材料力学第10章动载荷
合集下载
材料力学 第十章 动载荷
a t
max
m
max 2 m 2 a
min 0
r0
a
t
(3)静应力:如拉压杆
max min m
a 0
r 1
(4)非对称循环:
a 0
max min m t
max min 0 max min a
第二节 交变应力的循环特性和应力幅值
应力循环:一点的应力由某一数值开始,经过一次完整的变 化又回到这一数值的一个过程。
a
m
T
1.最大应力: max
2.最小应力: min
min
max
t 5.循环特性:
3.平均应力:
m
max min
2
4.应力幅:
a
max min
疲劳极限或有限寿命持久极限:
材料在规定的应力循环次数N下,不发生疲劳破环的最大 应力值,记作 rN ( rN ) 。 无限寿命疲劳极限或持久极限 r : 当 max 不超过某一极限值,材料可以经受“无数次”应力 循环而不发生破坏,此极限值称为无限寿命疲劳极限或持久极限。
疲劳失效特点 a、在交变应力下构件破坏时,最大应力不仅低于材料强 度极限和屈服极限,甚至低于比例极限; b、在交变应力作用下,构件破坏前,总是要经历若干次 应力重复;而且即使是塑性很好的材料,在经历若干次应力 重复后,也会像脆性材料一样突然断裂,断裂前没有明显的 塑性变形。 c、疲劳破坏的断口存在三个区域: 疲劳源区——在光滑区内有以微裂纹 起始点,又称为裂纹源(①区域)为中心 并逐渐扩展的弧形曲线; 疲劳扩展区——又称为光滑区(②区 域),有明显的纹条,类似被海浪冲击后 的海滩,它是由裂纹的传播所形成;
材料力学第10章(动载荷)
突加荷载 h 0,
Kd 2
二、水平冲击 mg v
d
Fd d , Pst st
Pst mg 其中: mgl st EA
Fd
st
Pst
mv2 冲击前:动 T1 能 2
冲击后: 应变能Vε 2 Fd d 2
2 F 2 st mv d mg
h
P
h
解:
st
Pl 1.7 102 (mm) EA
2h K d 1 1 st
2 500 1 1 243 2 1.7 10
l
l
d 2 A 4
P 2 103 0.028(MPa) st 4 A 7.1 10 d Kd st
假设: (1)冲击物为刚体; (2)不计冲击过程中的声、光、热等能量损耗(能量守恒);
(3)冲击过程中被冲击物的变形为线弹性变形过程。(保守计算)
一、自由落体冲击
P
冲击前: T 0
V P(h d )
B
h
A
冲击后:
1 Vε d Fd d 2
A
Δd
能量守恒: T V Vd
B
2h st
l
4 Pl 3 22mm st 3 EI
K d 1 1 2 50 3.35 22
40 C 30
d Kd st
M max Pl 50(MPa) st W W
d Kd st 161 MPa) (
A
Δd
Fd
B
1 P (h d ) Fd d 2 Fd d P st
2 Fd 1 Fd P (h st ) st P 2 P
Kd 2
二、水平冲击 mg v
d
Fd d , Pst st
Pst mg 其中: mgl st EA
Fd
st
Pst
mv2 冲击前:动 T1 能 2
冲击后: 应变能Vε 2 Fd d 2
2 F 2 st mv d mg
h
P
h
解:
st
Pl 1.7 102 (mm) EA
2h K d 1 1 st
2 500 1 1 243 2 1.7 10
l
l
d 2 A 4
P 2 103 0.028(MPa) st 4 A 7.1 10 d Kd st
假设: (1)冲击物为刚体; (2)不计冲击过程中的声、光、热等能量损耗(能量守恒);
(3)冲击过程中被冲击物的变形为线弹性变形过程。(保守计算)
一、自由落体冲击
P
冲击前: T 0
V P(h d )
B
h
A
冲击后:
1 Vε d Fd d 2
A
Δd
能量守恒: T V Vd
B
2h st
l
4 Pl 3 22mm st 3 EI
K d 1 1 2 50 3.35 22
40 C 30
d Kd st
M max Pl 50(MPa) st W W
d Kd st 161 MPa) (
A
Δd
Fd
B
1 P (h d ) Fd d 2 Fd d P st
2 Fd 1 Fd P (h st ) st P 2 P
《材料力学》第十章 动载荷
第十章 动 载 荷
基本要求: 基本要求: 了解构件作变速运动时和冲击时应力与变形的计 算。 重点: 重点: 1.构件有加速度时应力计算; 2.冲击时的应力计算。 难点: 难点: 动荷因数的计算。 学时: 学时: 4学时
第十章
§lO.1 概述
动 载 荷
§10.2 动静法的应用 §10.4 杆件受冲击时的应力和变形 §10.5 冲击韧性
( 2 )突然荷载 h = 0 : K
d
=2
△st--冲击物落点的静位移
五、不计重力的轴向冲击问题
冲击前∶
动能T1 = Pv 2 / 2 g 势能V1 = 0 变形能V1εd = 0
冲击后:
