悬架系统计算报告样本

合集下载

悬架构造实验报告(3篇)

悬架构造实验报告(3篇)

第1篇一、实验目的1. 了解汽车悬架系统的基本组成和结构。

2. 掌握不同类型悬架系统的构造特点。

3. 分析悬架系统在汽车行驶中的作用。

二、实验原理汽车悬架系统是连接车架与车轮的部件,其主要功能是将路面传递给车轮的载荷和反作用力传递到车架上,以保证汽车的平稳行驶。

悬架系统由弹性元件、减振器和导向机构三部分组成。

三、实验内容1. 扭杆梁式悬架系统2. 麦弗逊式独立悬架系统3. 电子控制主动式油气弹簧悬架系统四、实验步骤1. 观察扭杆梁式悬架系统(1)观察悬架系统的整体结构,了解其组成。

(2)观察扭杆梁的形状和材料,了解其作用。

(3)观察减振器和弹簧的安装位置和结构,了解其作用。

2. 观察麦弗逊式独立悬架系统(1)观察悬架系统的整体结构,了解其组成。

(2)观察滑动立柱和横摆臂的形状和材料,了解其作用。

(3)观察减振器和弹簧的安装位置和结构,了解其作用。

3. 观察电子控制主动式油气弹簧悬架系统(1)观察悬架系统的整体结构,了解其组成。

(2)观察油气弹簧的结构和材料,了解其作用。

(3)观察传感器、电控单元和电磁阀的安装位置和作用。

五、实验结果与分析1. 扭杆梁式悬架系统扭杆梁式悬架系统通过扭杆梁来平衡左右车轮的上下跳动,以减小车辆的摇晃,保持车辆的平稳。

在实验中,我们观察到扭杆梁的形状和材料,以及减振器和弹簧的安装位置和结构,从而了解了扭杆梁式悬架系统的构造特点。

2. 麦弗逊式独立悬架系统麦弗逊式独立悬架系统由滑动立柱和横摆臂组成,具有较好的操控性和稳定性。

在实验中,我们观察到滑动立柱和横摆臂的形状和材料,以及减振器和弹簧的安装位置和结构,从而了解了麦弗逊式独立悬架系统的构造特点。

3. 电子控制主动式油气弹簧悬架系统电子控制主动式油气弹簧悬架系统由油气弹簧、传感器、电控单元和电磁阀等组成,可以实现悬架刚度和阻尼的调节。

在实验中,我们观察到油气弹簧的结构和材料,以及传感器、电控单元和电磁阀的安装位置和作用,从而了解了电子控制主动式油气弹簧悬架系统的构造特点。

K01H-PD-DP-006前、后悬架系统计算报告

K01H-PD-DP-006前、后悬架系统计算报告

目录1.概述 (1)1.1任务来源 (1)1.2标杆车悬架系统结构 (1)1.3计算的目的 (1)2.悬架系统设计的输入条件 (1)3.悬架系统相关计算 (1)3.1悬架偏频计算 (1)3.1.1前悬架偏频计算 (2)3.1.2后悬架偏频计算 (2)3.1.3前、后悬架偏频比 (3)3.2整车侧倾角计算 (3)3.2.1前悬架的侧倾角刚度 (3)3.2.2横向稳定杆在车轮处的等效侧倾角刚度 (4)3.2.3螺旋弹簧作用的侧倾角刚度 (4)3.2.4后悬架的侧倾角刚度 (5)3.3满载工况下侧倾角的计算 (6)3.4整车的纵倾角刚度 (6)3.5悬架的相对阻尼比 (7)3.5.1减震器阻尼系数 (7)3.5.1.1前减震器阻尼系数 (7)3.5.1.2后减振器阻尼系数 (7)3.5.2相对阻尼比 (7)3.5.2.1空载状态下前悬架的相对阻尼比 (8)3.5.2.2空载状态下后悬架的相对阻尼比 (8)3.6后减振器活塞杆行程校核 (9)3.7后悬架装车状态校核 (10)参考文献 (11)1.概述1.1任务来源根据K01H车型设计开发协议书及相关输出要求,K01H项目要求对底盘相关系统进行计算校核。

1.2标杆车悬架系统结构前悬架采用麦弗逊式独立悬架,后悬架采用纵置钢板弹簧式整体桥式非独立悬架。

1.3计算的目的对新设计车的悬架系统基本性能参数进行计算,以求得反映其悬架性能的基本特征参数,校核悬架匹配是否合理。

2.悬架系统设计的输入条件3.悬架系统相关计算3.1悬架偏频计算悬架系统将车身与车桥弹性的连接起来,由此弹性元件与它所支承的质量组成的振动系统决定了车身的固有频率,这是影响汽车行驶平顺性的重要性能指标之一。

根据力学分析,如果将汽车看成一个在弹性悬架上作单自由度振动的质量,则悬架系统的固有频率为:n,,:C(1)2n m m其中:n—偏频,hz;C一悬架刚度,N/mm ;工况下前悬架行行程变化较小,弹簧未并圈(或并圈很少)按等刚度进行计算。

悬架系统设计计算书

悬架系统设计计算书

3、后悬架静挠度的计算
前悬架垂向变形量(mm)
2、弹簧刚度计算 2.1、前悬架弹簧刚度计算
空载 56.15497608
半载 85.68500616
b 255.7 弹簧与下摆臂垂线的夹角(空间)a 、 rad 弹簧的刚度 N/mm
考虑在悬架系统中衬套的刚度约为悬架刚 度的15%~30%;共有衬套2个; 这里取 值为15%
后轴荷(kg)
半载
满载
单侧前悬架非簧载质量(kg)
单侧后悬架非簧载质量(kg)
前悬侧倾心高 mm
后悬侧倾心高 mm
参数值 475 460 452
819.15
857.96
950.34
900 900 1905 200 300 114 147.2928 150.33 86 120.7072 149.67
9 10 10.69 57.45
G ——弹簧材料的剪切弹性模量,这里
由于弹簧的材料为合金弹簧钢丝,所以, 取为80000 MPa;
G
i ——弹簧工作圈数,初取6.0圈;
Dm ——弹簧中径,初取130mm; d ——弹簧钢丝直径,mm。
d 由公式(5)可以得的计算公式如下 d 4 i • 8 • Dm3 • Cs G
G i Dm d 弹簧钢丝直径为:d
K m * ( H
3.2 前后悬架侧倾角刚度
1 前悬架螺旋弹簧作用的侧倾角 刚度
K s
1 2
C
s
(B p
lb n
cos )2
弹簧中心线与下控制臂的垂线的夹角 a 参数
前悬架的侧倾角刚度 K sf
N.mm/rad
考虑衬套扭转时的刚度有约为15%~20% 的影响;
deg 13.2

