PT100温度传感器课程设计

合集下载

基于PT100温度监测的设计

基于PT100温度监测的设计

温度监测的设计电信科技08-2 韦一、课程设计内容(1)实时检测温度—50°C—180°C环境温度范围:室温—20°C—60°C;测量精度:2.5%±1字;(2)用LCD1602显示其温度(小数点保留两位);(3)将温度上传到上位PC机显示。

二、系统方案2.1基本原理根据检测温度范围的要求,本设计采用铂热敏电阻PT100作为温度传感器,温度测量范围在-200~850之内。

热敏电阻的电阻值随着环境温度的变化而变化,其电阻值与环境温度有某种关系。

本设计使用的电阻——温度的关系如下:在负温区(-200~0°C)范围:Rt=R0(1+At+Bt^2+C(t-100)T^2)在正温区(0~850°C)范围内:Rt=R0(1+At+Bt^2)式中:Rt——温度t时刻铂热敏电阻的电阻值;R0——温度0°C的铂热敏电阻的电阻值;t——介质的温度;A、B、C——有关的常数,其值如下:A=3.90502*10^-3B= -5.80195*e-7C=-4.2735*e-12铂热敏电阻的允许误差如下:电阻——温度的关系如下表:利用电桥平衡原理,已知另外三个电阻的阻值和电桥的供电电压,再测出电的桥两端的电压差,就可计算出连入电桥中的铂热敏电阻的电阻值。

电桥两端电压差通过放大电路后,经过A/D转换,利用单片机读取A/D的数据,便可得到放大后的电压值,通过放大电路输入和输出的关系,可得到电桥两端的电压差,这样就可计算出铂热敏电阻的电阻值。

通过铂热敏电阻阻值与环境温度有某种关系,可将电阻值转换为温度,这一系列的计算,可由单片机完成,最后将温度值送到显示电路显示,或者作为后期的数据处理。

2.2原理框图如图2.2所示:含有铂热敏电阻PT100的电桥放大电路A/D转换器单片机显示部分送到PC机图2.2三、硬件电路原理图(1)电桥和放大电路部分如图3.1所示,U7是TL431稳压管,为电桥提供稳定的电压,供电电压为+5V,由直流激励源U7(k)提供。

PT100测温设计

PT100测温设计

学号:传感与检测技术题目学院专业班级姓名指导教师年月日目录1、设计任务与要求 (1)2、方案设计 (2)3、温度传感器的选择 (3)4、PT100热电阻工作原理介绍 (4)5、单元电路与参数计算 (6)5.1 PT100电压产生电路 (6)5.2仪表放大器 (7)5.3模数转换器 (9)5.4 LCD1602液晶显示 (10)5.5 AT89C52单片机电路 (13)6、软件设计 (14)6.1 程序流程图 (14)6.2 控制程序 (14)7、总的原理图 (20)8、感想与体会 (21)1、设计任务与要求《传感与检测技术》大作业的基本要求1.设计一个测温系统,要求测温范围200~500℃,分辨率为1℃。

2.画出系统结构框图,说明各电路的作用,系统实现的功能3.选择一种合适的温度传感器,说明选择理由。

3.说明该温度传感器的工作原理,推导输入输出关系式。

4.设计模拟信号调理电路,推导温度输入和调理电路输出的表达式;5.选择A/D转换器,计算放大器的放大倍数;6.设计人机接口电路,(参数如何设置?数据如何显示?)7.绘制基于单片机的温度测量系统的硬件电路图8.所采用测量数据的基本处理算法的流程图以及程序设计。

9.证明所设计的系统能够达到测温范围和分辨率的要求。

2、方案设计总的设计方案叙述如下:不同的温度使PT100产生不同电阻值,接上恒流源产生电压值,经过运算放大器组成的仪表放大器电路,输出与放大倍数有关的相应0到2.8V 的压降,再由TLC1543模数转换器采集并送给AT89C52单片机处理数据并显示相应的温度值到LCD1602液晶屏上。

不同的温度产生不同的电阻值,且基本上呈线性规律。

所以可以直接把该电阻通过直流源产生的电压经放大后送到单片机进行处理并显示。

设计框图如下:图1 系统设计框图3、温度传感器的选择常见的温度传感器有PT100、AD590、热电偶、DS18B20等。

AD590适用于150℃以下温度;DS18B20测温范围为-55℃~+125℃;热电偶测温范围大为-200℃~1300℃,特殊情况下为270℃~2800℃;PT100为热电阻传感器,测量范围-200℃~+850℃。

传感器参数检定 PT100测温 PT100电阻标定

传感器参数检定 PT100测温 PT100电阻标定

传感器参数检定—课程设计实验报告学院:机电与信息工程学院年级:2010级专业:测控技术与仪器摘要本文首先简要介绍铂电阻PT100的特性以及测温的方法,在此基础上阐述了基于PT100的温度测量系统设计。

在本设计中,是以铂电阻PT100作为温度传感器,采用恒流测温的方法,通过放大器进行温度信号的转换,将0~300℃温度等价到0~2V电压输出。

本设计采用了四线制铂电阻温度测量电路,通过对电路的设计,减小了测量电路及PT100自身的误差,使温控精度在0℃~300℃范围内准确测量。

关键词:PT100 温度测量仪用放大器AbstractThis article briefly describes the characteristics of PT100 platinum resistance and temperature measurement method, on the basis it describes the design of temperature measurement system based on PT100. In this design, it is use a PT100 platinum resistance as temperature sensor, in order to acquisition the temperature signal, it use of constant-current temperature measurement method and Amplifier, In addition, it designs a clock circuit modules to achieve real-time measurement of temperature.It can still improve the perform used four-wire temperature circuit and reduce the measurement eror.Keywords:PT100 Temperature Measures Instrument amplifier前言热电偶是目前接触式测温中应用十分广泛的热电式传感器,它具有结构简单、制造方便、测温范围宽、热惯性小、准确度高、输出信号便于远传等优点。

毕业设计-基于PT100热电阻温度传感器和AT89C51单片机的温度检测系统设计

毕业设计-基于PT100热电阻温度传感器和AT89C51单片机的温度检测系统设计

摘要本课题本系统采用PT100热电阻温度传感器和单片机组成可靠性高、功耗低的温度检测系统。

以AT89C51单片机系统为核心,对单点的温度进行实时检测。

采用模拟温度传感器PT100对温度进行检测;采用串型模数转换器ADC0809进行A/D转换把温度信号调解转换为电压信号与AT89C51单片机接口设置LED八段数码管实时显示温度值。

本设计包括温度传感器、A/D转换模块、数据传输模块、温度显示模块四个部分。

关键词:单片机,PT100热电阻,ADC0809,温度检测The design of Single Chip MicrocomputerTemperature Detection SystemBased on the Resistive Thermal Detector of PT100AbstractThis article AT89C51 monolithic integrated circuit which produces by ATMEL Corporation is the core, can inspect a single point of the temperature in real time. The adoption of the serial A/D for temperature signals into voltage signal mediation AT89C51 Single-Ship Compute interfaces with the eighth LED digital display of real-time temperature. The design includes four parts of the temperature sensor and the A / D converter module and the data transmission modules and the temperature display module. Each part functions and the process was described in the Paper in detail.Key words:Single-Ship Computer; Resistive Thermal Detector of PT100; ADC0809; Measure-temperature目录摘要 (I)Abstract (II)1 绪论 (1)1.1 课题背景 (1)1.2 方案论证 (2)1.2.1 单片机选型 (2)1.2.2 模数转换器选型 (3)1.2.3 显示方案确定 (3)2 硬件设计 (4)2.1 温度信号的获取与放大 (4)2.1.1 元件介绍 (4)2.1.2 放大电路设计 (4)2.2 模数转换单元 (5)2.2.1 8位串行A/D转换器ADC0809 (5)2.2.2 模数转换单元电路的设计 (7)2.3 键盘电路的设计 (8)2.4 LED显示电路的设计 (8)2.4.1 LED数码管原理 (9)2.4.2 LED数码管编码方式 (9)2.4.3 LED数码管显示方式和典型应用 (10)2.4.4 LED数码管的原理图 (11)2.5 声光报警电路 (12)2.6 单片机接口电路 (13)2.6.1单片机的时钟电路 (13)2.6.2复位电路和复位状态 (13)3 软件设计 (16)3.1 程序设计语言的选用 (16)3.2 软件程序的设计 (16)3.2.1 程序流程 (16)3.2.2 键盘管理 (17)3.2.3 LED显示 (18)3.2.4 模拟量的采集与处理 (18)3.3源程序 (22)4 抗干扰设计 (29)4.1 用于单片机系统的干扰抑制元件 (29)4.2 提高单片机系统抗干扰能力的主要手段 (29)5 结论 (31)致谢 (32)参考文献 (33)论文原创性声明 ...................................................................................... 错误!未定义书签。