动能T2 = 0 势能V 2 = 0 变形能V 2εd = Pd ∆ d / 2
ห้องสมุดไป่ตู้
v P
冲击前后能量守恒,且
Pd = K d P
补例10-1 起重机钢丝绳的有效横截面面积为A , 已知[σ], 补例 物体单位体积重为γ , 以加速度a上升,试建立钢丝绳(不计自 重)的强度条件。 外力分析。 解:1.外力分析。包括惯性力 外力分析
惯性力:q a
x a L x m m a Nd qg +qa
=
γA
g
a
2.内力分析。 内力分析。 内力分析 3.求动应力。 求动应力。 求动应力
任何冲击系统都 可简化弹簧系统
能量法(机械能守恒) 三、能量法(机械能守恒)
冲击过程中机械能守恒。即动能 ,势能V,变形能V 冲击过程中机械能守恒。即动能T,势能 ,变形能 εd守恒 冲击前:系统动能为T, 势能为V=Q∆d, 变形能Vεd=0 冲击后:系统动能为0, 势能为V=0, 变形能Vεd
基本要求: 基本要求: 了解构件作变速运动时和冲击时应力与变形的计 算。 重点: 重点: 1.构件有加速度时应力计算; 2.冲击时的应力计算。 难点: 难点: 动荷因数的计算。 学时: 学时: 4学时
第十章
§lO.1 概述
动 载 荷
§10.2 动静法的应用 §10.4 杆件受冲击时的应力和变形 §10.5 冲击韧性
( 2 )突然荷载 h = 0 : K
d
=2
△st--冲击物落点的静位移
五、不计重力的轴向冲击问题
冲击前∶
动能T1 = Pv 2 / 2 g 势能V1 = 0 变形能V1εd = 0
冲击后:
动能T2 = 0 势能V 2 = 0 变形能V 2εd = Pd ∆ d / 2
ห้องสมุดไป่ตู้
v P
冲击前后能量守恒,且
Pd = K d P
补例10-1 起重机钢丝绳的有效横截面面积为A , 已知[σ], 补例 物体单位体积重为γ , 以加速度a上升,试建立钢丝绳(不计自 重)的强度条件。 外力分析。 解:1.外力分析。包括惯性力 外力分析
惯性力:q a
x a L x m m a Nd qg +qa
=
γA
g
a
2.内力分析。 内力分析。 内力分析 3.求动应力。 求动应力。 求动应力
任何冲击系统都 可简化弹簧系统
能量法(机械能守恒) 三、能量法(机械能守恒)
冲击过程中机械能守恒。即动能 ,势能V,变形能V 冲击过程中机械能守恒。即动能T,势能 ,变形能 εd守恒 冲击前:系统动能为T, 势能为V=Q∆d, 变形能Vεd=0 冲击后:系统动能为0, 势能为V=0, 变形能Vεd
材料力学第十章动载荷
达朗伯原理: 达朗伯原理认为处于不平衡状态的物体,存在
惯性力,惯性力的方向与加速度方向相反,惯性力的数值等于加 速度与质量的乘积.只要在物体上加上惯性力,就可以把动力学 问题在形式上作为静力学问题来处理,这就是动静法.
惯性力: 大小等于质点的质量m与加速度a 的乘积,方向与 a 的
方向相反,即 F= -ma
例题2 起重机钢丝绳长60m,名义直径28cm,有效横截面面积A=2. 9cm2 ,单位长重量q=25. 5N/m , [] =300MPa, 以a=2m/s2的加速度 提起重50kN 的物体,试校核钢丝绳的强度. 解:(1)受力分析如图
FNd
a FNd (G ql )(1 ) g
(2)动应力
O r
解:
O r
因圆环很薄,可认为圆环上各 点的向心加速度相同,等于圆环中 线上各点的向心加速度.
D 2 an 2
qd
因为环是等截面的,所以相同长度 的任一段质量相等.
其上的惯性力集度为
r
O
1 A r D 2 Ar 2 D qd ( )( ) g 2 2g
1 A r D 2 Ar 2 D qd ( )( ) g 2 2g
FG
面上绕O点旋转,已知许用应力[],求转臂的截面面积(不计转
(1)受力分析如图
惯性力为
O
FG man 2 Rm 2 lG/g
(2)强度条件
l
FG / A
FG 2Gl A [ ] (g[ ])
例5 已知: n=100r/min,转动 惯量 Ix=0.5kN· m· s2。轴直 径d=100mm。刹车时在10 秒内均匀减速停止转动。 求:轴内最大动应力。 解:
惯性力,惯性力的方向与加速度方向相反,惯性力的数值等于加 速度与质量的乘积.只要在物体上加上惯性力,就可以把动力学 问题在形式上作为静力学问题来处理,这就是动静法.
惯性力: 大小等于质点的质量m与加速度a 的乘积,方向与 a 的
方向相反,即 F= -ma
例题2 起重机钢丝绳长60m,名义直径28cm,有效横截面面积A=2. 9cm2 ,单位长重量q=25. 5N/m , [] =300MPa, 以a=2m/s2的加速度 提起重50kN 的物体,试校核钢丝绳的强度. 解:(1)受力分析如图
FNd
a FNd (G ql )(1 ) g
(2)动应力
O r
解:
O r
因圆环很薄,可认为圆环上各 点的向心加速度相同,等于圆环中 线上各点的向心加速度.
D 2 an 2
qd
因为环是等截面的,所以相同长度 的任一段质量相等.
