第2章 随机变量
第二章随机变量及其分布
第二章 随机变量及其分布第二节 离散随机变量一、选择1 设离散随机变量X 的分布律为:),,3,2,1(,}{ ===k b k X P kλ )(0为,则且λ>b11)D (11)C (1)B (0)A (-=+=+=>b bb λλλλ的任意实数).()0(,11111·,1,11)1(·lim lim 1)1(·1}{111C b b b b S b b S b k X P n n n n n nk kn k kk 所以应选因所以时当于是可知即因为解><+==-<=--=--=====∞→∞→=∞=∞=∑∑∑λλλλλλλλλλλλ二、填空1 如果随机变量X 的分布律如下所示,则=C .X0 1 2 3PC1 C 21 C 31 C 41.12251)(31==∑=C x P x i 得:根据解 2 进行重复独立试验,设每次试验成功的概率为54, 失败的概率为51, 将试验进行到出现一次成功为止, 以X 表示所需试验次数, 则X 的分布律是__ ___ ____.(此时称X 服从参数为p 的几何分布).解:X 的可能取值为1,2,3 ,{}{}.,1~1次成功第次失败第K K K X -==所以X 的分布律为{} 1,2, , 54)51(1=⋅==-K K X P K 三、简答1 一个袋子中有5个球,编号为1,2,3,4,5, 在其中同时取3只, 以X 表示取出的3个球中的最大号码, 试求X 的概率分布.的概率分布是从而,种取法,故只,共有任取中,,个号码可在,另外只球中最大号码是意味着事件种取法,故只,共有中任取,,个号码可在,另外只球中最大号码是意味着事件只有一种取法,所以只球号码分布为只能是取出的事件的可能取值为解X C C X P C X C C X P C X C X P X X 53}5{624,321253},5{103}4{2321243},4{1011}3{,3,2,13},3{.5,4,335242235232335=============X 3 4 5 P101 103 532 一汽车沿一街道行驶, 需要通过三个均设有绿路灯信号的路口, 每个信号灯为红和绿与其他信号为红或绿相互独立, 且红绿两种信号显示时间相等, 以X 表示该汽车首次遇到红灯前已通过的路口个数, 求X 的概率分布.故分布律为于是相互独立,且,遇到红灯个路口首次汽车在第表示设的可能值为由题设知解3321321332132122121132121)()()()(}3{21)()()()(}2{21)()()(}1{21)(}0{,21)()(,,"")3,2,1(,3,2,1,0==================A P A P A P A A A P X P A P A P A P A A A P X P A P A P A A P X P A P X P A P A P A A A i i A X i i iX 0 1 2 3 P21 221 321 321 第三节 超几何分布 二项分布 泊松分布一、选择1 甲在三次射击中至少命中一次的概率为0.936, 则甲在一次射击中命中的概率p =______.(A) 0.3 (B) 0.4 (C) 0.5 (D) 0.6 解: D设=X ”三次射击中命中目标的次数”,则),3(~p B X , 已知936.0)1(1)0(1)1(3=--==-=≥p X P X P , 解之得6.04.01064.0)1(3=⇒=-⇒=-p p p2 设随机变量),3(~),,2(~p b Y p b X , {}{}=≥=≥1,951Y P X P 则若______. 43)A (2917)B ( 2719)(C 97)D ( 解: C二、填空1设离散随机变量X 服从泊松分布,并且已知{}{},21===X P X P{}______4=则=X P .解:232-e 三、简答1.某地区的月降水量X (单位:mm )服从正态分布N(40,24),试求该地区连续10个月降水量都不超过50mm 的概率.9396.09938.010Y P 9938.010B Y mm 50Y 10mm 50109938.0)5.2()44050440P )50P A P mm 50A 10=)==(),(~的月数”,则过=“该地区降水量不超设天贝努利试验,相当做超过个月该地区降水量是否观察(()=(”=“某月降水量不超过解:设==-≤-=≤φx x2 某地区一个月内发生交通事故的次数X 服从参数为λ的泊松分布,即)(~λP X ,据统计资料知,一个月内发生8次交通事故的概率是发生10次交通事故的概率的2.5倍.(1) 求1个月内发生8次、10次交通事故的概率; (2)求1个月内至少发生1次交通事故的概率; (3)求1个月内至少发生2次交通事故的概率;983.001.000248.0}1{}0{1}2{01487.06}1{)3(9975.000248.01}0{1}1{00248.0}0{)2(0413.0!106}10{1033.0!86}8{)1(6,36!105.2!8}10{5.2}8{.,.,2,1,0,!}{),(~610610682108≈+≈=-=-=≥≈==≈-≈=-=≥≈===≈==≈====⨯====⋯===-------X P X P X P e X P X P X P e e X P e X P e X P e e X P X P k k e k X P P X k λλλλλλλλλλλλ解出即据题意有关键是求出是未知的这里题这是泊松分布的应用问解第五节 随机变量的分布函数一、 填空题1设离散随机变量,216131101~⎪⎪⎭⎫⎝⎛-X 则X 的分布函数为 .⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤--<==++=≤=≥=+=≤=<≤=≤=<≤-=≤=-<1,110,2101,311,0)(1216131}{)(1;216131}{)(1031}{)(01;0}{)(1x x x x x F x X P x F x x X P x F x x X P x F x x X P x F x 当当当当整理,得时,当时,当时,当时,当解二、选择1 设)(1x F 与)(2x F 分别为随机变量1X 与2X 的分布函数,为使)()()(21x bF x aF x F -=是某一变量的分布函数,在下列给定的数值中应取52,53)A (-==b a 32,32)B (==b a 23,21)C (=-=b a 23,21)D (-==b a ).(1)(lim )(lim )(lim ,1)(lim 21A b a x F b x F a x F x F x x x x 故应选即因此有根据分布函数的性质:分析-=-==+∞→+∞→+∞→+∞→2. 设函数⎪⎩⎪⎨⎧≥<≤<=1x , 11x 0 , 2x 0x,0)(x F .则)(x F ______.(A) 是随机变量的分布函数. (B) 不是随机变量的分布函数.(C) 是离散型随机变量的分布函数. (D) 是连续型随机变量的分布函数. 解: A显然)(x F 满足随机变量分布函数的三个条件:(1))(x F 是不减函数 , (2) 1)(,0)(,1)(0=+∞=-∞≤≤F F x F 且 , (3))()0(x F x F =+3. 设⎪⎪⎩⎪⎪⎨⎧≥<<≤=2x, 12x (*) , 4x(*)x,0)(2x F 当(*)取下列何值时,)(x F 是随机变量的分布函数.(A) 0 (B) 0.5 (C) 1.0 (D)1.5解: A 只有A 使)(x F 满足作为随机变量分布函数的三个条件.三.简答1 设随机变量X 的分布函数为x B A x F arctan )(+=,求B A ,的值. 解:由随机变量分布函数的性质.0)(lim =-∞→x F x .1)(lim =+∞→x F x 知.2)2()a r c t a n (lim )(lim 0B A B A x B A x F x x ππ-=-⨯+=+==-∞→-∞→.22)arctan (lim )(lim 1B A B A x B A x F x x ππ+=⨯+=+==+∞→+∞→ 解⎪⎪⎩⎪⎪⎨⎧=+=-1202B A B A ππ得π1,21==B A第六节 连续随机变量的概率密度一、选择1.设()f x 、()F x 分别表示随机变量X 的密度函数和分布函数,下列选项中错误的是( A )(A ) 0()1f x ≤≤ (B ) 0()1F x ≤≤(C )()1f x dx +∞-∞=⎰(D ) '()()f x F x =2.下列函数中,可为随机变量X 的密度函数的是( B )(A ) sin ,0()0,x x f x π≤≤⎧=⎨⎩其它 (B )sin ,0()20,x x f x π⎧≤≤⎪=⎨⎪⎩其它(C ) 3sin ,0()20x x f x π⎧≤≤⎪=⎨⎪⎩,其它(D )()sin ,f x x x =-∞<<+∞ 二、填空1.设连续随机变量X 的分布函数为11()arctan ,2F X x x π=+-∞<<+∞ (1)(11)P X -≤≤= 0.5 , (2)概率密度()f x =21,(1)x x π-∞<<+∞+三、简答题1. 设随机变量X 的概率密度20()0,x Ax e x f x x -⎧>=⎨≤⎩,求:(1)常数A ;(2)概率(1)P X ≥。
概率论课件第二章
例1. 抛硬币试验中S {H,T}, 样本点H与T不是数量。
例2. 测试灯泡寿命试验, S={e}={t|t≥0},样本点本身 是数量。
定义 : 设随机试验E的样本空间是S,若 X : S R为单值实范数,则称X为随机变量 (random variable, 简记为r.v.) 。
2. 特例: (1,) 是参数为的指数分布. (=1) 3. 伽玛函数的性质: (i) (+1)= ();
1 (iii)( ) . 2
(ii) 对于正整数n, (n+1)=n!;
§5. 随机变量的函数的分布
一、 X为离散型r.v. 例1.设X具有以下的分布律,求Y=(X-1)2分布律: X -1 0 1 2 pk 0.2 0.3 0.1 0.4
(二) 贝努利试验
(二项分布)
定 义 : 设 试 验E只 有 两 个 可 能 结 果 A与 A , 且 P( A ) p ( 0 p 1), 将 试 验E独 立 重 复 地 进 行 n次 , 这 样 的 试 验 称 为 贝 努 利 试 验.
设X是n重贝努利试验中事件A发生的次数, 则X 是一个随机变量, 于是
§4. 连续型随机变量及其概率密度
F(x) , 存在非负函 1.定义 : 对于r.v.X的分布函数 数f(x) , 使对于任意的实数 x, 有
则称X为连续型r.v.f(x)称为X概率密度函数, 简称概率密度. 连续型r.v.的分布函数是连续函数.