铂电阻温度计传感器课程设计

铂电阻温度计传感器课程设计

铂电阻温度计传感器课程设计摘要传感器是现代科技和工程领域不可或缺的一部分。

本课程设计旨在介绍铂电阻温度计传感器的原理、特性和应用,以及如何设计和实现铂电阻温度计传感器。

导言铂电阻温度计传感器是一种常用的温度测量设备,具有精度高、稳定性好等优点。

在许多领域,如工业控制、环境监测等方面都有广泛的应用。

本课程设计将深入介绍铂电阻温度计传感器的工作原理和特点,并通过实验设计帮助学生更好地理解和应用铂电阻温度计传感器。

1. 铂电阻温度计传感器的工作原理铂电阻温度计传感器是基于材料电阻随温度变化的特性来测量温度的。

其中,铂电阻是一种具有稳定温度系数和较大温度范围的材料,常用的材料有PT100、PT1000等。

铂电阻温度计的原理是利用铂电阻的电阻值与温度之间的关系进行温度测量。

2. 铂电阻温度计传感器的特点•高精度:铂电阻温度计传感器的精度可以达到0.1°C,适用于需要高精度温度测量的场合。

•宽温度范围:铂电阻温度计传感器的温度测量范围通常在-200°C到+800°C之间。

•稳定性好:铂电阻温度计传感器具有良好的长期稳定性和重复性。

•快速响应:铂电阻温度计传感器的响应时间较短,能够快速反应温度的变化。

3. 铂电阻温度计传感器的应用铂电阻温度计传感器在许多领域有着广泛的应用,包括以下几个方面:•工业控制:铂电阻温度计传感器可用于工业控制系统中,如温度控制、温度补偿等。

•环境监测:铂电阻温度计传感器可用于监测环境温度,如气象观测、温室控制等。

•制冷和空调:铂电阻温度计传感器可用于制冷和空调系统中的温度控制。

•医疗设备:铂电阻温度计传感器可用于医疗设备中,如体温测量。

4. 实验设计本课程设计还将提供一个实验设计,帮助学生更好地理解和应用铂电阻温度计传感器。

以下是实验设计的主要内容:实验目的通过实验帮助学生了解铂电阻温度计传感器的工作原理和特性,以及如何进行温度测量。

实验器材•铂电阻温度计传感器•温度控制装置•数字温度显示器•实验电路板•连接线等实验步骤1.搭建实验电路:将铂电阻温度计传感器连接到实验电路板上。

(完整word版)传感器课程设计(基于labview的pt100温度测量系统)

(完整word版)传感器课程设计(基于labview的pt100温度测量系统)

目录第一章方案设计与论证 (2)第一节传感器的选择 (2)第二节方案论证 (3)第三节系统的工作原理 (3)第四节系统框图 (4)第二章硬件设计 (4)第一节 PT100传感器特性和测温原理 (5)第二节信号调理电路 (6)第三节恒流源电路的设计 (6)第四节 TL431简介 (8)第三章软件设计 (9)第一节软件的流程图 (9)第二节部分设计模块 (10)总结 (11)参考文献 (11)第一章方案设计与论证第一节传感器的选择温度传感器从使用的角度大致可分为接触式和非接触式两大类,前者是让温度传感器直接与待测物体接触,而后者是使温度传感器与待测物体离开一定的距离,检测从待测物体放射出的红外线,达到测温的目的.在接触式和非接触式两大类温度传感器中,相比运用多的是接触式传感器,非接触式传感器一般在比较特殊的场合才使用,目前得到广泛使用的接触式温度传感器主要有热电式传感器,其中将温度变化转换为电阻变化的称为热电阻传感器,将温度变化转换为热电势变化的称为热电偶传感器。

热电阻传感器可分为金属热电阻式和半导体热电阻式两大类,前者简称热电阻,后者简称热敏电阻。

常用的热电阻材料有铂、铜、镍、铁等,它具有高温度系数、高电阻率、化学、物理性能稳定、良好的线性输出特性等,常用的热电阻如PT100、PT1000等.近年来各半导体厂商陆续开发了数字式的温度传感器,如DALLAS公司DS18B20,MAXIM公司的MAX6576、MAX6577,ADI公司的AD7416等,这些芯片的显著优点是与单片机的接口简单,如DS18B20该温度传感器为单总线技术,MAXIM公司的2种温度传感器一个为频率输出,一个为周期输出,其本质均为数字输出,而ADI公司的AD7416的数字接口则为近年也比较流行的I2C总线,这些本身都带数字接口的温度传感器芯片给用户带来了极大的方便,但这类器件的最大缺点是测温的范围太窄,一般只有-55~+125℃,而且温度的测量精度都不高,好的才±0.5℃,一般有±2℃左右,因此在高精度的场合不太满足用户的需要.热电偶是目前接触式测温中应用也十分广泛的热电式传感器,它具有结构简单、制造方便、测温范围宽、热惯性小、准确度高、输出信号便于远传等优点。

基于PT100的数字温度计的设计

基于PT100的数字温度计的设计

1 引言
在工农业生产中,温度检测及其控制占有举足轻重的地位,随着现代信息 技术的飞速发展和传统工业改造的逐步实现 ,能够独立工作的温度检测和显示 系统已经应用于诸多领域。 要达到较高的测量精度需要很好的解决引线误差补偿 问题、 多点测量切换误差问题和放大电路零点漂移误差等问题,使温度检测复杂 化。模拟信号在长距离传输过程中,抗电磁干扰时令设计者伤脑筋的问题,对于 多点温度检测的场合,各被检测点到监测装置之间引线距离往往不同,此外,各 感元件参数的不一致,这些都是造成误差的原因,并且难以完全清除。 单片机以其功能强、体积小、可靠性高、造价低和开发周期短等优点,成为 自动化和各个测控领域中必不可少且广泛应用的器件, 尤其在日常生活中也发挥 越来越大的作用。采用单片机对温度采集进行控制,不仅具有控制方便、组态简 单和灵活性大等优点, 而且可以大幅度提高被控数据的技术指标,从而能够大大 提高产品的质量和数量。 由于科学技术的飞速发展, 特别是微电子加工技术,计算机技术及信息处理 技术的发展, 人们对信息资源的需求日益增长,作为提供信息的传感技术及传感 器愈来愈引起人们的重视, 而综合各种技术的传感器技术也进入到一个飞速的发 展阶段。要及时正确地获取各种信息,解决工程、生产及科研中遇到的各种具体 的检查问题, 就必须合理选择和善于应用各种传感器及传感技术。如最简单的温 度的测量,有热电偶、光纤温度传感器等等。但是,热电阻是开发早、种类多、 发展较成熟的感元器。 热电阻由半导体陶瓷材料组成,利用的原理是温度引起电 阻变化。热电阻器是感元件的一类,按照温度系数不同分为正温度系数热电阻器 和负温度系数热电阻器。 热电阻器的典型特点是对温度感,不同的温度下表现出 不同的电阻值。 正温度系数热电阻器在温度越高时电阻值越大,负温度系数热电 阻器在温度越高时电阻值越低, 它们同属于半导体器件。随着半导体技术的不断 发展,热电阻作为一种新型感温元件应用越来越广泛。他具有体积小、灵度高、 重量轻、热惯性小、寿命长以及价格便宜等优点,最重要的是作为温度传感器的 热电阻的灵度非常高,这是其他测温传感器所不能比拟的。

