多种方法解决鸡兔同笼问题

合集下载

鸡兔同笼的解决方法

鸡兔同笼的解决方法

鸡兔同笼的解决方法鸡兔同笼问题,又称为鸡兔问题,是数理逻辑中常见的问题之一、问题描述为:在一个笼子里面有若干只鸡和兔,一共有35个头和94只脚,问笼子里有几只鸡和几只兔?这个问题可以通过代数方法、穷举法或逻辑推理等多种方法来解决。

下面将分别介绍这些不同的解决方法。

1.代数方法:假设鸡的数量为x,兔的数量为y。

根据问题的条件,可以建立如下方程组:x+y=35--(1)2x+4y=94--(2)通过解这个方程组,可以求得x和y的值。

将方程(1)乘以2,然后与方程(2)相减,得到:2x+2y-2x-4y=70-94-2y=-24y=12将y的值代入方程(1),可以得到x的值:x+12=35x=23所以,笼子里有23只鸡和12只兔。

2.穷举法:由于题目没有给出鸡和兔的数量的上限,可以通过穷举法逐一尝试笼子里的不同组合。

假设鸡的数量为x,兔的数量为y。

则可以制定以下穷举策略:-鸡的数量不可能超过35,所以可以循环遍历0到35之间的所有可能值,令x等于当前循环值。

-根据已知条件,计算出兔的数量y。

-检查当前组合是否满足总头数和总脚数的条件。

-如果满足条件,则输出当前组合。

代码示例(使用Python语言):```pythondef solve(:for x in range(36):y=35-xif 2*x + 4*y == 94:print("鸡的数量:", x, "兔的数量:", y)solve```运行程序后,可以得到鸡的数量为23,兔的数量为12,与代数方法得到的结果一致。

3.逻辑推理:通过问题中的条件,可以进行一些逻辑推理,来解决鸡兔同笼问题。

根据条件可知,鸡和兔的总头数为35,而每只鸡和兔的头数都是1,所以必然鸡和兔的总数量小于或等于35但是根据每只鸡有两只脚,每只兔有四只脚的条件,鸡和兔的总脚数为94,所以每只鸡或兔的数量不可能超过47综上所述,鸡和兔的数量范围应该在0到35之间。

鸡兔同笼五种解题方法

鸡兔同笼五种解题方法

鸡兔同笼五种解题方法
鸡兔同笼,又称孰胜孰劣问题,是一个著名的古老问题,也可以用来考察学生的数学思维能力。

它被认为是一个古老又怪异的数学题目,有几种不同的解法,下面就详细介绍五种解题方法:
一、直接算法:
这是最常用的解题方法,即直接找出兔子与鸡的个数,用数学方法计算出来最精准的答案。

需要用到兔子加鸡等于总数,鸡的脚数也等于总数的概念。

二、迭代算法:
迭代算法是一种重复应用重复运算结果,以解决问题的解法,也就是说,先根据问题给出一个初始猜想,然后根据当前猜想推出下一个猜想,以此类推,直至找出最优解。

三、动态规划法:
动态规划法是根据问题求解步骤,它的特点是分析问题求解过程,建立模型,然后用模型解决问题,通过建立正确的递推关系,把复杂问题分解成一个个小问题,从而达到解决复杂问题的目的。

四、回溯法:
通过后向查找的方式,不断尝试可行的解决方案,通过回溯可以快速求出满足一定要求的解,但是这种方法如果不能提前给出限制条件,就会产生大量的岔路,影响解题效率。

五、枚举法:
枚举法的思想是将问题的所有可能情况一一枚举出来,然后判断
哪个解符合要求,从而找出最佳解。

枚举法的优点是简单易行,但是由于枚举出来的可能解太多,难以确定哪个解是最佳解,因此需要对可能的解进行优化,以节省解题时间。

鸡兔同笼13种解题方法

鸡兔同笼13种解题方法

鸡兔同笼13种解题方法鸡兔同笼问题是一类经典的数学问题,常见于初中数学题目中。

这个问题的基本思路是通过解方程组来求解鸡和兔子的数量。

在本文中,将介绍13种不同的解题方法,包括逆向思维、代数法、图形法等多种方法,帮助读者更好地理解和掌握这一问题。

一、逆向思维法逆向思维法是一种比较简单易懂的方法,其基本思路是先确定总数量,再确定其中一个物品的数量,最后计算出另一个物品的数量。

1. 假设笼子里有13只动物,则鸡和兔子的总数量为13。

2. 假设有x只鸡,则有13-x只兔子。

3. 根据题目所给条件“总腿数为32”,得到方程式2x+4(13-x)=32。

4. 解方程得到x=6,则笼子里有6只鸡和7只兔子。

二、代数法代数法是一种常用的解题方法,其基本思路是通过设定未知量来建立方程组,并通过求解方程组来得到答案。

1. 设鸡和兔子的数量分别为x和y,则有方程组:x+y=132x+4y=322. 通过求解方程组得到x=6,y=7,则笼子里有6只鸡和7只兔子。

三、图形法图形法是一种直观易懂的方法,其基本思路是通过画图来解决问题。

1. 在平面直角坐标系中,设鸡和兔子的数量分别为x和y,则可以用一条直线表示鸡和兔子的总数量为13。

2. 根据题目所给条件“总腿数为32”,可以得到另一条直线表示鸡和兔子的总腿数为32。

3. 通过求解两条直线的交点,即可得到笼子里有6只鸡和7只兔子。

四、枚举法枚举法是一种简单易行的方法,其基本思路是通过列举所有可能情况来找到符合条件的答案。

1. 从1到12枚举鸡的数量x。

2. 根据题目所给条件“总腿数为32”,计算出相应的兔子数量y。

3. 如果x+y=13,则找到符合条件的答案。

五、分段函数法分段函数法是一种利用函数性质解题的方法,其基本思路是将问题拆分成多个部分,并建立相应的函数关系式来求解问题。

1. 假设笼子里有x只鸡,则有13-x只兔子。

2. 根据题目所给条件“总腿数为32”,可以得到下列函数关系式: f(x)=2x+4(13-x)3. 通过求解f(x)=32的解,即可得到笼子里有6只鸡和7只兔子。