其上的惯性力集度为
r
O
1 A r D 2 Ar 2 D qd ( )( ) g 2 2g
1 A r D 2 Ar 2 D qd ( )( ) g 2 2g
FG
面上绕O点旋转,已知许用应力[],求转臂的截面面积(不计转
(1)受力分析如图
惯性力为
O
FG man 2 Rm 2 lG/g
(2)强度条件
l
FG / A
FG 2Gl A [ ] (g[ ])
例5 已知: n=100r/min,转动 惯量 Ix=0.5kN· m· s2。轴直 径d=100mm。刹车时在10 秒内均匀减速停止转动。 求:轴内最大动应力。 解:
材料力学动载荷
FN st qst l 1 165 .62 N m 1 12 m 993 .7 N 2 2
故钢缆内的动应力为
d K d st 2.02
993 .7 N 27.9MPa 6 2 72 10 m
2. 计算梁内最大静应力
最大弯矩和弯曲正应力发生在跨中截面上
1 M st max FN st 4 qst 62 6qst 6 165 .62 993 .7 N m 2
M 993.7 N m st max st max 61.7MPa 6 3 Wz 16.110 m
2qst
6qst
st max 61.7MPa
3. 钢梁的强度校核 梁内最大动应力为
d max Kd st max 2.02 61.7 124.6MPa [ ] 160MPa
受冲击 的构件
v
F
a
冲击物
向加速度,结构受到冲击力的作用。
采用能量法近似计算冲击时构件内的最大应力和变形。
根据能量守恒定律,即
T V V
T :冲击物接触被冲击物后,速度0,释放出的动能;
V :冲击物接触被冲击物后,所减少的势能;
Ve :被冲击构件在冲击物的速度0时所增加的应变能。
计算冲击问题时所作的假设: (1)冲击物无回弹,并且不计冲击物的变形,冲击物 和被冲击物在冲击后共同运动,形成一个运动系统。
T V
可以得到:
即
2
1 P 2 P( h d ) d 2 st
求轴内最大动应力。
解: 1. 计算轴AB的载荷
轴与飞轮的转动角速度为:
nπ 100 π 10π 0 (rad/s) 30 30 3
故钢缆内的动应力为
d K d st 2.02
993 .7 N 27.9MPa 6 2 72 10 m
2. 计算梁内最大静应力
最大弯矩和弯曲正应力发生在跨中截面上
1 M st max FN st 4 qst 62 6qst 6 165 .62 993 .7 N m 2
M 993.7 N m st max st max 61.7MPa 6 3 Wz 16.110 m
2qst
6qst
st max 61.7MPa
3. 钢梁的强度校核 梁内最大动应力为
d max Kd st max 2.02 61.7 124.6MPa [ ] 160MPa
受冲击 的构件
v
F
a
冲击物
向加速度,结构受到冲击力的作用。
采用能量法近似计算冲击时构件内的最大应力和变形。
根据能量守恒定律,即
T V V
T :冲击物接触被冲击物后,速度0,释放出的动能;
V :冲击物接触被冲击物后,所减少的势能;
Ve :被冲击构件在冲击物的速度0时所增加的应变能。
计算冲击问题时所作的假设: (1)冲击物无回弹,并且不计冲击物的变形,冲击物 和被冲击物在冲击后共同运动,形成一个运动系统。
T V
可以得到:
即
2
1 P 2 P( h d ) d 2 st
求轴内最大动应力。
解: 1. 计算轴AB的载荷
轴与飞轮的转动角速度为:
nπ 100 π 10π 0 (rad/s) 30 30 3
材料力学-动载荷
一、等加速度运动构件的应力和变形计算
(一)等加速度直线运动构件的应力和变形
例如:有一绳索提升重量为 G 的重物,重物以等加速
度 a 上升(图14-1),因为加速度 a 向上,所以惯性力 G a g
的方向向下,设绳索的拉力(轴力)为 ND ,由平衡条件
Y
0
,得:N D
G
G g
a
0
即:
ND
G 1
a g
C
构件受冲击时的应力为和变形为:
DD
K D C K D C
14
8
如果知道在冲击开始时冲击物自由落体的速度 ,则式
(14-7)中冲击物自由下落前的高度
H
可用
2 g C
来代替,即
KD 1
1 2 14 9
g C
(二)水平冲击时的动荷系数
冲击物的动能为:
T 1 m 2 Q 2
Wl 2 2
3 gEA
二、杆件受到冲击荷载作用时的应力和变形计算
在工程实用计算中,一般采用能量法进行计算。在计算 中采取以下几个假设:
① 不考虑冲击物的变形,即不考虑冲击物的变形能; ② 不考虑被冲击物(杆件)的质量; ③ 认为在冲击后冲击物和被冲击物附着在一起运动; ④ 不考虑冲击时能量的损失,即认为只有动能与位能的转化。
当
x=l
时,
N Dmax
W 2l
2g
, Dmax
N Dmax A
W 2l
2 gA
内力图
(2)计算杆件的伸长
NDx
W
gl
2
lx
x2 2
dx 段的伸长为:
dx
N D xdx
EA
W2
材料力学动载荷和交变应力第1节 惯性力问题
100
3
s 1
60 106 7.85 10
