基于单片机的心电图仪系统设计说明
基于51单片机的心率计设计
基于51单片机的心率计设计一、引言心率是人体健康状况的一个重要指标,测量心率对于预防心血管疾病和监控身体健康非常重要。
本文将介绍基于51单片机的心率计的设计。
二、硬件设计1. 传感器心率计的核心是心率传感器,用于检测心脏的跳动并转化为电信号。
常见的心率传感器有光电传感器和压电传感器。
本设计选用光电传感器,通过红外光发射二极管和光敏二极管组成,以非侵入性的方式测量心率。
2. 信号放大与滤波电路由于心率信号较小,需要经过放大与滤波电路进行信号处理。
设计中使用运放对信号进行放大,并通过带通滤波器滤除杂散信号。
3. 数模转换放大滤波后的心率信号是模拟信号,需要通过模数转换器(ADC)将其转换为数字信号,以便后续处理和显示。
4. 显示屏心率计的设计中需要一个合适的显示屏来显示测量出的心率数值。
常见的显示屏有LCD液晶屏和LED数码管。
5. 51单片机本设计使用51单片机作为控制核心,负责对信号的采集、处理和显示。
51单片机具有成熟的开发环境和丰富的外设资源,非常适合嵌入式系统的设计。
三、软件设计1. 信号采集通过51单片机的IO口连接传感器,定时采集传感器输出的心率信号,并将其转换为数字信号。
2. 信号处理通过软件算法对采集到的心率信号进行滤波和处理,去除噪声和干扰,提取出准确的心率数值。
3. 心率计算根据心率信号的特征,设计一个合适的算法对心率进行计算。
常用的算法有峰值检测法和自相关法等。
4. 数据显示将计算得到的心率数值通过LCD屏或数码管显示出来,以便用户直观地了解自己的心率状况。
四、实验结果与讨论经过实验验证,基于51单片机的心率计设计能够准确地测量心率,并将心率数值显示在屏幕上。
通过与商用心率计的比对,结果显示该设计具有较高的准确性和稳定性。
五、应用前景基于51单片机的心率计设计可以应用于医疗领域、体育训练和健康监控等方面。
例如,可以将心率计嵌入健康手环中,实时监测用户的心率状况,并提醒用户进行适当的运动。
基于单片机的心率测试仪设计
基于单片机的心率测试仪设计心率测试仪是一种用来测量人体心率的设备,它使用单片机技术来实现数据处理和显示功能。
本文将介绍基于单片机的心率测试仪的设计原理、硬件组成以及软件实现。
一、设计原理心率测试仪的设计原理是通过测量人体的心电信号来计算心率。
心电信号是由心脏产生的微弱电流,可以通过电极贴在人体皮肤上进行测量。
传感器将心电信号转换为模拟电压信号,然后经过滤波处理和放大处理后,再经过A/D转换,转换为数字信号供单片机处理。
单片机通过计算心电信号的周期来得到心率值,并将结果显示在液晶屏上。
二、硬件组成1.单片机:选择一款适用的单片机,如STM32系列的单片机,具有高性能和丰富的外设接口,以满足心率测试仪的需求。
2.心电信号传感器:选择一款专门用于心电信号测量的传感器,如AD8232芯片,可以提供可靠的心电信号采集。
3.滤波器:使用滤波器对心电信号进行滤波处理,去除杂散信号,只保留心电信号的频率分量。
4.放大器:为了增强心电信号的幅度,需要使用放大器来对滤波后的信号进行放大处理,方便后续的A/D转换。
5.A/D转换器:将放大后的模拟信号转换为数字信号,供单片机进一步处理。
三、软件实现1.心电信号采集与处理:通过传感器采集心电信号,并经过滤波和放大处理,得到滤波后的模拟信号。
2.A/D转换:将模拟信号通过A/D转换器转换为数字信号,供单片机处理。
3.心率计算:单片机通过计算心电信号的周期来得到心率值,可以使用峰值检测算法或阈值判定算法来实现。
4.数据显示:将计算得到的心率值通过串口或并口发送到液晶屏上进行显示,可以设计显示界面,包括心率值、时间等信息。
总结:基于单片机的心率测试仪设计主要包括硬件组成和软件实现两个部分。
硬件组成包括单片机、心电信号传感器、滤波器、放大器、A/D 转换器和液晶屏等。
软件实现包括心电信号采集与处理、A/D转换、心率计算和数据显示等。
通过合理的设计和编程,可以实现一个功能完善的心率测试仪。
基于单片机的心率计设计
基于单片机的心率计设计
一、硬件设计
1.核心处理器:选用STM32单片机,具有丰富的外设资源,大
内存容量,高性能,在实现心率计功能方面非常适合。
2.心率传感器模块:选用现有的心率传感器模块,如MAX30102。
3.显示模块:可以采用OLED显示模块或者LCD模块来显示心率值。
4.按键模块:添加一个按键模块,用于操作心率计。
5.电源模块:设计适合的电源模块,以保障心率计稳定工作。
二、软件设计
1.初始化:在程序初始化时,配置好单片机的外设,包括时钟,GPIO口,定时器等。
2.心率检测:读取心率传感器的数据,通过波形处理等算法,
实时计算出心率值,然后将其显示在屏幕上。
3.数据存储:可以在单片机内部或外部添加存储芯片,将检测
到的数据保存下来,以方便后期分析。
同时,可以添加一个实时时
钟模块,记录下每次检测的时间。
4.操作界面:添加按键模块,实现心率计的开关、数据存储等
功能。
5.通信功能:可以添加一个蓝牙模块,将心率数据传输到手机
或其他设备上,以便进行分析和管理。
三、应用场景
基于单片机的心率计可以被广泛应用于医疗、运动等领域。
在
医疗领域,可以用于监测老年人、患病人士等人群的心率变化情况。
在运动领域,可以作为一款运动手环,记录运动者运动时的心率变
化情况。
同时,基于单片机的心率计也可以成为一种新颖的DIY硬
件项目,符合日益增长的Maker文化需求。
毕业设计(论文)-基于单片机便携式心电图仪的研究与设计
基于单片机便携式心电图仪的研究与设计便携式心电监护仪摘要本系统以TI公司的高精度仪表放大器INA2331和低功耗AT89C51单片机为核心,实现了两路心电信号的采集和显示。
设计采用右腿驱动电路和高通负反馈滤波器等抑制干扰措施,提高了放大器的共模抑制比;选用内部资源丰富的AT89C51单片机和12864液晶显示器LCD 实现了心电信号的动态显示。
结果表明系统各项技术指标达到了设计要求,具有低功耗低成本的特点。
AbstractThe system which takes the high-precision instrumentation amplifier INA2331 and low-power AT89C51 MCU as the core has realized two_channel ECG’s detection, storage and display 。
It adopts a right-leg -driven circuit、a high-pass filter with reverse feedback and so on,which makes the CMRR of the preamplifier higher 。
By adopted the inner resourceful AT89C51 single chip and 12864 LCD the ECG can be recorded and playbacking demonstrated 。