(完整word版)PT100数字温度计

(完整word版)PT100数字温度计

单片机课程设计PT100数字温度计学院:物理电气信息学院班级:电气工程与自动化(1班)学号:12012241992姓名:于高乐PT100数字温度计一. 设计目的与任务采用PT100温度传感器,设计一款可以实时显示温度的数字温度计二. 设计中所需软件及设备PC 机电脑、Keil C 软件、Protues 软件。

本次设计所需软件为Keil C51以及Proteus ISIS 仿真软件,应用Proteus ISIS 对实验电路进行仿真,得到实验结果。

三.设计原理说明1.实验方案设计图由于是16路的24V 电源输入,所以不能直接将24V 电源输入到单片机,故需要有隔离或转换电路,将16路24V 电源转换为转换为16路的信号输入到单片机I/O 口,由单片机采集16路电平信号。

方案设计结构图如下图2.硬件设计与结构图(1)单片机模块及最小系统(2)液晶显示模块(3)温度模拟模块四.总体电路原理图及其仿真图五.设计程序主函数首先实现单片机的初始化。

然后将I/O口数据传送至虚拟终端。

最后执行虚拟终端显示打印函数,在加一段演示程序,便于观察。

源程序#include <reg52.H>#include <intrins.H>#include <math.H>#define uchar unsigned char#define uint unsigned intsbit RS = P2^6; //数据/命令选择端(H/L)sbit LCDEN = P2^7; //使能端void delayUs() //短延时{_nop_();}void delayMs(uint a) //长延时{uint i, j;for(i = a; i > 0; i--)for(j = 100; j > 0; j--);}//第一行开始地址为0x80, 第二行开始地址为0xc0;//写命令:RS=0, RW=0;void writeComm(uchar comm){RS = 0;P1 = comm;LCDEN = 1;delayUs();LCDEN = 0;delayMs(1);}//写数据:RS=1, RW=00void writeData(uchar dat){RS = 1;P1 = dat;LCDEN = 1;delayUs();LCDEN = 0;delayMs(1);}//初始化函数//显示模式, 固定指令为00111000=0x38, 16*2显示, 5*7点阵,8位数据接口//显示开/关及光标设置00001100=0x0c//指令1: 00001DCB : D:开显示/关显示(H/L); C:显示光标/不显示(H/L), B:光标闪烁/不闪烁(H/L)//指令2: 000001NS ://N=1, 当读/写一个字符后地址指针加1, 且光标也加1; N=0则相反//S=1, 当写一个字符, 整屏显示左移(N=1)或右移(N=0), 但光标不移动; S=0, 整屏不移动void init(){writeComm(0x38); //显示模式writeComm(0x0c); //开显示, 关光标writeComm(0x06); //写字符后地址加1, 光标加1writeComm(0x01); //清屏}void writeString(uchar * str, uchar length){uchar i;for(i = 0; i < length; i++){writeData(str[i]);}}/*****************************PT100*******************************/ sbit ds = P3^4;void dsInit(){//对于11.0592MHz时钟, unsigned int型的i, 作一个i++操作的时间大于为8usunsigned int i;ds = 0;i = 100; //拉低约800us, 符合协议要求的480us以上while(i>0) i--;ds = 1; //产生一个上升沿, 进入等待应答状态i = 4;while(i>0) i--;}void dsWait(){unsigned int i;while(ds);while(~ds); //检测到应答脉冲i = 4;while(i > 0) i--;}bit readBit(){unsigned int i;bit b;ds = 0;i++; //延时约8us, 符合协议要求至少保持1usds = 1;i++; i++; //延时约16us, 符合协议要求的至少延时15us以上b = ds;i = 8;while(i>0) i--; //延时约64us, 符合读时隙不低于60us要求return b;}//读取一字节数据, 通过调用readBit()来实现unsigned char readByte(){unsigned int i;unsigned char j, dat;dat = 0;for(i=0; i<8; i++){j = readBit();//最先读出的是最低位数据dat = (j << 7) | (dat >> 1);}return dat;}void writeByte(unsigned char dat)unsigned int i;unsigned char j;bit b;for(j = 0; j < 8; j++){b = dat & 0x01;dat >>= 1;//写"1", 将DQ拉低15us后, 在15us~60us内将DQ拉高, 即完成写1if(b){ds = 0;i++; i++; //拉低约16us, 符号要求15~60us内ds = 1;i = 8; while(i>0) i--; //延时约64us, 符合写时隙不低于60us要求}else //写"0", 将DQ拉低60us~120us{ds = 0;i = 8; while(i>0) i--; //拉低约64us, 符号要求ds = 1;i++; i++; //整个写0时隙过程已经超过60us, 这里就不用像写1那样, 再延时64us了}}}void sendChangeCmd(){dsInit(); //初始化DS18B20, 无论什么命令, 首先都要发起初始化dsWait(); //等待DS18B20应答delayMs(1); //延时1ms, 因为DS18B20会拉低DQ 60~240us作为应答信号writeByte(0xcc); //写入跳过序列号命令字Skip RomwriteByte(0x44); //写入温度转换命令字Convert T}void sendReadCmd(){dsInit();dsWait();delayMs(1);writeByte(0xcc); //写入跳过序列号命令字Skip RomwriteByte(0xbe); //写入读取数据令字Read Scratchpad//获取当前温度值int getTmpValue(){unsigned int tmpvalue;int value; //存放温度数值float t;unsigned char low, high;sendReadCmd();//连续读取两个字节数据low = readByte();high = readByte();//将高低两个字节合成一个整形变量//计算机中对于负数是利用补码来表示的//若是负值, 读取出来的数值是用补码表示的, 可直接赋值给int型的value tmpvalue = high;tmpvalue <<= 8;tmpvalue |= low;value = tmpvalue;t = value * 0.0625;//将它放大10倍, 使显示时可显示小数点后一位, 并对小数点后第二位进行4舍5入//如t=11.0625, 进行计数后, 得到value = 111, 即11.1 度//如t=-11.0625, 进行计数后, 得到value = -111, 即-11.1 度value = t * 10 + (value > 0 ? 0.5 : -0.5); //大于0加0.5, 小于0减0.5return value;}void display(int v){unsigned char count;unsigned char datas[] = {0, 0, 0, 0};unsigned int tmp = abs(v);datas[0] = tmp / 1000;datas[1] = tmp % 1000 / 100;datas[2] = tmp % 100 / 10;datas[3] = tmp % 10;writeComm(0xc0+3);if(v < 0){writeString("- ", 2);}else{writeString("+ ", 2);}if(datas[0] != 0){writeData('0'+datas[0]);}for(count = 1; count != 4; count++){writeData('0'+datas[count]);if(count == 2){writeData('.');}}}/******************************PT100*******************************/ void main(){uchar table[] = "Now Temperature ";delayMs(1);sendChangeCmd();init();writeComm(0x80);writeString(table, 16);while(1){delayMs(1000); //温度转换时间需要750ms以上writeComm(0xc0);display(getTmpValue());sendChangeCmd();}}六.设计结果与总结七.课程设计心得与总结经过这次单片机课程设计,终于完成了我的数字温度计的设计,虽然不能做到很完美,但从心底里说,还是高兴的,毕竟这次设计把实物都做了出来,高兴之余不得不深思呀!在本次设计的过程中,我发现很多的问题,也许是第一次进行这种系统的设计所以感觉完成这样一次小系统设计我长进了很多,单片机课程设计重点就在于软件算法的设计,需要有很巧妙的程序算法,虽然以前写过几次程序,但我觉的写好一个程序并不是一件简单的事,举个例子,以前写的那几次,数据加减时,我用的都是BCD码,这一次,我全部用的都是16进制的数直接加减,显示处理时在用除法去删分,感觉效果比较好,有好多的东西,只有我们去试着做了,才能真正的掌握,只学习理论有些东西是很难理解的,更谈不上掌握。