3
m/s
87.4 m/s
由线速度与角速度关系
v
R
2n
60
R
2n
60
(D
d) 2
/
2
则极限转速为
n
120v (D d
)
120 87.4 3.14 (1.8 1.4)
r/min
1044 r/min
图,与飞轮相比,轴的质量可以忽略不计。轴的另一
端 A 装有刹车离合器。飞轮的转速为 n 100r/min ,
转动惯量为 J x 600 kg/m2,轴的直径 d 80mm。刹车
时使轴在 10 秒内按均匀减速停止转动。求轴内的最大
动应力。 解:飞轮与轴的角速度
y 制动离合器
0
2n
60
• Kd — 动荷系数:表示构件在动载荷作用下其内力 和应力为静载荷作用 Fst 下的内力和应力的倍数。
说明
Fst mg Axg
1) x
Fst
Fd
危险截面在钢 丝绳的最上端
d max
Kd st max
Kd
(
mg A
gxmax )
2)校核钢丝绳的强度条件 d max Kd st max [ ]
16
例11-4 钢质飞轮匀角速转动如图所示,轮缘外径
D 1.8 m,内径 d 1.4 m ,材料密度 7.85 103 kg/m3。 要求轮缘内的应力不得超过许用应力 [ ] 60 Mpa ,轮
材料力学第十章 动载荷
Pl / 4 st 6 MPa Wz
A C
1.5m 1.5m P h
B
z
C 截面的静位移为
Pl 3 Δst 0.2143mm 48EI
增加弹簧后
Pl 3 P/2 Δst 1.881 mm 48 EI 2k Kd 1 1 2 20 5.7 1.881
stC
Pl Pa l Pa a 3EI z1 GI p 3EI z 2
3 3
P
H h
b A d l B
C
a
64 Pl 32 Pa l 4 Pa 4 4 3Eπd Gπd Ebh 3
kd 1 1
3
2
3
2.动荷系数 3.危险点: 4.静应力
2h
st
st
动荷因数为
2h Kd 1 1 14.7 Δst
梁的最大动应力为 d K d st 14.7 6 88.2 MPa
d 5.7 6 34.2 MPa
例 水平面内AC杆绕A匀速转动。C端有重Q的集中质量。若因故 在B点卡住,试求AC杆的最大冲击应力。设AC杆质量不计。
FATT
0
T
一般把晶粒状断口面积占整个断口面积50%的温度规定为~, 并称为FATT(fracture appearance transition temperature) 不是所有金属都有冷脆现象 温度降低,b增
大,却发生低温 脆断,原因何在 ?
练习 重P的重物从高H处自由下落到钢质曲拐上,试按第三强度准 则写出危险点的相当应力。 解:1.静位移 叠加法:AB杆(弯、扭)+BC杆(弯)
第10章 动载荷
10.1 概述 10.2 动静法的应用 10.3* 受迫振动的应力计算 10.4* 杆件受冲击时的应力和变形 10.5* 冲击韧性
A C
1.5m 1.5m P h
B
z
C 截面的静位移为
Pl 3 Δst 0.2143mm 48EI
增加弹簧后
Pl 3 P/2 Δst 1.881 mm 48 EI 2k Kd 1 1 2 20 5.7 1.881
stC
Pl Pa l Pa a 3EI z1 GI p 3EI z 2
3 3
P
H h
b A d l B
C
a
64 Pl 32 Pa l 4 Pa 4 4 3Eπd Gπd Ebh 3
kd 1 1
3
2
3
2.动荷系数 3.危险点: 4.静应力
2h
st
st
动荷因数为
2h Kd 1 1 14.7 Δst
梁的最大动应力为 d K d st 14.7 6 88.2 MPa
d 5.7 6 34.2 MPa
例 水平面内AC杆绕A匀速转动。C端有重Q的集中质量。若因故 在B点卡住,试求AC杆的最大冲击应力。设AC杆质量不计。
FATT
0
T
一般把晶粒状断口面积占整个断口面积50%的温度规定为~, 并称为FATT(fracture appearance transition temperature) 不是所有金属都有冷脆现象 温度降低,b增
大,却发生低温 脆断,原因何在 ?
练习 重P的重物从高H处自由下落到钢质曲拐上,试按第三强度准 则写出危险点的相当应力。 解:1.静位移 叠加法:AB杆(弯、扭)+BC杆(弯)
第10章 动载荷
10.1 概述 10.2 动静法的应用 10.3* 受迫振动的应力计算 10.4* 杆件受冲击时的应力和变形 10.5* 冲击韧性
材料力学动载荷、交变应力
03
材料力学关注材料在不同载荷条件下的行为,为工 程设计和结构分析提供基础。
材料的基本属性
弹性
材料在受力后恢复到原始状态的 能力。
塑性
材料在应力超过屈服点后发生不 可逆变形的性质。
强度
材料抵抗破坏的能力,通常用极 限应力表示。
疲劳强度
材料在交变应力作用下抵抗疲劳 破坏的能力。
韧性
材料吸收能量的能力,通常用冲 击试验测定。
详细描述
在汽车部件的交变应力分析中,需要考虑发 动机、传动系统等不同部件的工作载荷和交 变应力。通过建立数学模型和进行数值模拟 ,可以预测部件在不同工况下的疲劳寿命和 可靠性,从而为汽车的设计和优化提供依据
