[经济学]第四章 时间序列分析预测法

合集下载

时间序列分析预测法

时间序列分析预测法
34.52 21.88 33.50 0.43 5.87
19.24
9.3.3 三次指数平滑
二次指数平滑既解决了对有明显呈趋势变动的时 间序列的预测,又解决了一次指数平滑只能预测 一期的不足。但如果时间序列呈非线性趋势时, 就需要采用更高次的指数平滑方法。
三次指数平滑(Triple Exponential Smoothing)
2003 444.84 430.55 416.24 444.86
2004 496.23 483.09 469.72 496.46
2006
平均绝 对误
b
0 22.08 36.08 57.52 57.24 53.48
Y
243.29 298.51 355.59 455.27 502.10 603.42
绝对 误差
a22S2 1S2 22*6 56.5 26.5 7 b21 aa(S2 1S2 2)1 0.0 5.5*(6 56.5 2)2.5
通过趋势方程对3月份进行预测:
Y 2 1 a 2 b 2 ( 1 ) 6 . 5 2 . 5 7 * 1 7 0
案例
预测某省农民家庭人均食品支出额,假如a取0.8。
按照时间的顺序把随机事件变化发展的过程记录 下来就构成了一个时间序列。对时间序列进行观 察、研究,找寻它变化发展的规律,预测它将来 的走势就是时间序列分析。
时间序列预测方法,是把统计资料按时间发生的 先后进行排序得出的一连串数据,利用该数据序 列外推到预测对象未来的发展趋势。一般可分为 确定性时间序列预测法和随机时间序列预测法。
a取0.4和0.8时的均方误差。
年份
1991 1992 1993 1994 1995 1996 1997 合计 均方误差

数理统计中的时间序列分析与预测

数理统计中的时间序列分析与预测

数理统计中的时间序列分析与预测时间序列是指一系列按时间顺序排列的数据观测值的集合。

数理统计中,时间序列分析是对时间序列数据进行建模、分析和预测的方法。

通过时间序列分析,我们可以揭示出时间序列数据中的隐藏规律、趋势和周期性,从而做出合理的预测和决策。

一、时间序列的基本概念和特性时间序列的基本概念包括观测值、时间间隔、周期和趋势。

观测值是指按照时间顺序记录下来的数据点,时间间隔是指相邻两个数据点之间的时间差,周期是指时间序列中的重复模式,趋势则是指时间序列中的长期变化方向。

时间序列的特性主要包括自相关性和平稳性。

自相关性是指时间序列中数据点与其之前或之后的数据点之间的相关关系,平稳性是指时间序列在统计意义上的稳定性,即具有恒定的均值和方差。

二、时间序列分析的方法时间序列分析主要包括描述性分析、平滑方法、分解方法和模型拟合等。

描述性分析用于对时间序列进行可视化和描述,常用方法有时间序列图、自相关图和频谱图等。

平滑方法是利用某种算法对时间序列数据进行平滑处理,去除随机波动,从而揭示出时间序列的趋势和周期性。

常见的平滑方法包括移动平均法和指数平滑法。

分解方法是将时间序列分解为趋势、周期和随机波动三个部分,以揭示出时间序列中各个成分的变化规律。

常见的分解方法有加法模型和乘法模型。

模型拟合是利用数理统计中的回归模型或时间序列模型对时间序列数据进行建模和预测。

常用的时间序列模型包括自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)和季节性自回归积分移动平均模型(SARIMA)等。

三、时间序列预测的方法时间序列预测是根据已有的时间序列数据,通过模型拟合和参数估计,对未来的值进行预测。

常用的时间序列预测方法有平稳时间序列预测、非平稳时间序列预测和季节性时间序列预测。

平稳时间序列预测是指对均值和方差都保持恒定的时间序列进行预测,常见的方法包括指数平滑法、ARMA模型和ARIMA模型等。

非平稳时间序列预测是指对均值和方差随时间变化的时间序列进行预测,常见的方法有差分法、趋势预测法和季节性趋势预测法等。

计量经济学中的时间序列分析

计量经济学中的时间序列分析

计量经济学中的时间序列分析时间序列分析是计量经济学中的重要内容之一,它主要研究特定变量随时间变化的规律性和趋势。

通过时间序列分析,我们可以更好地理解经济现象,预测未来变化趋势,制定合适的政策和策略。

本文将从时间序列的概念入手,介绍时间序列分析的基本原理、方法和应用。

一、时间序列的概念时间序列是按照时间顺序排列的一系列数据观测值的集合。

在计量经济学中,时间序列通常用来观察和研究某一经济变量在不同时间点上的变化情况。

时间序列数据可以是连续的,也可以是间断的,常见的时间单位包括年、季、月、周等。

通过对时间序列数据的分析,我们可以揭示出其中的规律性和特征。

二、时间序列分析的基本原理时间序列分析的基本原理是利用过去的数据来预测未来的发展趋势。

在时间序列分析中,常用的方法包括趋势分析、周期性分析、季节性分析和不规则波动分析。

趋势分析主要用来观察时间序列数据的长期变化趋势,周期性分析则是研究数据是否存在固定长度的周期性波动,季节性分析则是研究数据是否呈现出固定的季节性变化规律,而不规则波动分析则是研究一些随机因素对数据的影响。