电控悬架系统实验报告

电控悬架系统实验报告

一、实验目的1. 了解电控悬架系统的基本组成与工作原理。

2. 熟悉电控悬架系统各部件的功能与相互关系。

3. 掌握电控悬架系统的实验操作步骤与注意事项。

4. 通过实验验证电控悬架系统在不同工况下的性能表现。

二、实验原理电控悬架系统是一种集传感器、控制器、执行器于一体的智能控制系统,通过实时检测车身高度、车速、转向角度等信号,对悬架系统进行动态调整,以实现车身稳定、乘坐舒适、操纵稳定等目标。

三、实验仪器与设备1. 电控悬架系统实验台架2. 车身高度传感器3. 车速传感器4. 转向角度传感器5. 控制器6. 执行器7. 电脑8. 数据采集与分析软件四、实验步骤1. 系统搭建:按照实验台架说明,连接车身高度传感器、车速传感器、转向角度传感器、控制器和执行器等设备,确保各部件连接正确、可靠。

2. 系统调试:启动电脑,打开数据采集与分析软件,设置实验参数,如车身高度、车速、转向角度等。

3. 实验操作:a. 在平直路面进行车身高度调整实验,观察电控悬架系统是否能够根据设定的高度值进行精确调整。

b. 在弯道进行车身稳定性实验,观察电控悬架系统是否能够抑制车身侧倾,提高操纵稳定性。

c. 在颠簸路面进行乘坐舒适性实验,观察电控悬架系统是否能够有效过滤路面振动,提高乘坐舒适性。

4. 数据采集与分析:记录实验过程中车身高度、车速、转向角度等数据,利用数据采集与分析软件对数据进行处理,分析电控悬架系统在不同工况下的性能表现。

五、实验结果与分析1. 车身高度调整实验:实验结果表明,电控悬架系统能够根据设定的高度值进行精确调整,调整误差在±5mm以内,满足实验要求。

2. 车身稳定性实验:在弯道实验中,电控悬架系统能够有效抑制车身侧倾,提高操纵稳定性。

实验结果显示,侧倾角度小于2°,满足实验要求。

3. 乘坐舒适性实验:在颠簸路面实验中,电控悬架系统能够有效过滤路面振动,提高乘坐舒适性。

实验结果显示,车身垂直加速度小于0.2g,满足实验要求。

悬架系统设计计算报告

悬架系统设计计算报告

悬架系统设计计算报告一、引言悬架系统作为汽车底盘的重要组成部分,对车辆的行驶稳定性、乘坐舒适性和操控性能等方面有着重要影响。

因此,在汽车设计和制造过程中,悬架系统的设计十分关键。

本报告将介绍悬架系统设计过程中的计算方法和依据,并对其进行详细说明。

二、悬架系统设计计算方法1.载荷计算:首先需要计算车辆在不同行驶条件下的载荷。

通过分析车辆的使用环境和客户需求,确定悬架系统的额定载荷。

然后,根据车辆自重、乘员重量、行李重量、荷载等因素,计算出车辆的总载荷。

2.载荷分配计算:在计算悬架系统的载荷分配时,需要考虑车辆的静态和动态载荷。

静载荷主要指车辆停靠时的重力,而动载荷主要指车辆行驶过程中因加速度、制动力和路面不平均性等引起的载荷。

通过对车辆不同部位的载荷进行测量和分析,确定每个车轮的载荷。

3.悬架系统刚度计算:悬架系统的刚度对车辆的操控性和乘坐舒适性有着直接影响。

悬架系统的刚度可以分为纵向刚度、横向刚度和垂向刚度等。

在设计悬架系统的过程中,需要根据车辆的使用环境和性能需求,计算悬架系统的刚度。

4.悬架系统减振器计算:悬架系统的减振器的设计和选型是悬架系统设计的重要环节。

减振器可以减少车辆在行驶过程中的震动,提高乘坐舒适性和行驶稳定性。

根据悬架系统的刚度和载荷等因素,计算减振器的选择和设计参数。

5.悬架系统运动学计算:悬架系统的运动学计算是为了确定悬架系统在不同行驶状态下的主要参数,以便进行悬架系统的设计和调整。

通过对车辆的几何尺寸、运动学参数和悬架结构的分析和计算,确定悬架系统的工作范围和参数。

三、计算依据在悬架系统设计计算中,需要依据以下相关标准和原则进行设计:2.汽车悬架系统设计手册:根据汽车制造商提供的相关手册和技术资料,对悬架系统设计进行指导和计算。

3.数学和工程力学原理:在悬架系统设计计算过程中,需要运用数学和工程力学的相关原理和方法,如力学平衡、弹性力学、振动理论等,进行悬架系统的计算。

4.仿真和试验数据:通过对悬架系统的仿真分析和试验测试,获取悬架系统的相关参数和性能数据,为悬架系统的设计计算提供依据。

悬架系统设计计算书

悬架系统设计计算书

前悬架 0.17
0.43
0.3
后悬架 0.2
0.4
0.3
2 减振器阻尼系数δ的确定
减振器的阻尼系数δ为:
式中: C——为悬架刚度(N/mm);
m——满载簧载质量(kg)。 ω——为悬架固有(圆)频率
(rad/s);
2 c m 2m
在悬架中减振器轴线与垂直线成一定的夹 角α时,如下图,减振器阻尼系数为
弹簧钢丝直径为:d
8.0mm
3、侧倾计算
3.1、整车侧倾角刚度
侧倾刚度是指在侧倾角不大的饿情况下,车身倾斜单位角度所必需的力矩,根据汽车工程手册P79 加速度为0.5g时,车身的侧向角为2.5o来计算悬架的刚度。整车的侧倾示意图如下:
如上图所示,簧上质量质心所在横向平面内的侧倾轴到地面的高度为h,前后悬架的侧倾角刚度分 心高度为h1 后悬架的侧倾中心高度为h2,簧上质量为m,,侧向加速度为μ,质心到前后轴的距离为L
c/m
2m i2 cos2
式中: i——杠杆比;i=n/a ——减振器安装角; ω——为悬架固有(圆)频率;
m——满载单侧簧载质量(kg)
根据前后悬架减振器的布置形式简化为双 横臂的形式,以下各参数取值如下:
M(kg/满载单侧)
悬架刚度(N/mm)
n (次/分) i
()
a(rad)
悬架固有(圆)频率ω
h
h1
L1
L1 L2
(h2
h1 )
簧上质量质心所在横向平面内的侧倾轴到 地面的高度 h mm
h1 10.69
31.74942761
h2 57.45
绕侧倾轴的力矩平衡为
m (H h) cos G (H h) sin (Kf Kr )

悬架系统计算报告..

悬架系统计算报告..

