陷波器滤除工频和肌电干扰,然后将符合要求的心电模拟信号由模拟输入端送入高速ADC,以进行高精度A/D转换和数据的采集存储。

方案一:采用模拟分立元件,可以产生心电波,但采用模拟元件太大,即使使用单片机电路参数也与外部元件有关,外接的电阻电容对参数影响很大,在滤

波过程中会出现很大的干扰,使得输出不精确,即此电路抗干扰能力低,成本也高;而且灵活性差,不能实现各种输出的智能化。,

方案二:采用以89C51为核心,采用INA128芯片作为前置放大,运用多级运放电路来提取信号。它在一定的程度上可以达到题目要求。但是,共模抑制比很难达到发挥80db以上,而且精确度不高,在以后的输出中会出现很多的毛刺。由于这些原因,我们不采用这种方法。

方案三:以89C51为中心、采用性能优良的AD620管作为前置放大,既可以提高放大倍数,也可以提高共模抵制比、电路结构简单。。然后通过A/D和D/A转换,输出给示波器,若合理的选择器件参数,可使其输出波形失真小。所以采用此方案。

二、系统原理图以及各模块的说明

1、系统原理图

图一

2、模块说明:

①导联选择:采用CD4051来完成,用单片机来控制。

②前置放大:采用AD620来完成,前置放大是心电数据采集的关键环节,用来把取样的信号进行放大,具有很高的共模抑制比和1~1000倍信号放大。

③高/低通滤波电路:采用LM324作为核心,用大小相当的电阻电容构成滤波电路。

④50Hz陷波电路:采用LM324作为核心,用大小相当的电阻电容构成陷波电路,电路简单,容易实现。

⑤波形A/D采集存储模块:以单片机为核心,利用ADC0809,以2.5KHz 的速率对输入信号进行采集。由于89C51的存储空间不够,我们扩展了两片RAM,

使存储深度达到了16KB,即每一个通道存储8KB。

⑥单片机控制模块:系统的主控制器,控制其他协调工作。

三、系统电路与理论数据

(1)导联通道的选择

方案一:两个导联均采用两个相同的通道,即采用两个仪表放大器INA128、两个滤波通道、两个50Hz陷波通道以及两个主放大电路、两个电平移位电路,然后通89C51来控制ADC0809来选择通道来进行处理。由于这种方法的思路非常清晰,各通道之间干扰小,但总体来说由于采用了两个通道,耗资大,所以本设计不采用此方案。

方案二:采用模拟开关4051,在两个导联通道均通过仪表放大器以后再通过4051进行通道的选择,然后送到后级进行处理。在这里为了保证每切换一次89C51能够采集存储完一次心电信号,我们用89C51来同时控制切换率和采样率,这样就切保了同步,同时也保证了心电信号不会被漏存少存。

方案三:在前置放大前级采用类比多工器ADG609,考虑到一般生理信号都属于差动式的,而ADG609的类比信号的输入围介于Vss与Vdd之间,且有四个切换对,可以很轻易地经由89C51的设定来更改切换的频率,除此之外还具有快速切颀时间(Ton75ns max*Toff45ns max)、低启动阻抗、低消耗功率,以上这些特性都符合此设计的要求。ADG609的真值表如下:

(2)前置放大部分

方案一:采用LM324与NE5534等低噪声,具有一定精度的普通运算放大器要构建放大电路,但从体表采集到的信号除了人体的心脏产生的电信号以外,还包含肌电,呼吸以及50Hz工频信号等带来的干扰.其中,工频干扰收起的共模信号可能远大于心电信号,从而影响系统对心电信号的分析采样,因此,共模抑制比是衡量心电图仪情能的重要标准之一.本题要求运算放大器的共模抑制比不小于80db.上述两种运算放大器的共模抑制能力虽然能达到这个要求,但有这样的单个运放构成的电路难以达到较高的共模抑制比,故不采取此方案。

方案二:心电信号为一差动式信号并且小于4mV,通常信号会先经过第一级的适当放大后,再经过高低通滤波器,采用分级放大的原因是为了避免直流偏压经过放大后,造成后级的电饱和,而使放大后的信号产生失真.因此为了避免放大器饱和,在这一级的放大增益应该小于30.一般说来作为前级放大单元必须具有高输入阻抗.高共模斥拒比等基本特性,在这里我们采用了低功耗,高精度的仪表放大器-----AD620, AD620输入端采用超β处理技术,具有低输入偏置电流、低噪音、高精度、较高建立时间、低功耗等特性,共模抑制比可达130dB,非常适合作为医疗仪器前置放大器使用。其增益可调(围约1~1000倍),并可由公式

G=1+(51+51)/15=7.2

来确定。为防止前置放大器工作于饱区和或截止区,其增益不能过大。试验表明:10倍左右效果较好。因此,我们采用了此方案。

方案三:采用仪表放大器INA128.其具有良好的共模输入抑制能力,共模抑制比大于120DB,而且只需外接一个电阻就可调节增益..INA128对直流电源的要求低,甚至只需 2.25V的直流电源电压就要表现出色的功能特性,静态电流只有700uA,功耗低,但INA128的价格昂贵,因此我们不采用此方案。

(3)心电信号处理部分

相关文档
最新文档