。
案例三:航空材料的疲劳寿命预测
总结词
航空材料的疲劳寿命预测是材料力学在航空航天领域的重要应用,通过分析材料在不同 循环载荷下的响应,可以预测其疲劳寿命和可靠性。
详细描述
在桥梁结构的动载荷分析中,需要考虑车辆、 风、地震等多种外部载荷的作用,以及桥梁 自身的动力学特性。通过建立数学模型和进 行数值模拟,可以预测桥梁在不同载荷下的 变形、应力和振动响应,从而为桥梁的设计 和加固提供依据。
案例二:汽车部件的交变应力分析
总结词
汽车部件的交变应力分析是材料力学在汽车 工程领域的重要应用,通过分析部件在交变 载荷下的响应,可以预测其疲劳寿命和可靠 性。
详细描述
在航空材料的疲劳寿命预测中,需要考虑飞机在不同飞行条件下的循环载荷和交变应力。 通过建立数学模型和进行数值模拟,可以预测材料在不同循环载荷下的疲劳寿命和可靠 性,从而为飞机的设计和优化提供依据。同时,疲劳寿命预测还可以为飞机的维护和检
修提供指导,确保飞机的安全性和可靠性。
材料力学关注材料在不同载荷条件下的行为,为工 程设计和结构分析提供基础。
材料的基本属性
弹性
材料在受力后恢复到原始状态的 能力。
塑性
材料在应力超过屈服点后发生不 可逆变形的性质。
强度
材料抵抗破坏的能力,通常用极 限应力表示。
疲劳强度
材料在交变应力作用下抵抗疲劳 破坏的能力。
韧性
材料吸收能量的能力,通常用冲 击试验测定。
详细描述
在汽车部件的交变应力分析中,需要考虑发 动机、传动系统等不同部件的工作载荷和交 变应力。通过建立数学模型和进行数值模拟 ,可以预测部件在不同工况下的疲劳寿命和 可靠性,从而为汽车的设计和优化提供依据
。
案例三:航空材料的疲劳寿命预测
总结词
航空材料的疲劳寿命预测是材料力学在航空航天领域的重要应用,通过分析材料在不同 循环载荷下的响应,可以预测其疲劳寿命和可靠性。
详细描述
在桥梁结构的动载荷分析中,需要考虑车辆、 风、地震等多种外部载荷的作用,以及桥梁 自身的动力学特性。通过建立数学模型和进 行数值模拟,可以预测桥梁在不同载荷下的 变形、应力和振动响应,从而为桥梁的设计 和加固提供依据。
案例二:汽车部件的交变应力分析
总结词
汽车部件的交变应力分析是材料力学在汽车 工程领域的重要应用,通过分析部件在交变 载荷下的响应,可以预测其疲劳寿命和可靠 性。
详细描述
在航空材料的疲劳寿命预测中,需要考虑飞机在不同飞行条件下的循环载荷和交变应力。 通过建立数学模型和进行数值模拟,可以预测材料在不同循环载荷下的疲劳寿命和可靠 性,从而为飞机的设计和优化提供依据。同时,疲劳寿命预测还可以为飞机的维护和检
修提供指导,确保飞机的安全性和可靠性。
材料力学课件第10章 动载荷zym
FNd
qd D Aρ D 2 2 = = ω 2 4
(3)截面应力: )截面应力: FNd ρ D 2ω 2 σd = = = ρv2 A 4 (4)强度条件: )强度条件:
σ d = ρ v 2 ≤ [σ ]
2、问题特点: 、问题特点: •截面应力与截面面积 无关。 截面应力与截面面积A无关 截面应力与截面面积 无关。 (三)扭转问题
2)强度计算: )强度计算: (1)确定危险截面: )确定危险截面: 为跨中截面。 为跨中截面。
l 1 l M = F −b − q 2 2 2 a l 1 = Aρ g 1 + − b l 2 g 4
2
(2)建立强度条件: )建立强度条件: M d Aρ g a l σd = = 1 + − b l ≤ [σ ] W 2W g 4 2、问题特点: 、问题特点: 设加速度为零时的应力为σst 则: 设加速度为零时的应力为σ 1 l Aρ g − b l M 2 4 = Aρ g l − b l σ st = st = W W 2W 4 a σ d = σ st 1 + = σ st K d g
P
v
∆d P 即:Fd = ∆ st
代入得: 代入得: 1P 2 1 1 ∆2 d v = ∆ d Fd = P 2g 2 2 ∆ st
∆d =
Kd =
P
∆ st
v2 ∆ st g ∆ st
v2 g ∆ st (10.9)
∆ d = K d ∆ st ,
Fd = K d P,
σ d = K dσ st
= 1057 ×106 Pa
§10 – 5
材料力学第10章 动载荷
Kd = 1 + 1 + 2H
∆st
P
Pl 3 + P ∆st = 48EI 4C
σ st max = Pl / 4 = Pl
W
4W
MF
Pl/4
σd max = Kdσ st max ≤ [σ ] [H] =
∆st
2 σ st max
[(
[σ ]
−1) −1]
2
等截面刚架,重物P自高度 处自由下落。 、 、 自高度h处自由下落 例:等截面刚架,重物 自高度 处自由下落。 E、I、 W已知 。 试求截面的最大竖直位移和刚架内的最大 已知。 已知 冲击正应力( 刚架的质量可略去不计, 冲击正应力 ( 刚架的质量可略去不计 , 且不计轴力 对刚架变形的影响) 对刚架变形的影响)。
第十章 动载荷