修订记录目次1 概述 (1)1.1 计算目的 (1)1.2 悬架系统基本方案介绍 (1)1.3 悬架系统设计的输入条件 (1)2 悬架系统的计算 (2)2.1 弹簧刚度 (2)2.2 悬架偏频的计算 (2)2.2.1 前悬架刚度计算 (3)2.2.2 前悬架偏频计算 (4)2.2.3 后悬架刚度计算 (4)2.2.4 后悬架偏频计算 (5)2.3 悬架静挠度的计算 (5)2.4 侧倾角刚度计算 (6)2.4.1 前悬架的侧倾角刚度 (6)2.4.2 后悬架的侧倾角刚度 (8)2.5 整车的侧倾角计算 (9)2.5.1悬架质量离心力引起的侧倾力矩 (9)2.5.2侧倾后,悬架质量引起的侧倾力矩 (9)2.5.3总的侧倾力矩 (10)2.5.4悬架总的侧倾角刚度 (10)2.5.5整车的侧倾角 (10)2.6 纵倾角刚度 (10)2.7 减振器参数 (11)2.7.1 减振器平均阻力系数的确定 (11)2.7.2 压缩阻尼和拉伸阻尼系数匹配 (13)2.7.3 减震器匹配参数 (13)3 悬架系统的计算结果 (14)4 结论及分析 (15)参考文献 (15)1 概述1.1 计算目的通过计算,求得反映MA02-ME100纯电动车悬架系统性能的基本特征,为零部件开发提供参考。

计算内容主要包括悬架刚度、悬架侧倾角刚度、刚度匹配、悬架偏频、静挠度和阻尼等。

1.2 悬架系统基本方案介绍MA02-ME100纯电动车前悬架采用麦弗逊式独立悬架带横向稳定杆结构,后悬架系统采用拖曳臂式非独立悬架结构。

前、后悬架系统的结构图如图1、图2:图1 前悬架系统图2 后悬架系统1.3 悬架系统设计的输入条件悬架系统设计输入参数如表1:表1 悬架参数列表2 悬架系统的计算 2.1 弹簧刚度根据KC 试验数据分析,选定弹簧刚度: 前悬架弹簧刚度为: mm N C sf /20=; 后悬架弹簧刚度为: mm N C sr /7.21=; 2.2 悬架偏频的计算悬架系统将车身与车轮弹性的连接起来,由此弹性元件与它所支承的质量组成的振动系统决定了车身的固有频率,这是影响汽车行驶平顺性的重要性能指标之一。

计算说明书_悬架系统

计算说明书_悬架系统

悬架系统1.整车有关参数1.1 轴距:L=2610mm1.2 轮距:前轮B1=1530mm后轮B2=1510mm1.3 轴荷(kg)1.4 前后轮空满载轮心坐标(Z向)1.4 前、后悬架的非簧载质量(kg):G u1=108kg G u2=92kg1.5 悬架单边簧载质量(kg)悬架单边簧载质量计算结果如下:前悬架:空载单边车轮簧载质量为M01=(795-108)/2=343.5kg 半载单边车轮簧载质量为 M03=(872-108)/2=382kg满载单边车轮簧载质量为M02=(891-108)/2=391.5kg 后悬架:空载单边车轮簧载质量为M1=(625-92)/2=266.5kg半载单边车轮簧载质量为M3=(773-92)/2=340.5kg满载单边车轮簧载质量为M2=(904-92)/2=406kg2、前悬架布置前悬架布置图见图1图1 T21前悬架布置简图3、前悬架设计计算3.1 前悬架定位参数:3.2 前悬架采用麦弗逊式独立悬架,带稳定杆,单横臂,螺旋弹簧,双向双作用筒式减震器。

(1) 空满载时缓冲块的位置和受力情况 空载时,缓冲块起作用,不受力 满载时,缓冲块压缩量为13.8mm ,(由DMU 模拟得知,DMU 数据引自T21 M2数据)。

根据缓冲块的特性曲线,当缓冲块压缩13.8mm 时,所受的力为:125N (2) 悬架刚度计算螺旋弹簧行程杠杆比:1.06悬架刚度为K 1= ((391.5-343.5)*9.8-125/1.06)/(5-(-15))= 17.62N/mm(3)前螺旋弹簧①截锥螺旋弹簧②螺旋弹簧行程杠杆比:1.06③刚度C1=K1*(1.06)2*0.9=17.62*(1.06)2*0.9=17.81N/mm(4)静挠度和空满载偏频计算空载时挠度 f 1= N 1/K 1=( M 01*9.8)/K 1=(343.5*9.8)/17.81=18.9cm静挠度 f 01= f 1 +(5-(-15))/10=20.9 偏频n: 空载为 Hz f n 15.19.18/5/511=== 满载为 Hz f n 09.19.20/5/50101===结论:前悬架偏频在1.00~1.45Hz 之间,满足设计要求。

汽车前悬架力学计算建模及仿真分析报告

汽车前悬架力学计算建模及仿真分析报告

图 2-1 上摆臂
图 2-2 下摆臂
图 2-3 转向节
图 2-4 扭杆
图 2-5 上拉杆
图 2-6 下拉杆
根据前悬架的总装配图纸,在 PRO/E 中进行装配,并生成爆炸图如图 2-7、2-8 所示。
图 2-7 悬架总装配图
图 2-8 前悬架爆炸图 1-前梁焊接总成,2-扭杆弹簧,3-上摆臂,4-下摆臂,5-减震器总成,6-上
F2z , F2y ------------------分别为上摆臂球头 A 处的受力
F1 ----------------------为下摆臂在 B 处的受力 M ----------------------为上摆臂在 C 处受的扭矩
(1)由式 1 可求得下摆臂 B 处所受的力 F1;
( ) F1
静载时摆臂水平 (2)在上限位置时:
F1=(0-12.25*110)/{2*cos(17.378-7)}=-5.17 KN 轮胎上跳距离为 84.5mm,上摆臂角度为 arctg(84.5/270)=17.378,下摆臂角度 为 arctg(84.5/382.5)=12.457 (3)在下限位置时:
F2y = F1 * cosω1 − Fy = −4.66 *cos 9.8550 = −4.59KN
F2z = Fz + F1 *sin ω1 = 12.25 − 4.66*sin 9.8550 = 11.45KN
式中 取 Fy=0 ( 静载时没有横向力)
ω1
=
arctan
78 449

9.8550
序号 1 2 3
硬点项目 hpl_wheel_center hpl_lca_inner hpl_lca_outer
4 hpl_damper_lwr 5 hpl_damper_upp 6 hpl_knuckle 7 hpl_uca_inner 8 hpl_uca_outer 9 hpl_tierod_inner 10 hpl_tierod_outer 11 hpl_pull_lwr_inner 12 hpl_pull_lwr_outer 13 hpl_pull_upp_inner 14 hpl_pull_upp_outer 15 hpl_torsion_bar_end 16 hpl_torsion_front

实例悬架系统设计计算报告

实例悬架系统设计计算报告

实例悬架系统设计计算报告Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】编号:悬架系统设计计算报告项目名称:国内某车型项目代码: 007编制:日期:校对:日期:审核:日期:批准:日期:汽车设计有限公司2011年11月目次悬架系统设计计算报告1概述任务来源根据《新车设计开发项目协议书-007项目设计开发》的规定,悬架系统参考样车进行逆向设计。