F(x ) f(t)dt
x
2.概率密度 f(x)的性质:
25
标准正态分布的上分位点:
设X ~ N(0,1), 若z 满足条件
第二章随机变量
金融保险) 例2.2.4: (金融保险 金融保险 根据生命表知道, 根据生命表知道,在某个年龄段的投保人中一年内 每个人死亡的概率是 0.005 ,现在有 10,000 人参加 保险, 人的概率。 保险,问未来一年中死亡人数不超过 60 人的概率。 解: 分析 分析, 人中死亡的人数, 以 X 记这 10,000 人中死亡的人数,则显然有 X ~b (104,0.005 ) ,需要计算 { X ≤ 60 } 。 需要计算P P { X ≤ 60 } = ∑k6=00 [C10000k 0.005k 0.99510000 – k ]
例2.1.1
抛掷均匀硬币两次, 抛掷均匀硬币两次,用X 表示正面 H 出现的次数。 出现的次数。
X
=
0 ,
1 ,
2, ,
3
试验结果 = 相应概率 =
{TTT} , {HTT,TTH,THT}, {HHT,THH,HTH}, {HHH} , , , 1/8 , 3/8 , 3/8, 1/8
ቤተ መጻሕፍቲ ባይዱ
X 的概率分布也可以表格的形式表示: 的概率分布也可以表格的形式表示: X p 0 1/8 1 3/8 2 3/8 3 1/8
离散随机变量概率分布的表达形式
1.
X pk
x1 x 2 x 3 ⋅ ⋅ ⋅ x k ⋅ ⋅ ⋅ p1 p2 p3 ⋅ ⋅ ⋅ pk ⋅ ⋅ ⋅
2.
x1 X ~ p1
x2 ⋅ ⋅ ⋅ p2 ⋅ ⋅ ⋅
xn pn
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
离散型随机变量X的分布律具有以下性 离散型随机变量 的分布律具有以下性 质: 1.
有下面四个约定
1). 每次试验至多出现两个可能结果之一 或 A 每次试验至多出现两个可能结果之一:A或 2). A在每次试验中出现的概率 保持不变 在每次试验中出现的概率p保持不变 在每次试验中出现的概率 3). 各次试验相互独立 4). 共进行 次试验 共进行n次试验
概率论与数理统计第二章 随机变量及其分布
15
例4: 甲、乙两名棋手约定进行10盘比赛,以赢的盘数 较多者为胜. 假设每盘棋甲赢的概率都为0.6,乙赢的概 率为0.4,且各盘比赛相互独立,问甲、乙获胜的概率 各为多少? 解 每一盘棋可看作0-1试验. 设X为10盘棋赛中甲赢的 盘数,则 X ~ b(10, 0.6) . 按约定,甲只要赢6盘或6盘 以上即可获胜. 所以
定义:若随机变量X所有可能的取值为x1,x2,…,xi,…,且 X 取这些值的概率为 P(X=xi)= pi , i=1, 2, ... (*)
则称(*)式为离散型随机变量X 的分布律。 分布律的基本性质: (1) 表格形式表示: pi 0, i=1,2,... (2)
i
pi 1
X pk
x1 p1
这里n=500值较大,直接计算比较麻烦. 利用泊松定理作近似计算: n =500, np = 500/365=1.3699>0 ,用 =1.3699 的泊松分布作近似 计算:
(1.3669) 5 1.3669 P{ X 5} e 0.01 5!
23
例2: 某人进行射击,其命中率为0.02,独立射击400次,试求击 中的次数大于等于2的概率。 解 将每次射击看成是一次贝努里试验,X表示在400次射击中 击的次数,则X~B(400, 0.02)其分布律为
k 0,1
14
(2) 二项分布 设在一次伯努利试验中有两个可能的结果,且有 P(A)=p 。则在 n 重伯努利试验中事件 A发生的次数 X是一个 离散型随机变量,其分布为
P ( X k ) C nk p k q n k
k =0, 1, 2 ,, n
称X 服从参数为n,p的二项分布,记为 X~b(n, p) 对于n次重复一个0-1试验. 随机变量X表示: n次试验中, A发生的次数. 如: 掷一枚硬币100次, 正面出现的次数X服从二项分布. b(100, 1/2) 事件 X~
概率论与数理统计图文课件最新版-第2章-随机变量及其分布
函数 f ( x),使得对于任意实数 x 有:
x
F ( x) f (t)dt ( P( X x))
则称 X 为连续型变量,f ( x)为 X 的概率密度函数 注 ▲ 连续型随机变量与离散型随机变量的区别
离散型: P( X xk ) 0 连续型:P( X xk ) 0
机
多,而且还不能一 一列
变 连续型随机变量 量
举,而是充满一个区间
例如,“电视机的寿命”,实际中
常 遇到的“测量误差”等等.
概率统计
第二章知识结构图
随机变量
离散型随 机变量
连续型随 机变量
分布律
分布 函数
函数的 分布
概率 密度
分布 函数
函数的 分布
定义 常用分布
概率统计
定义 常用分布
第四节 连续型随机变量及其概率密度
0 x 0
则称 X 为服从参数 的指数分布.