基于-PT100的数字温度计设计

基于-PT100的数字温度计设计

轻工业学院传感器及应用系统课程设计说明书数字温度计设计姓名:专业班级:学号:指导老师:时间:轻工业学院课程设计任务书题目数字温度计设计专业、班级电子信息工程09-1 学号主要容、基本要求、主要参考资料等:一、主要容:(1)整体电路设计(画出电路组成框图);(2)信号检测电路设计;(3)信号号放大电路设计,电路参数选取、数据计算;(4)A / D转换电路设计(5)显示电路设计。

二、基本本要求:(1)采用热电阻传感器组成测量电路;(2)电路组成:测量电桥、运算放大电路、A/ D转换、显示电路;(3)测量围为-199.9 ~ +199.9℃, 不进行非线性校正;(4)假设在实验装置上进行模拟实验,测量出需经实验确定的参数或系数;(5)写出5000字左右的工作原理说明,附系统图一。

采用热电阻传感器。

三、主要参考资料:完成期限:2012年6月11 日-2012年6月15日指导教师签章:专业负责人签章:2012年 6 月8 日数字温度计设计电子信息工程09 级1 班指导老师:摘要:本文在查阅、分析了现有的几种不同的测温原理,分析确定了热敏电阻测温,并对基于热敏电阻的数字温度计的设计进行了深入探讨和研究。

该系统分为测温模块、信号放大模块、A/D转换模块和控制显示模块,并分别对其进行方案分析,最终确定数字温度计系统的系统构架和设计方案;在硬件电路中,详细阐述了各模块电路的工作原理,分析了以AT89C51单片机为主控单元的系统硬件和软件设计,并对该系统进行误差分析,使我们对于系统的各种性能有了进一步认识。

本设计采用AT89C51单片机,TLC2543 A/D转换器,OP07放大器,铂电阻PT100、LCD1602及电源模块组成系统,并设计了相应的软件流程图,使其实现温度的实时显示。

该系统的优点是:使用简便;测量精确、稳定、可靠;测量围大;使用对象广。

关键词:PT100 ;测温;单片机;数字温度计目录1 概述 (1)2 系统硬件电路设计 (2)2.1电源模块 (2)2.2信号采集模块 (2)2.3信号调理放大模块 (4)2.4 A/D转换模块 (5)2.5单片机控制模块 (7)2.6液晶显示模块 (8)3 系统软件设计 (10)3.1软件总体流程设计 (10)3.2系统软件实现原理 (10)3.3系统程序构建 (10)4总结与展望 (12)参考文献 (13)附录:总原理图 (14)。

基于PT100的温度测量系统设计-毕业论文

基于PT100的温度测量系统设计-毕业论文

开题信息摘要根据要求设计一个基于STC12C5A60S2单片机处理,PT100为传感器的温度测量系统。

在本设计中,是以铂电阻PT100作为温度传感器,采用恒流测温的方法,通过单片机进行控制,以LM358作为信号放大,用ADC0832进行温度信号转换。

利用3位共阳数码管作为温度显示。

采用了两线制铂电阻温度测量电路,通过对电路的设计,减小了测量电路及PT100自身的误差,使温控精度在0℃~100℃范围内分辨率为1℃。

本设计简单实用,具有外围电路简洁,可靠性高等优点。

主要由电源电路,单片机复位电路,单片机晶振电路,,ADC0832转换电路,铂电阻PT100及3位共阳数码管组成系统,编写了相应的软件程序,使其实现温度的实时显示。

该系统的特点是:使用简便;测量精确、稳定、可靠;测量范围大;使用对象广.目录1 设计要求1.1任务要求2 系统方案设计2。

1总系统方案2.1.1电源系统2.1.2温度检测与处理2。

1。

3模数转换2.1.4温度显示2。

1。

5信号放大部分2。

2系统方案图3 硬件设计3。

1温度检测模块的设计3。

1.1PT100温度传感器简介3.1。

2温度检测及信号处理电路3.2模数转换3.2.1 ADC0809简介3.2.2模数转换电路图3.3 3位共阳数码管的显示电路的设计3。

3。

1 LED数码管编码3.3。

2 LED数码管显示方式选择4 软件设计4。

1程序设计语言的选用4.2软件程序的设计4.2。

1总体程序流程4。

2。

2温度信号采集处理 125 系统调试结论参考文献附录A系统总电路图附录B元件清单附录C系统源程序1 设计要求1。

1任务要求单片机实现测量温度检测范围0~100 °C,分辨率1°C。

硬件要求;采用的温度传感器为PT100,单片机STC12C5A60S22 系统方案设计2.1总系统方案该设计由四部分组成:电源系统,温度检测与处理,模数转换,温度显示。

测温的模拟电路是把当前PT100热电阻传感器的电阻值,转换为容易测量的电压值,经过放大器放大信号后送给A/D转换器把模拟电压转为数字信号后传给单片机STC12C5A60S2,单片机再根据公式换算把测量得的温度传感器的电阻值转换为温度值,并将数据送出到数码管进行显示。

传Pt100温度传感器

传Pt100温度传感器

传感器原理与应用Pt100温度传感器实验名称:Pt100温度传感器一、实验目的1. 通过自行设计热电阻测温实验方案,加深对温度传感器工作原理的理解。

2.学习了解PT100随温度变化特性.3.熟悉仿真软件的使用及调试.4.了解温度传感器的转换电路及放大电路的实现与计算.二、实验内容设计电路图,进行Pt100温度传感器的测量。

实现输出电压范围为:-4V~3.5V ,测量的温度范围为:0~100(摄氏度),并且记录实验结果,每隔5摄氏度测量一个电压值,并且绘制成曲线图图。

三、实验原理1. 铂热电阻的工作原理铂热电阻元件作为一种温度传感器,其工作原理是在温度的作用下,铂电阻丝的电阻值随着温度的变化而变化。

它的阻值与温度的关系近似线性,其特性方程为当-200℃≤t ≤0℃时: 230R 1(100)t R At Bt C t t ⎡⎤=+++-⎣⎦(2–1) 当0℃≤t ≤960℃时: 20R (1)t R At Bt =++ (2–2) 式中R t ——温度为t ℃时铂热电阻的阻值,单位为Ω;0R ——温度为0℃时铂热电阻的阻值,单位为Ω;A 、B 、C ——温度系数,它们的数值分别为3023.9080210(1/)A C -=⨯, 705.80210(1/)B C -=-⨯,12044.2735010(1/)C C -=-⨯。

PT100的R0为100Ω,在温度为0——100的变化范围内,阻值变化为100——138.5Ω.2. PT100设计参数在 0-650℃以内,它的电阻 Rt 与温度 t 的关系为:Rt=R0[1+At+Bt*t+C(t-100)t*t*t],式中:R0系温度为 0℃时的电阻值。