鸡兔同笼的三种方法

鸡兔同笼的三种方法

鸡兔同笼的三种方法鸡兔同笼问题的原型是已知鸡和兔子这两类动物的头、脚的总数量,求鸡和兔子分别多少只。

在考试中,题干内容往往会有所变化。

鸡兔同笼解法方法一:普通方程法设邮递员派送平邮X件,则派送的EMS有(14-X)件,根据补助构建等量关系,可得:7X+10(14-X)=119,解得X=7,选择A选项。

普通方程法是最容易想到的方法,对于思维的要求度不高,只需要设出未知数,列好等式求解即可。

方法二:假设法假设邮递员当天派送的全部是EMS,则可得的补助为10×14=140元。

然而实际上邮递员的补助只有119元,差值为140-119=21元。

因此平邮有21÷(10-7)=7件。

假设法是解决鸡兔同笼问题最常用的方法,跳过了普通方程设未知数、列方程等步骤,直接进入计算求解阶段,解题效果最明显。

在假设时,要根据题干的问法选择合适的假设条件来求解。

方法三:不定方程法设平邮X件,EMS 有Y件,则7X+10Y=119,由于7和119都能被7整除,根据整除特性可知Y=7,因此X=7(也可以通过尾数法判断7X的尾数为9,因此X=7)。

不定方程法只用了题干中的部分条件,结合选项就能快速判断求解了。

运用此方法对题目选项以及具体数值的要求较高,特别是对不定方程的解法要非常熟练才能快速判断求解。

数学名题:鸡兔同笼大约在1500年前,《孙子算经》中就记载了这个有趣的问题。

书中是这样叙述的:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。

问笼中各有多少只鸡和兔?这一问题的本质是一种二元方程。

如果教学方法得当,可以让小学生初步地理解未知数和方程等概念,并锻炼从应用问题中抽象出数的能力。

一般在小学四到六年级时,配合一元一次方程等内容教授。

同一本书中还有一道变题:今有兽,六首四足;禽,四首二足,上有七十六首,下有四十六足。

鸡兔同笼问题的三种解法

鸡兔同笼问题的三种解法

鸡兔同笼问题的三种解法
一、方法与技巧
解决鸡兔同笼问题主要有三个解题方法:方程法、十字交叉法和假设法..
1方程法:通过一元一次方程或者二元一次方程组求解;
2十字交叉图法:
二、鸡兔同笼问题举例
例:现有鸡兔同笼;已知鸡兔数头35;数脚94;求鸡和兔的个数..鸡兔同笼原型方程法:设鸡的个数为x;则兔的个数为35-x;则有2x435-x=94;解得x=23..故有鸡23只;兔12只..
三、鸡兔同笼解题技巧的运用
例:某地劳动部门租用甲、乙两个教室开展农村实用人才培训..两教室均有5排座位;甲教室每排可坐10人;乙教室每排可坐9人..两教室当月共举办该培训27次;每次培训均座无虚席;当月共培训1290人次..问甲教室当月共举办了多少次这项培训
A.8
B.10
C.12
D.15
答案D
方程法甲教室一次可坐10×5=50人;乙教室一次可坐9×5=45人;设甲教室举办了x次培训;则有:50x4527-x=1290;解得x=15..故选D..
公式法根据题意;甲教室一次可坐10×5=50人;乙教室一次可坐9×5=45人;则由鸡兔同笼公式可知:甲教室举办的培训次数=。

“鸡兔同笼”问题必备的13种讲解方法

“鸡兔同笼”问题必备的13种讲解方法

“鸡兔同笼”例题13种讲解方法题目:现有一笼子,里面有鸡和兔子若干只,数一数,共有头14个,腿38条,球鸡和兔子各有多少只?(请用尽量多的方法解答)『方法一:人见人爱的列表法』如果二年级小朋友做这道题,可以用列表法!直观、易理解,还不容易出错~好啦,我们来看一下!9 ... 鸡0 3 5 7兔14 11 9 7 5 ...腿56 50 46 42 38 ...根据上面的表格,我们可以看出,鸡为9只,兔子为5只。

我们在列表的时候不要按顺序列,否则做题的速度会很慢,比如说列完鸡为0只,兔子为14只,发现腿的数量56条,和实际38条相差较大,那么下一个你可以跳过鸡的数量为2只这种情况,直接列鸡的数量为3只,这样做速度会快一些哦!『方法二:最快乐的画图法』画图可以让数学变得形象化,而且经常画图还有助于创造力的培养!假设14只全部是鸡,先把鸡给画好。

14×2=28条,差38-28=10条,而每一只鸡补2条腿就变成兔子,需要把5只鸡每只补2条腿,所以有5只兔子,14-5=9只鸡。

『方法三:最酷的金鸡独立法』分析:让每只鸡都一只脚站立着,每只兔都用两只后脚站立着,那么地上的总脚数只是原来的一半,即19只脚。

鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,因此从19里减去头数14,剩下来的就是兔的头数19-14=5只,鸡有14-5=9只。