概率统计
二 . 连续型随机变量的分布函数
定义: 若定义在 (, )上的可积函数 f ( x)
满足: (1). f ( x) 0
(2). f ( x)dx 1
f (x)确定了 分布函数F(x),
则称 F ( x)
x
f ( x)dx
f (x)是F(x)的 导函数, F(x)是f (x)的一
(2) 某段时间内候车室的旅客数目为 X , 则它也是一个随机变量,它可以取 0 及一切 自然数。X 是定义在样本空间,则:
S e {人数 人数 0}
X X (e)的值域RX [0, )
概率统计
二. 随机变量的分类 离散型随机变量
第二章随机变量及其概率分布(概率论)
当 x ≥ 1 时,F ( x) = P( X ≤ x) =P( X = 0) + P( X = 1) =1 ⎧0 x < 0
所以 F ( x) = ⎪⎨0.3 0 ≤ x < 1. ⎪⎩1 1 ≤ x
⎧0 x < 0 分布函数为 F ( x) = ⎪⎨0.3 0 ≤ x < 1
⎪⎩1 1 ≤ x
分布函数图形如下
F(x) 1 0.3
x 01
3
例 设X的概率分布律如下,求X的分布函数. X012 P 0.4 0.35 0.25
解
⎧0
x<0
F
(
x)
=
⎪⎪ ⎨
⎪
0.4 0.75
0≤ x<1 1≤ x<2
⎪⎩ 1
x≥2
由此可见
(1)离散型随机变量的分布函数是分段函数,分 段区间是由X的取值点划分成的左闭右开区间; (2)函数值从0到1逐段递增,图形上表现为阶梯 形跳跃递增; (3)函数值跳跃高度是X取值区间中新增加点的 对应概率值.
z 泊松在数学方面贡献很多。最突出的是1837 年在提出泊松分布。
z 除泊松分布外,还有许多数学名词是以他的 名字命名的,如泊松积分、泊松求和公式、 泊松方程、泊松定理。
当一个随机事件,以固定的平均瞬时速率 λ随机独立地出现时,那么这个事件在单 位时间(面积或体积)内出现的次数或个数 就近似地服从泊松分布。
解: 依题意, X可取值 0, 1, 2, 3.
设 Ai ={第i个路口遇红灯}, i=1,2,3
路口3
路口2
P(X=0)= P(A1)=1/2,
路口1
X=该汽车首次停下时通过的路口的个数. 设 Ai={第i个路口遇红灯}, i=1,2,3
概率统计 第二章 随机变量及其分布
引入适当的随机变量描述下列事件: 例1:引入适当的随机变量描述下列事件: 个球随机地放入三个格子中, ①将3个球随机地放入三个格子中,事件 A={有 个空格} B={有 个空格} A={有1个空格},B={有2个空格}, C={全有球 全有球} C={全有球}。 进行5次试验, D={试验成功一次 试验成功一次} ②进行5次试验,事件 D={试验成功一次}, F={试验至少成功一次 试验至少成功一次} G={至多成功 至多成功3 F={试验至少成功一次},G={至多成功3次}
例2
xi ∈( a ,b )
∑
P( X = xi )
设随机变量X的分布律为 设随机变量X
0 1 2 3 4 5 6 0.1 0.15 0.2 0.3 0.12 0.1 0.03
试求: 试求:
P( X ≤ 4), P (2 ≤ X ≤ 5), P ( X ≠ 3)
0.72 0.7
F ( x) = P{ X ≤ x} =
k : xk ≤ x
∑p
k
离散型随机变量的分布函数是阶梯函数, 离散型随机变量的分布函数是阶梯函数 分布函数的跳跃点对应离散型随机变量的 可能取值点,跳跃高度对应随机变量取对应 可能取值点 跳跃高度对应随机变量取对应 值的概率;反之 反之,如果某随机变量的分布函数 值的概率 反之 如果某随机变量的分布函数 是阶梯函数,则该随机变量必为离散型 则该随机变量必为离散型. 是阶梯函数 则该随机变量必为离散型
X
x
易知,对任意实数a, 易知,对任意实数 b (a<b), P {a<X≤b}=P{X≤b}-P{X≤a}= F(b)-F(a) ≤ = ≤ - ≤ = -
P( X > a) = 1 − F (a)
第二章 随机变量及其分布
2. 二项分布的推导过程与说明
3. 举例( 例2,例3,例4 )
C. 泊松分布
1. 定义:如果随机变量X的概率密度如下:
P(X k)
λ k k!
e
λ
,
k =0,1,2,… ( >0) ,
(2.4)
则称X服从参数为 的泊松分布,记作:
X ~ ()
2. 说明
3. 举例
返回目录
§3 随机变量的分布函数
P{X=4}=0.218 P{X=5}=0.175 P{X=6}=0.109 P{X=7}=0.055
P{X=k} < 0.001 , 当 k ≥ 11时
P{ X=8 }=0.022 P{ X=9 }=0.007 P{X=10}=0.02
例3:
某人进行射击,设每次射击的命中率为0.02,独立射 击400次,试求至少击中两次的概率。
解:以p表示每组信号灯禁止汽车通过的概率,
X所有可能取值为0,1,2,3,4。得X的分布律 为:P{X= k}= (1-p)k p , k=0,1,2,3, P{X= 4}= (1-p)4。用表格表示如下:
X
01
2
34
pk
p (1-p) p (1-p)2 p (1-p)3 p (1-p)4
代入p=1/2可得结果,可验证此结果满足分布 律两性质。
• 而有的实验结果与数值无直接关系,我们可 以把它映射为数值来表示,如:硬币抛掷中出 现正面用“0”来表示,出现反面用“1”来表示。
例1:在一袋中装有编号分别为1,2,3的3只球,
在袋中任取一只球,放回,再取一只球,记录它 们的编号。考察两只球的编号之和。则实验的样 本空间S={e}={(i,j)} i,j=1,2,3。 i,j分别为第一,第 二次取到球的号码。 以X表示两球号码之 和,得到样本空间 的每一个样本点e, X都有一值与之对 应,如图2-1。
《概率论与数理统计》第二章 随机变量及其分布
两点分布或(0-1)分布
对于一个随机试验,如果它的样本空间只包含两个
元素,即Ω={ω1,ω2},我们总能在Ω上定义一个服从 (0-1)分布的随机变量
来描述这个随机X试验X的(结)果 。10,,当当
1, 2.