悬架系统基本介绍该款车前悬架采用麦弗逊式独立悬架,后悬架采用整体式驱动桥钢板弹簧非独立悬架。

前悬架的结构形式图1 前悬架结构形式后悬架的结构形式图2 后悬架结构形式计算的目的通过计算,求得反映其悬架系统性能的基本特征量,为零部件开发提供参考。

计算内容主要包括悬架刚度、偏频、静挠度、动挠度、侧倾刚度和减振器阻尼等。

2悬架系统设计的输入条件表1 悬架参数列表3悬架系统偏频的选取及悬架刚度计算前后悬架固有频率的匹配应合理,对乘用车,要求前悬架固有频率略低于后悬架的固有频率,还要不允许悬架撞击车架(或车身)。

由标杆车试验数据得出(表2):表2 标杆车悬架刚度试验表由于左、右轮载做实验时存在误差,现取其平均值计算载荷,高度变化值。

由上表取值:前轴荷为556kg,后轴荷为620kg。

前轴荷为689kg,后轴荷为1017kg。

分别取对应载荷左右高度差平均值的差值得:前轴荷变化量为689-556=133kg,位移为;后轴荷变化量为1017-620=397kg,位移为 =;故前悬架刚度为:(133/2×)/=×104 N/m后悬架刚度为:(397/2×)/=×104 N/mmCn ⋅=π21 (Hz ) (1)代入样车空、满载前、后簧上质量得: 前悬空载偏频n 1空= ;后悬空载偏频n 2空=; 前悬半载偏频n 1半= ;后悬半载偏频n 2半=; 前悬满载偏频n 1满= ;后悬满载偏频n 2满=; 标杆车:空载时前后悬架的偏频比为, 半载时前后悬架的偏频比为, 满载时前后悬架的偏频比为。

实例-悬架系统设计计算报告分解

实例-悬架系统设计计算报告分解

编号:悬架系统设计计算报告项目名称:国内某车型项目代码: 007编制:日期:校对:日期:审核:日期:批准:日期:汽车设计有限公司2011年11月悬架系统计算报告目次1概述 (2)1.1 任务来源 (2)1.2 悬架系统基本介绍 (2)1.2.1 前悬架的结构形式 (2)1.2.2 后悬架的结构形式 (2)1.3 计算的目的 (3)2悬架系统设计的输入条件 (3)3悬架系统偏频的选取及悬架刚度计算 (3)4弹簧计算 (5)4.1 弹簧刚度的计算 (5)4.2 前螺旋弹簧钢丝直径的计算 (8)5悬架系统静挠度计算 (9)6悬架侧倾角刚度计算 (9)6.1 前悬架侧倾角刚度计算 (9)6.2 后悬架侧倾角刚度计算 (11)6.3 整车侧倾角刚度计算 (12)6.4 整车的侧倾力矩 (13)6.5 整车的纵倾计算 (15)6.5.1 纵倾角的计算 (15)7减振器参数的确定 (16)7.1 减振器阻尼系数的确定 (16)8参数列表 (18)参考文献 (21)悬架系统设计计算报告1概述1.1任务来源根据《新车设计开发项目协议书-007项目设计开发》的规定,悬架系统参考样车进行逆向设计。

1.2 悬架系统基本介绍该款车前悬架采用麦弗逊式独立悬架,后悬架采用整体式驱动桥钢板弹簧非独立悬架。

1.2.1 前悬架的结构形式图1 前悬架结构形式1.2.2 后悬架的结构形式图2 后悬架结构形式1.3 计算的目的通过计算,求得反映其悬架系统性能的基本特征量,为零部件开发提供参考。

计算内容主要包括悬架刚度、偏频、静挠度、动挠度、侧倾刚度和减振器阻尼等。

2悬架系统设计的输入条件表1 悬架参数列表3悬架系统偏频的选取及悬架刚度计算前后悬架固有频率的匹配应合理,对乘用车,要求前悬架固有频率略低于后悬架的固有频率,还要不允许悬架撞击车架(或车身)。

由标杆车试验数据得出(表2):表2 标杆车悬架刚度试验表由于左、右轮载做实验时存在误差,现取其平均值计算载荷,高度变化值。

悬架系统计算报告材料

悬架系统计算报告材料
式中:
——弹簧中心线与后轴垂线间的夹角, =5.3°(见图4);
则:
考虑在悬架系统中橡胶块的变形,其刚度约为悬架刚度的15%~20%,此处取15%,
经计算:
2.2.4
后悬架偏频按式(4)计算:
…………………………………………(4)
式中:
——后悬架偏频;
K ——后悬架的刚度,N/mm;
——后悬架簧载质量,kg;
………………………………(6)
式中:
——前螺旋弹簧引起的侧倾角刚度,N·mm/rad;
b——前弹簧中心线与转向瞬时运动中心距离,mm;
p——车轮中心面距转向节瞬时运动中心距离,mm;
B——前轮距,mm;
——前螺旋弹簧刚度,N/mm。
根据图3得b=2435mm,p=2578mm,根据表1得B=1299 mm,并把 =20 N/mm带入式(6)得出螺旋弹簧的侧倾角刚度为:
一般要求前悬架侧倾角刚度要稍大于后悬架侧倾角刚度,以满足汽车稍有不足转向特性的要求,并且前、后悬架侧倾角刚度比值一般在1.4~2.6之间。根据以上计算结果得前、后悬架侧倾角刚度比值为2.5,显然开发目标车型满足要求。
2.5
车厢侧倾角 是和汽车操纵稳定性及平顺性有关的一个重要参数。侧倾角的数值影响到汽车的横摆角速度稳态响应和横摆角速度瞬态响应。以下质心及侧倾中心示意图各参数是从装载数模上测定的。
——后悬架满载簧载质量,kg;
——后悬架空载簧载质量,kg。
根据表1得
并把 带入(4)式得出:
后悬架满载偏频:
后悬架空载偏频:
2.3
静挠度也是表征悬架性能的参数,按式(5)计算:
………………………………(5)
式中:
——静挠度,mm;

悬架性能实验报告总结(3篇)

悬架性能实验报告总结(3篇)

第1篇一、实验背景随着我国汽车工业的快速发展,汽车悬架系统作为汽车底盘的重要组成部分,其性能直接影响着车辆的乘坐舒适性、行驶安全性以及操控稳定性。

为了提高汽车悬架系统的性能,本研究对某型汽车悬架系统进行了性能实验,以期为悬架系统的优化设计提供理论依据。

二、实验目的1. 了解汽车悬架系统的基本原理和结构;2. 评估悬架系统的各项性能指标;3. 为悬架系统的优化设计提供理论依据。

三、实验方法1. 实验设备:汽车悬架系统、测力传感器、加速度传感器、计算机等;2. 实验步骤:(1)搭建实验平台,安装好汽车悬架系统;(2)对悬架系统进行标定,确保各传感器正常工作;(3)按照实验方案进行实验,记录实验数据;(4)对实验数据进行处理和分析。