『方法四:最逗的吹哨法』分析:假设鸡和兔接受过特种部队训练,吹一声哨,它们抬起一只脚,还有38-14=24只腿在站着,再吹一声哨,它们又抬起一只脚,这时鸡都一屁股坐地上了,兔子还有两只脚立着。

这时还有24-14=10只腿在站着,而这10只腿全部是兔子的,所以兔子有10÷2=5只,鸡有14-5=9只。

(惊现跑男中包贝尔的抬脚法有木有!)『方法五:最常用的假设法』分析:假设全部是鸡,则有14×2=28条腿,比实际少38-28=10只,一只鸡变成一只兔子腿增加2条,10÷2=5只,所以需要5只鸡变成兔子,即兔子为5只,鸡为14-5=9只。

鸡兔同笼问题的13种解决方法

鸡兔同笼问题的13种解决方法

鸡兔同笼问题的13种解决方法鸡兔同笼问题是一道经典的数学问题,许多人在学习数学的初级阶段都会遇到。

此问题的目标是根据给定的头数和脚数,计算出鸡和兔的数量。

在本文中,我们将介绍鸡兔同笼问题的13种解决方法,从简单到复杂,帮助你更全面地理解这个问题。

方法一:穷举法最简单的方法是使用穷举法来解决鸡兔同笼问题。

我们从给定的头数和脚数开始,逐个尝试鸡和兔的组合数量,直到找到满足条件的解。

这种方法的缺点是计算量大,尤其是当给定的头数和脚数较大时。

方法二:代数方程法我们可以将鸡和兔的数量表示为变量,使用代数方程组来解决鸡兔同笼问题。

假设鸡的数量为x,兔的数量为y,根据头数和脚数的关系可以得到两个方程:x + y = 头数,2x + 4y = 脚数。

通过解这个方程组,我们可以得到鸡和兔的具体数量。

方法三:二次方程法如果给定的头数和脚数是完全平方数,我们可以使用二次方程来解决鸡兔同笼问题。

首先,我们假设鸡的数量为x,兔的数量为y,根据头数和脚数的关系可以得到两个方程:x + y = 头数,2x + 4y = 脚数。

将第一个方程代入第二个方程,得到一个只包含鸡或兔数量的二次方程。

通过解这个二次方程,我们可以得到鸡和兔的具体数量。

方法四:列方程法我们可以通过列方程的方法来解决鸡兔同笼问题。

假设鸡的数量为x,兔的数量为y,根据头数和脚数的关系可以得到两个方程:x + y = 头数,2x + 4y = 脚数。

通过解这个方程组,我们可以得到鸡和兔的具体数量。

方法五:二进制法我们可以使用二进制法来解决鸡兔同笼问题。

将鸡和兔的数量用二进制表示,每个头对应一个二进制位,每个脚对应一个二进制位。

通过遍历所有可能的二进制组合,找到满足条件的解。

这种方法适用于给定的头数和脚数较小的情况。

方法六:因式分解法如果给定的头数和脚数是正整数且具有公因式,我们可以使用因式分解法来解决鸡兔同笼问题。

将头数和脚数分别进行因式分解,找到它们的公因式,然后通过计算得到鸡和兔的具体数量。

多种方法解鸡兔同笼问题

多种方法解鸡兔同笼问题

【题目】鸡与兔共有100只,兔比鸡多190只脚,问鸡和兔各有多少只?解法一:画图。

首先画100个圆代表一共有100个头,再给每个圆添上两个竖线,表示每个头上有2条腿,这时候把所有的动物都看作是鸡,此时兔子比鸡少了200条腿,和实际相差200+190=390条。

因此要把鸡换成兔子,于是再把每只鸡添上2条腿就变成了一只兔子。

每换1次,鸡和兔子腿的差就减少6条,需换出390÷6=65(只)兔子才能符合题意,鸡就只有100-65=35(只)。

由于题里数字太大,这种方式画起来比较麻烦。

解法二:列表。

先假设鸡和兔子各有50只,再算出它们腿数的差,然后逐步调整,直到符合题意为止。

说明兔子有65只,鸡有35只。

解法三:假设都是兔子,兔子的脚就比鸡多100×4=400(只),与实际相差400-190=210(只),拿出1只兔子换成1只鸡,脚的只数差就减少4+2=6(只),就要有210÷6=35(只)兔子换成了鸡,兔子只能有100-35=65(只)。

解法四:假设都是鸡,鸡的脚数比兔子多2×100=200(只),与实际相差了200+190=390(只),拿出1只鸡换成1只兔子,则脚的差减少4+2=6(只),就要有390÷6=65(只)鸡换成了兔子,鸡只能是100-65=35(只)。

解法五:还可以列方程解答,设鸡有x 只,则兔子有(100-x )只。

4(100-x )-2x =190x =35
则兔子就有100-35=65(只)。

◎徐洪梅
兔只数
鸡只数
兔腿比鸡腿多的条数5050100554513060401606535190。

鸡兔同笼的五种解法

鸡兔同笼的五种解法

鸡兔同笼的五种解法鸡兔同笼,是一道经典的数学问题。

问题描述为:在一个笼子里,有若干只鸡和若干只兔子,它们的头和脚数加起来共有多少个?这个问题可以通过数学方程式来解决,但也可以通过逻辑推理来得到五种解法。

第一种解法:画图法我们可以画一张笼子的图,用圆圈代表鸡,用方块代表兔子,然后根据题目中给出的头和脚数,来确定圆圈和方块的数量。

最后,将圆圈和方块的数量相加,就能得到答案。

第二种解法:代数法我们可以用代数的方法来解决这个问题。

设鸡的数量为x,兔子的数量为y,根据题目中给出的头和脚数,我们可以得到以下方程组:x + y = 头数2x + 4y = 脚数通过解方程组,就能得到鸡和兔子的数量,从而得到答案。