The results indicate that the major technical specifications of the system meet the design equirements, The system has the following features, such as low-power、and low-cost 。
基于单片机的心电图仪系统设计
简易心电图仪的设计方案摘要心电图是临床疾病诊断中常用的辅助手段。
心电数据采集系统是心电图检查仪的关键部件。
人体心电信号的主要频率范围为0.05Hz~100Hz,幅度约为0~4mV,信号十分微弱。
由于心电信号中通常混杂有其它生物电信号,加之体外以50Hz工频干扰为主的电磁场的干扰,使得心电噪声背景较强,测量条件比较复杂。
为了不失真地检出有临床价值的干净心电信号,往往要求心电数据采集系统具有高精度、高稳定性、高输入阻抗、高共模抑制比、低噪声及强抗干扰能力等性能。
本设计利用89C51和A/D转换以及多路模拟开关设计了一种符合上述要求的多路心电数据采集系统。
一、方案的提出与比较1、方案的提出图1所示是一个心电数据系统的组成框图,其中心电信号由专用电极拾取后送入前置放大器初步放大,并在对各干扰信号进行一定抑制后送入带通滤波器,以滤除心电频率范围以外的干扰信号。
主放大器可将滤波后的信号进一步放大到合适范围后,再经50Hz陷波器滤除工频和肌电干扰,然后将符合要求的心电模拟信号由模拟输入端送入高速ADC,以进行高精度A/D转换和数据的采集存储。
方案一:采用模拟分立元件,可以产生心电波,但采用模拟元件太大,即使使用单片机电路参数也与外部元件有关,外接的电阻电容对参数影响很大,在滤波过程中会出现很大的干扰,使得输出不精确,即此电路抗干扰能力低,成本也高;而且灵活性差,不能实现各种输出的智能化。
,方案二:采用以89C51为核心,采用INA128芯片作为前置放大,运用多级运放电路来提取信号。
它在一定的程度上可以达到题目要求。
但是,共模抑制比很难达到发挥80db以上,而且精确度不高,在以后的输出中会出现很多的毛刺。
由于这些原因,我们不采用这种方法。
方案三:以89C51为中心、采用性能优良的AD620管作为前置放大,既可以提高放大倍数,也可以提高共模抵制比、电路结构简单。
然后通过A/D和D/A转换,输出给示波器,若合理的选择器件参数,可使其输出波形失真小。
基于单片机心率监测系统设计方案
一、实物描述:
二、功能描述:
本系统由STM32F103C8T6单片机主控模块、心率传感器模块、TFT屏显示模块、按键模块、蜂鸣器报警模块组成。
1、TFT液晶实时显示心率值。
2、TFT液晶实时显示采集到的的模拟信号的曲线图,直接显示心率变化曲线。
3、通过按键可以设置心率报警阈值,按键有设置按键、设置+、设置-,在设置情况下可以对设置值进行加减。
4、当前心率值超过设置阈值,蜂鸣器报警,同时显示心率值为红色;否则蜂鸣器不报警,心率值显示蓝色。
三、功能框图:
心率传感器模
块单片机
STM32F103C8T
6TFT屏显示模
块
报警模块
按键模块
四、代码描述:
打开程序主界面如下图所示,程序由各个子程序组成,通过在主函数mian中调用。
Main()函数中首先对各模块进行初始化显示
然后进行ADC读取,读取结果通过单片机处理在显示屏上显示
显示屏坐标绘制函数,用于绘制初始化界面
按键子程序,用于设置报警值,在主函数中调用。
基于单片机的远程心电监测系统设计
当今心血管疾病已成为发病率极高的常见病之一,极大威胁人们的生命。设计一种性能可靠、价格低廉、体积较小的新店采集与远程传输系统对心血管病的监测和预防具有重要意义。
远程心电监测是只通过通信网络将远端的生理和医学信号传送到监测中心进行分析,并给出诊断意见的一种技术手段。它是随着计算机技术、通信技术等相关技术的迅速发展,心电图监测技术也逐渐应用到远程医疗领域中来,使得医院为心脏病患者的远程保健服务成为可能。
[6]朱红松,孙利民。无线传感器网络技术发展现状。中兴通讯技术,2009年,第15卷,第5期。
研究的目标、内容和拟解决的关键问题
研制一种功能强大、成本低的远程心电监测系统,可实现远程医疗心脏病患者。该系统前端采用FPGA控制,采集和存储人体的新店(EGG)信号,通过串口将心电数据传入计算机,并在LabVIEW软件平台下实现心电信号的显示和远程传输系统。其中大部分功能是由软件设计实现,以便于后续功能扩展。可将该系统广泛应用于医院、社区、家庭、户外监护,帮助医生及时诊断病人。
为设计一款体积小、功耗低、处理速度高的心电监测终端,本系统采用TI公司生产的MSP430F499单片机作为微处理器,该单片机的工作电压在1.8-3.6V之间,带有内部参考源、采样保持、自动扫描特性的12位A/D转换器,串行通信软件有异步UART和同步SPI两种模式可选。该单片机具有丰富的片内外设和大容量的片内工作寄存器和存储器,为电路的设计节省不少空间。本系统的硬件主要包括心电信号采集模块、RS232通信模块和GPRS传输模块。其中信号采集分为心电前置放大电路、滤波电路、主放大隔离电路和电平抬升电路。监测终端采集到的心电信号通过MSP430单片机进行信号处理后,可以通过GPRS模块传输到远端的医疗中心,为医生提供患者的心电数据。
本科毕业设计---基于单片机的心率计设计
基于单片机的心率计设计摘要心率是指单位时间内心脏搏动的次数,包含了许多重要的生理、病理信息,特别是与心脑血管相关的信息,是生物医学检测中一个重要的生理指标,也是临床常规诊断的生理指标;因此迅速准确地测量心率便显得尤为重要。
随着医疗水平和人们生活水平的提高,快速、准确、便携式心率计便成为一种新的发展趋势,同时伴随着单片机技术的发展,基于单片机的便携式心率计便不失为一个好的选择。
本心率计共有三大部分,分别为:传感器部分、信号处理部分、单片机控制部分。
传感器部分采用光电式传感器实现对信号采集;信号处理部分则采用放大、滤波、波形变换等方法实现信号的有效处理;而单片机部分则实现对心率的计数和显示功能。
通过这三部分的有效组合初步实现对人体心率的一个有效计数。
信号采集采用光电式传感器通过对手指末端透光度的监测,实现信号的采集;信号放大则采用四运放运算放大器LM324,波形变换采用555定时器构成反向施密特触发器;单片机控制模块则采用AT89C51微处理器和相关元器件通过C语言编程实现计数和显示功能。