§10.1 概述 §10.2 动静法的应用 §10.3 强迫振动的应力计算 §10.4 杆件受冲击时的应力和变形 §10.5 冲击韧性
§10.1 概述
1)动载荷问题的特点: )动载荷问题的特点: 静载荷问题:载荷平稳地增加, 静载荷问题:载荷平稳地增加,不引起构件 的加速度——准静态。 准静态。 的加速度 准静态 动载荷问题:载荷急剧变化, 动载荷问题:载荷急剧变化,构件速度发生 急剧变化。 急剧变化。
2FNd = qd (2R)
qd FNd FNd
qd
σd =
FNd = ρR2ω2 = ρv2 A
注意: 无关! 注意:与A无关! 无关
4)匀减速转动(飞轮刹车) )匀减速转动(飞轮刹车) 例 4 : 飞 轮 转 速 n=100r/min , 转 动 惯 量 为 Ix=0.5kNms2 , 轴 直 径 d=100mm , 10 秒停转,求最大动应力。 秒停转,求最大动应力。 解:角速度: ω0 = nπ 角速度: 30 角加速度: 角加速度:α = −ω0 / t
刘鸿文《材料力学》(第5版)笔记和课后习题(含考研真题)详解-动载荷(圣才出品)
4 / 30
圣才电子书
十万种考研考证电子书、题库视频学习平台
图 10-6
解:物体突然停止时,产生的向心加速度为:
由此产生的与加速度方向相反的惯性力为:
吊索内最大应力增量为:
1
=
Fa A
=
1275.5 5104
= 2.55MPa
梁内最大弯矩的增加量为:
查型钢表得 14 号工字钢W = 102cm3 ,则梁内最大应力增加量为:
Kd =1+
1+ 2h Δst
其中,对于突然加载的情况,相当于物体自由下落高度 h=0 的情况,此时动荷因数
Kd = 2 ,即杆件的应力和变形均为静载时的 2 倍。 (2)水平冲击
图 10-2 如图 10-2 所示,设冲击物与杆件接触时的速度为 v,此时求解动载荷问题时的动荷因
2 / 30
圣才电子书 十万种考研考证电子书、题库视频学习平台
σ (2)按静载荷求解应力 st 、变形 Δst 等;
(3)将所得结果乘以动荷系数 Kd 可得动载荷作用下的动应力和变形分别为:
σd = Kdσst , Δd = KdΔst 。
二、杆件受冲击时的应力和变形
1 / 30
圣才电子书 十万种考研考证电子书、题库视频学习平台
故由圆孔引起的最大正应力:
。
10.6 在直径为 100 mm 的轴上装有转动惯量 I=0.5 kN•m•s2 的飞轮,轴的转速为 300 r/min。制动器开始作用后,在 20 转内将飞轮刹停。试求轴内最大切应力。设在制动 器作用前,轴已与驱动装置脱开,且轴承内的摩擦力可以不计。
图 10-9
解:刹车前,飞轮的角速度为: 0
。
材料力学-第十章 动载荷
300
400 400 30
题 10-2 图
-1-
第十章 动载荷
班级
学号
姓名
10-3 图示钢轴 AB 的直径为 80mm,轴上有一直径为 80mm 的钢质圆杆 CD,CD 垂直于 AB。若 AB 以匀角速度 ω=40rad/s 转动。材料的许用应力[σ]=70MPa,密度为 7.8g/cm3。 试校核 AB 及 CD 杆的强度。
d 15kN
h h l
题 10-7 图
10-8 AB 和 CD 二梁的材料相同,横截面相同。在图示冲击载荷作用下,试求二梁最大正 应力之比和各自吸收能量之比。
l/2
l/2
P
D
A
B
l/2 C
l/2
题 10-8 图 -4-
B P
C v
A
题 12-5 图
10-6 直径 d=30cm,长为 l=6m 的圆木桩,下端固定,上端受重 P=2kN 的重锤作用,木材 的 E1=10GPa。求下列三种情况下,木桩内的最大正应力。 (a) 重锤以静载荷的方式作用于木桩上; (b) 重锤以离桩顶 0.5m 的高度自由落下; (c) 在桩顶放置直径为 15cm、厚为 40mm 的橡皮垫,橡皮的弹性模量 E2=8MPa。重锤也是 从离橡皮垫顶面 0.5m 的高等自由落下。
第十章 动载荷
班级
学号
姓名
10-1 均质等截面杆,长为 l,重为 W,横截面面积为 A,水平放置在一排光滑的辊子上, 杆的两端受轴向力 F1 和 F2 作用,且 F2﹥F1。试求杆内正应力沿杆件长度分布的情况(设 滚动摩擦可以忽略不计)。
l
F1
F2
题 10-1 图
400 120
10-2 轴上装一钢质圆盘,盘上有一圆孔。若轴与盘以 ω=40rad/s 的匀角速度旋转,试求轴 内由这一圆孔引起的最大正应力。
400 400 30
题 10-2 图
-1-
第十章 动载荷
班级
学号
姓名
10-3 图示钢轴 AB 的直径为 80mm,轴上有一直径为 80mm 的钢质圆杆 CD,CD 垂直于 AB。若 AB 以匀角速度 ω=40rad/s 转动。材料的许用应力[σ]=70MPa,密度为 7.8g/cm3。 试校核 AB 及 CD 杆的强度。
d 15kN
h h l
题 10-7 图
10-8 AB 和 CD 二梁的材料相同,横截面相同。在图示冲击载荷作用下,试求二梁最大正 应力之比和各自吸收能量之比。
l/2
l/2
P
D
A
B
l/2 C
l/2
题 10-8 图 -4-
B P
C v
A