第三种解法:矩阵法我们可以用矩阵的方法来解决这个问题。

设鸡和兔子的数量构成一个2x1的矩阵,头和脚数构成一个2x2的矩阵,通过矩阵运算,就能得到鸡和兔子的数量,从而得到答案。

第四种解法:枚举法我们可以通过枚举的方法来解决这个问题。

从鸡和兔子数量都是0开始,逐步增加鸡或兔子的数量,直到头和脚数符合题目中给出的条件为止。

这种方法虽然比较麻烦,但可以帮助我们更好地理解问题的本质。

第五种解法:数学归纳法我们可以用数学归纳法来解决这个问题。

假设我们已经知道了笼子里有n只鸡和兔子时的头和脚数,那么当笼子里再加入一只鸡和一只兔子时,头和脚数的变化可以通过数学公式来计算。

通过数学归纳,我们可以得到笼子里有任意数量的鸡和兔子时的头和脚数,从而得到答案。

以上五种解法,都可以用来解决鸡兔同笼的问题。

不同的解法,可以帮助我们更全面地理解这个问题,也可以帮助我们更好地锻炼逻辑思维能力。

在学习数学时,我们应该尝试不同的方法,从不同的角度来理解问题,这样才能真正掌握数学的精髓。

鸡兔同笼的四种方法

鸡兔同笼的四种方法

鸡兔同笼问题是一种经典的数学问题,通常涉及两个未知数,需要通过建立方程组来解决。

以下是解决鸡兔同笼问题的四种常见方法:方法一:代数法
1. 设鸡的数量为x,兔的数量为y。

2. 根据题目条件,列出两个方程,例如:x + y = 总数,2x + 4y = 总腿数。

3. 解这个方程组,得到x和y的值。

方法二:列表法
1. 列出所有可能的鸡和兔的组合,使得总数和总腿数满足题目条件。

2. 找到符合两个条件的唯一组合,即为答案。

方法三:画图法
1. 在坐标系中画出两条直线,分别代表鸡和兔的数量。

2. 通过交点找到符合题目条件的点,这个点的坐标就是鸡和兔的数量。

方法四:方程组法
1. 使用两个未知数建立方程组,如x + y = a和2x + 4y = b。

2. 解这个方程组,得到x和y的值。

以上四种方法中,代数法和方程组法是较为常用的,因为它们可以直接通过数学运算得到答案。

列表法和画图法更直观,但在处理较大数值时较为繁琐。

在实际应用中,可以根据具体情况选择合适的方法。

鸡兔同笼的9种解法

鸡兔同笼的9种解法

鸡兔同笼是我国古代著名趣题之一,记载于《孙子算经》之中。

鸡兔同笼问题,是小学奥数的常见题型。

是指已知鸡与兔的总头数和总足数,求鸡和兔各是多少只的应用题。

1、列表法。

2、画图法,画图法也是低年级小朋友很好接受的一个方法,呵呵,画图还可以让数学变得形象化,而且经常画图还有助于创造力的培养!假设14只全部是鸡,先把鸡给画好。

3、金鸡独立法,让每只鸡都一只脚站立着,每只兔都用两只后脚站立着,那么地上的总脚数只是原来的一半,即19只脚。

鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍。

4、吹哨法。

5、假设法,假设全部是鸡。

6、假设法,假设全部是兔子。

7、特异功能法,鸡有2条腿,比兔子少2条腿,这不公平,但是鸡有2只翅膀,兔子却没有。

假设鸡有特级功能,把两只翅膀变成2条腿,那么鸡也有4条腿。

8、特异功能法,假设每只鸡兔都具有“特异功能”,鸡飞起来,兔立起来,这时立在地上的脚全是兔的。

9、特异功能法,假设孙悟空变成兔子,说“变”,每只兔子又长出一个头来,然后对妖精说“将它劈开”,变成“一头两脚”的两只“半兔”,半兔与鸡都是两只脚。

10、砍足法,假如把每只砍掉1只脚、每只兔砍掉3只脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”。

基本概念:鸡饭同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来:基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲•样):②假设后,发生了和题目条件不同的差,找出这个差是多少:③每个事物造成的差是固定的,从而找出出现这个差的原因:④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数X总头数一总脚数)子(兔脚数一鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数X总头数)子(兔脚数一鸡脚数)关犍问题:找出总量的差与单位量的差。

解决鸡兔同笼一般用“假设法”来求解。

即假设全是鸡或是全是兔,然后根据出现的足数差,推算出鸡或兔的只数。

鸡兔同笼的五种方法

鸡兔同笼的五种方法

鸡兔同笼的五种方法
鸡兔同笼问题是一个经典的数学逻辑问题,通常涉及到两种动物的数量及其腿数,需要通过解方程组来求解。

以下是五种解决鸡兔同笼问题的方法:
1. 列方程法:设鸡和兔的数量分别为x和y,根据题目所给出的条件列方程组,例如2x+4y=20和x+y=8,然后解方程求出x和y 的值。