例如,对新生婴儿的性别进行登记,检查产品的质量 是否合格,某车间的电力消耗是否超过负荷以及前面多 次讨论过的“抛硬币”试验等都可以用(0-1)分布的随 机变量来描述。(0-1)分布是经常遇到的一种分布。
设随机变量X只可能取0与1两个值,它的分布律是 P{X=k}=pk(1-p)1-k,k=0,1 (0<p<1), 则称X服从(0-1)分布或两点分布。
(0-1)分布的分布律也可写成
X
0
1
pk
1-p
p
二项分布与伯努利试验
考虑n重伯努里试验中,事件A恰出现k次的概率。 以X表示n重伯努利试验中事件A发生的次数,X是一个 随机变量,我们来求它的分布律。X所有可能取的值为o, 1,2,…,n.由于各次试验是相互独立的,故在n次试 验中,事件A发生k次的概率为
X
x1
x2
…
xn
…
pk
p1
p2
…
pn
…
在离散型随机变量的概率分布中,事件 “X=x1”, “X=x2”....“X=xk”,...构成一个完备事件 组。因此,上述概率分布具有以下两个性质:
(1) pk 0, k 1, 2,L
(2) pk 1
k
满足上两式的任意一组数 pk , k 1, 2,L 都可以成为 离散型随机变量的概率分布。对于集合xk , k 1, 2,L
P{ X
k}
20 k
(0.2)k
概率论与数理统计第2章复习
第二章随机变量及其分布一、随机变量及其分布函数1. 随机变量定义在样本空间Ω上,取值于实数的函数,即对于每一个ω∈Ω,有唯一的实数X(ω)与之对应,则称X(ω)为随机变量,简记为X。
一般用大写英文字母X,Y,,Z 等表示随机变量。
2. 分布函数设X为随机变量,则称定义在全体实数上的函数 F(x)=P(X≤x),-≦<x<+≦,为X 的分布函数。
显然任何随机变量都有分布函数。
3. 分布函数的性质(1)0≤F(x) ≤1;(2)单调不减,即对于任何实数x1< x2,有F(x1)≤F(x2);(3)右连续,即对任何实数x,有F(x+0)=F(x);(4)F(-≦)=0,F(+≦)=1.4. 用分布函数表示相关事件的概率设X的分布函数为F(x),则有:(1)P(X≤b)=F(b), P(X<b)=F(b-0).(2)P(a<X≤b)=F(b)-F(a).(3)P(a≤X<b)=F(b-0)-F(a-0).(4)P(X=b)=F(b)-F(b-0).二、离散型随机变量1. 定义若随机变量X的所有可能值只有有限个或无穷个,则称X为离散型随机变量。
2. 分布律设X的所有可能取值为x1,x2, (x)n,……则称P(X=xi )=pi,i=1,2,…….为X的分布律,或用下列表示X的分布律:(1)pi≥0,i=1,2,…; (2)∑≤xx iip=1;3. 分布函数设X 的分布律为: P(X=x i )= p i ,i=1,2,…,则X 的分布函数为: F (x )=P(X ≤x) = ∑≤xx i p (X=x i ) ,-≦<x<+≦.此时也称F(x)为离散型分布函数。
若已知X 的分布函数F(x),则易求得X 的分布律: P(X=x i )=F(x i )-F(x i -0),i=1,2,…注意:离散型分布函数的间断点x i 就是对应随机变量的取值点。
三、 连续型随机变量1. 定义若随机变量X 的分布函数F(x)可表示成非负可积函数f(x)的下列积分形式:F (x )=⎰∞-x dt t f )(, -≦<x<+≦.则称X 为连续型随机变量,F(x)为连续型分布函数,f (x )为X 的概率密度函数。
概率论第二章
分布函数与密度函数的关系
x
F ( x) = ∫
−∞
f (t )dt
密度函数性质
1. f ( x) ≥ 0 2. f ( x)dx = 1 ∫
−∞ +∞
3. P ( x ∈ (a, b)) = ∫ f ( x)dx
,−∞ < x < +∞
• 其中 µ , σ (σ > 0 ) 为常数 则称 服从参数为 为常数,则称 则称X服从参数为 2 的正态 µ ,σ 分布(或高斯分布 记为X~ N ( µ , σ 2 ) 或高斯分布),记为 分布 或高斯分布 记为 • 正态分布密度函数的图形关于直线 x = 对称,即对 对称 即对 任意常数 a, f ( µ − a ) = f ( µ + a ) • x = µ 时, f (x ) 取到最大值 取到最大值.