题 12-5 图
10-6 直径 d=30cm,长为 l=6m 的圆木桩,下端固定,上端受重 P=2kN 的重锤作用,木材 的 E1=10GPa。求下列三种情况下,木桩内的最大正应力。 (a) 重锤以静载荷的方式作用于木桩上; (b) 重锤以离桩顶 0.5m 的高度自由落下; (c) 在桩顶放置直径为 15cm、厚为 40mm 的橡皮垫,橡皮的弹性模量 E2=8MPa。重锤也是 从离橡皮垫顶面 0.5m 的高等自由落下。
第十章 动载荷
班级
学号
姓名
10-1 均质等截面杆,长为 l,重为 W,横截面面积为 A,水平放置在一排光滑的辊子上, 杆的两端受轴向力 F1 和 F2 作用,且 F2﹥F1。试求杆内正应力沿杆件长度分布的情况(设 滚动摩擦可以忽略不计)。
l
F1
F2
题 10-1 图
400 120
10-2 轴上装一钢质圆盘,盘上有一圆孔。若轴与盘以 ω=40rad/s 的匀角速度旋转,试求轴 内由这一圆孔引起的最大正应力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2l 2 7.8 104 402 0.62 = 2.29MPa< 2g 2 9.81
旋转构件的受力分析与动应力计算
x
对于轴AB,最大弯曲正应力为
FNI
M Imax A 2l 3 1 2 2l 3 Imax = W 4 g W gd
x
将已知数据代入后,得到
M
旋转构件的受力分析与动应力计算
x
M Imax
FNImax 2l A 2 l 2 4 2g
2.应力计算与强度校核:
FNI
xБайду номын сангаас
对于CD杆,最大拉应力发 生C截面处,其值为 FNImax 2 l 2 Imax
A 2g
M
将已知数据代入上式后, 得到CD杆中的最大正应力
Imax
qI(x) q
旋转构件的受力分析与动应力计算
x
Ax 2 qI g
为求杆CD横截面上的轴力, 并确定轴力最大的截面,用假 想截面从任意处(坐标为x) 将杆截开,考虑上部分的平衡。 建立平衡方程
qI(x) q
F
l l
x
0:
FNI- q I dx 0
x
l
A 2 A 2 2 2 FNI= qI dx= xdx l x g 2g x x
由此得到
Ax 2 qI g
其中A为杆CD的横截面积;g 为重力加速度。
旋转构件的受力分析与动应力计算
x
Ax 2 qI g
上 述 结 果 表 明 : 杆 CD 上 各点的轴向惯性力与各点到 轴线AB的距离成正比。 为 求 杆 CD 横 截 面 上 的 轴 力,并确定轴力最大的截面, 用假想截面从任意处(坐标为 x)将杆截开,考虑上部分的 平衡。
旋转构件的受力分析与动应力计算
A 2 A 2 2 2 FNI= qI dx = xdx l x g 2g x x
l l
x
根据上述结果,在x=0的横截 面上,即杆CD与轴AB相交处的C 截面上,杆CD横截面上的轴力最 大,其值为
A 2 A 2 l 2 FNImax= q I dx = xdx g 2g x x
设计轮缘部分的截面尺寸时,为简单起见, 可以不考虑轮辐的影响,从而将飞轮简化为 平均半径等于R的圆环。 由于飞轮作等角速度转动,其上各点均只 有向心加速度,故惯性力均沿着半径方向、背 向旋转中心,且为沿圆周方向连续均匀分布力。
旋转构件的受力分析与动应力计算
为求惯性力,沿圆周方向截取ds 微弧段,
ds
旋转构件的受力分析与动应力计算
旋转构件由于动应力而引起的失效问题在工程 中也是很常见的。处理这类问题时,首先是分析构 件的运动,确定其加速度,然后应用达朗贝尔原理, 在构件上施加惯性力,最后按照静载荷时所采用的 方法方法确定构件的内力和应力。
旋转构件的受力分析与动应力计算
考察以等角速度旋转的飞轮。飞轮材料密 度为,轮缘平均半径为R,轮缘部分的横截面 积为A。
M
Imax
2 7.8 10 4 40 2 0.63 68.7MPa< 3 9.81 80 10
弹性杆件上的冲击载荷与冲击应力计算
具有一定速度的运动物体,向着静止的构件冲击 时,冲击物的速度在很短的时间内发生了很大变化, 即:冲击物得到了很大的负值加速度。这表明,冲击 物受到与其运动方向相反的很大的力作用。同时,冲 击物也将很大的力施加于被冲击的构件上,这种力工 程 上 称 为 “ 冲 击 力 ” 或 “ 冲 击 载 荷 ” ( impact load)。
旋转构件的受力分析与动应力计算
v
上述结果还表明:飞轮中的总应力与轮缘 的横截面积无关。因此,增加轮缘部分的横截 面积,无助于降低飞轮轮缘横截面上的总应力, 对于提高飞轮的强度没有任何意义。
旋转构件的受力分析与动应力计算
例 题 图示结构中,钢制AB轴的中点处固 结一与之垂直的均质杆CD,二者的直径 均为d。长度AC=CB=CD=l。轴AB以 等角速度ω绕自身轴旋转。已知:l=0.6 m ,d=80 mm,ω=40 rad/s;材料重 度γ=7.8 N/m3,许用应力[σ]=70 MPa。 试校校:轴AB和杆CD的强度是 否安全。 解:1.分析运动状态,确定动载荷: 当轴AB以ω 等角速度旋转时,杆CD上的各个质点具 有数值不同的向心向加速度,其值为