2. 矩阵法:将方程组转化成矩阵形式,然后使用矩阵运算求解,这种方法适用于多元线性方程组的求解。

3. 图像法:在平面直角坐标系中画出鸡和兔的数量的图像,然后根据题目所给的条件确定交点的位置,从而求出鸡和兔的数量。

4. 枚举法:根据题目所给的总数量和总腿数,枚举不同的鸡和兔的组合方式,判断哪一种组合方式符合条件。

5. 巧用因式分解法:根据题目所给的总数量和总腿数,可以巧妙地利用因式分解的方法推导出鸡和兔的数量,这种方法适用于特定情况下的问题。

以上是解决鸡兔同笼问题的五种方法,不同的方法适用于不同的情况和水平的考生,可以选择最适合自己的方法进行求解。

鸡兔同笼问题的三种解法

鸡兔同笼问题的三种解法

鸡兔同笼问题的三种解

文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]
鸡兔同笼问题的三种解法
一、方法与技巧
解决鸡兔同笼问题主要有三个解题方法:方程法、十字交叉法和假设法。

(1)方程法:通过一元一次方程或者二元一次方程组求解;
(2)十字交叉图法:
二、鸡兔同笼问题举例
例:现有鸡兔同笼,已知鸡兔数头35,数脚94,求鸡和兔的个数。

(鸡兔同笼原型)
方程法:设鸡的个数为x,则兔的个数为35-x,则有2x4(35-x)=94,解得
x=23。

故有鸡23只,兔12只。

三、鸡兔同笼解题技巧的运用
例:某地劳动部门租用甲、乙两个教室开展农村实用人才培训。

两教室均有5排座位,甲教室每排可坐10人,乙教室每排可坐9人。

两教室当月共举办该培训27次,每次培训均座无虚席,当月共培训1290人次。

问甲教室当月共举办了多少次这项培训
A.8
B.10
C.12
D.15
【答案】D
【方程法】甲教室一次可坐10×5=50人,乙教室一次可坐9×5=45人,设甲教室举办了x次培训,则有:50x45(27-x)=1290,解得x=15。

故选D。

【公式法】根据题意,甲教室一次可坐10×5=50人,乙教室一次可坐
9×5=45人,则由鸡兔同笼公式可知:甲教室举办的培训次数=。

“鸡兔同笼问题”的4种理解、解答方法

“鸡兔同笼问题”的4种理解、解答方法

“鸡兔同笼问题”的4种理解方法题目:有若干只鸡和兔在同个笼子里,从上面数,有三十五个头;从下面数,有九十四只脚。

求笼中各有几只鸡和兔?01♪解法1站队法让所有的鸡和兔子都列队站好,鸡和兔子都听哨子指挥。

那么,吹一声哨子让所有动物抬起一只脚,笼中站立的脚:94-35=59(只)。

那么再吹一声哨子,然后再抬起一只脚,这时候鸡两只脚都抬起来就一屁股坐地上了,只剩下用两只脚站立的兔子,站立脚:59-35=24(只)兔:24÷2=12(只);鸡:35-12=23(只)02♪解法2松绑法由于兔子的脚比鸡的脚多出了两个,因此把兔子的两只前脚用绳子捆起来,看作是一只脚,两只后脚也用绳子捆起来,看作是一只脚。

那么,兔子就成了2只脚。

则捆绑后鸡脚和兔脚的总数:35×2=70(只)比题中所说的94只要少:94-70=24(只)。

现在,我们松开一只兔子脚上的绳子,总的脚数就会增加2只,不断地一个一个地松开绳子,总的脚数则不断地增加2,2,2,2……,一直继续下去,直至增加24,因此兔子数:24÷2=12(只)从而鸡数:35-12=23(只)03♪解法3假设替换法实际上替代法的做题步骤跟上述松绑法相似,只不过是换种方式进行理解。

假设笼子里全是鸡,则应有脚70只。

而实际上多出的部分就是兔子替换了鸡所形成。

每一只兔子替代鸡,则增加每只兔脚减去每只鸡脚的数量。

兔子数=(实际脚数-每只鸡脚数*鸡兔总数)/(每只兔脚数-每只鸡脚数)与前相似,假设笼子里全是兔,则应有脚120只。

而实际上不足的部分就是鸡替换了兔子所形成。

每一只鸡替代兔子,则减少每只兔脚减去每只鸡脚的数量,即2只。

将上述数值代入方法(1)可知,兔子数为12只,再求出鸡数为23只。

将上述数值代入方法(2)可知,鸡数为23只,再求出兔子数为12只。

由计算值可知,两种替代方法得出的答案完全一致,只是顺序不同。

由替代法的顺序不同可知,求鸡设兔,求兔设鸡,可以根据题目问题进行假设以减少计算步骤。

鸡兔同笼的五种解法

鸡兔同笼的五种解法

鸡兔同笼的五种解法鸡兔同笼问题是一个经典的数学问题。

在这个问题里,给定了笼子里的动物的总数和腿的总数,需要求出鸡和兔的数量。

这个问题可以用多种方法解决。

在这里,我们将介绍五种解题方法。

方法一:列方程假设鸡的数量是x,兔的数量是y,根据题意,我们可以得到以下方程组:x + y = 总数2x + 4y = 腿的总数根据这个方程组,我们可以解出x和y的值,从而得到鸡和兔的数量。