(1) P (Y ≥ 2 ) = 1 − 0 .9876 5 − 5 × 0 .9876 4 × 0 .0124 = 0 .0015
(2) P (Y ≥ 2 Y ≥ 1) = P ((Y ≥ 2) ∩ (Y ≥ 1)) P(Y ≥ 2) 0.0015 = = = 0.0248 5 P (Y ≥ 1) P(Y ≥ 1) 1 − 0.9876
, = 0, , k 1 L5 ,
例2 射击进行到目标被击中或4发子 弹被用完为止.如果每次射击的命中 率都是0.4,求总射击次数X的分布律.
解 X=k所对应的事件为前k-1次射击均 未击中,第k次射击击中,故X的分布律 为:
X
P
1
2
2
3
3
4
4
第二章随机变量及其分布
若随机变量X的概率分布为
Pn (k ) P( X k)C p (1 p)
k n k
nk
, k 0,1,, n
其中0<p<1,称X服从参数为n和p的二项分布, 记作 X~B(n,p)
例5:一随机数字序列要有多长才能使0至少出 现一次的概率不小于0.9?
泊松分布
若随机变量X的概率分布为
和 2 都是常数, 任意, >0, 其中 2 则称X服从参数为 和 的正态分布. 2 记作 X ~ N ( , )
正态分布 N ( , )的图形特点
2
正态分布的密度曲线是一条关于 对 称的钟形曲线. 特点是“两头小,中间大,左右对称”.
设X~ N ( , ) ,
, x
t2 2
( x )
1 ( x) 2
x
e dt
正态分布与标准正态分布的关系 标准正态分布的重要性在于,任何一个 一般的正态分布都可以通过线性变换转化为 标准正态分布.
F ( x) (
x
)
正态分布的概率计算
( x ) 1 ( x )
5.P( X x) 0
P ( a X b) P ( a X b) P ( a X b) P ( a X b)
例1 :已知连续型随机变量X有概率密度
k x 1 0 x 2 f ( x) 其它 0 求系数k及分布函数F(x),并计算P(0.5<X<3).
2
2
( x)dx
的 2 值,并称之为 关于的双侧分位点。 X
2.3
离散型随机变量函数的分布
例1 已知X的分布列为 X Pk -2 -1 0 1 2 3
概率论与数理统计第2章随机变量及其分布
1 4
)0
(
3 4
)10
C110
(
1 4
)(
3 4
)9
0.756.
(2)因为
P{X
6}
C160
(
1)6 4
(
3 4
)4
0.016
,
即单靠猜测答对 6 道题的可能性是 0.016,概率很小,所
以由实际推断原理可推测,此学生是有答题能力的.
二项分布 b(n, p) 和 (0 1) 分布 b(1, p ) 还有一层密切关
P{X 4} P(A1 A2 ) P(A1)P(A2 ) 0.48 ,
P{X 6} P(A1A2 ) P(A1)P(A2 ) 0.08 , P{X 10} P(A1A2 ) P(A1)P(A2 ) 0.32 , 即 X 的分布律为
X 0 4 6 10
P 0.12 0.48 0.08 0.32
点 e, X 都有一个数与之对应. X 是定义在样本空间 S 上的
一个实值单值函数,它的定义域是样本空间 S ,值域是实数
集合 {0,1,2},使用函数记号将 X写成
0, e TT , X=X (e) 1, e HT 或TH ,
2, e HH.
▪
例2.2 测试灯泡的寿命.
▪
样本空间是 S {t | t 0}.每一个灯泡的实际使用寿命可
(2)若一人答对 6 道题,则推测他是猜对的还是有答 题能力.
解 设 X 表示该学生靠猜测答对的题数,则
X
~
b(10,
1) 4
.
(1) X 的分布律为
P{X
k}
C1k0
(
1)k 4
(
3 4
第2章 随机变量及其分布
, 解 死亡人数 X ~ B(10000 0.005)
40 (1) P{ X 40} C10000 0.005400.9959960 .
k C10000 0.005k 0.99510000 k . (2) P{ X 70} k 0 70
计算相当复杂,下面介绍一个实用的近似公式。
2
2、在有些试验中,试验结果看来与数值无关,但我 们可以引进一个变量来表示它的各种结果.也就是说, 把试验结果数值化. 例1 抛一枚硬币,观察正反面的出现情况. 显然,该试验有两个可能的结果: H , T
我们引入记号:
1, X X (e ) 0,
eH , e T
于是我们就可以用 { X 1}表示出现的是正面, 而用 { X 0} 表示出现的是反面。 X就是一个随机变量。
路口1
路口2
路口3
1 P{ X 0} P( A1 ) . 2
10
路口1
路口2
路口3
1 P{ X 1} P ( A1 A2 ) . 4
路口1
路口2
路口3
1 P{ X 2} P ( A1 A2 A3 ) . 8
11
路口1
路口2
路口3
1 P{ X 3} P ( A1 A2 A3 ) . 8
24
定义
若随机变量X的概率分布为
k! 则称X服从参数为 的泊松分布,记为 X ~ ( ) .