关键词:心率,光电式传感器,信号处理,AT89C51DESIGN OF HEART RATE METER BASED ON MCUABSTRACTHeart rate is refering to the number in unit time of the heart beating, contains many important physiological and pathological information, especially information associated with cardiovascular, biomedical detection an important physiological indexes, and routine clinical diagnosis of physiological indexes; so quickly and accurately measuring heart rate appears to be particularly important. With the improvement of medical level and people's living standards, rapid, accurate and portable heart rate meter has become a new trend, accompanied by the development of SCM technology, will not be regarded as a good choice of meter based on microcontroller portable heart rate.Heart rate meter consists of three parts, respectively: sensor part, signal processing part, MCU control part. Part of the sensor using photoelectric sensor achieved the signal of the signal acquisition; signal processing part uses the amplification, filtering, waveform transform method to effectively d eal with; and part of SCM is to achieve counting on heart rate and display function. Through the effective combination of these three parts, an effective count of human heart rate is realized..Signals were collected using photoelectric sensor through the monitoring of the degree of light at the end of a finger, to realize the signal acquisition; signal amplification four operational amplifier LM324 operational amplifier is used, the waveform transform the 555 timer constitute reverse Schmitt trigger; MCU control module is used AT89C51 microprocessor and related components by C language programming counting and display function.KEY WORDS: heart rate, sensor photoelectric, signal processing, AT89C51目录前言 (1)第一章系统设计的整体构思 (3)第二章各元器件介绍 (4)§2.1 LM324 (4)§2.1.1 LM324简述 (4)§2.1.2 LM324主要特点 (4)§2.1.3 LM324引脚图 (5)§2.2 555定时器 (5)§2.3 单片机型号介绍 (6)§2.3.1 单片机简介 (6)§2.3.2 51子系列的主要功能 (7)§2.3.3 AT89C51引脚 (7)§2.4 74HC245 (9)§2.4.1 74HC245简述 (9)§2.4.2 74HC245的特点 (9)§2.4.3 74HC245引脚 (10)§2.5 74LS138 (10)§2.5.1 74LS138简述 (10)§2.5.2 74LS138主要特性 (10)§2.5.3 74LS138引脚图 (11)第三章软件介绍 (12)§3.1 KeilC51高级语言集成开发环境—uVision4 IDE (12)§3.1.1 KeilC51简介 (12)§3.1.2 uVision4 IDE集成开发环境 (12)§3.1.3 uVision4 IDE仿真过程 (13)§3.2 Proteus (14)§3.2.1 Proteus简述 (14)§3.2.2 Proteus主界面 (15)§3.2.3 电路图仿真 (15)第四章电路原理及仿真电路 (17)§4.1 光电式传感器 (17)§4.2 前置放大器 (19)§4.3 滤波电路 (19)§4.4 后置放大电路 (20)§4.5 波形变换 (21)第五章软件的设计 (23)§5.1 设计原理 (23)§5.1.1 定时原理 (23)§5.1.2 计数原理 (24)§5.2 软件设计的流程图 (24)§5.3 LED显示电路 (26)第六章系统的检测 (28)第七章误差分析 (29)结论 (30)参考文献 (32)致谢 (34)附录 (35)前言心率是指单位时间内心脏搏动的次数,与脉搏跳动频率基本是一致的。
基于51单片机的心率计设计
基于51单片机的心率计设计一、引言心率是反映心脏功能的重要指标之一,对于人体健康的监测具有重要意义。
本文将介绍一种基于51单片机的心率计设计方案,通过测量心电信号来实时监测心率变化,并将结果显示在液晶屏上。
二、硬件设计1. 传感器选择心电信号的采集是心率计设计的关键,常用的传感器有心电图传感器和心率带。
本设计选择心电图传感器作为采集装置,它能够直接测量心脏电活动,并将信号转化为模拟电压。
2. 信号放大与滤波由于心电信号较弱且容易受到干扰,需要对信号进行放大和滤波处理。
可以采用运算放大器进行信号放大,并通过滤波电路去除高频干扰和基线漂移。
3. 信号采样与转换经过放大和滤波处理的心电信号需要进行模数转换,将模拟信号转换为数字信号以便单片机处理。
可以选择12位的AD转换器进行采样,并通过SPI接口与单片机进行通信。
4. 单片机控制与显示选取51单片机作为控制核心,通过编程实现信号的采集、处理和显示功能。
使用GPIO口与AD转换器和液晶屏连接,通过串口通信实现与电脑的数据传输。
三、软件设计1. 信号采集与处理通过单片机的GPIO口实现对AD转换器的控制,进行心电信号的采集。
同时,通过软件滤波算法对信号进行滤波处理,去除噪声和干扰。
2. 心率计算心率的计算可以通过测量心跳的时间间隔来实现。
在信号处理过程中,可以设置一个阈值,当信号超过该阈值时,计数器加一。
根据连续心跳的次数和采样频率,可以计算出心率的值。
3. 数据显示与存储通过液晶屏显示心率的实时数值,并提供用户界面操作。
同时,可以通过串口将数据传输到电脑进行进一步的分析和存储。
四、实验结果与讨论本设计基于51单片机成功实现了心率计的功能。