方法二:画图法我们可以画出一张鸡和兔的图,用数字表示每只鸡和兔的数量和腿的数量,然后用这张图来解题。

这种方法比较直观,适合孩子或初学者使用。

方法三:数学归纳法我们可以观察鸡兔同笼问题的特征,发现每增加一只动物,会增加两条腿。

因此,我们可以将问题转化为:有n 个动物,它们共有m条腿,求鸡和兔的数量。

然后使用数学归纳法来解决这个问题。

方法四:递归算法我们可以将问题分解为小问题,再利用递归算法来解决。

具体地,假设有n只动物,其中m只是鸡,n-m只是兔。

如果这些动物共有k条腿,我们可以先考虑只有一只动物的情况,然后逐步增加动物的数量,直到n只为止。

方法五:运用数学知识我们可以运用一些数学知识,如组合数学和二元一次方程等,来解决这个问题。

具体地,我们可以用组合数学的方法计算出在给定腿的数量下,鸡的数量和兔的数量的所有可能组合,然后用二元一次方程来验证哪种组合符合题意。

以上五种方法各有特点。

对于初学者来说,列方程和画图法比较易懂;对于高中学生或数学专业学生来说,数学归纳法和递归算法可能更加适合;而对于数学专业研究生或数学爱好者来说,运用数学知识的方法可能更为有趣和有挑战性。

不管采用哪种方法,解决鸡兔同笼问题都可以让人在玩乐中学习,锻炼数学思维能力。

鸡兔同笼13种解题方法

鸡兔同笼13种解题方法

鸡兔同笼13种解题方法1. 题目分析鸡兔同笼问题是一个经典的数学问题,常用于培养逻辑思维和解决实际问题的能力。

题目要求在已知鸡和兔的总数量以及总腿数的情况下,计算出鸡和兔的具体数量。

2. 解题思路根据题目要求,我们可以得到以下两个方程:•鸡 + 兔 = 总数量• 2 * 鸡 + 4 * 兔 = 总腿数通过解这个二元一次方程组,可以得到鸡和兔的具体数量。

3. 解题方法方法一:穷举法穷举法是最简单直观的解题方法之一。

我们可以从0开始依次尝试每种可能性,直到找到符合条件的答案为止。

def solve_chicken_rabbit(total_number, total_legs):for chicken in range(total_number + 1):rabbit = total_number - chickenif 2 * chicken + 4 * rabbit == total_legs:return chicken, rabbitreturn Nonetotal_number = 13total_legs = 32result = solve_chicken_rabbit(total_number, total_legs)if result:print("鸡的数量为", result[0])print("兔的数量为", result[1])else:print("无解")方法二:代数法代数法是通过代数运算解题的方法。

我们可以将鸡和兔的数量表示为变量,并根据已知条件列出方程,然后求解方程得到答案。

def solve_chicken_rabbit(total_number, total_legs):from sympy import symbols, Eq, solvechicken = symbols('chicken')rabbit = total_number - chickenequation1 = Eq(chicken + rabbit, total_number)equation2 = Eq(2 * chicken + 4 * rabbit, total_legs)result = solve((equation1, equation2), (chicken, rabbit))if result:return result[chicken], result[rabbit]else:return Nonetotal_number = 13total_legs = 32result = solve_chicken_rabbit(total_number, total_legs)if result:print("鸡的数量为", result[0])print("兔的数量为", result[1])else:print("无解")方法三:二分法二分法是一种高效的搜索算法,可以在有序列表中快速找到目标元素。

鸡兔同笼四种方法

鸡兔同笼四种方法

鸡兔同笼四种方法
鸡兔同笼问题是中国古代著名的趣题之一,通过研究解题方法可以提高我们的问题分析和解决能力。

下面介绍几种解鸡兔同笼问题的方法。

解法一:列表法。

这种方法通过列出表格,逐步尝试的方式来解决问题。

但是这种方法过程繁琐,不太符合大多数人的口味。

解法二:抬腿法。

这是古人解题的方法,即“金鸡独立”,兔两个后腿着地,前腿抬起。

这种方法可以得出公式:兔子的只数=总腿数÷2-总只数,鸡的只数=总只数-兔子的只数。

解法三:假设法。

这是鸡兔同笼类问题最常用的方法之一。

假设35个头都是兔子,腿数就应该是35×4=140,比94还多。

这时我们可以列式得出鸡的只数。

同样地,如果35个头都是鸡,腿数应该是35×2=70,比94还少。

这时我们可以列式得
出兔子的只数。

总结公式为:鸡的只数=(兔的脚数×总只数
-总腿数)÷(兔的腿数-鸡的腿数),兔的只数=(总脚数
-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)。

解法四:砍腿法。

这种方法比较暴力,即通过砍去一些腿,使得鸡兔数量满足条件。

但是这种方法不够科学,不太推荐使用。

通过研究这些方法,我们可以更加灵活地解决问题,提高我们的数学思维能力。

鸡兔同笼问题的几种解法

鸡兔同笼问题的几种解法
• 我们仔细观察会发现它的计算过程和假设法中先把所 有的都看成鸡的做法是一样的。只不过这种说法,我 们理解起来更容易而已
3、方程法
例题同上例。今有鸡、兔共居一笼,已知鸡头和兔头共35个,鸡 脚与兔脚共94只。问鸡、兔各有多少只?
①一元一次方程
• 解:设兔有x只,则鸡有(35-x)只。
4x+2(35-x)=94
2、抬脚法 就是让我们列出表格,采用依次列举,逐步尝试的方法来解决这个问题
例:鸡兔同笼共12个头,32条腿
2、分析与解:我们设想有一只“怪鸡”有1个头11只脚,一种“怪兔”有1个头19只脚,它们共有16个头,280只脚。
这只样不•, 过就这例将种买说。文法化,今用我品们有问理题解鸡转起换来、成更鸡容兔兔易同而共笼已问居题了一。 笼,已知鸡头和兔头共35个,鸡脚与兔
二、鸡兔同笼问题常用的解法 • 1、假设法 • 2、抬脚法 • 3、方程法 • 4、列表法
1、假设法
例。今有鸡、兔共居一笼,已知鸡头和兔头共35个,鸡脚与兔脚 共94只。问鸡、兔各有多少只?
解析:已知情况 鸡脚 2
鸡兔共35只
兔脚 4
鸡兔总脚数94只
①假设笼子里全是鸡:那么总脚数应为 35×2=70只 对比实际94 只的总脚数 假设的情况比实际情况少了 94-70=24只
解析: • 先用逐一列表的方式,计算出一只鸡11只兔的腿数,和2只鸡
10只兔的腿数,为第三步做准备。 • 通过第一、二步的计算,我们发现了兔子只数减少一只时,腿
=20(人)。
今但有是鸡 此、种头兔方共法数居过一程×笼太,过2已笨只知拙鸡、,头繁和琐(兔,头数3共字5越3×5大个越,2复鸡=杂脚7与0兔只脚共9)4只。由于鸡只有2只脚,所以笼子里