三、时间序列分析的方法时间序列分析的方法有很多种,其中常用的包括移动平均法、指数平滑法、回归分析法、ARIMA模型等。

移动平均法通过计算连续几个期间的平均值来平滑数据,达到去除数据波动的目的;指数平滑法则是通过计算加权平均来对数据进行平滑处理,使得预测值更加准确;回归分析法则是通过建立经济模型来研究时间序列数据之间的关系,进行预测和分析;ARIMA模型则是一种时间序列的自回归与移动平均模型,可以对时间序列数据进行拟合和预测。

四、时间序列分析的应用时间序列分析在经济学、金融学、管理学等领域有着广泛的应用。

在经济学中,时间序列分析可以用来研究经济增长、通货膨胀、失业等经济现象的发展趋势;在金融学中,时间序列分析可以用来预测股票价格、汇率、利率等金融变量的变化情况;在管理学中,时间序列分析可以用来制定企业的生产计划和销售策略,提高企业的运营效率。

经济学毕业论文中的时间序列分析方法

经济学毕业论文中的时间序列分析方法

经济学毕业论文中的时间序列分析方法时间序列分析是经济学研究中常用的一种方法,用于分析经济数据中的时间变化趋势和周期性。

在经济学毕业论文中,时间序列分析方法被广泛应用于研究经济变量的发展趋势、预测未来趋势以及评估政策的效果。

本文将介绍几种常用的时间序列分析方法,并以一个具体的经济学例子来说明其应用。

一、移动平均法移动平均法是一种常见的时间序列分析方法,常用于平滑并展示时间序列的趋势。

该方法通过对观测值进行平均计算,得到移动平均值,从而消除随机波动和短期波动对趋势分析的干扰。

移动平均法可以分为简单移动平均和加权移动平均两种。

简单移动平均是对一定时间段内的数据进行求和平均,例如我们可以计算过去5年的简单移动平均来观察某个经济变量的长期趋势。

加权移动平均则是对不同时间段内的数据进行加权平均,常用于对近期数据赋予更高的权重。

二、指数平滑法指数平滑法也是常用的时间序列分析方法,用于对时间序列的趋势进行预测。

该方法基于历史数据赋予不同权重,通过不断调整权重来预测未来的趋势。

简单指数平滑是最常见的一种指数平滑法,它通过对观测值进行加权平均来估计下一个时期的值。

简单指数平滑法的核心公式如下:\[\hat{Y}_{t}=\alpha Y_{t-1}+(1-\alpha)\hat{Y}_{t-1}\]其中,\(\hat{Y}_{t}\)表示预测值, \(Y_{t-1}\)表示上一个观测值,\(\hat{Y}_{t-1}\)表示上一个时期的预测值,\(\alpha\)表示平滑系数。