ds Rd
微段圆环的质量为
dm Ads ARd
于是,微段圆环上的惯性力大小为
dFI=R 2dm R 2 ARd
为计算圆环横截面上的应力,采用截面法,沿直径将圆 环截为两个半环。其中 FT 为环向拉力,其值等于应力与面 积乘积。
旋转构件的受力分析与动应力计算
以圆心为原点,建立Oxy坐标系,由 平衡方程,
旋转构件的受力分析与动应力计算
1 FT AR 2 2 sin d AR 2 2 Av 2 20
当轮缘厚度远小于半径 R 时,圆环横截面上的正应力可 视为均匀分布,并用表示。于是,飞轮轮缘横截面上的总应 力为
T st I
FNx FT =v 2 A A
a n x
2
旋转构件的受力分析与动应力计算
解:1.分析运动状态,确定动载荷: 当轴AB以ω 等角速度旋转时,杆CD 上的各个质点具有数值不同的向心向 加速度,其值为
a n x 2
式中x为质点到AB轴线的距离。AB轴上各质点, 因距轴线AB极近,加速度an很小,故不予考虑。
杆CD上各质点到轴线AB的距离各不相等,因而各点的 加速度和惯性力亦不相同。
上一章
动载荷与疲劳强度概述
返回 总目录
下一章
本书前面几章所讨论的都是静载荷作用下所产生的变 形和应力,这种应力称为静载应力(statical stresses), 简称静应力。静应力的特点,一是与加速度无关;二 是不随时间的改变而变化。
工程中一些高速旋转或者以很高的加速度运动的构 件,以及承受冲击物作用的构件,其上作用的载荷,称 为动载荷(dynamical load)。构件上由于动载荷引起的应 力,称为动应力(dynamic stresses)。这种应力有时会达 到很高的数值,从而导致构件或零件失效。
l l
FNI(x)
FNI
FNImax
旋转构件的受力分析与动应力计算
A 2 A 2 l 2 FNImax= q I dx = xdx g 2g x x
l l
x
这一力也是作用在轴AB上 的横向载荷。于是可以画出轴AB 的弯矩图。轴中点截面上的弯矩 最大,其值为
FNI
x
M Imax
FNImax 2l A 2 l 2 4 2g
弹性杆件上的冲击载荷与冲击应力计算
冲击问题的工程假设:构件上的应力和变形分布比较 复杂,因此,精确地计算冲击载荷,以及被冲击构件中由 冲击载荷引起的应力和变形,是很困难的。工程中大都采 用简化计算方法,它以如下假设为前提:
假设冲击物的变形可以忽略不计;从开始冲击到冲 击产生最大位移时,冲击物与被冲击构件一起运动,而不 发生回弹。 忽略被冲击构件的质量,认为冲击载荷引起的应力 和变形,在冲击瞬时遍及被冲击构件;并假设被冲击构 件仍处在弹性范围内。 假设冲击过程中没有其它形式的能量转换,机械能 守恒定律仍成立。
T1=T2=0
弹性杆件上的冲击载荷与冲击应力计算
T1=T2= 0
以位置1为势能零点,即 系统在位置1的势能为零,即
动载荷
等加速度直线运动构件的动应力分析 旋转构件的受力分析与动应力计算
弹性杆件上的冲击载荷与冲击应力计算
结论与讨论
等加速度直线运动构件的动应力分析
对于以等加速度作直线运动构件,只要确定其上 各点的加速度a ,就可以应用达朗贝尔原理施加惯性力, 如果为集中质量m,则惯性力为集中力,
FI m a
弹性杆件上的冲击载荷与冲击应力计算
机械能守恒原理
现以简支梁为例,说明应用机械能守恒原理计算冲 击载荷的简化方法。
图示之简支梁,在其上方高度h处,有一重量为W 的物体,自由下落后,冲击在梁的中点。
弹性杆件上的冲击载荷与冲击应力计算
冲击终了时 ,冲击载荷 及梁中点的位移都达到最大 值,二者分别用Fd 和Δd 表示, 其中的下标d表示冲击力引起 的动载荷,以区别惯性力引 起的动载荷。
为了确定作用在杆CD上的最大轴力,以及杆CD作用 在轴AB上的最大载荷。首先必须确定杆CD上的动载 荷—沿杆CD轴线方向分布的惯性力。
旋转构件的受力分析与动应力计算
为此,在杆CD上建立Ox坐标。设沿 杆CD轴线方向单位长度上的惯性力为 qI,则微段长度dx上的惯性力为
qIdx
A 2 q I dx dma n dx x g
F
y
0
2 FT 0
有
dF
0
Iy
其中为dFIy 半圆环质量微元惯性力dFI 在y轴上的投影,其值 为 dF =AR 2 2 sin d
Iy
飞轮轮缘横截面上的轴力为 1 FT AR 2 2 sin d AR 2 2 Av 2 20
其中,v为飞轮轮缘上任意点的速度。
工程结构中还有一些构件或零部件中的应力虽然与 加速度无关,但是,这些应力的大小或方向却随着 时间而变化,这种应力称为交变应力(alternative stress)。在交变应力作用下发生的失效,称为疲劳 失效,简称为疲劳(fatigue)。
对于矿山、冶金、动力、运输机械以及航空航天等 工业部门,疲劳是零件或构件的主要失效形式。统计 结果表明,在各种机械的断裂事故中,大约有 80%以 上是由于疲劳失效引起的。疲劳失效过程往往不易被 察觉,所以常常表现为突发性事故,从而造成灾难性 后果。因此,对于承受交变应力的构件,疲劳分析在 设计中占有重要的地位。