A=3.9684*10e(-3)/℃,B=-5.847*10e(-7)/℃,C=-4.22*10e(-12) /℃。

铂电阻一般是三线制,其中一端接一根引线另一端接二根引线,主要为远距离测量消除引线电阻对桥臂的影响(近距离可用二线制,导线电阻忽略不计。

基于PT100智能温度测量仪表的软件电路设计

基于PT100智能温度测量仪表的软件电路设计

基于PT100智能温度测量仪表的软件电路设计目录前言 (2)第1章智能温度测量仪表方案设计与论证 (3)1.1 功能与要求 (3)1.2 方案论证与比较 (3)1.3 方案的确定 (4)第2章智能温度测量仪表的硬件设计 (5)2.1 系统硬件框图如图1所示 (5)2.2 温度采集与放大电路的设计 (5)2.3 A/D转换电路的设计 (6)2.4单片机最小系统的设计 (7)2.5人机接口电路的设计 (7)第3章软件设计 (9)3.1 主流程图的设计 (9)3.1.1上位机程序流程图的设计 (9)3.1.2、下位机主程序流程图的设计 (10)3.2 A/D转换程序流程图的设计 (11)3.3 数据通信子程序的设计 (12)3.3.1 串口发送数据程序流程图的设计 (12)3.3.1 串口发送数据程序流程图的设计 (13)3.4 键盘/显示子程序流程图的设计 (14)3.5 蜂鸣器报警子程序流程图的设计 (15)第4章温度控制系统的安装与调试 (16)4.1 硬件调试 (16)4.1.1. 安装 (16)4.1.2.调试 (16)4.2 软件调试 (16)4.3 系统整体调试 (16)第5章设计体会与小结 (17)参考文献 (18)附录 (19)前言本课程设计是一个应用比较广泛的温控系统,知识的综合性比较强,但实际上不难,主要有四部分内容组成,第一章,论述其功能,通过方案的比较,确定最终方案,第二章简单的对硬件部分进行阐述,第三章重点的论述软件实现其功能部分,第四章对实际电路进行调试,第五章总结此次课程设计的心得体会。

此温控系统是基于AT89C51单片机对温度进行控制的,采用PT100温度传感器采集温度数据,通过仪用放大器将温度信号放大,然后再送入A/D转化器,将模拟信号转变成便于单片机处理的数字信号,当所采集到的温度值大于设定的阀值时,可在PC上进行告警提示,并通过串口向单片机发送指令,单片机收到指令后控制蜂鸣器发音。

Pt100测温电路设计

Pt100测温电路设计

第1章绪论1.1传感器的概述1.1.1 传感器的定义传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。

它是实现自动检测和自动控制的首要环节。

1.1.2 传感器的分类传感器分类方法很多,常用的有2种:一种是按被测的参数分,另一种是按变换原理来分。

通常按被测的参数来分类,可分为热工参数:温度、比热、压力、流量、液位等;机械量参数:位移、力、加速度、重量等;物性参数:比重、浓度、算监度等;状态量参数:颜色、裂纹、磨损等。

温度传感器属于热工参数。

温度传感器按传感器于被测介质的接触方式可分为2大类:一类是接触式温度传感器,一类是非接触式温度传感器,接触式温度传感器的测温元件与被测对象要有良好的热接触,通过热传导及对流原理达到热平衡,这时的示值即为被测对象的温度。

这种测温方法精度比较高,并在一定程度上还可测量物体内部的温度分布,但对于运动的、热容量比较小的、或对感温元件有腐蚀作用的对象,这种方法将会产生很大的误差。

非接触测温的测温元件与被测对象互不接触。

目前最常用的是辐射热交换原理。

此种测温方法的主要特点是可测量运动状态的小目标及热容量小或变化迅速的对象,也可测温度场的温度分布,但受环境的影响比较大。

1.1.3传感器的应用人们为了从外界获取信息,必须借助于感觉器官。

而单靠人们自身的感觉器官,在研究自然现象和规律以及生产活动中它们的功能就远远不够了。

为适应这种情况,就需要传感器。

因此可以说,传感器是人类五官的延长,又称之为电五官。

新技术革命的到来,世界开始进入信息时代。

在利用信息的过程中,首先要解决的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与手段。

在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。

Pt100数字温度计设计

Pt100数字温度计设计

实验3 Pt100数字温度计设计一.实验目的1.了解和测量金属电阻和温度的关系;2.了解金属电阻温度系数的测定原理;3.根据所测Pt100的电阻-温度特性,选择一种合适的电路设计制作数字温度计. 二.实验仪器1. YJ-CGQ-I典型传感特性综合实验仪、2.Pt100热敏电阻温度传感器实验模板、3.Pt100传感器、4.数字万用表、5.大七芯-大七芯连接线、6.加热恒温箱、7.连接线.实验模板如1所示.三.实验原理1.金属电阻温度系数各种导体的电阻随着温度的升高而增大,在通常温度下,电阻与温度之间存在着线性关系,可用下式表示R=R(1+αt)(1)式中,R是温度为t℃时的电阻;R0为0℃时的电阻;α称为电阻温度系数.严格说,α和温度有关,但在0-100℃范围内,α的变化很小,可以看作不变.2.铂电阻导体的电阻值随温度变化而变化,通过测量其电阻值推算出被测环境的温度,利用此原理构成的传感器就是热电阻温度传感器.,能够用于制作热电阻的金属材料必须具备以下特性:(1)电阻温度系数要尽可能大和稳定,电阻值与温度之间应具有良好的线性关系;(2)电阻率高,热容量小,反映速度快;(3)材料的复现性和工艺性好,价格低;(4)在测量范围内物理和化学性质稳定.目前,在工业应用最广的材料是铂、铜.铂电阻与温度之间的关系,在0--630.74℃范围内用下式表示R=R0(1+AT+BT2)(2)T在-200--0℃的温度范围内为R=R0[1+AT+BT2+C(T-100℃)T3] (3)T式中,R0和R T分别为在0℃和温度T时铂电阻的电阻值,A、B、C为温度系数,由实验确定,A=3.90802×10-3℃-1,B=-5.80195×10-7℃-2,C=-4.27350×10-12℃-4.由式(2)和式(3)可见,要确定电阻R T与温度T的关系,首先要确定R0的数值,R0值不同时,R T与T的关系不同.目前国内统一设计的一般工业用标准铂电阻R0值有100Ω和500Ω两种,并将电阻值R与温度T的相应关系统一列成表格,称其为铂电阻的分度表,分度号分别用Pt100和Pt500 T表示.铂电阻采用纯度为99.9995%的铂丝绕制,其性能稳定,重复性好,精度高,在一定的温度范围内具有良好的线性,是国际公认的成熟产品,国际温标ITS-90中还规定,将具有特殊构造的铂电阻作为13.5033K--961.78℃标准温度计来使用.铂电阻广泛用于-200--850℃范围内的温度测量,工业中通常在600℃以下.四.实验内容与步骤1.测Pt100的R-t曲线1.1将加热恒温箱的电缆线与YJ-CGQ-I典型传感特性综合实验仪中的加热电缆座相连,打开电源开关,顺时针调节“设定温度粗选”和“设定温度细选”钮,打开加热开关, 加热指示灯发亮(加热状态),同时观察恒温加热盘温度(控温表)的变化,当恒温加热盘温度即将达到所需温度(如50.0℃)时逆时针调节“设定温度粗选”和“设定温度细选”钮使指示灯闪烁或者变暗(恒温状态),仔细调节“设定温度细选”使C盘温度恒定在所需温度(如50.0℃).将Pt100插入恒温腔中,信号接入数字多用表,测出此温度时的电阻值.1.2重复以上步骤,设定温度为55℃、60℃、65℃、70℃、75℃、80℃、85℃、90℃、95℃、100℃,测出热敏电阻在上述温度点时的电阻值.1.3根据上述实验数据,绘出R-t曲线. 2.求Pt100的电阻温度系数根据R-t曲线,从图上任取相距较远的两点t1-R1及t2-R2根据(1)式有:R1=R+Rαt1R2=R+Rαt2联立求解得:α= (R2- R1)/( R1t2- R2t1)3.数字温度计的设计与标定方法1:1).将Pt100温度传感器引线接入实验模板a、b之间,Ec接入直流10mA的恒流源, 将±15V电源接入模板,用连接线连接V01与放大器R6、R7输入端.2).将Pt100温度传感器置于0℃的环境中(如冰水混合物),万用表档位选择在DC 20V档,调节Rw1使V02为0.000V.3).将Pt100温度传感器置于恒温腔中,加热至100.0℃,调接Rw2使V02为1.000V(0.001V相当于0.1℃).4).重复1、2步使误差最小.方法2:1). 将Pt100温度传感器引线接入实验模板a、b之间,Ec接入直流10mA的恒流源,将±15V电源接入模板,用连接线连接V01与放大器R6、R7输入端.2).将Pt100温度传感器置于50.0℃的环境中(如恒温腔恒温在50.0℃),万用表档位选择在DC 20V,调接Rw1使V02为0.000V.3).加热至100.0℃,调接Rw2使V02为0.500V(0.001V相当于0.1℃).4).使恒温腔的温度冷却并恒温于50.0℃,调节Rw1使V02为0.500V5).加热至100.0℃, V02应为1.000V(0.001V相当于0.1℃).3.评估你所设计调试的数字温度计,写出评估报告.五.注意事项1.供电电源插座必须良好接地;2.在整个电路连接好之后才能打开电源开关;3.严禁带电插拔电缆插头.。