三、自回归移动平均模型(ARMA)自回归移动平均模型是一种更为复杂的时间序列分析方法,用于描述时间序列变量的动态特征。

ARMA模型结合了自回归模型(AR)和移动平均模型(MA),可以更准确地描述时间序列的变化。

AR模型是指时间序列变量与其自身的滞后值之间存在相关性。

MA模型是指时间序列变量与其滞后的随机误差之间存在相关性。

ARMA模型的核心思想是通过计算滞后值和误差来建立预测模型。

时间序列趋势预测法

时间序列趋势预测法

时间序列趋势预测法时间序列趋势预测是一种用于预测时间序列数据未来走势的方法。

它基于过去的数据来推断未来的趋势,帮助分析师和决策者做出准确的预测和制定有效的策略。

以下是几种常见的时间序列趋势预测方法:1. 移动平均法:该方法使用一系列连续时间段的平均值,如3期移动平均法将过去三个时间点的数据均值作为未来趋势的预测。

移动平均法的优点是可以平滑季节性和随机波动,减少异常值的影响。

2. 加权移动平均法:相比于简单移动平均法,加权移动平均法引入权重因子,将不同时间点的数据赋予不同的权重。

这样可以更准确地反映最近数据对未来趋势的影响。

3. 指数平滑法:该方法基于指数平滑的思想,通过给予最近数据更高的权重,更好地反映出最新的趋势变化。

指数平滑法的优点在于简单易懂,适用于短期预测和具有快速变化的数据。

4. 季节性趋势法:对于具有季节性变化的数据,例如销售额在节假日期间会有明显增加,可以使用季节性趋势法进行预测。

该方法会将历史数据中对应时间段的平均值作为未来趋势的预测。

5. 自回归移动平均模型(ARIMA):ARIMA模型结合了自回归(AR)和移动平均(MA)方法,可以针对不同数据的特性进行预测。

它将过去的数据与误差相关联,通过建立模型来预测未来趋势。

时间序列趋势预测方法选择的关键在于对数据的理解和背后的数据特性的分析。

不同的方法适用于不同类型的数据和不同的预测目标。

因此,在进行时间序列预测之前,分析师需要对数据进行详细的统计分析和特征工程,以选择适当的预测模型和方法。

时间序列趋势预测是一种统计分析方法,用于预测未来一段时间(通常是连续的)内时间序列中的趋势。

这种方法基于过去的数据模式和趋势,结合统计模型和数学算法,通过分析和预测未来的变化。

时间序列预测广泛应用于诸如股票市场、经济指标、销售数据、天气预测等诸多领域。

一种常见的时间序列预测方法是移动平均法。

移动平均法是一种平滑数据的方法,通过计算一系列连续时间段内的数据的平均值,来预测未来的趋势。

时间序列预测法及定量方法介绍

时间序列预测法及定量方法介绍

时间序列预测法及定量方法介绍时间序列预测方法及定量方法介绍时间序列预测是指通过历史数据中的时间序列信息来预测未来的数值变化趋势。

时间序列预测在许多领域都有广泛的应用,例如经济学、金融学、气象学等。

本文将介绍一些常用的时间序列预测方法及定量方法。

首先,时间序列预测方法可以分为参数方法和非参数方法。

参数方法假设时间序列的未来值与历史值之间存在某种函数关系,通过拟合这种函数关系来进行预测。

非参数方法则不对函数关系做任何假设,直接通过历史值的统计特性进行预测。

参数方法中最常用的是自回归移动平均模型(ARMA)和自回归条件异方差模型(ARCH)。

ARMA模型假设未来值与过去的若干个值相关,通过拟合自回归和移动平均系数的线性组合来进行预测。

ARCH模型则是基于ARMA模型的扩展,考虑了时间序列误差项的异方差性,通过拟合自回归条件异方差系数来进行预测。

这些模型通常需要对数据进行平稳性处理和白噪声检验。

非参数方法中最常用的是移动平均法和指数平滑法。

移动平均法将时间序列按固定窗口大小进行滑动,并取滑动窗口内数据的平均值作为预测值。

这种方法可以平滑离群点的影响,但对窗口大小的选择较为敏感。

指数平滑法则是通过加权平均计算预测值,其中权重随时间递减,最新的观测值权重最大。

这种方法较好地考虑了近期观测值的重要性。

除了参数方法和非参数方法,还有一些其他的定量方法用于时间序列预测。

其中最常用的是回归分析和神经网络。

回归分析通过多元线性回归模型来预测未来值,考虑了多个自变量的影响。

神经网络则是通过多层网络结构来拟合时间序列之间的非线性关系,具有较好的非线性拟合能力。

另外,时间序列预测还可以考虑季节性和趋势性的因素。

季节性预测主要通过分解时间序列为趋势、季节和随机三个部分,并分别进行预测。

趋势性预测则是通过拟合时间序列的趋势函数来预测未来值。

常用的趋势函数有线性趋势函数、指数趋势函数和多项式趋势函数等。

综上所述,时间序列预测方法及定量方法有很多种,选择适合的方法取决于数据的性质和预测的目标。

第四章 时间序列趋势外推预测

第四章  时间序列趋势外推预测

统计学专业课
统计预测决策
第一节 移动平均预测法
4、加权移动平均法的预测公式: 加权移动平均法的预测公式: 1 ˆ = nXt + (n −1) Xt −1 + (n − 2) Xt −2 +⋯ × Xt −n+1 Xt +1 n + (n −1) + (n − 2) +⋯ 1
4- 5
统计学专业课
4- 3
ˆ = Xt + Xt −1 + Xt −2 +⋯Xt −n+1 Xt +1 n
统计学专业课
统计预测决策
第一节 移动平均预测法
例如:某商场2003年1-6各月的实际销售额如下, 2003年 例如:某商场2003 各月的实际销售额如下, 预测7月份的销售额(简单平均法) 单位: 预测7月份的销售额(简单平均法) 单位:万元 月份 1 2 3 4 5 6 4-7 4 实际销售额 预测值(n=3) 预测值(n=5) 预测值(n=3) 预测值(n=5) 25.6 — — 22.8 — — 24.9 — — 24.7 24.4 — 25 24.1 — 23.9 24.9 24.6 24.5 24.3
第一节 移动平均预测法
某机械厂用二次移动平均预测法预测销售量
n=3 年份 1995 1996 1997 1998 1999 2000 2001- 12 4 销售量 1527 1596 1668 1740 1815 1886 M t(1) — — 1597 1668 1741 1814 M t(2) — — — — 1669 1741 at — — — — 1813 1887 bt — — — — 72 73 单位:台 单位: 预测值 — — — — — 1885 1960