通过实验验证,心率计能够准确地测量心率,并实时显示在液晶屏上。
通过与商用心率计进行对比,结果表明本设计具有较高的准确性和稳定性。
五、总结与展望本文介绍了一种基于51单片机的心率计设计方案。
通过对心电信号的采集、处理和显示,实现了心率的实时监测。
一种基于单片机的简易心电图仪设计-
一种基于单片机的简易心电图仪设计-
心电图仪是一种用于检测人类心脏电传导情况的医疗设备。
随着科技的不断发展,单片机技术已经逐渐被应用在心电图仪的设计中。
本文将介绍一种基于单片机的简易心电图仪设计。
1. 设计思路
本设计采用单片机作为主控制器,通过采集人体心电信号转化为数字信号进行处理。
具体实现过程如下:
(1)通过心电传感器采集人体心电信号,将信号转化为模拟信号。
(2)将模拟信号通过运算放大电路,使其变为数字信号。
(3)通过单片机将数字信号进行处理和分析,并将结果通过显示屏进行呈现。
2. 设计过程
(1)硬件设计
硬件设计包括传感器电路、模拟电路、通信接口和显示屏等。
其中,传感器电路用于采集心电信号,模拟电路用于将模拟信号转换为数字信号,通信接口用于与主控制器通信,显示屏用于显示处理后的心电信号。
(2)软件设计
软件设计主要包括单片机中的程序设计和信号处理。
程序设计需要对心电信号进行采样、滤波、放大、数字化等处理,以保证采集到高质量的心电信号。
信号处理过程中需要进行适当的算法处理,比如检测心脏跳动次数、识别心跳节律等。
3. 总结
本文介绍了一种基于单片机的简易心电图仪设计。
该设计具有硬件简单、软件易实现、数值精准等优点。
虽然其无法取代专业心电图仪,但其可方便地用于居家医疗和自我监测等方面,成为日常健康管理的重要工具。
基于单片机的心率检测系统设计
目录1.引言 (2)2.系统基本方案 (2)2.1.系统总结构 (3)2.2.各个部分电路的方案选择及分析 (3)2.2.1.脉搏传感器部分 (3)2.2.2.单片机选择 (3)2.2.3.显示部分 (4)2.3.系统各模块的最终方案 (4)3.系统硬件设计 (5)3.1.单片机处理电路 (5)3.1.1.STC89C51系列单片机的主要性能特点: (5)3.1.2 .C51系列单片机的基本组成: (6)3.2.复位电路 (9)3.2.1.单片机复位电路 (9)3.3.振荡电路 (10)3.4.脉搏传感器部分 (10)3.4.1.HK-2000A 集成化脉搏传感器 (10)3.4.2.脉搏传感器接收电路 (12)3.4.3 .电源电路 (12)3.5显示报警部分 (13)3.5.1.数码管显示电路 (13)4.系统软件设计 (14)4.1 主程序流程的设计 (14)4.2 定时器/计数器中断程序流程的设计 (15)4.3 显示程序流程的设计 (16)5.总结 (18)参考文献 (19)1.引言心率是最为常见的临床检查与生理研究的生理现象,且包含两个人类生命的重要信息,那就是血管和心脏的生理状态。
人体各器官的健康状况、疾病等信息将以某种方式出现在脉冲的脉冲条件。
许多有诊断价值的信息,比如有关心脏、内外循环和神经等系统的动态信息,我们可以通过对脉搏波检测脉冲图包含大量的诊断价值信息,也可以用来预测一些身体器官结构和功能的转变趋势, 通过对脉搏的检测可以对如高血压和糖尿病等引起的血管病变进行评估。
同时脉搏测量还为血压测量,血流测量及其他某些生理检测技术提供了一种生理参考信号[1]。
在医院临床护理和日常的中老年保健中,脉搏是一个基本的生活指数,因此脉搏测量是最常见的生活特征提取。
近年来在日常监护测仪器,如便携式电子血压计,可以完成脉冲测量。
但是这种便携式电子血压计利用微型气泵压力橡胶气球,每次测量都需要一个压缩和解压缩的过程,有体积庞大、脉搏检测的精确度低、加减压过程会有不适等等的不足。
基于单片机心率脉搏检测仪设计
目录一、设计的背景和意义 (1)二、设计方案的论证和确定 (1)(一)设计要求分析 (1)(二)设计方案确定 (1)三、 设计过程 (3)(一) 设计原理 (3)(二)主要器件选型 (5)(三)硬件结构设计 (7)(四)软件控制设计 (11)四、调试过程 (20)1.仿真调试. (20)2.实物演示 (22)五、设计创意说明和总结 (25)六、参考文献 (26)七、致谢 (27)一、设计的背景和意义背景:目前脉搏测量仪在多个领域被广泛应用,除了应用于医学领域,如无创心血管功能检测、妊高症检测、中医脉象、脉率检测等等,商业应用也不断拓展,如运动、健身器材中的心率测试都用到了技术先进的脉搏测量仪。
但人体的生物信号多属于强噪声背景下的低频的弱信号, 脉搏波信号更是低频微弱的非电生理信号,因此必需经过放大和后级滤波以满足采集的要求。
脉象探头式样很多,有单部、三部、单点、多点、刚性接触式、软性接触式、气压式、硅杯式、液态汞、液态水、子母式等组成,脉象探头的主要原件有应变片、压电晶体、单晶硅、光敏元件、PVDF压电薄膜等,其中以单部单点应变片式为最广泛,不过近年来正在向三部多点式方向设计[2]。
意义:近年来国内外致力于开发无创非接触式的传感器,这类传感器的重要特征是测量的探测部分不侵入机体,不造成机体创伤,能够自动消除仪表自身系统的误差,测量精度高,通常在体外,尤其是在体表间接测量人体的生理和生化参数。
二、设计方案的论证和确定(一)设计要求分析总体由设计由STC89C52、按键、LCD1602、光电传感器、等构成,见图3.1所示,系统设有四个按键,设置上下限脉搏数,当超过范围的时候单片机会驱动蜂鸣器发响,脉搏测量的时候需要人把手轻轻的按在光电传感器上面,由于人脉搏跳动的时候,血液的透光性不一样会导致接收器那边接收的信号强弱不一样,间接的把人脉搏信号传回,通过运放对其进行放大、整形后连接到单片机的IO 口,单片机利用外部中断对其进行计数,最终换算成人一分钟脉搏的跳动次数,最终在液晶屏上显示。
基于51单片机的无线心电监护系统设计
基于51单片机的无线心电监护系统设计1 引言随着经济的快速发展和人们生活水平的不断提高,健康已成为人们关注的焦点。
心脏疾病是危害人类健康的一大杀手,其偶然性与突发性的特点使得心电监护系统具有重要的临床应用价值。
由于传统的心电监护仪不能进行远距离的实时监护,所以便携式无线心电监护系统显得更加重要。
无线医疗监护系统主要由生理信息与数据采集、无线数据通信、控制和显示等单元组成。
目前国内已有用于临床的无线心电监护产品,但其采用的方案大都是“采集器+发送器(PDA 或手机)”,从成本上看其价格昂贵;从无线传输方面看,大多是将心电数据以模拟信号传输,这必然导致信号在传输过程中发生失真。
此外,由于人体电阻差异导致心电信号在1~10 mV 之间变动,固定放大倍数系统缺乏适应性。
基于此,这里提出基于C8051F320 单片机的无线监护系统。
该系统分为数据采集盒和PC 监护终端两部分。
数据采集盒在设计中充分考虑其体积小、功耗低、操作快捷的要求,因此全部采用SMT 封装的元器件;PC 监护终端通过USB 接收数据。
采用VC++编写显示、存储、分析处理和报警等功能程序。
实验结果表明该系统能满足病人在100 m 范围内活动,并能根据不同病人选择合适的放大倍数;由于心电信号在数据采集盒内经MD 转换器处理后才发送,信号抗干扰能力更强。