基于PT100传感器的温度测量系统的设计

基于PT100传感器的温度测量系统的设计
PT100温度感测器是一种以白金(Pt)作成的电阻式温度检测器,属于正电阻系数,其电阻和温度变化的关系式如下:
R=Ro(1+αT)
其中α=0.00392,Ro为100Ω(在0℃的电阻值),T为摄氏温度。因此白金作成的电阻式温度检测器,又称为PT100。
PT100是电阻式温度传感器,测温的本质其实是测量传感器的电阻,通常是将电阻的变化转换成电压或电流等模拟信号,然后再将模拟信号转换成数字信号,再由处理器换算出相应温度。
具体的需求对象可以从以下几个方面进行表述:
1、在人类社会进入知识经济时代、信息技术高速发展的背景下,热电阻及其测量控制技术得到日益广泛应用,给热电阻行业的快速发展提供了良好契机。热电阻是信息产业的源头和组成部分,是信息技术的重要基础。
2、热电阻广泛应用于装备、改造传统产业的工艺流程的测量和控制,是现代化大型重点成套装备的重要组成部分,是信息化带动工业化的重要纽带。
图3.2 信号采集调理电路
根据运放的“虚短”、“虚断”作用,电压信号放大转换为可以输入A/D转换器的合适电压值。
2.3 A/D模数转换模块
2.3.1 ICL7135功能介绍
ICL7135是一种四位半的双积分A/D转换器,可以转换出±20000个数字量选通控BCD码输出,与单片机接口十分方便。它具有精度高(相当于14位A/D转换),价格低的优点。其转换速度与时钟频率相关,每个转换周期均有:自校准(调零),正向积分(被测模拟电压积分),反向积分(基准电压积分)和过零检测四个阶段组成,其中自校准时间为10001个脉冲,正向积分时间为10001个脉冲,反向积分直至电压到零为止(最大不超过20001个脉冲)。故设计者可以采用从正向积分开始计数脉冲个数,到反向积分为零时停止计数。将计数的脉冲个数减10000,即得到对应的模拟量。具体电路如图2.3所示。

基于PT100的温度测量系统方案

基于PT100的温度测量系统方案

前言传感器技术在信息采集、信息传输和信息处理中,属于前沿尖端产品,尤其是温度传感器技术,在各个领域广泛应用,比如在工农业生产中需要实时测量温度等等。

因此研究温度的测量方法和装置具有重要的意义。

为了提高对传感器的认识和了解,尤其是对温度传感器的深入研究以及其用法与用途,基于实用、广泛和典型的原则而设计了本系统。

本文利用单片机结合温度传感器技术而开发设计了这一温度测量系统。

文中将传感器理论与单片机实际应用有机结合,详细地讲述了利用热电阻作为温度传感器来测量实时的温度,以及实现热电转换的原理过程。

本设计应用性比较强,设计系统可以作为温度测量显示系统,如果稍微改装可以做热水器温度调节系统、生产温度监控系统等等。

本课题主要任务是完成环境性强等优点。

课程设计任务本设计系统包括温度传感器,信号放大电路,A/D转换模块,时钟模块,数据处理与控制模块,温度、时间显示模块六个部分。

文中对每个部分功能、实现过程作了详细介绍。

整个系统的核心是进行温度测量与显示,完成了课题所有要求。

摘要:本文采用AT89S51单片机,TLC2543 A/D转换器,DS1302时钟芯片,AD620放大器,铂电阻PT100及8位数码管组成系统,编写了相应的软件程序,使其实现温度的实时显示。

该系统的特点是:使用简便;测量精确、稳定、可靠;测量范围大;使用对象广。

关键词:PT100 单片机温度测量 DS1302Abstract:The system contains SCM(AT89S51), analog to digital convert department (TLC2543), DS1302 chip, AD620 amplifier, PT100 platinum, LED Digital tube with six, write the corresponding software program to achieve real-time temperature display. The system is simple , accurate , stable and wide range.Keywords: PT100 SCM Temperature Measures DS1302一方案设计与论证1.1 传感器的选择由于本设计的任务是要求测量的范围为0℃~100℃,测量的分辨率为±0.1℃,综合价格以及后续的电路,决定采用线性度相对较好的PT100作为本课题的温度传感器,具体的型号为WZP型铂电阻,该传感器的测温范围从-200℃~+650℃。

【设计】热电阻温度传感器课程设计

【设计】热电阻温度传感器课程设计

【关键字】设计燕山大学课程设计说明书题目:热电阻温度传感器的设计学院(系):电气工程学院年级专业:学号:学生姓名:指导教师:吴飞陈颖教师职称:副教授副教授燕山大学课程设计(论文)任务书院(系):电气工程学院基层教学单位:自动化仪表系说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。

年月日燕山大学课程设计评审意见表目录摘要 (5)第一章温度传感器的组成及原理 (5)1 温度传感器的组成 (5)2 工作原理 (6)第二章PT100的原理 (6)1 pt100的基本结构 (6)2 pt100的分度值 (6)3 pt100的结构 (7)4 pt100的性能 (7)第三章电路设计 (7)1.采样电路设计 (8)2 缩小电路设计 (8)3 模拟仿真电路 (9)第四章数据库的建立 (10)第五章参数及计算 (13)参考文献 (14)热电阻温度传感器的设摘要PT100是电阻式温度传感器的一种,电阻式温度传感器(RTD,Resistance Temperature Detector)-一种物质材料做成的电阻,它会随温度的上升而改变电阻值,如果它随温度的上升而电阻值也跟着上升就称为正电阻系数,如果它随温度的上升而电阻值反而下降就称为负电阻系数。