第4章 时间序列平滑预测法

第4章 时间序列平滑预测法

一、一次指数平滑法
时间序列:y1 , y2 ,....., yt 平滑序列:St = αyt + (1 − α )St −1 = α ∑ (1 − α ) j yt − j ) ) 预测模型:yt +1 = αyt + (1 − α ) yt
j =0 ∞
加权系数的选择 α的大小规定了在新预测值中新数据和原预测值所占的比 重。α值越大,新数据所占的比重就愈大,原预测值所占 的比重就愈小,反之亦然。 α值应根据时间序列的具体性 质在0-1之间选择。具体如何选择一般可遵循下列原则: (1)如果时间序列波动不大,比较平稳,则α应取小 一点,如(0.1-0.3)。以减少修正幅度,使预测模型能包 含较长时间序列的信息。 (2)如果时间序列具有迅速且明显的变动倾向,则α 应取大一点,如(0.6-0.8)。使预测模型灵敏度高一些, 以便迅速跟上数据的变化。 在实用上,类似于移动平均法,多取几个α值进行试 算,看哪个预测的均方误差较小,就采用哪个α值作为权 重。
ˆ 预测值 yt α=0.2
219.1 220.82 218.756 216.7248 218.3398 220.4519 223.7015 225.4412 229.073 230.9384 234.9907 236.5726 238.978 240.4424
ˆ 预测值 yt α=0.5
219.1 223.4 216.95 212.775 218.7875 223.8438 230.2719 231.3359 237.468 237.934 244.567 243.7335 246.1667 246.2334
3、循环变动 循环变动一般是指周期不固定的波动变化, 有时是以数年为周期变动,有时是以几个月为 周期变化,并且每次周期一般不完全相同。循 环变动与长期趋势不同,它不是朝单一方向持 续发展,而是涨落相间的波浪式起伏变动。与 季节变动也不同,它的波动时间较长,变动周 期长短不一, 4、不规则变动 不规则变动是指由各种偶然性因素引起的 无周期变动。不规则变动又可分为突然变动和 随机变动。所谓突然变动,是指诸如战争、自 然灾害、地震、意外事故、方针、政策的改变 所引起的变动;随机变动是指由于大量的随机 因素所产生的影响。不规则变动的变动规律不 易掌握,很难预测。

时间序列分析预测法

时间序列分析预测法

时间序列分析预测法时间序列分析是一种用于预测未来值的统计方法,它基于历史数据的模式和趋势进行推断。

时间序列分析预测法常用于经济学、金融学、市场营销等领域,在这些领域中,准确预测未来趋势对决策制定非常重要。

时间序列分析预测法的核心思想是根据已有的时间序列数据,预测未来一段时间内的值。

该方法假设未来的模式和趋势与过去是一致的,因此通过分析过去的数据变化,可以推测未来的变化。

时间序列分析预测法主要包括以下几个步骤:首先,需要收集并整理历史数据,确保数据的准确性和完整性。

历史数据通常是按照时间顺序排列的,如每月销售额、每周股票收盘价等。

收集数据的时间跨度越长,分析的结果越准确。

其次,根据数据的特征进行时间序列分析。

时间序列数据通常包含趋势、季节性和周期性等特征。

趋势描述了数据的长期变化趋势,季节性和周期性描述了数据的短期变化。

通过统计方法和图表分析,可以揭示数据中的这些特征。

然后,选择合适的时间序列模型进行预测。

常用的时间序列模型包括移动平均法、指数平滑法和自回归移动平均模型等。

模型的选择应根据数据的特征和分析结果来确定,不同模型适用于不同类型的数据。

最后,使用已选定的时间序列模型进行预测。

根据历史数据和模型的参数,可以得出未来一段时间内的预测值。

预测的精度和可靠性取决于模型的选择和数据的准确性。

时间序列分析预测法的优点是简单直观、易于理解和实施。

它可以帮助决策者更好地了解数据的变化规律,做出合理的决策。

然而,时间序列分析也有一些局限性,比如无法处理非线性和非平稳的数据,对异常值和缺失值敏感等。

总之,时间序列分析是一种常用的预测方法,能够帮助我们理解和预测未来的数据变化。

在实际应用中,我们需要根据数据的特征选择合适的模型,并不断验证和修正预测结果,以提高预测的准确性和可靠性。

时间序列分析预测法是一种基于历史数据的统计方法,通过分析过去的数据变化模式和趋势,来预测未来一段时间内的数值。

它在经济学、金融学、市场营销等领域发挥着重要作用,为决策者提供了有价值的信息和参考。

时间序列预测法

时间序列预测法

第3章时间序列预测法§3.1 时间序列分析的基本问题3.1.1时间序列时间序列是指同一变量按发生时间的先后排列起来的一组观察值或记录值。

例如:1953~2001年的国民收入;1958~2001年全国汽车的产量;某物资公司1996~2001年逐月的机电产品月销售量;某省1962~2001年工业燃料消费量等等。