2 系统硬件设计2.1 系统整体构成系统南数据采集盒和PC 监护终端两部分构成,见图1。
数据采集盒采用C8051F320 单片机为核心采集心电数据并控制程控放大器,采用NRF24L01 模块收发数据与PC 监护终端通信。
PC 监护终端中C8051F320 单片机通过NRF24L01 模块接收心电数据并通过自带的USB 接口将数据送至PC 机。
2.2 心电采集与程控放大电路心电信号属于微弱信号,由于个体差异,体表心电信号的测量幅值范围为1~10 mV,在测量心电信号时存在较强干扰,包括测量电极与人体之间构成的化学半电池所产生的直流极化电压;以共模电压形式存在的50Hz 工频干扰;人体运动、呼吸引起的基线漂移;肌肉收缩引起的肌电干扰等。
基于单片机的便捷式心电显示仪
摘要本设计是基于单片机的便携式心电显示仪,拟采用以51系列单片机为控制核心,实现信号的采集、处理、回放、存储以及显示。
信号的采集部分拟采用AD620放大电路、带通滤波器、50HZ陷滤器及主要放大电路等构成,用于提取人体有用心电信号,在显示部分,本设计拟选用TFT液晶则进行实时动态显示心电波形。
本设计具有良好的人机交互界面,能完成心电图的动态显示,同时具有便携、低功耗、低成本、体积小的特点。
关键词:心电图、51单片机、TFT。
基于单片机的便携式心电显示仪的设计一、研究背景和研究意义随着我国人口的老龄化程度加快,人民物质水平的提高,心血管、心脏病一类疾病也在不断的增长,人们对这一类疾病的预防和诊断的需求也在不断地增长。
因此,人们需要一种医疗设备仪器能够在家里随时进行心电图的测量,在方便的时候让医生做进一步的诊断。
对于这种情况,结合单片机技术、计算机技术、微电子技术,我们通过对现有的心电图传感器进行利用,通过单片机希望研制成一种便携式心电图显示仪。
并由采用TFT实时显示图形的方式显示心电图。
从而实时的展现心电的情况,是一种新颖的临床和家庭兼用的心电图仪。
二、系统总体方案设计心电信号由电极获取,送人心电采集电路,经前置放大、主放大、高低通滤波、电平抬升后,得到符合要求的心电信号,并进行AD转换。
系统控制芯片拟采用51系列单片机,TFT的触摸功能加上少量按键可以建立良好的人机交互环境,可以通过TFT实时显示和回放。
根据理论研究及方案论证,通过仔细的分析,从而拟订了系统设计方案。
系统设计的原理框图如图所示:图1:便携式心电显示仪系统原理框图三、系统主要硬件结构及电路本设计的划分主要为以下几个部分:心电采集电路,主要完成心电信号的提取;前置放大电路是从噪声中提取心电信号,并把它放大到合适的电平以提供给A/D转换电路;单片机实现的主要功能是用于调理采集到的信号,使之符合处理要求;TFT液晶则主要完成心电信号的显示、分析、存储和数据传送功能。
基于单片机心率计的设计
基于单片机心率计的设计前排提示,此论文是本人毕业的时候所做论文,通过了查重与答辩,内容真实可靠,结果完美运行归档号:武汉工商学院毕业论文(设计)学院:信息工程学院专业:电子信息工程年级:学生:学号:指导教师:职称: 讲师题目: 基于单片机心率计的设计2021年月日武汉工商学院本科毕业论文(设计)原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
本人完全意识到本声明的法律后果由本人承担。
作者签名:年月日目录摘要 (II)关键词 (II)ABSTRACT (III)KEY WORDS (IV)1 绪论 01.1前言 01.2研究意义 02 方案论证以及元器件选择 (1)2.1传感器的选择与论证 (1)2.2信号处理方案选择和论证 (1)2.3显示模块选择和论证 (2)3 硬件系统设计 (3)3.1系统设计总框图 (3)3.2单片机最小系统部分 (3)3.3输入部分 (4)3.3.1 信号采集电路 (4)3.3.2 信号放大整形电路 (5)3.3.3 键盘电路 (7)3.4输出模块 (8)3.4.1 LCD1602显示电路 (8)3.4.2 蜂鸣器 (8)4 系统软件设计 (9)4.1测量计算原理 (9)4.2程序流程图 (9)4.2.1 主流程图 (10)4.2.2 心率计数流程图 (10)5 系统测试 (12)5.1仿真 (12)5.2测试数据 (13)5.3实物效果图 (14)6 总结 (16)参考文献 (17)基于单片机心率计的设计摘要随着经济的飞速发展,人们的生活水平得到了极大的提升,但是工作压力也是越来越大,很多人生活不规律,又缺乏锻炼,所以疾病就容易找上门。
近几年来,患心脑血管疾病的人越来越多,这类疾病患病率和死亡率都很高,即使应用目前最先进的治疗手段也不能保证病人完全康复。
基于单片机的心跳测试仪的设计与实现
I基于单片机的心跳测试仪的设计与实现摘要现代社会随着经济的飞速发展,人们的生活也越变越好了,但是在物质生活变好的同时,人们身体也伴随着多种疾病,因此人们的身体健康也渐渐被重视了起来;而心血管疾病又是一种高频率出现的比较难以预防的一种突发性疾病。
人们总是需要去一些固定的医疗点或者医院才可以检查身体疾病,本设计就可以解决这个问题,作为一个便携式的脉搏检测器可以让人们在任意地点放轻松的完成检测,尤其是有这方面疾病的患者可以事实监控自己的身体状况。
本设计采用ARM公司的STM32F103CBT6作为主控芯片;采用ST188光电传感器作为脉搏采集器;采用OLED显示屏来显示实时心率状况;采用LM358运算放大器对采集到的微弱信号进行放大整形;采用蜂鸣器作为报警装置提醒受检者。
本设计可以使用按键作为输入来控制心率上限下限值作为报警依据,采用USB接口进行供电,只需受检者将手指放于光电传感器上就可进行检测,使用方便,操作简单相信可以为广大人群带来方便与健康。
而且该系统测量精度准确到了2次/分。
关键词:光电传感器,心率检测,STM32F103CBT6,运算放大器1 绪论本系统采用的传感器是光电传感器,在有脉搏感应的时候透光性差,没有脉搏感应时透光性比较强,通过将光信号转化为电信号,从而作为脉搏检测的凭仗。
通过对脉搏信号的检测,可以对人体的身体机能情况进行预估,脉搏检测仪通常被广泛用于医疗中心和医院,但本设计外观小巧可以在各种地方使用。
本系统在受检者检测的同时可以通过显示模块与LED灯来查看脉搏状况,当然显示屏会更直观。
键模块还可以用于设置脉冲的上限和下限时间。
测定值超过设定值范围时,驱动蜂鸣器发出警报。
根据古代到现在的中国的脉冲条件来判断人体功能信息的一部分,是一般的科学方法。
本系统以ARM公司的STM32F103CBT6为主控芯片、以ST188光电传感器作为脉搏检测器、以单片机内部定时器作为时间依据、以LCD1602为显示模块、以蜂鸣器为报警模块。
基于STM32单片机的心率计步体温显示系统设计
基于STM32单片机的心率计步体温显示系统设计设计一个基于STM32单片机的心率计步体温显示系统,主要包括以下几个方面的内容:系统功能设计、硬件设计、软件设计、系统测试等。
一、系统功能设计:1.心率测量功能:通过传感器测量用户心率,将数据显示在液晶屏上。