四、实验结果与分析1. 悬架刚度实验(1)实验数据:通过对悬架系统施加不同频率的正弦载荷,记录悬架系统的振动响应,得到悬架刚度随频率的变化曲线。

(2)分析:从实验数据可以看出,悬架刚度随着频率的增加而逐渐减小,说明悬架系统具有较好的高频阻尼性能。

2. 悬架阻尼实验(1)实验数据:通过改变阻尼比,记录悬架系统的振动响应,得到悬架阻尼系数随阻尼比的变化曲线。

(2)分析:从实验数据可以看出,随着阻尼比的增大,悬架系统的阻尼系数逐渐增大,说明悬架系统具有较好的阻尼性能。

3. 悬架振动实验(1)实验数据:对悬架系统施加不同频率的正弦载荷,记录悬架系统的振动响应,得到悬架振动响应随频率的变化曲线。

(2)分析:从实验数据可以看出,悬架振动响应随着频率的增加而逐渐减小,说明悬架系统具有较好的高频振动抑制性能。

4. 悬架性能综合评价根据实验结果,对悬架系统进行综合评价,主要包括以下几个方面:(1)悬架刚度:悬架刚度应适中,以保证车辆在行驶过程中的稳定性和舒适性;(2)悬架阻尼:悬架阻尼应适中,以保证车辆在行驶过程中的平稳性和操控性;(3)悬架振动:悬架振动应较小,以保证车辆在行驶过程中的舒适性。

实例悬架系统设计计算报告

实例悬架系统设计计算报告

编号:悬架系统设计计算报告项目名称:国内某车型项目代码: 007编制:日期:校对:日期:审核:日期:批准:日期:汽车设计有限公司2011年11月目次1概述 .................................................................1.1 任务来源 .............................................................1.2 悬架系统基本介绍 ......................................................1.2.1 前悬架的结构形式.....................................................1.2.2 后悬架的结构形式.....................................................1.3 计算的目的............................................................ 2悬架系统设计的输入条件.................................................. 3悬架系统偏频的选取及悬架刚度计算......................................... 4弹簧计算..............................................................4.1 弹簧刚度的计算........................................................4.2 前螺旋弹簧钢丝直径的计算 ............................................... 5悬架系统静挠度计算..................................................... 6悬架侧倾角刚度计算.....................................................6.1 前悬架侧倾角刚度计算...................................................6.2 后悬架侧倾角刚度计算...................................................6.3 整车侧倾角刚度计算.....................................................6.4 整车的侧倾力矩........................................................6.5 整车的纵倾计算........................................................6.5.1 纵倾角的计算........................................................ 7减振器参数的确定.......................................................7.1 减振器阻尼系数的确定................................................... 8参数列表.............................................................. 参考文献.................................................................悬架系统设计计算报告1概述1.1任务来源根据《新车设计开发项目协议书-007项目设计开发》的规定,悬架系统参考样车进行逆向设计。

K61001悬架系统设计计算及运动学分析报告

K61001悬架系统设计计算及运动学分析报告

目录一、悬架系统设计计算 (3)1.概述 (3)1.1任务来源 (3)1.2悬架系统基本介绍 (3)1.2.1前悬架的结构形式 (3)1.2.2后悬架的结构形式 (3)1.3计算目的 (4)2.竞品车基本参数 (4)3.竞品车悬架系统计算 (4)3.1竞品车前悬架弹簧刚度计算 (4)3.2竞品车后悬架钢板弹簧刚度 (5)3.3竞品车前悬架刚度计算 (5)3.4竞品车后悬架刚度计算 (7)3.5竞品车前后悬架偏频计算 (7)3.6竞品车侧倾计算 (7)3.6.1竞品车前悬架的侧倾角刚度计算 (7)3.6.2竞品车后悬架的侧倾角刚度计算 (10)3.6.3竞品车整车的侧倾角刚度计算 (10)3.6.4竞品车的侧倾力矩及侧倾角计算 (10)3.6.5竞品车前、后悬架轮荷转移量计算 (13)3.7竞品车整车的纵倾角刚度及抗点头率、抗仰率计算 (15)4.设计车悬架系统计算 (20)4.1设计车前后悬架偏频和刚度匹配计算 (20)4.1.1设计车前悬架刚度计算 (20)4.1.2设计车后悬架刚度计算 (21)4.1.3设计车前后悬架偏频计算 (21)4.2设计车悬架静挠度的计算 (22)4.3设计车侧倾计算 (23)4.3.1设计车前悬架的侧倾角刚度计算 (23)4.3.2设计车后悬架的侧倾角刚度计算 (25)4.3.3设计车整车的侧倾角刚度计算 (26)4.3.4设计车整车的侧倾力矩计算 (26)4.3.5设计车前、后轮荷转移量计算 (28)4.4设计车纵倾角刚度及抗点头率、抗仰率计算 (29)4.4.1设计车纵倾角刚度计算 (29)4.4.2设计车抗点头率、抗仰率计算 (30)4.5 整车姿态角计算 (32)4.6设计车减振器参数的确定 (33)5. 设计车与竞品车悬架系参数对比列表 (36)二、悬架系统动运动学分析 (37)1概述 (37)2ADAMS模型的建立及分析内容 (37)3前悬架系统运动学仿真分析结果 (37)4前悬架系统运动学仿真分析结论 (40)悬架系统设计计算及运动学分析报告一、悬架系统设计计算1.概述1.1任务来源根据《新车设计开发项目协议书-K61001车型设计开发》内容,悬架系统参考样车进行优化设计。

悬架系统计算报告

悬架系统计算报告

修订记录目次1 概述 (1)1.1 计算目的 (1)1.2 悬架系统基本方案介绍 (1)1.3 悬架系统设计的输入条件 (1)2 悬架系统的计算 (2)2.1 弹簧刚度 (2)2.2 悬架偏频的计算 (2)2.2.1 前悬架刚度计算 (3)2.2.2 前悬架偏频计算 (4)2.2.3 后悬架刚度计算 (4)2.2.4 后悬架偏频计算 (5)2.3 悬架静挠度的计算 (5)2.4 侧倾角刚度计算 (6)2.4.1 前悬架的侧倾角刚度 (6)2.4.2 后悬架的侧倾角刚度 (8)2.5 整车的侧倾角计算 (9)2.5.1悬架质量离心力引起的侧倾力矩 (9)2.5.2侧倾后,悬架质量引起的侧倾力矩 (9)2.5.3总的侧倾力矩 (10)2.5.4悬架总的侧倾角刚度 (10)2.5.5整车的侧倾角 (10)2.6 纵倾角刚度 (10)2.7 减振器参数 (11)2.7.1 减振器平均阻力系数的确定 (11)2.7.2 压缩阻尼和拉伸阻尼系数匹配 (13)2.7.3 减震器匹配参数 (13)3 悬架系统的计算结果 (14)4 结论及分析 (15)参考文献 (15)1 概述1.1 计算目的通过计算,求得反映MA02-ME100纯电动车悬架系统性能的基本特征,为零部件开发提供参考。