所用的时间单位可以根据情况取年、季、月等。

3.1.2时间序列预测经济预测中的预测目标及其影响因素的统计资料,大多是时间序列。

任何预测目标都有各自的时间演变过程,研究它如何由过去演变到现在的演变规律,并分析、研究它今后的变化规律,即可对它们进行预测,时间序列预测技术就是利用预测目标本身的时间序列,分析、研究预测目标未来的变化规律而进行预测的。

时间序列预测法,只要有预测目标的历史统计数据即可进行预测,统计资料易于收集,计算又比较简单,不仅可用来预测目标,还可用于预测回归预测法的影响因素。

因此,广泛地用于各方面的预测。

而当找不到预测目标的主要影响因素或者虽然知道其主要影响因素,但找不到有关的统计数据时,时间序列预测法的优越性更为显著。

时间序列预测技术,可分为确定型和随机型两大类。

本章只介绍确定型时间序列预测,第四章将介绍随机型时间序列预测。

3.1.3四类影响因素世间各种各样的事物,在各时间都可能受很多因素的影响,因此,所形成的时间序列,实际上是各个影响因素同时作用的综合结果。

我们想从给定的时间序列,分析出作用于所观察事物的每一个影响因素,是无法办到的。

因此,我们在分析各种时间序列时,通常把各种可能的影响因素,按其作用的效果分为四大类:1)趋势变动[记为T(t)]:指预测目标在长时间内的变动趋势——持续上升或持续下降。

2)季节变动[记为S(t)]:指每年受季节影响重复出现的周期性变动,一般是以十二个月或四个季度为一个周期。

3)循环变动[记为C(t)]:指以数年为周期(各周期的长短可能不一致)的一种周期性变动,例如经济景气指数,银行储蓄。

时间序列预测法

时间序列预测法

• 解:先计算出各一次和二次指数平滑值列。
当t
12时,
S (1) 12
52.23,S1(22)
49.75。
a 12
2S1(12)
S(2) 12
2 52.23
49.75
54.71
b12
1
[S1(12)
S(2) 12
]
0.3 1 0.3
(52.23
49.75)
1.06
X12T 54.711.06T
• 2. 对消去季节影响的序列X/S做散点图,选择适合 的曲线模型拟合序列的长期趋势,得到长期趋势T。
• 3. 计算周期因素C。用序列TC除以T即可得到周期 变动因素C。
• 4. 将时间序列的T、S、C分解出来后,剩余的即为 不规则变动。
案例
• 现有某商品销售额的12年的季度数据在文件。用乘法模型 分解,并预测第13年各季度的销售额。
案例数据
某商品市场需求量 单位:千吨
需求量Yt 一次移动平均数 二次移动平均数
50
50
53
56
59
54
62
56
65
59
68
62
71
65
59
74
68
62
77
71
65
80
74
68
指数平滑法
• 在实际经济活动中,最新的观察值往往包含着最 多的关于未来情况的信息。所以更为切合实际的 方法是对各期观察值依时间顺序加权。
中,时间序列值(Y)和长期趋势用绝对数表示,季 节变动、周期变动和不规则变动用相对数(百分数) 表示。
加法模型分解预测法
• 已知 y1 , y 2 , y n

第四章 时间序列平滑预测法

第四章 时间序列平滑预测法

ˆ ( N 3) X t 1 ˆ ( N 5) X
t 1
Xt
423 358 434
445 527 429 426 502 480 384 427 446
419 448
月份
1
2
3
4
5
6
7
8
9
10
11
12
13
ˆ ( N 3) X t 1 ˆ ( N 5) X
t 1
Xt
423 358 434 445 527 429 426 502 480 384 427 446 405 412 469 467 461 452 469 455 430 419 437 439 452 466 473 444 444 448
1 (1) ˆ X t 1 ( N 3) M t (3) ( X t X t 1 X t 2 ) 3
1 (1) ˆ X t 1 ( N 5) M t (5) ( X t X t 1 X t 2 X t 3 X t 4 ) 5
月份 1 2 3 4 5 6 7 8 9 10 11 12 13
实际销售量 三期移动平均预测 五期移动平均预测