2.计步功能:通过加速度传感器测量用户的步数,将数据显示在液晶屏上。
3.体温测量功能:通过温度传感器测量用户体温,将数据显示在液晶屏上。
4.数据存储功能:将心率、步数、体温等数据保存在存储设备中,以便后续查询和分析。
二、硬件设计:1.主控芯片:选用STM32单片机作为主控芯片,具有强大的计算和控制能力。
2.传感器:选择专业的心率传感器、加速度传感器和温度传感器,提供准确的测量数据。
3.显示模块:采用液晶屏显示传感器测量的数据和其他相关信息。
4.存储设备:使用闪存芯片或SD卡作为数据的存储设备,保证数据的可靠性和安全性。
5.电源模块:设计适配器和电池两种供电方式,保证系统的持续工作时间。
三、软件设计:1.硬件初始化:对主控芯片和传感器进行初始化设置,配置相关参数。
2.数据采集:通过传感器采集心率、步数和体温等数据,并进行滤波处理。
3.数据显示:将采集到的数据通过液晶屏显示出来,包括心率、步数和体温等信息。
4.数据存储:将采集到的数据存储到闪存芯片或SD卡中,以便后续查询和分析。
5.数据上传:设计数据上传功能,可以通过USB接口或蓝牙等方式将数据上传到电脑或手机。
6.参数设置:设计参数设置功能,用户可以根据需要设置心率、步数和体温的阈值,系统会发出警报。
四、系统测试:1.系统功能测试:逐步测试各个功能模块,验证数据的准确性和功能的稳定性。
2.整体性能测试:对整个系统进行测试,验证系统的性能指标是否符合设计要求。
3.用户体验测试:邀请用户进行测试,收集用户的反馈意见和建议,进行优化和改进。
这个系统可以作为一款便携式的健康监测设备,可以方便用户随时随地监测自己的心率、步数和体温等健康数据,有助于用户及时发现和预防潜在的健康问题。
基于单片机的心率检测系统设计
基于单片机的心率检测系统设计心率检测系统是一种常见的医疗设备,用于监测人体的心率并提供实时反馈和数据记录。
本文将展示基于单片机的心率检测系统的设计。
1.系统概述本系统的设计目标是使用单片机来实现心率检测,并通过显示屏显示心率数据。
该系统的设计要求包括实时监测和显示心率数据,提供用户界面以便用户与系统进行交互等。
2.硬件设计系统的硬件设计包括以下主要组件:-心率传感器:用于检测用户的心率。
-单片机:作为系统的控制中心,负责数据处理和用户界面。
-显示屏:用于显示心率数据和用户界面。
-电源:为系统提供电力支持。
3.软件设计系统的软件设计包括以下主要模块:-心率检测模块:读取心率传感器的数据并进行处理,得到用户的心率数据。
-数据处理模块:将得到的心率数据进行处理,计算出平均心率和心率变化趋势等。
-用户界面模块:为用户提供交互界面,显示心率数据并接收用户的指令。
-数据存储模块:将心率数据保存在存储器中,用于后续分析和回放。
4.系统工作原理系统的工作原理如下:-用户将心率传感器与身体接触,传感器将用户的心率数据传输到单片机。
-单片机通过心率检测模块读取传感器的数据,并进行处理得到准确的心率数据。
-单片机将心率数据通过显示屏显示给用户,并提供用户界面供用户与系统进行交互。
-单片机将心率数据存储在存储器中,以便后续分析和回放。
5.系统优势和应用-优势:-高精度和可靠性:通过精准的心率传感器和数据处理算法,可以得到准确的心率数据。
-实时监测和反馈:系统可以实时监测并显示用户的心率数据,使用户能够及时了解自己的身体状况。
-数据存储和分析:系统可以将心率数据保存在存储器中,供用户和医生进行后续分析和回放。
-应用:-医疗领域:用于疾病监测和治疗过程中的心率监测。
-运动健康领域:用于跑步、健身等运动过程中的心率监测。
-日常生活:用于日常心率监测,提醒用户及时调整心态和行为。
总结:基于单片机的心率检测系统是一种功能强大且实用的医疗设备。
基于51单片机的心率计设计
基于51单片机的心率计设计心率计是一种用于测量人体心率的设备,以帮助人们掌握自己的健康状况。
本文将介绍基于51单片机的心率计的设计思路和实现方法。
首先,我们需要了解心率的原理和测量方法。
心率是指心脏在单位时间内跳动的次数,用每分钟跳动次数表示。
常见的心率测量方法包括心电图、脉搏计和光电传感器等。
在本设计中,我们将使用光电传感器来测量心率。
光电传感器是一种通过光电效应测量光强变化的传感器。
在心率测量中,光电传感器可以用于检测人体指尖的血液流动情况,从而间接地测量心脏收缩的频率和心率。
具体实现时,我们可以将光电传感器连接到51单片机的输入引脚上。
同时,我们需要使用一个合适的光源,如红外线发光二极管,以提供光线来照射到指尖。
当心脏收缩时,血液的流动速度会增加,导致光线的吸收量发生变化。
通过检测光电传感器输出的电压信号的变化,我们可以得到心率的测量结果。
在程序设计上,我们可以使用51单片机的定时器来控制心率测量的时间间隔。
通过定时器中断,在固定的时间间隔内取样光电传感器的输出,并计算心率的值。
我们可以根据光电传感器输出的模拟电压信号,使用ADC转换将其转为数字信号,然后通过一系列算法处理得到心率的结果。
此外,为了方便用户查看心率结果,我们可以连接一个LCD显示屏到51单片机的输出引脚上。
通过LCD显示屏,用户可以即时地看到自己的心率数值,并据此对自己的身体状况进行判断和调整。
总结起来,基于51单片机的心率计设计涉及硬件电路的搭建和软件程序的编写。
硬件方面,我们需要使用光电传感器、光源和LCD显示屏等元件,并将它们与51单片机连接起来。
软件方面,我们需要编写定时器中断程序、ADC转换程序和心率计算程序等。
通过这两方面的协作,我们可以实现一个简单而实用的基于51单片机的心率计。
综上所述,本设计通过光电传感器、LCD显示屏和51单片机等元件的结合,实现了一种基于51单片机的心率计。
以此为基础,我们可以进一步完善该设计,加入更多的功能和特性,以满足用户的需要。
基于单片机的心电监测系统设计
基于单片机的心电监测系统设计摘要心脏病已成为危害人类健康的主要疾病之一。
据统计,心血管疾病是威胁人类生命的主要疾病,世界上心脏病的死亡率仍占首位。
因此,对心血管疾病的诊断、治疗一直被世界各国医学界所重视,准确地进行心电信号提取,为医生提供有效的辅助分析手段是重要而有意义的课题。
随着电子技术的迅速发展,医用电子监护系统近年来己在临床诊断中逐渐应用。
针对心电信号的特点进行心电信号的采集、数据转换模块的设计与开发。
设计一种用于心电信号采集的电路,然后进行A/D转换,使得心电信号的频率达到采样要求。
人体的心电信号是一种低频率的微弱信号,由于心电信号直接取自人体,所以在心电采集的过程中不可避免会混入各种干扰信号。
为获得含有较小噪声的心电信号,需要对采集到的心电信号做降噪处理。
首先,设计心电采集模块,包括心电前置放大器、带通滤波电路、线性光耦放大电路、50 Hz陷波电路、35 Hz陷波电路及电平抬升电路,A/D 转换电路输出显示电路等。
其次,由于越来越多的研究者发现心电图中变化与大多数心血管疾病都有着紧密的联系,因此,本课题设计了心电信号检测方法,包括心电信号的采集,放大以及波形的液晶显示。
在论文当中,设计的电路能够有效的抑制了各种干扰,检测出良好的心电信号。