大部分电阻式温度传感器是以金属做成的,其中以铂(Pt)做成的电阻式温度传感器,最为稳定-耐酸碱、不会变质、相当线性,最受工业界采用。

本文主要介绍温度传感器主要特点及其工作原理。

设计出其测温电路,并对其进行仿真得出结论。

主要设计的是大范围的测温,本文设计的传感器是测量-200℃~500℃的较大范围传感器。

关键字:Pt100 温度传感器设计第一章温度传感器的组成及原理1 温度传感器的组成温度传感器由敏感元件和转换元件组成。

但是由于温度传感器输出信号一般都很微弱,需要有信号调节与转换电路将其缩小或变换为容易传输、处理、记录和显示的形式。

其中,敏感元件是指能够灵敏地感受被测变量并做出响应的元件,是传感器中能直接感受被测量的部分。

Pt100温度传感器课题1

Pt100温度传感器课题1
温度传感器在电热水器中的应用和控制一生活中的各种电热水器及温度传感器二pt100温度传感器的工作原理及电路三pt100温度传感器与温度的关系变化四电热水器的控温工作原理及电路五pt100温度传感器的各种价格及技术参数r2r3r4和pt100组成传感器测量电桥为了保证电桥输出电压信号的稳定性电桥的输入电压通过tl431稳至25v
课பைடு நூலகம்

成 员
————
代蒙黎 吴文君 谢萍萍 王平
温度传感器课题
—— 温度传感器在电热水器中 的应用和控制
一、生活中的各种电热水器及温度传感器 二、Pt100温度传感器的工作原理及电路 温度传感器的工作原理及电路 三、Pt100温度传感器与温度的关系变化 温度传感器与温度的关系变化 四、电热水器的控温工作原理及电路 五、Pt100温度传感器的各种价格及技术参数 温度传感器的各种价格及技术参数
铂热电阻阻值与温度关系为 :
式中,A=0.00390802;B=-0.000000580;C=0.0000000000042735。可见Pt100 在常温 0~100摄氏度之间变化时线性度非常好,其阻值表达式可近似简化为:RPt=100(1+At), 当温度变化1 摄氏度,Pt100 阻值近似变化0.39 欧。
Pt100 的分度表(0℃~100℃ 的分度表( ℃ ℃
Pt100 温度传感器为正温度系数热敏电阻传感器,主要技术参数如下: 温度传感器为正温度系数热敏电阻传感器,主要技术参数如下:
测量范围:-200℃~+850℃; 允许偏差值△℃:A 级±(0.15+0.002│t│), B 级±(0.30+ 0.005│t│); 最小置入深度:热电阻的最小置入深度≥200mm; 允通电流 ≤ 5mA。 另外,Pt100 温度传感器还具有抗振动、稳定性好、准确度高、耐高压 等优点。 铂热电阻的线性较好,在0~100 摄氏度之间变化时,最大非线性偏差小 于0.5 摄氏度。 图1 PT100 传感器封装图 应用领域 宽范围、高精度温度测量领域。如: 轴瓦,缸体,油管,水管,汽管,纺机,空调,热水器等狭小空间工业设 备测温和控制。 汽车空调、冰箱、冷柜、饮水机、咖啡机,烘干机以及中低温干燥箱、恒 温箱等。 供热/制冷管道热量计量,中央空调分户热能计量和工业领域测温和控制

温度传感器Pt100特性测试实验指导书

温度传感器Pt100特性测试实验指导书

温度传感器Pt100特性测试实验指导书
实验一温度传感器Pt100特性测试
一、实验目的
1、进一步认识温度传感器Pt100的特性:
R t=R0[1+At+Bt2+Ct3]
A=4.28899×10-3℃-1. B=-2.133×10-7℃-2. C=1.233×10-9℃-3
2、熟悉瑞特过控实验装置的使用。

3、掌握Pt100,并绘制特性曲线。

二、实验原理接线图
1、热线阻外形图:
2、实验原理:
三、实验步骤
1、锅炉内胆注水至适当位置,观察水位显示。

保持水位恒定。

2、记录Rt1温度传感器温度值,读取通用仪表温度显示值。

3、用万用表测量并记录Rt2的电阻值。

4、打开功率调节器,对锅炉内胆中的水进行加热一段时间,
控制功率不宜过大,使水温上升5-8℃。

5、重复步骤2和3。

直到5-10组参数记录完成。

6、将锅炉内胆中的水放空,实验完毕。

四、实验结果分析
1、制作表格:
2、绘制曲线:
横坐标为温度值,纵坐标为电阻值。

计算系数A,进行误差分析。

五、思考题:
1、热电阻的特性公式中的系数B,用上述实验方法能否求取?
2、该实验方法有无系统误差,为什么?
附表:热电阻Pt100分度表。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

燕山大学传感器课程设计题目:PT100温度传感器课程设计系部:电气工程系专业:生物医学工程1班**:***0912********指导教师:***完成时间:2011年12月31日目录一.摘要前言二.PT100温度传感器温度与阻值的关系三.PT100温度传感器的接线方法四.PT100温度传感器的测温原理五.PT100温度传感器的接线方法对测量精度的影响六.PT100温度传感器的抗干扰问题处理七.恒流源设计八.AD转换部分程序九.PT100温度传感器的探头设计十.PT100温度传感器的数据处理及参数计算十一.PT100温度传感器的应用十二.结论十三.参考文献一.温度是自然界中和人类打交道最多的物理参数之一,无论是在生产实验场所,还是在居住休闲场所,温度的采集或控制都十分频繁和重要,而且,网络化远程采集温度并报警是现代科技发展的一个必然趋势。

由于温度不管是从物理量本身还是在实际人们的生活中都有着密切的关系,所以温传感器就会相应产生。

二PT100温度传感器温度与阻值的关系四测温原理设计原理:pt100是铂热电阻,它的阻值跟温度的变化成正比。

PT100的阻值与温度变化关系为:当PT100温度为0℃时它的阻值为100欧姆,在100℃时它的阻值约为138.5欧姆。

它的工业原理:当PT100在0摄氏度的时候他的阻值为100欧姆,它的阻值会随着温度上升而成匀速增长的。

温度传感器PT100是一种稳定性和线性都比较好的铂丝热电阻传感器,可以工作在-200℃至650℃的范围.针对不同温度,测量的电阻值也不同,具体有个pt100温度阻值对照表(百度一下)法五接线方法对测量精度的影响[图文]Pt100热电阻两线制、三线制和四线制接线对测温精度的影响1、Pt100热电阻的三种接线方式在原理上的不同:二线制和三线制是用电桥法测量,最后给出的是温度值与模拟量输出值的关系。

四线没有电桥,完全只是用恒流源发送,电压计测量,最后给出测量电阻值。

2、Pt100热电阻的三种接线方式对测量精度的影响连接导线的电阻和接触电阻会对Pt100铂电阻测温精度产生较大影响,铂电阻三线制或者四线制接线方式能有效消除这种影响。

与热电阻连接的检测设备(温控仪、PLC 输入等)都有四个接线端子:I+、I-、V+、V-。

其中,I+、I-端是为了给热电阻提供恒定的电流,V+、V-是用来监测热电阻的电压变化,依次检测温度变化。

请参阅下图:(1)四线制就是从热电阻两端引出4线,接线时电路回路和电压测量回路独立分开接线,测量精度高,需要导线多。

(2)三线制就是引出三线,Pt100B铂电阻接线时电流回路的参端和电压测量回路的参考为一条线(即检测设备的I-端子和V-端子短接)。

精度稍好。

(3)两线制就使引出两线,Pt100B铂电阻接线时接线时电流回路和电压测量回路合二为一(即检测设备的I-端子和V-端子短接、I+端子和V+短接短接)。

测量精度差。

六PT100温度传感器的抗干扰问题处理1.1 改变信号接地方式热电阻测温信号通常采用三线制接线方式,使用KYVRP4×1.5屏蔽电缆引至DCS现场站PC室CCF中继柜内,电缆屏蔽,在中继柜内接地。