鸡兔同笼的五种方法

鸡兔同笼的五种方法

鸡兔同笼的五种方法介绍鸡兔同笼,顾名思义就是指将鸡和兔子放在同一个笼子中。

在这个任务中,我们将探讨解决鸡兔同笼问题的五种方法。

这个问题涉及到数学知识和逻辑思维,通过研究这些方法,我们可以提高自己的解题能力和思维灵活性。

方法一:暴力解法1.假设鸡的数量为x,兔子的数量为y,总共有z只动物。

2.使用两层循环,枚举所有可能的鸡和兔子的数量组合。

3.对于每一种组合,判断是否满足以下条件:x + y = z,2x + 4y = z。

如果满足条件,输出结果。

4.当找到一种满足条件的组合后,即可停止循环,得到问题的解。

方法二:二元一次方程求解1.由鸡和兔子的数量可得到两个方程:x + y = z,2x + 4y = z。

2.将第一个方程变形为x = z - y,代入第二个方程得到2(z - y) + 4y = z。

3.化简方程得到z = 2y,进一步代入得到x = z - y = 2y - y = y。

4.因此,鸡的数量等于兔子的数量,鸡兔同笼时,动物的数量应为偶数。

方法三:因数分解法1.设鸡的数量为x,兔子的数量为y,总共有z只动物。

2.将总数量z进行因数分解,得到两个因数a和b,满足z = a * b。

3.根据鸡和兔子的腿数算出总的腿数为2x + 4y。

4.将总腿数除以a,得到商c和余数d,即2x + 4y = a * c + d,其中d为0或2。

5.如果d = 0,那么总的腿数可以被a整除,将a代入方程可以得到x的值。

6.如果d = 2,那么总的腿数除以2得到的商再减去b,将得到的差代入方程可以得到x的值。

7.根据得到的x值,即可求得y的值。

方法四:二元一次方程的图像法1.将两个方程化为标准形式,即x + y = z和2x + 4y = z。

2.将方程右侧的常数项去掉,得到x + y = 0和2x + 4y = 0。

3.画出这两个方程所表示的直线的图像。

4.这两个直线的交点表示满足方程组的解。

如果交点在整数点上,则表示鸡和兔子的数量为整数。

解鸡兔同笼的方法

解鸡兔同笼的方法

解鸡兔同笼的方法鸡兔同笼是一个经典的智力游戏,也是数学中的一道著名问题。

这个问题是这样的:有一只笼子里面有若干只鸡和兔,它们的脚加起来共有若干只。

问笼子里面有多少只鸡和兔?这个问题看似简单,实际上却有一定的难度。

但是,如果我们掌握了一些解题方法和技巧,就能够轻松地解决这个问题。

下面,我将介绍几种解鸡兔同笼问题的方法。

方法一:列方程法这是最常见的解决鸡兔同笼问题的方法。

我们假设笼子里有x只鸡和y只兔,它们的脚加起来共有f只。

由于一只鸡有两只脚,一只兔有四只脚,因此得到以下方程组:2x + 4y = fx + y = 总数其中,总数是鸡和兔的总数。

通过解这个方程组,我们就能够得到笼子里面鸡和兔的数量了。

方法二:画图法这个方法比较直观,适合于小学生和初中生。

我们可以画一个矩形,表示笼子里面的动物数量,然后用圆圈表示鸡的数量,用三角形表示兔的数量。

根据鸡和兔的脚数,我们就能够得到以下关系:2×圆圈 + 4×三角形 = 脚的总数通过观察这个关系,我们就能够得到笼子里面鸡和兔的数量了。

方法三:解题思路法这个方法比较巧妙,需要一定的数学思维。

我们可以通过观察题目的特点,找到一些规律和性质,从而解决问题。

首先,我们可以发现,如果笼子里面只有鸡或者只有兔,那么它们的脚数都是偶数。

因此,如果脚数是奇数,那么鸡和兔一定都有。

其次,我们可以发现,如果鸡和兔的数量相等,那么它们的脚数一定是偶数。

因此,如果脚数是奇数,那么鸡和兔的数量一定不相等。

最后,我们可以通过试错的方法,逐步逼近正确答案。

假设笼子里面有x只鸡和y只兔,我们可以从x+y=总数这个方程入手,逐步试探x和y的值,直到符合2x+4y=脚数这个方程为止。

总结以上三种方法都是解决鸡兔同笼问题的有效方法。

不同的方法适合不同的人群,我们可以根据自己的情况选择合适的方法。

当然,掌握多种方法会更有益于我们的数学学习和思维训练。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用多种方法解决“鸡兔同笼”问题
兴庆区回民二小张瑞莲
“鸡笼同笼”是我国民间广为流传的数学问题。