计算内容主要包括悬架刚度、悬架侧倾角刚度、刚度匹配、悬架偏频、静挠度和阻尼等。

1.2 悬架系统基本方案介绍MA02-ME100纯电动车前悬架采用麦弗逊式独立悬架带横向稳定杆结构,后悬架系统采用拖曳臂式非独立悬架结构。

前、后悬架系统的结构图如图1、图2:图1 前悬架系统图2 后悬架系统1.3 悬架系统设计的输入条件悬架系统设计输入参数如表1:表1 悬架参数列表2 悬架系统的计算 2.1 弹簧刚度根据KC 试验数据分析,选定弹簧刚度: 前悬架弹簧刚度为: mm N C sf /20=; 后悬架弹簧刚度为: mm N C sr /7.21=; 2.2 悬架偏频的计算悬架系统将车身与车轮弹性的连接起来,由此弹性元件与它所支承的质量组成的振动系统决定了车身的固有频率,这是影响汽车行驶平顺性的重要性能指标之一。

实例-悬架系统设计计算报告

实例-悬架系统设计计算报告

编号:悬架系统设计计算报告项目名称:国内某车型项目代码: 007编制:日期:校对:日期:审核:日期:批准:日期:汽车设计有限公司2011年11月目次1概述21.1 任务来源21.2 悬架系统基本介绍21.2.1 前悬架的结构形式21.2.2 后悬架的结构形式21.3 计算的目的32悬架系统设计的输入条件33悬架系统偏频的选取及悬架刚度计算34弹簧计算54.1 弹簧刚度的计算54.2 前螺旋弹簧钢丝直径的计算85悬架系统静挠度计算96悬架侧倾角刚度计算96.1 前悬架侧倾角刚度计算96.2 后悬架侧倾角刚度计算116.3 整车侧倾角刚度计算126.4 整车的侧倾力矩136.5 整车的纵倾计算156.5.1 纵倾角的计算157减振器参数的确定167.1 减振器阻尼系数的确定168参数列表18参考文献21悬架系统设计计算报告1概述1.1任务来源根据《新车设计开发项目协议书-007项目设计开发》的规定,悬架系统参考样车进行逆向设计。

1.2 悬架系统基本介绍该款车前悬架采用麦弗逊式独立悬架,后悬架采用整体式驱动桥钢板弹簧非独立悬架。

1.2.1 前悬架的结构形式图1 前悬架结构形式1.2.2 后悬架的结构形式图2 后悬架结构形式1.3 计算的目的通过计算,求得反映其悬架系统性能的基本特征量,为零部件开发提供参考。

计算内容主要包括悬架刚度、偏频、静挠度、动挠度、侧倾刚度和减振器阻尼等。

2悬架系统设计的输入条件表1 悬架参数列表3悬架系统偏频的选取及悬架刚度计算前后悬架固有频率的匹配应合理,对乘用车,要求前悬架固有频率略低于后悬架的固有频率,还要不允许悬架撞击车架(或车身)。

由标杆车试验数据得出(表2):表2 标杆车悬架刚度试验表由于左、右轮载做实验时存在误差,现取其平均值计算载荷,高度变化值。

由上表取值:前轴荷为556kg ,后轴荷为620kg 。

前轴荷为689kg ,后轴荷为1017kg 。

分别取对应载荷左右高度差平均值的差值得:前轴荷变化量为689-556=133kg ,位移为399.85-381.75=18.1mm ; 后轴荷变化量为1017-620=397kg ,位移为420.65-389.55 =31.1mm ; 故前悬架刚度为:(133/2×9.81)/0.0181=3.61×104 N/m 后悬架刚度为:(397/2×9.81)/0.0311=62.5×104 N/mmCn ⋅=π21 (Hz ) (1)代入样车空、满载前、后簧上质量得:前悬空载偏频n 1空= 1.38Hz ;后悬空载偏频n 2空=1.78Hz ; 前悬半载偏频n 1半= 1.27Hz ;后悬半载偏频n 2半=1.45Hz ; 前悬满载偏频n 1满= 1.22Hz ;后悬满载偏频n 2满=1.33Hz ; 标杆车:空载时前后悬架的偏频比为0.78, 半载时前后悬架的偏频比为0.88, 满载时前后悬架的偏频比为0.92。

115S前后悬架系统计算报告-20090618

115S前后悬架系统计算报告-20090618

目录一、概述 (1)二、悬架系统设计输入参数 (1)三、悬架偏频的计算 (2)1、前悬架偏频计算 (2)2、后悬架偏频计算 (2)3、前、后悬架偏频比 (3)四、悬架弹簧行程计算 (3)1、前悬架弹簧行程校核 (3)2、后悬架弹簧行程校核 (4)五、整车侧倾角计算 (5)1、前悬架的侧倾角刚度 (5)2、后悬架侧倾角刚度 (7)3、空载工况下侧倾角的计算 (8)六、整车的纵倾角刚度 (8)七、整车减震器的相对阻尼系数 (9)1、减震器阻尼系数 (9)2、相对阻尼系数 (10)参考文献 (12)一、概述115S是在B07基础上缩短的新开发车型,由于轴距、整车质量、轴荷的变化,需对前后悬架进行计算校核,以验证该车型的悬架是否满足基本性能要求。

115S前悬架采用麦弗逊独立悬架,后悬架采用纵置钢板弹簧非独立悬架。

前后悬架见图1、图2。

图1 前悬架系统图2 后悬架系统二、悬架系统设计输入参数115S悬架系统设计所需的输入参数见表1。

表1 悬架系统设计输入参数三、悬架偏频的计算115S 悬架完全借用BO7悬架结构,轴荷发生了改变,所以悬架的频率也发生改变。

悬架系统将车身与车桥弹性的连接起来,由此弹性元件与它所支承的质量组成的振动系统决定了车身的固有频率,这是影响汽车行驶平顺性的重要性能指标之一。

根据力学分析,如果将汽车看成一个在弹性悬架上作单自由度振动的质量,则悬架系统的固有频率为:mCn ⋅=π21 (1)式中n 为偏频(Hz )C 为悬架刚度(N/mm ) m 为簧载质量(Kg ) 1、前悬架偏频计算115S 前悬架为变线径弹簧,弹簧刚度呈非线性。

空载到满载工况下,弹簧的刚度变化不大,因此可近似认为该螺旋弹簧为等刚度弹簧。

前螺旋弹簧刚度为30.9N/mm ,悬架的杠杆比i=1.1,所以可近似计算出前悬架的刚度为28.1 N/mm 。

参数公式(1)代入,计算得到: 空载偏频n 1k =1.78Hz ; 满载偏频n 1m =1.46Hz 。

悬架系统设计计算报告.

悬架系统设计计算报告.