验证规范性:
P{ X k }
k
e , k 0,1,2, , ( 0)
k!
k 0
k
e ,
k! e
k 0
第二章 随机变量及其分布第一节 随机变量及其分布函数讲解
Copyright © 2006 NJUFE
正态分布的概率计算公式:设 ~N (, 2 ),
P( a) (
a
); x2 ) ( x1 );
P( x1 x2 ) (
c P( c) 1 ( ); c c P( c) 2 ( ) ( ); c c P( c) ( ) ( ) 1.
P ( a b) F (b) F ( a )
f ( x)dx;
a
b
若f(x)在x0处连续,则F ( x0 ) f ( x0 )。
连续型随机变量与离散型随机变量的区别: 1) 连续型随机变量没有分布律; 2) 连续型随机变量取个别值的概率为零,即
P( x0 ) 0,x0 (, )。
二、随机变量的分布函数及其基本性质
定义2.2 (教材 p 47)
设
是随机变量,x 是任意实数,称函数 F ( x) P( x), x 为 的分布函数。
对于任意两实数
x1,x2, x1 x2,有
P( x1 x2 ) P( x2 ) P( x1 ) F ( x2 ) F ( x1 )
5. 几何分布 定义2.6( 若离散型随机变量
的分布律为
P( k ) p(1 p)k 1,k 1 , 2, 0 p 1
则称 服从参数为p的几何分布。 第三节、连续型随机变量 一、连续型随机变量的概念 定义2.7(教材 51) 设F(x) 为随机变量 使对一切实数x,都有
pk P( xk ), k 1 , 2,
为 的分布律(概率分布)。
概率论 第二章 随机变量与概率分布
解 (1)X的分布函数为
0,
x 1
F
(
x)
1313,
1 2
5 6
,
1 x 1 1 x 2
1
1
1
1,
2 x
3 2 6
解 (2)P{0 X 2} F (2) F (0) 1 1 2 ,
33 P{0 X 2} P{0 X 2} P{X 2} 21 1.
a-b ab
2
0 1
x
2
解得:a=1/2 b=1/
X的密度为: f(x) = F(x) =
1 (1+ x2 )
(-<x<)
P{X2>1}=1-P{-1X 1}
=1-{F(1)-F(-1)}=1/ 2
例6. 设随机变量X的密度函数为:
ke-3x x>0
事件:{取到2白、1黑}={X=2}={Y=1}
4. 随机变量的分类 通常分为两类:
所有取值可以逐 个一一列举
离散型随机变量
随 机 变 量
全部可能取值不仅
如“取到次品的个数”,无穷多,而且还不能
一一列举,而是充满
“收到的呼叫数”等. 满一个或几个区间.
连续型随机变量 非离散型随机变量
非离散型非连续型
§4. 连续型随机变量的概率密度 1. 定义:对于随机变量X的分布函数F(x), 如果存在非负函数f(x),使对于任意实数x有:
F( x) x f (t)dt
则称X为连续型随机变量;称f(x)为X的概率 密度函数。简称概率密度。
概率密度的性质:
(1). f(x)0;
(2).
f
(
x)dx
重点!!第二章随机变量及其分布
例如:◆ 掷一颗骰子面上出现的点数;
◆ 昆虫的产卵数; ◆五月份北京的最高温度; ◆ 每天进入上海站的旅客数;
(2)在有些试验中,试验结果看来与数值无 关,但我们可以引进一个变量来表示它的各 种结果.也就是说,把试验结果数值化。
例如:裁判员在运动场上不叫运动员的名 字而叫号码,名字与号码之间建立了一种
0 X ~ 1 2 1 1 4 2 1 8 3 1 8
即
例2.7 一骰子掷两次,用X表示所得点数之和,求X取可能
值的概率。
解 X的所有可能取值为2,3,4,…,12,其分布律为
二、常用的离散型随机变量及其分布
(1) (0—1)分布
如果随机变量X的分布律为
P X = k = p 1 - p , k = 0,1, 0 < p < 1 .
它是一个随机变量。
事件{收到不少于1次呼叫} {没有收到呼叫} {X= 0}
{ X 1}
三、 随机变量的分类
离散型随机变量 随机变量 非离散型随机变量 混合型随机变量 我们将研究两类随机变量: (1)离散型随机变量 (2)连续型随机变量 连续型随机变量
例2.1 对一均匀硬币抛一次,观察正反面情况。 =>样本空间 {H , T }, 定义随机变量
注:若将本例中的“有放回”改为”无放回”, 那么各次试 验条件就不同了, 不在是伯努利试验, 只能用古典概型求解。
1 C95 C52 P( X 2) 3 0.00618 C100
定理2.3泊松(Poisson) 设>0,n是正整数,若npn=,则对任
一固定的非负整数k,有
n k k lim C n pn (1 pn ) n k
概率论第二章随机变量以其分布第3节随机变量的分布函数
2 (a b) (2 a) 3 2a b 2 , 3
且 a b 1.