早在大约1500年前,我国古代数学名著《孙子算经》中记载着这类数学趣题“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这类趣题即使学生了解古代数学名著中的数学问题又使学生感受古代数学文化的灿烂。

现如今“鸡兔同笼”问题已编入到小学数学教材中,作为典型应用题用以培养学生分析解决问题的能力,但解决鸡兔同笼问题的方法一直是教师在教学中的一个难点问题,即大部分学生不能很好地掌握用“假设法”解题,其主要原因是学生对“假设法”中的数量关系难以理解,笔者通过对鸡兔同笼问题的研究和实践,觉得用以下方法更符合小学生思维特点。

一、列表法
这种方法简单易懂,适合数据较小的问题,当数据较大时,步骤繁多方法不够快捷。

如:笼子里共有若干只鸡和免,从上面数,有7头,从下面数,有18只脚,鸡兔各有几只?
根据列表由此得出鸡有5只,免有2只。

二、数形结合法
数形结合可以使抽象的数学问题直观化,生动化,使问题化难为易,化繁为简,不但激发学生学习兴趣,而且能加深用假设法解题的思路的理解。

这种方法适合较小数据。

如:上题中,用O表示头,用|表示脚,先画7个1
只脚,比题中给出的脚头,如果每个头下都画上2只脚,数一数,共有14只兔。

2得到笼中有5只鸡次脚刚好4数少了只。

2只2只添,添218只脚,如图
也可以先在每个头下画上4只脚,结果表明比题中给出的脚数多了10只,2只2只的划去,划5次后脚数刚好是18只,得到相同答案。

如图:

数形结合,即直观,又达到化难为易,特别适合低段教学。

三、坎脚法这种方法易懂易记,较大较小数据都能轻松解答。

中、高、低年级都能
使用此方法,而且用此方法还可以解决鸡兔同笼的变化,发展问题,如硬币等问题。

54条腿,鸡兔各有多少只?如:鸡兔同笼有20个头,解:先砍掉每只鸡,每只兔的两条腿。

这样,每只鸡就没有腿了,每只兔条。

由于这)142054就变成了两条腿的兔。

腿的总数从条腿变成(54-2×只,鸡的2=7条腿是砍掉两条腿后的兔的腿,因此,兔的只数就是14÷14 只。

只数就是20-7=13 2
综合算式:(54-20×2)÷(4-2)=7(只)------------兔
20-7=13(只)----------------------------------鸡
用“砍腿法”解决硬币问题
如:小华的储蓄罐里有1角和5角的硬币共27枚,价值5.1元,1角和5角的硬币各有多少元?
解:先去掉每个硬币的1角钱,这样,1角的硬币就没有了,5角硬币的面值就变成了5-1=4角,价值从5.1元减少到5.1-0.1×27=2.4元。

由此可求出5角的硬币数:
2.4÷0.4=6(枚)1角的硬币数:27-6=21(枚)
综合算式:(5.1-0.1×27)÷(0.5-0.1)=6(枚)
27-6=21(枚)
四、方程法
方程解法思路比较简单,且具有一般性,但适合高年级学生。

如:鸡兔同笼,有30个头,100条腿,鸡兔各有多少只?可以设鸡或兔中任意一种有x只,根据鸡兔100条腿列方程。

解:设兔有x只,则鸡有(30-x)只
4x+2×(30-x)=100
4x+60-2x=100
2x=40
x=20
30-20=10(只)
答:兔有20只,鸡有10只。

3
五、假设法用假设法解题有利于培养学生灵活的解题技能,发展学生辑推理能力,但中下学生用此方法不易理解。

(4-2)=20只如上题中,假设30只都是鸡,那么兔有:(100-30×2) ÷30-20=10(只)鸡有只(4-2)=1030只都是兔,那么鸡有(30×4-100)÷也可以假设(只)兔有30-10=20六、用转化法解鸡兔同笼问题只,它们一起去采摘水蜜桃。

猴王不在的时候,一只35大、小猴子共千克。

猴王在场11大猴子一小时可采摘15千克,一只小猴子一小时可采摘8采摘了监督的时候,每只猴子不论大小每小时可以多采摘12千克。

一天,
千4400小时,其中只有第一小时和最后一小时猴王在场监督,结果共采摘克水蜜桃。

在这个猴群中,共有小猴子多少只?猴王不在场。

转化猴王在场第1 2 3 4 5 6 7 8 小时
在场不在场在场
多千克
大15千克. 小11千克
4400千克
4
当猴王都不在场时共少摘. 12×2×35=840(千克)
所以猴王都不在场8小时共摘.4400—840=3560(千克)
那么35只大.小猴子1小时采摘. 3560÷8=445(千克)
这道题就可以转化成:
大、小猴子共35只,它们一起采摘水蜜桃,一只大猴子一小时可采摘15千克,一只小猴子一小时可采摘11千克,每小时大小猴子共采摘水蜜桃445千克,在这个猴群中共有小猴子多少只?
假设全是大猴子:35×15=525(千克)
比实际多采了: 525—445=80(千克)
80÷(15-11)=20(只)答:有小猴子20只
总之,根据小学生思维特点,为了更好的让他们掌握理解鸡兔同笼问题的解答方法。

教师教学时,可以根据不同层次,不同阶段的学生特点,选择合适恰当的方法,即拓展学生的视野、使学生体会到“鸡兔同笼”问题在生活中的广泛应用,又使学生感觉到数学学习的价值,同时也帮他们揭去令人生畏的“奥数”面纱,还其生动有趣的一面。

5。

相关文档
最新文档