550 500 450 400 350 300 0 1 2 3 4 5 6 7
下个月的 预测销售 量——
419 or 448
8 9 10 11 12 13
月份

N 的选取
在实用上,一般用对过去数据预测的均方误差S 来作为选取N 的准则。
N=3 N=5
不能归因于其他三种成分 的时间序列的变化
时间坐标若不是 季度,就是年
往往,一个时间序列,是由四种因素(T、 S、C、I)综合作用的结果。 这四种因素对时间序列变化的影响有两种基 本假设→

时间序列预测法

时间序列预测法
详细描述
在时间序列预测中,过度拟合问题通常出现在使用复杂的模型来拟合简单的数据 时。这些模型可能会在训练数据上获得良好的拟合效果,但在测试数据上却无法 取得较好的预测结果。因此,选择合适的模型是至关重要的。
动态变化与适应性挑战
总结词
时间序列数据的动态变化使得预测模型必须具备适应性和鲁棒性。然而,这增加了时间序列预测法的 难度和复杂性。
高维时间序列预测算法改进
针对高维数据的特性,改进现有的时间序列预测算法,提高预测精 度和效率。
时序数据的深度学习与神经网络方法
深度学习
利用深度神经网络对时序数据进行深度学习,挖掘数据中的复杂模式和规律。例如,使用 循环神经网络(RNN)对具有时序依赖性的数据进行建模。
神经网络结构优化
针对时序数据的特性,优化神经网络结构,提高网络的拟合能力和泛化性能。例如,采用 卷积神经网络(CNN)对具有周期性的时间序列数据进行处理。
01
季节性ARIMA模型是一种改进的 ARIMA模型,它考虑了数据的季 节性变化。
02
季节性ARIMA模型适用于数据具 有明显季节性变化的情况。
季节性ARIMA模型的优点是能够 处理季节性变化和短期趋势,预 测结果较为准确。
03
季节性ARIMA模型的缺点是需要 对数据进行季节性差分,可能导
致数据失真。
水位预测
通过分析历史水位数据,建立时间序列模型,可以预测未来水位 的走势。
电量预测
通过分析历史电量数据,建立时间序列模型,可以预测未来电量 的走势。
交通流量预测
通过分析历史交通流量数据,建立时间序列模型,可以预测未来 交通流量的走势。
05
时间序列预测法的局限性与挑战
数据质量与噪声影响