论文的研究工作基本上达到了设计的要求,为进一步的产品开发打下了良好的基础。
关键词:心电信号采集,降噪,A/D转换放大,电源电路,单片机ABSTRACTHeart disease has become the one of major disease,which does harm to human health.According to statistics,cardiovascular disease is the major disease of threatening human life.The death rate of heart disease still takes the first place around the world,so the diagnose and treatment for cardiovascular disease is paid much attention by the medical circle around the world.Accurately extracting ECG signal and providing effective method of auxiliary analyses is a very meaningful task.Along with quick development of electronics technique,Medical electron monitoring system has been applied to the clinical diagnosis in the recent years.ECG signal acquisition, data conversion module design and development beyond the ECG characteristics. Design a circuit for ECG acquisition, and then do the A / D conversion, make the frequency of ECG sampling requirements to achieve. ECG signal is a low frequency signal, because ECG is taken directly from the human body, so the process of ECG acquisition inevitably mixed with a variety of interference signals. In order to obtain Low noise ECG signal, we need to do noise reduction of the collected ECG signal. Now, there are many ways to do the noise reduction of the ECG signal, this article introduce how to separate noise from signal using the filter.KEYWORDS: ECG signal acquisition, noise reduction, A / D conversion, power circuit1 绪论当今心血管疾病已成为威胁人类健康和生命的主要疾病之一,心脏病的死亡率仍居首位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简易心电图仪的设计方案设计者:汪仨王彪鲁成华谭桂仁华超柱康摘要心电图是临床疾病诊断中常用的辅助手段。
心电数据采集系统是心电图检查仪的关键部件。
人体心电信号的主要频率围为0.05Hz~100Hz,幅度约为0~4mV,信号十分微弱。
由于心电信号常混杂有其它生物电信号,加之体外以50Hz工频干扰为主的电磁场的干扰,使得心电噪声背景较强,测量条件比较复杂。
为了不失真地检出有临床价值的干净心电信号,往往要求心电数据采集系统具有高精度、高稳定性、高输入阻抗、高共模抑制比、低噪声及强抗干扰能力等性能。
本设计利用89C51和A/D转换以及多路模拟开关设计了一种符合上述要求的多路心电数据采集系统。
一、方案的提出与比较1、方案的提出图1所示是一个心电数据系统的组成框图,其中心电信号由专用电极拾取后送入前置放大器初步放大,并在对各干扰信号进行一定抑制后送入带通滤波器,以滤除心电频率围以外的干扰信号。
主放大器可将滤波后的信号进一步放大到合适围后,再经50Hz陷波器滤除工频和肌电干扰,然后将符合要求的心电模拟信号由模拟输入端送入高速ADC,以进行高精度A/D转换和数据的采集存储。
方案一:采用模拟分立元件,可以产生心电波,但采用模拟元件太大,即使使用单片机电路参数也与外部元件有关,外接的电阻电容对参数影响很大,在滤波过程中会出现很大的干扰,使得输出不精确,即此电路抗干扰能力低,成本也高;而且灵活性差,不能实现各种输出的智能化。
,方案二:采用以89C51为核心,采用INA128芯片作为前置放大,运用多级运放电路来提取信号。
它在一定的程度上可以达到题目要求。
但是,共模抑制比很难达到发挥80db以上,而且精确度不高,在以后的输出中会出现很多的毛刺。
由于这些原因,我们不采用这种方法。
方案三:以89C51为中心、采用性能优良的AD620管作为前置放大,既可以提高放大倍数,也可以提高共模抵制比、电路结构简单。
然后通过A/D和D/A转换,输出给示波器,若合理的选择器件参数,可使其输出波形失真小。
所以采用此方案。
二、系统原理图以及各模块的说明1、系统原理图图一2、模块说明:①导联选择:采用CD4051来完成,用单片机来控制。
②前置放大:采用AD620来完成,前置放大是心电数据采集的关键环节,用来把取样的信号进行放大,具有很高的共模抑制比和1~1000倍信号放大。
③高/低通滤波电路:采用LM324作为核心,用大小相当的电阻电容构成滤波电路。
④50Hz陷波电路:采用LM324作为核心,用大小相当的电阻电容构成陷波电路,电路简单,容易实现。
⑤波形A/D采集存储模块:以单片机为核心,利用ADC0809,以2.5KHz 的速率对输入信号进行采集。
由于89C51的存储空间不够,我们扩展了两片RAM,使存储深度达到了16KB,即每一个通道存储8KB。
⑥单片机控制模块:系统的主控制器,控制其他协调工作。
三、系统电路与理论数据(1)导联通道的选择方案一:两个导联均采用两个相同的通道,即采用两个仪表放大器INA128、两个滤波通道、两个50Hz陷波通道以及两个主放大电路、两个电平移位电路,然后通89C51来控制ADC0809来选择通道来进行处理。
由于这种方法的思路非常清晰,各通道之间干扰小,但总体来说由于采用了两个通道,耗资大,所以本设计不采用此方案。
方案二:采用模拟开关4051,在两个导联通道均通过仪表放大器以后再通过4051进行通道的选择,然后送到后级进行处理。