悬架系统设计计算报告目录1 系统概述 (1)1.1 系统设计说明 (1)1.2 系统结构及组成 (1)1.3 系统设计原理及规范 (2)2 悬架系统设计的输入条件 (2)3 系统计算及验证 (3)3.1 前悬架位移与受力情况分析 (3)3.2 后悬架位移与受力情况分析 (7)3.3 悬架静挠度的计算 (10)3.4 侧倾角刚度计算 (10)3.5 侧倾角刚度校核 (13)3.6 侧翻阀值校核 (15)3.7 纵向稳定性校核 (15)3.8 减震器参数的确定 (16)4 总结 (18)参考文献 (20)1系统概述1.1系统设计说明悬架是汽车上重要总成之一,它传递汽车的力和力矩、缓和冲击、衰减振动,确保汽车必要的行驶平顺性和操纵稳定性。

根据项目要求,需要对前后悬架的特征参数进行计算与较核,在确保悬架系统满足必要功能的同时,使悬架的各特征参数匹配合理,且校核其满足通用汽车的取值范围。

1.2系统结构及组成该款车型前悬架采用麦弗逊式独立悬架,该悬架上端螺旋弹簧直接作用于前减振器筒体之上,与前减振器共同组成前支柱总成,一起传递汽车所受力和力矩,并衰减汽车的振动。

下部三角形的摆臂通过橡胶衬套对称安装于副车架的两侧,通过副车架与车身牢固的连接在一起。

前支柱与摆臂总成特定的匹配关系确保了整个悬架系统固有的使用特性,使其满足实际设计的各项要求,其结构简图如图1所示。

图1 前悬架结构形式后悬架采用复合纵臂式半独立悬架,为经济型车型应用最为普遍的一种悬架结构,其显著特点是结构简单,成本低,使用可靠,侧倾性能优良。

中间工字形的扭转梁在传递汽车所受纵向力的同时,也为后螺旋弹簧与减振器提供了必要的安装空间,同时通过自身的扭转刚度保证了后悬架具有优良的侧倾特性。

扭转梁前安装点通过各向异性的橡胶衬套弹性的与车身相连,既具有良好的隔振性能又防止了汽车由于前后轴转向而产生的过多转向特性。

其结构简图如图2所示。

图2 后悬架结构形式1.3系统设计原理及规范LF7133前后悬架的设计是以标杆车为依托,根据标杆车悬架系统基本参数的检测,通过计算,求得反映其悬架系统性能的基本特征量,在保持整车姿态与标杆车一致的前提下,依据标杆车的悬架特征量对LF7133车型悬架参数进行设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

悬架系统计算报告项目名称:03月编号:版本号:V1.0修订记录目次1 概述 (1)1.1 计算目的 (1)1.2 悬架系统基本方案介绍 (1)1.3 悬架系统设计的输入条件 (2)2 悬架系统的计算 (3)2.1 弹簧刚度 (3)2.2 悬架偏频的计算 (3)2.2.1 前悬架刚度计算 (4)2.2.2 前悬架偏频计算 (4)2.2.3 后悬架刚度计算 (5)2.2.4 后悬架偏频计算 (6)2.3 悬架静挠度的计算 (6)2.4 侧倾角刚度计算 (7)2.4.1 前悬架的侧倾角刚度 (7)2.4.2 后悬架的侧倾角刚度.......... 错误! 未定义书签。

2.5 整车的侧倾角计算 (10)2.5.1 悬架质量离心力引起的侧倾力矩 (11)2.5.2 侧倾后, 悬架质量引起的侧倾力矩 (12)2.5.3 总的侧倾力矩 (12)2.5.4 悬架总的侧倾角刚度 (12)2.5.5 整车的侧倾角 (12)2.6 纵倾角刚度 (12)2.7 减振器参数 (13)2.7.1 减振器平均阻力系数的确定错误! 未定义书签。

2.7.2 压缩阻尼和拉伸阻尼系数匹配 (16)2.7.3 减震器匹配参数 (16)3 悬架系统的计算结果 (17)4 结论及分析 (18)参考文献 (18)1概述1.1 计算目的经过计算,求得反映MA02-ME10Q纯电动车悬架系统性能的基本特征,为零部件开发提供参考。

计算内容主要包括悬架刚度、悬架侧倾角刚度、刚度匹配、悬架偏频、静挠度和阻尼等。

1.2 悬架系统基本方案介绍MA02-ME10 0纯电动车前悬架采用麦弗逊式独立悬架带横向稳定杆结构,后悬架系统采用拖曳臂式非独立悬架结构。

前、后悬架系统的结构图如图1、图2:图1前悬架系统图2后悬架系统1.3 悬架系统设计的输入条件悬架系统设计输入参数如表1:表1悬架参数列表22.1 弹簧刚度根据KC试验数据分析,选定弹簧刚度:前悬架弹簧刚度为:C sf 20N/mm;后悬架弹簧刚度为:C sr 21.7N/mm;2.2 悬架偏频的计算悬架系统将车身与车轮弹性的连接起来,由此弹性元件与它所支承的质量组成的振动系统决定了车身的固有频率,这是影响汽车行驶平顺性的重要性能指标之一。

图3前悬架刚度计算示意图式中:K ――悬架刚度,N/mm;b ---- 前弹簧中心线与转向瞬时运动中心距离 ,mm; p ---- 车轮中心面距转向节瞬时运动中心距离,mm 。

根据图3得b=2435mm,p=2578mm 带入式(1)得前悬架刚度为22435 2578取衬套的刚度约为悬架刚度的 15% ,因此前悬架总刚度为K f = 17.84 X ( 1+15 %) =20.52N/mm2.2.2 前悬架偏频计算前悬架偏频按式(2)计算:图4后悬架刚度计算示意图221前悬架刚度计算前悬架刚度按式(1)计算:(1)17 .84 N/mm1204式中:n f ——前悬架偏频 ,K f ——前悬架的刚度 , N/mm; m f ——前悬架簧载质量 , kg;m f 1—— 前悬架满载簧载质量, kg;m f 2—— 前悬架空载簧载质量 , kg 。

根据表 1 得 m f1 630 49 /2290.5kgm f 2 605 49 /2 278kg并把Kf = 20.52N/mm 带入式(2) 得出: 前悬架满载偏频 : n f1 1.34 前悬架空载偏频 : n f2 1.37 2.2.3后悬架刚度计算K r C sr COS ( ) ....................................................................... ( 3)式中:——弹簧中心线与后轴垂线间的夹角 ,=5.3 ° (见图4) ;则:K r C Sr COS (5.3O ) 21.7 0.9957 21.6N / mm考虑在悬架系统中橡胶块的变形 , 其刚度约为悬架刚度的 15%〜20%,此处取15%,n f1 1000 K f2 \ m f(2)经计算:K r24.84N/mm224 后悬架偏频计算 后悬架偏频按式(4)计算:式中:n r ----- 后悬架偏频;K r ---- 后悬架的刚度,N/mm;m r后悬架簧载质量,kg; m ri -后悬架满载簧载质量 ,kg; m 「2-后悬架空载簧载质量 ,kg 。