时间序列分析中的预测算法比较

时间序列分析中的预测算法比较

时间序列分析中的预测算法比较时间序列分析是一种用来预测未来数据的技术,它在各个领域都有广泛的应用,比如经济学、气象学和股票市场等。

在时间序列分析中,选择适当的预测算法对于准确预测和决策制定至关重要。

在本文中,我们将比较几种常见的时间序列分析中的预测算法,包括移动平均法、指数平滑法和ARIMA模型。

移动平均法是一种简单且常用的时间序列分析预测算法。

它通过计算一段时间内的均值来预测未来的数值。

移动平均法的优点是简单易懂,可以解释清楚预测的原理。

然而,移动平均法的缺点也很明显,它只考虑了过去一段时间的均值,忽略了其他有用的信息,对于具有长期趋势或季节性周期的数据预测效果不佳。

指数平滑法是另一种常见的时间序列分析预测算法,它适用于有趋势但没有季节性周期的数据。

指数平滑法通过以加权递减的方式对过去观察值进行平滑处理,计算出加权平均数来进行预测。

指数平滑法的优点是简单易用,对于近期的观察值给予更大的权重,更加适用于预测快速变化的数据。

然而,指数平滑法的缺点是不能很好地处理季节性和周期性数据,对于这些数据的预测效果有限。

ARIMA模型是一种更为复杂的时间序列分析预测算法,它结合了自回归(AR)、差分(I)和滑动平均(MA)的特性。

ARIMA模型适用于具有趋势和季节性周期的时间序列数据。

它通过拟合一个合适的模型来预测未来数据。

ARIMA模型的优点是可以很好地处理具有复杂特征的数据,对于季节性和周期性数据的预测效果较好。

然而,ARIMA模型的缺点是模型的选择和参数的估计比较困难,需要一定的专业知识和经验。

在实际应用中,选择合适的预测算法需要考虑多个因素,如数据的特征、预测的准确性和计算效率等。

对于简单的数据,如没有趋势和季节性周期的数据,移动平均法和指数平滑法可能是较好的选择。

而对于具有复杂特征的数据,如具有长期趋势和季节性周期的数据,ARIMA模型可能是更适合的选择。

此外,在使用预测算法时,还需要注意数据的平稳性。

什么是时间序列预测法

什么是时间序列预测法

什么是时间序列预测法?一种历史资料延伸预测,也称历史引伸预测法。

是以时间数列所能反映的社会经济现象的发展过程和规律性,进行引伸外推,预测其发展趋势的方法。

时间序列,也叫时间数列、历史复数或动态数列。

它是将某种统计指标的数值,按时间先后顺序排到所形成的数列。

时间序列预测法就是通过编制和分析时间序列,根据时间序列所反映出来的发展过程、方向和趋势,进行类推或延伸,借以预测下一段时间或以后若干年内可能达到的水平。

其内容包括:收集与整理某种社会现象的历史资料;对这些资料进行检查鉴别,排成数列;分析时间数列,从中寻找该社会现象随时间变化而变化的规律,得出一定的模式;以此模式去预测该社会现象将来的情况。

时间序列预测法的步骤第一步收集历史资料,加以整理,编成时间序列,并根据时间序列绘成统计图。

时间序列分析通常是把各种可能发生作用的因素进行分类,传统的分类方法是按各种因素的特点或影响效果分为四大类:(1)长期趋势;(2)季节变动;(3)循环变动;(4)不规则变动。

第二步分析时间序列。

时间序列中的每一时期的数值都是由许许多多不同的因素同时发生作用后的综合结果。

第三步求时间序列的长期趋势(T)季节变动(s)和不规则变动(I)的值,并选定近似的数学模式来代表它们。

对于数学模式中的诸未知参数,使用合适的技术方法求出其值。

第四步利用时间序列资料求出长期趋势、季节变动和不规则变动的数学模型后,就可以利用它来预测未来的长期趋势值T和季节变动值s,在可能的情况下预测不规则变动值I。

然后用以下模式计算出未来的时间序列的预测值Y:加法模式T+S+I=Y乘法模式T×S×I=Y如果不规则变动的预测值难以求得,就只求长期趋势和季节变动的预测值,以两者相乘之积或相加之和为时间序列的预测值。