在这里为了保证每切换一次89C51能够采集存储完一次心电信号,我们用89C51来同时控制切换率和采样率,这样就切保了同步,同时也保证了心电信号不会被漏存少存。
方案三:在前置放大前级采用类比多工器ADG609,考虑到一般生理信号都属于差动式的,而ADG609的类比信号的输入围介于Vss与Vdd之间,且有四个切换对,可以很轻易地经由89C51的设定来更改切换的频率,除此之外还具有快速切颀时间(Ton75ns max*Toff45ns max)、低启动阻抗、低消耗功率,以上这些特性都符合此设计的要求。
ADG609的真值表如下:(2)前置放大部分方案一:采用LM324与NE5534等低噪声,具有一定精度的普通运算放大器要构建放大电路,但从体表采集到的信号除了人体的心脏产生的电信号以外,还包含肌电,呼吸以及50Hz工频信号等带来的干扰.其中,工频干扰收起的共模信号可能远大于心电信号,从而影响系统对心电信号的分析采样,因此,共模抑制比是衡量心电图仪情能的重要标准之一.本题要求运算放大器的共模抑制比不小于80db.上述两种运算放大器的共模抑制能力虽然能达到这个要求,但有这样的单个运放构成的电路难以达到较高的共模抑制比,故不采取此方案。
方案二:心电信号为一差动式信号并且小于4mV,通常信号会先经过第一级的适当放大后,再经过高低通滤波器,采用分级放大的原因是为了避免直流偏压经过放大后,造成后级的电饱和,而使放大后的信号产生失真.因此为了避免放大器饱和,在这一级的放大增益应该小于30.一般说来作为前级放大单元必须具有高输入阻抗.高共模斥拒比等基本特性,在这里我们采用了低功耗,高精度的仪表放大器-----AD620, AD620输入端采用超β处理技术,具有低输入偏置电流、低噪音、高精度、较高建立时间、低功耗等特性,共模抑制比可达130dB,非常适合作为医疗仪器前置放大器使用。
其增益可调(围约1~1000倍),并可由公式G=1+(51+51)/15=7.2来确定。
为防止前置放大器工作于饱区和或截止区,其增益不能过大。
试验表明:10倍左右效果较好。
因此,我们采用了此方案。
方案三:采用仪表放大器INA128.其具有良好的共模输入抑制能力,共模抑制比大于120DB,而且只需外接一个电阻就可调节增益..INA128对直流电源的要求低,甚至只需 2.25V的直流电源电压就要表现出色的功能特性,静态电流只有700uA,功耗低,但INA128的价格昂贵,因此我们不采用此方案。
(3)心电信号处理部分心电信号属于低频小信号,易受干扰,因此必须对所采集的信号进行高通,低通,陷波的处理.因此我们将心电信号处理部分的方案主要放在滤波部分和陷波部分。
1、滤波部分如图3所示,带通滤波由双运放集成电路LM324构成。
LM324具有高精度、低偏置、低功耗等特性,片集成了两个运放,可灵活组成各类放大和滤波电路。
由于心电信号频带主要集中在0.05~100Hz左右,频带较宽,为此,采用LM324的两个运放分别设计二阶压控有源高通和低通滤波器并组合成带通滤波。
其中,U6A、C6、C7、R8、R9构成高通滤波器,为不损失心电信号的低频成分,其截止频率设计为f=1/2π9876R R C C =0.05Hz。
U6B、R10、R11、C8、C9构成低通滤波器,同样,为不损失其高频成分,截止频率设计为f=1/2π111098R R C C =500Hz放大电路由LM324、R12、R13构成。
考虑到心电信号幅度约为0~4mV,而A/D转换输入信号要求1V左右,因此,整个信号电路的放大倍数需1000倍左右。
而前置放大约10倍左右,因此本级放大倍数设计为100倍左右,即G=1+R12/R13≈100。
其中低通滤波又分有源滤波和数字滤波。
图三为低通滤波的幅频特性.图三有源滤波方案:①一阶滤波。
其结构相对简单,且采用了集成运算放大器,它具有高输入阻抗和低输出阻抗,同时由于具有缓冲作用效果比无源滤波器好,幅频特性曲线可达到-20db/10倍频,但要想实现更明显的滤波效果。
此方案仍未满足要求。
②二级滤波采有类似的结构,但幅频特性曲线能达到-40db/10倍频程,滤波效果比一阶明显。
③二级以上的滤波。
它是由多个一阶和二阶滤波器组成的,效果自然要比上述两种滤波好,但其电路比一阶和二阶复杂,所需电阻电容较多,而电阻电容的实际值很难与设计要求精确匹配,有时为了匹配需要好几个电阻的串并联,同时由于不能避免环境因素对电阻电容的影响,因此用的电阻电容越多,误差就越大,导致实际的滤波效果与设计时所期望的存在一定的差距。
本设计只对截止频率的精确度有要求,而对系的统的频域衰减率未做特别的要求,因此可以不必选择高阶滤波方案。
数字滤波方案:数字滤波的优点是参数可调节性好,可以通过更改程序中的参数对截止频率进行精确的调节,由于参数不会随温度等环境因素改变,从而精确度得到保证。
因此我们选择了此方案。
图四2、陷波处理部分工频干扰是心电信号的主要干扰,虽然前置放大电路对共模干扰具有较强的抑制作用,但有部分工频干扰是以差模信号方式进入电路的,且频率处于心电信号的频带之,加上电极和输入回路不稳定等因素,前级电路输出的心电信号仍存在较强的工频干扰,所以必须专门滤除。
方案一:采用自适应相关模板法。
利用工频干扰的相关特性,从原始输入信号中得到工频干扰的模板,进而原始输入信号中减去工频干扰的模板,达到滤波干扰的目的。
但这种方法算法虽然简单但程序设计比较复杂,所以不采用此方案。
方案二:采用模拟双T陷波。
通过图五幅频特性可知,对于W=W0的其他频率信号,通过双T网络具有较强的负反馈,因为双T网络具有良好的滤波特性,在仪表的电源噪声滤波电路中获得了较为广泛的应用,又因为双T网络具有比RC串、并联网络更好的选频特性,故我们选用了此方案。
图五3、电平移位电路经过一系列信号调理后,陷波输出的心电信号为交变信号,而本设计中ADC0809转换输入电压围为0~5V,因此,在送入ADC之前还需进行电平抬升,在图四中,电平抬升部分由U11、R42、R43、R44构成。
图六通过调节100K的电位器,从而可以调节输出电压的围。
(四)、单片机系统的设计1、由ADC0809与89C51构成的数据采集存储系统信号采集部分: 前级经过处理放大的模拟信号通过ADC0809处理后转换成数字信号, ADC0809的转换时钟脉冲为200us, 为了有效的转换,ADC0809的start启动信号设置为100us的时钟脉冲,启动方式采用定时器溢出和软件写ADBUSY位启动相结合的方式,输出通道是采用软件分时控制其输出通道。
输出后的数字信号直接送往单片机处理,当存储键有效时,单片机就会把输入信号存储起来,存储采用顺序存储方式,即先存第一通道再存第二通道,为了保证每个通道不会少存或重存,我们用单片机来不断查询ADC的转换结束线EOC,即第一个通道的数据转换完以后,EOC线为高电平,然后存储到第一个通道的存储区,同时切换到第二个通道的A/D转换,存储方法与第一个道通道一样。
为了回放的时候能看到比较完整的心电图形,存储周期(每一个通道)设置为8KB*400us=3.2s,因此要占用较大的数据存储空间,显然单片机部的数据存储空间是无法满足要求的,本系统采用的是外扩两片8KB的数据存储芯片以达到设计要求。