解决的方法是将热电阻Pt100的B、b 在中继柜端子处与电缆屏蔽接在一起,将干扰信号引入大地,以此方法消除干扰信号,即可使计算机温度显示恢复正常。

1.2 改变信号传送方式可在现场或现场站PC室内通过加装Pt100热电阻温度变换器,将Pt100电阻信号转换为标准DC4~20mA信号,并相应改变计算机输入信号通道,这种方法也可消除信号传输过程中产生的干扰,使计算机显示的温度恢复正常,因为DC4~20mA 信号的抗干扰能力非常强,温度变换器安装位置可依现场实际情况决定,但最好选择室内安装,这种方法的缺点是增加了设备投资,同时需要提供变换器电源七恒流源设计八AD转换部分程序九PT100温度传感器的探头设计PT100温度探头-DOCOROM TR02522-表面安装型热电阻测温范围-200…800℃采用不同材质的保护安装用于管道或平面温度测量安装简单而快速低热量散失用来测量管道系统、平面或圆面的温度非直接测量方式,不会影响介质的流动,压力和化学因素不会影响传感器寿命可使用导热膏来加强热传导十。

PT100温度传感器的数据处理及参数计算十一。

PT100温度传感器的应用温度传感器PT100的应用应用范围:医疗、电机、工业、温度计算、阻值计算等高精温度设备,应用范围非常之广泛。

使用温度传感器为 PT100,这是一种稳定性和线性都比较好的铂丝热电阻传感器,可以工作在 -200℃至 650℃的范围.本电路选择其工作在 -19℃至 50 0℃范围.整个电路分为两部分,一是传感器前置放大电路,一是单片机 A/ D 转换和显示,控制,软件非线性校正等部分.前置放大部分原理图如下:工作原理:传感器的接入非常简单,从系统的 5V 供电端仅仅通过一支 3K92 的电阻就连接到 PT100 了.这种接法通常会引起严重的非线性问题,但是.由于有了单片机的软件校正作为后盾,因此就简化了传感器的接入方式.按照 PT100 的参数,其在 0℃到 500℃的区间内,电阻值为 1 00 至 280.9Ω,我们按照其串联分压的揭发,使用公式:Vcc/(PT 100+3K92)* PT100 = 输出电压(mV),可以计算出其在整百℃时的输出电压,见下面的表格:单片机的 10 位 A/D 在满度量程下,最大显示为 1023 字,为了得到 PT100 传感器输出电压在显示 500 字时的单片机 A/D 转换输入电压,必须对传感器的原始输出电压进行放大,计算公式为:(500/1023 * Vcc)/传感器两端电压( mV/℃ ) ,(Vcc=系统供电=5V),可以得到放大倍数为 10.466 。

关于放大倍数的说明:有热心的用户朋友询问,按照 (500/1023 * Vcc)/传感器两端电压不能得到 10.466 的结果,而是得到 11. 635的结果。

实际上,500 个字的理想值是无法靠电路本身自然得到的,自然得到的数字仅仅为 45 0 个字,因此,公式中的 500℃在实际计算时的取值是 450 而不是 500 。

450/1023*5/(0.3344 2-0.12438)≈10.47 。

其实,计算的方法有多种,关键是要按照传感器的 mV/℃为依据而不是以被测温度值为依据,我们看看加上非线性校正系数:10.47*1.1 117=11.639499 ,这样,热心朋友的计算结果就吻合了。

运算放大器分为两级,后级固定放大 5 倍(原理图中 12K/3K+1= 5),前级放大为:10.465922/5=2.0931844 倍,为了防止调整时的元器件及其他偏差,使用了一只精密微调电位器对放大倍数进行细调,可以保证比较准确地调整到所需要的放大倍数(原理图中 10K/(8K2+Rw)+1)。

通常,在温度测量电路里,都会有一个“调零”和另一个“调满度”电位器,以方便调整传感器在“零度”及“满度”时的正确显示问题。

本电路没有采用两只电位器是因为只要“零度”调整准确了,就可以保证整个工作范围的正确显示,当然也包括满度时的最大显示问题了。

那么,电路中对“零度”是如何处理的呢?它是由单片机程序中把这个“零度”数字直接减掉就是了,在整个工作范围内,程序都会自动减掉“零度”值之后再作为有效数值来使用。

当供电电压发生偏差后,是否会引起传感器输入的变化进而影响准确度呢?供电变化后,必然引起流过传感器的电流发生变化,也就会使传感器输出电压发生变化。

可是,以此同时,单片机的供电也是在同步地接受到这种供电变化的,当单片机的 A/D 基准使用供电电压时,就意味着测量基准也在同步同方向发生变化,因此,只要参数选择得当,系统供电的变化在 20% 之内时,就不会影响测量的准确度。

(通常单片机系统并不允许供电有过大的变化,这不仅仅是在温度测量电路中的要求。

)后级单片机电路的原理图如下:从传感器前置放大电路输出的信号,就送入到 HT46R23 的 A/D 转换输入端口(PB0/AN0),由单片机去进行各种必需的处理。

首先是进行软件非线性校正,把输入信号按照不同的温度值划分为不同段,再根据其所在的段分别乘以不同的补偿系数,令其与理论值尽量接近,经过非线性校正的数字,才被送去进行显示,比较用户设定的控制值等等。

各段的非线性补偿系数见下列表格(仅仅列出主要段的数据,非全部表格内容):本电路还有一个特点,就是用户可以在工作范围内,任意设定 3 个超限控制值。

当测量显示值大于设定值的时候,对应的控制端口就会输出高电平。

利用这个高电平信号,再外接一级三极管驱动继电器的电路,就可以实现自动控制。

在某一个控制端口输出高电平的同时,与之串联的 LED 发光管会同时点亮,以便提示使用者是哪一个设定值在输出控制信号。

电路中的 24C02 是电存储器,可以把使用者设定的控制值可靠地保存起来,即使掉电也不会丢失数据。

电路图中还有 3 只按键,它们分别是“设定”、“加置数”和“减置数”操作按键,用于使用者进行超限值的设置。

使用方法如下:按动一下设定键,屏幕显示“1--”,表示现在进入第一个超限值的设置,三秒后屏幕自动跳转到显示“***”并闪烁(*** 代表原来电存储器里储存的超限数值),然后,按压加数键(或减数键),屏幕上的最低位的数字就会加一(或减一),如果按住按键三秒以上不放开,屏幕上的前两位数字就会快速进行加数(或减数)。

把屏幕上的数字调整到所需要的数字后,这个超限值就设置完成了。

接着,再按动一下设定键屏幕显示“2--”,表示现在进入第二个超限值的设置,三秒后屏幕自动跳转到显示“***”并闪烁....,接下来的操作与第一个超限值的操作完全一样。

第三个超限值的设置与上面两个完全一样。

当设置好 3 个超限值之后,还必须最后按动一下设定键,退出设定状态而返回正常工作状态。

如果忘记了这最后一次按动退出的操作,程序就会等待 10 秒之后,自动返回正常工作状态。

简易调试方法:可以使用 100Ω的电阻来模拟 PT100 在 0℃的阻值,接入传感器输入端,看看显示是否 =000,如果不对,可以调整微调电位器来达到;然后用一只 281Ω的电阻来模拟 PT100 在 500℃时传感器的电阻值,显示应该在 500 字±1字;最后,使用一只 194Ω的电阻来代替 250℃传感器电阻输入,应该显示 250±1 字.如果经过上面调试没有问题,就可以接入真正的 PT100 传感器投入使用了.(真正的传感器也有误差,可以微调一下前置放大的电位器来校正它。

)在实际工作中,要求电路的供电电压为 5V±5%.如果测量显示值大于某一个超限值,对应的控制端口就会立即输出高电平。

相关文档
最新文档