如果经济现象本身没有季节变动或不需预测分季分月的资料,则长期趋势的预测值就是时间序列的预测值,即T=Y。

但要注意这个预测值只反映现象未来的发展趋势,即使很准确的趋势线在按时间顺序的观察方面所起的作用,本质上也只是一个平均数的作用,实际值将围绕着它上下波动。

时间序列预测方法

时间序列预测方法

• 时间序列分解法
1 基本特点
a 将影响预测对象的因素看为合力,分为四种数据模式:
趋势变动(T)
季节变动(S)
循环变动(C)
随机变动(I)
b 建模的目的是消除随机变量的影响
时间数列的构成要素与模型
(构成要素与测定方法)
时间数列的构成要素
长期趋势
季节变动
循环波动 不规则波动
线性趋势 非线性趋势
移动平均法 移动中位数法
173.8
根据计算表得 a 、 b 、c 的结果如下
17.8315a28c0
a13.9924
45.228b0
b0.16143
271.6228a0935c2 c0.128878
针织内衣零售量的二次曲线方程为
Y$t = 13.9924 + 0.16143 t – 0.128878 t2
1993年零售量的预测值为
y ˆt ab(a e t 0 ) ln y ˆt la n b
y ˆt abtc (0c1 )
yˆ t ka b t
yˆ t
l
1 ae bt
3 趋势预测法的基本步骤 趋势曲线模型的识别
图形识别法 差分法 最优判别准则识别法
趋势曲线模型的参数估计
精确估计法:OLS 、WLS 近似估计法:三点法等
81
12.3
49.2
16
196.8
256
11.2
56.0
25
280.0
625
9.4
56.4
36
338.4
1296
8.9
62.3
49
436.1
2401
合计
0
173.8
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SALE
P3
P4
(3)15
简单移动平均法的优点 : ➢ 计算量少; ➢具 有 修 匀 作 用 , 移 动 平 均 线 能 较 好 地反映时间序列的发展趋势及其变化。
(3)16
简单移动平均法的三个主要限制
➢ 限制一:计算移动平均必须具有k个过去观察值,当
需要预测大量的数值时,就必须存储大量数据;
➢限制二:k个过去观察值中每一个权数都相等,而早于 (t-k+1)期的观察值的权数等于0,而实际上往往是最
分解基本思路: Step1:采用移动平均法从Y中剔除S和I,得到TC; Step2:从Y中剔除TC,得到SI=Y/TC; Step3:对SI进行按月(季)平均,剔除I,得到S; Step4:对Y建立长期趋势方程,求出T; Step5:从Step1的TC中剔除Step4求得的T,得到C=TC/T; Step6:根据长期趋势方程求出的T,判断循环指数C; Step7: 预测模型为Yˆt Tt St Ct ,进行预测。
• 常用的移动平均法有一次移动平均法和 二次移动平均法。
(3)10
一次移动平均预测
• 一.简单移动平均法 • 基本思想:每次取一定数量时期的数据平均,按时间
顺序逐次推进,每推进一次,舍去前一个数据,增加 一个后续相邻的新数据,再进行平均,这些平均值可 以构成一个新序列。如果原来的时间序列没有明显的 不稳定变动的话,则可用最近时期的一次移动平均数 作为下一个时期的预测值。
生产总值表
年份
1978 1979 1980 1981 …… 2007
人均GDP (美元/人)
381 419 463 492 …… 18268
(3)3
4.1时间序列分解法
• 一.时间序列变动的影响因素分解 • (一)长期趋势因素(T) • (二)季节变动因素(S) • (三)循环变动因素(C) • (四)不规则变动因素(I)
新观察值包含更多信息,应具有更大权重。 ➢ 限制三,预测滞后。移动平均值趋势都相应地滞后于 实际值,这必将给预测带来偏差。所以,简单移动平均 法只适用于时间序列变化比较平稳的近期预测。
(3)17
• 当数据的随机因素较大(数据变化趋势 剧大)时,宜选用较大的k,这样有利于 较大限度地平滑由随机性所带来的严重 偏差;反之,当数据的随机因素较小 (数据变化趋势平稳)时,宜选用较小 的k,这有利于跟踪数据的变化,并且预 测值滞后的期数也少。
135
82
74
115
142
88
78
130
165
95
83
147
190
106
86
158
205
112
(3)8
三.时间序列分解法
• (一)加法模型(季节变差法) Yt Tt St It
• 分解基本思路: •求出
T; • Step2:SI=Y-T,求出不同年度同一季节的平均季节变
(3)18
• 二.加权移动平均法 • 基本思想:为克服简单移动平均预测法
175 172 180 192 201 210 220 227 235 232 240
——
三项简单移动平均预测
预测值
相对误差 %
——
——
——
——
—— 175.67
—— 8.51
181.33
9.79
191
9.05
201
8.64
210.33
7.34
219
6.81
227.33
2.01
231.33
3.61
235.67
第四章 时间序列分析预测法
(3)1
第四章 目录
4.1 时间序列分解法 4.2 移动平均法 4.3 指数平滑法 4.4 自适应过滤预测法 4.5 三次指数平滑法预测案例
(3)2
• 时间序列:由同一现 象在不同时间上的相 继观察值排列而成的 序列,也称时间数列、 动态数列。
• 例如:中国历年人均国内
• 差 S ,进行修正,修正的方法是,各季度平均季节变
差减去其平均数,得到各季节的季节变差S; • Step3:从SI中提出S,I=SI-S,随机变动无预测价值; • Step4: 预测模型为 Yˆt Tt St,进行预测。
(3)9
4.2 移动平均法
• 移动平均法:通过对时间序列按一定的 项数(间隔长度)逐期移动平均,从而 修匀时间序列的周期变动和不规则变动, 显示出现象的发展趋势,然后根据趋势 变动进行外推预测的一种方法。
(3)4
二.时间序列的分解模型 (一)加法模型
(二)乘法模型 Yt Tt St Ct It Yt Tt St Ct It
(三)混合模型
Yt Tt St Ct It Yt Tt St It Yt Tt Ct St It
(3)5
三.时间序列分解法
(一)乘法模型(季节指数法)Yt Tt St Ct It
(3)6
例题4-1
• 某公司2000-2005年产品销售额季度数据 如表4-1所示。用时间序列分解法的乘法 模型(季节指数法)预测2006年第1季度 的销售额。
(3)7
年份 2000 2001 2002 2003 2004 2005
第一季度 第二季度 第三季度 第四季度
67
104
136
76
72
110
——
四项简单移动平均预测
预测值
相对误差 %
——
——
——
——
——
——
——
——
179.75
10.57
186.25
11.31
195.75
11.02
205.75
9.36
214.5
8.72
223
3.88
228.5
4.79
233.5
——
(3)14
250
240
230
220
210
200
190
180
170 95 96 97 98 99 00 01 02 03 04 05 06
(3)12
例题4.3
某公司1995-2005年的产品销售量数据如 表4-6所示,分别采用三项和四项简单移 动平均法对该公司2006年的产品销售量 进行预测
(3)13
年份
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
销售量Yt
(3)11
设时间序列为 Y1,Y2 ,Yt , 移动平均法可以表示为:
Yt 1
Mt
Yt
Yt1
k
Yt(k 1)
式中:Yt 为最新观察值; Yˆt1 为下一期预测值;k为移动平均项数。
Yˆt 1
Yˆt
Yt
Ytk k
由移动平均法计算公式可以看出,每一新预测值是对前一 移动平均预测值的修正,k越大平滑效果愈好。
相关文档
最新文档