根据表 1 得 m r1 770 43 /2363.5kgm r2 495 43 /2226 kg并把 K r 24.84N/mm 带入(4) 式得出:后悬架满载偏频:n r1 1.32后悬架空载偏频:n 「21.672.3悬架静挠度的计算静挠度也是表征悬架性能的参数 ,按式(5)计算:f c mg K ............................................................. ( 5)式中:fc -------------静挠度,mm;f f 空 -- 前悬空载静挠度,mm;n r1000 K rm r(4)f f 满――前悬满载静挠度,mm;f r空――后悬空载静挠度,mm;f r 满――后悬满载静挠度,mm;m—―簧载质量, kg;g——重力加速度,m/s2;K――悬架刚度,N/mm。

因此, 按式( 5) 计算得出:前悬架空载静挠度:f f空m f2g/k f132 . 77mm前悬架满载静挠度:f f满m f1g /k f138.74mm后悬架空载静挠度:匚空m r2g/k r89.13mm后悬架满载静挠度:匚满m r1g/k r143.36mm空载状态后前悬架偏频比: nr2/nf2=1.67/1.37=1.22满载状态后前悬架偏频比: nr1/nf1=1.32/1.34=0.98悬架刚度匹配结论:一般舒适型轿车前悬架偏频在1〜1.45之间,后悬架偏频在1.17〜1.58之间。

开发目标车前后悬架的空、满载静挠度和频率值以及偏频比较合理, 适合舒适型乘用车。

2.4 侧倾角刚度计算2.4.1 前悬架的侧倾角刚度前悬架的侧倾角刚度由两部分共同作用, 即螺旋弹簧引起的侧倾角刚度与横向稳定杆引起的侧倾角刚度。

1) 螺旋弹簧引起的侧倾角刚度按式( 6) 计算:式中:C f --------------- 前螺旋弹簧引起的侧倾角刚度,N • mm/rad;b ---- 前弹簧中心线与转向瞬时运动中心距离 ,mm; p ---- 车轮中心面距转向节瞬时运动中心距离 ,mm;B ---- 前轮距,mm;C sf --------- 前螺旋弹簧刚度,N/mm 。

根据图 3 得 b=2435mm, p=2578mm,根据表 1 得 B=1299 mm, 并把C sf =20 N/mm 带入式(6)得出螺旋弹簧的侧倾角刚度为:C f =1.51 x 107 N • mm/rad参考KC 试验数据衬套扭转时的刚度有约为 15%的影响,则前悬架由螺旋弹簧引起的侧倾角刚度为:C f 1.15 (1.51 107) 1.73 107 N mm/rad2)横向稳定杆引起的角刚度按式(7)计算:3EIL 233L2 22L1a2a b心 C...............................................L/2=472^bB P2C sf(6)(7)—1 2 3 -------------------------------- (t ---------- 〜_ [ ________ z _____ oz ____ 戸白9股 b-S3t5a-189,6图5前横向稳定杆结构示意图式中各参数参见示意图 5:C b ------- 横向稳定杆引起的角刚度,N • mm/rad;d ----- 稳定杆直径,mm;I ――稳定杆的截面惯性矩,mm; E ――材料的弹性模量,(N/mm)2d 4g4前稳定杆直径d=19mm,因此I 一一 6397.1mm 4 5 66464前稳定杆材料为:60si2MnA, 因此E=206000 (N/mm)2前横向稳定杆引起的角刚度为3 2060006397.1 945.23 3222 254.9 189.6472.6 189.6 83.54 170.483.5 199.52.27 107 N.mm/rad考虑固定方式,新的稳定杆在车轮处的等效侧倾角刚度与稳定 杆所提供的侧倾角刚度比为:i=0.5, 稳定杆在车轮处的等效侧倾角刚度为:3^色0.5 C ©b 1.13 107 N.mm/rad由于连接件是橡胶元件,故实际刚度值一般比理论值减小15% ~30% ,取 15%。

贝S 5b 1.13 107 0.85 0.96 107 N.mm/rad因此,前悬架总的侧倾角刚度K $ f C o f 5 b 2.69 107 N.mm/rad2.4.2 后悬架的侧倾角刚度K r 1S F 2C sr COS ......................................................... ( 8)2式中:a ——弹簧中心线与后轴垂线间的夹角5.3deg ;S F --- 弹簧安装间距 S F 896mm ; 以上数据代入公式(8), 得:89627K r21.7 cos5.3 0.86710 N mm / radr2考虑衬套扭转时的刚度有约为 20 %的影响:C 1.2 0.867 1 071.04 1 07N mm/ radr则:后悬架侧倾角刚度为C 1.04 107 N mm/radr一般要求前悬架侧倾角刚度要稍大于后悬架侧倾角刚度 ,以满足汽车稍有不足转向特性的要求,而且前、后悬架侧倾角刚度比值一般在1.4〜2.6之间。

根据以上计算结果得前、 后悬架侧倾 角刚度比值为2.5,显然开发目标车型满足要求。

2.5整车的侧倾角计算车厢侧倾角r 是和汽车操纵稳定性及平顺性有关的一个重要C sr弹簧刚度 C sr 21.7N /mm ;参数。

侧倾角的数值影响到汽车的横摆角速度稳态响应和横摆角速 度瞬态响应。

以下质心及侧倾中心示意图各参数是从装载数模上测 定的。

/////// / / /.ris=1010.9z2 二皿 LI-------L=2332----------------------------------图6整车空载状态下质心及侧倾中心示意图当汽车作稳态圆周行驶时,车厢侧倾角决定于侧倾力矩悬架总的角刚度刀 K 。

以下依据满载状态下稳态回转试验要求的 0.4gm/s2 进行计算。

2.5.1悬架质量离心力引起的侧倾力矩簧载质量离心力引起的侧倾力矩 M r1M ri aMh式中:a y ——侧向加速度;a y 0.4gM -------- 悬上质量, M 1100 49 43 1008 kg ;h ——整车质心到侧倾轴线的距离为:h 316.17mm (见图6);以上数据代入公式11,可得侧倾力矩M r1:Mr1 a y Mh 0.4 9.8 1 008 316.170.1249 1 07N mm(9)后悬侧倾中心■&前悬测倾中心2.5.2侧倾后,悬架质量引起的侧倾力矩车厢侧倾后,悬架质量的质心偏出距离 e,因此,其重力引起的侧倾力矩为:M r2 G S e G S h r ......................................................................... ( 10)式中:h ——整车质心到侧倾轴线的距离316.17mm (见图6);r――整车侧倾角;M r2 9878.4 316.17 r 0.312 r 107 N mm2.5.3总的侧倾力矩M r M r1 M r2 (0.12490.312 r2) 107 N mm2.5.4悬架总的侧倾角刚度C 总 C f C r 2.69 1071.042.5.5整车的侧倾角M ①(0.1249 0.312 J 107r7C ①总 3.73 107汽车在转弯时,车身在0.4g 的侧向加速度的作用下,车身侧 倾角不大于3〜5° ,显然开发目标车型满足要求。

相关文档
最新文档