由此解得 a 1 , b 5 . 66
27
因此有
0,
1 ,
F
(
x
)
6 1
,
2
1,
从而 X 的分布律为
X 1
1
P
6
x 1, 1 x 1,
1 x 2, x 2.
分别观察离散型、连续型分布函数的图象,可以看 出,分布函数 F(x) 具有以下基本性质:
10 F (x) 是一个不减的函数.F(x)
即当x2 x1时, 1 F(x2 ) F(x1).
01 2 3
x
返回主目录
证明 由 x1 x2 { X x1} { X x2 },
得 P{X x1} P{X x2}, 又 F ( x1) P{X x1}, F ( x2 ) P{X x2}, 故 F ( x1) F ( x2 ).
(3) 若 x 2 , 则 {X x} 是必然事件,于是
F(x) P{X x} 1.
返回主目录
§3 随机变量的分布函数
0,
F ( x)
x2 4
,
1,
x 0, 0 x 2,
x 2.
F(x) 1
01 2 3
x
返回主目录
§3 随机变量的分布函数
3. 分 布 函 数 的 性 质
x
x
o
x
同样,当 x 增大时 P{ X x}的值也不会减小,而
X (, x), 当 x 时, X 必然落在 (,)内.
o
x
16
§3 随机变量的分布函数
30 F(x 0) F(x), 即 F(x)是右连续的.
第二章 随机变量及其函数的概率分布
第二章 随机变量及其函数的概率分布§2.1 随机变量与分布函数§2.2 离散型随机变量及其概率分布一、 填空题1. 某射手每次命中目标的概率为0.8,若独立射击了三次,则三次中命中目标次数为k 的概率==)(k X P 3,2,1,0,)2.0()8.0(33=-k C k k k ;2. 设随机变量X 服从泊松分布,且)2()1(===X P X P ,则==)4(X P 0.0902 ;3. 设X 服从参数为p 的两点分布,则X 的分布函数为 ⎪⎩⎪⎨⎧≥<≤-<=1 ,110 ,10,0)(x x p x x F ;4. 已知随机变量X 的概率分布:P(X =1)=0.2, P(X =2)=0.3, P(X =3)=0.5, 则其分布函数)(x F =0 10.2 120.5 231 3x x x x <⎧⎪≤<⎪⎨≤<⎪⎪≥⎩,,,,;5. 设随机变量X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=3,131 ,8.011 ,4.01, 0)x x x x x F (, 则X 的概率分布为(1)0.4,(1)0.4,(3)0.2P X P X P X =-=====。
二、选择题设离散型随机变量X 的分布律为λ>=λ==则且,0),,2,1()(b k b k X P k 为(B ) (A) λ>0的任意实数; (B) ;11+=b λ (C) λ=b +1; (D) 11-=b λ. 三、 计算下列各题1. 袋中有10个球,分别编号为1~10,从中任取5个球,令X 表示取出5个球的最大号码,试求X 的分布列。
解 X 的可能取值为5,6,7,8,9,10 且10,9,8,7,6,5 ,)(51041===-k C C k X P k所以X 的分布列为2. 一批元件的正品率为4,次品率为4,现对这批元件进行有放回的测试,设第X 次首次测到正品,试求X 的分布列。
第二章随机变量
这种对应关系在数学上理解为定义了一种 实值函数. 实值函数 w. X(w) R
Ω
称这种定义在样本空间上的实值函数为
简记为 r.v.或 R.V.
(Random Variable)
定义 设随机试验为 E ,其样本空间为
Ω = {ω}, 如果对于每个 ω ∈ Ω ,都有一个实数
和它对应, X (ω) 和它对应,于是就得到一个定义在 Ω 上的实值单值函数 X (ω ) ,称 X (ω ) 为随机变 简记为R.V.X。 量。简记为 X
P(X=3)=P( A A A )=(1− p)2⋅p 1 2 3
P(X=k)=(1− p) ⋅p
⋯k−1 ⋯
k= ,2,⋯ 1 ⋯
随机变量X的这种分布称为几何分布. 随机变量 的这种分布称为几何分布 的这种分布称为几何分布
如右图所示,从中任取3 例3 如右图所示,从中任取3个 取到的白球数X是一个随机变量 是一个随机变量。 球。取到的白球数 是一个随机变量。 X可能取的值是 可能取的值是0,1,2。取每个值的概率为 可能取的值是 。
k = [( n + 1)p ] = [( 5000+ 1)0.001] =5
P X = 5) = C (0.001) (0.999) ( ≈ 0.1756
5 5000 5
4995
(2)
P(X ≥1) = 1 − P( X < 1) = 1 − P( X = 0)
=1−C
0 5000
(0.001) (0.999)
Ck4−1 (k = 5, 6, ⋯, 10) P{X = k} = 5 C10 具体写出, 的分布律: 具体写出,即可得 X 的分布律:
X P 5
1 252
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
下一页
返回
第三节
连续随机变量及其分布
定义2.3: 设随机变量X的分布函数为F(x),若存在非 负函数f(t),使得对于任意实数x,有
则称X为连续型随机变量,称f(t)为X的概率密度函数, 简称概率密度或分布密度。 概率密度f(x)具有以下性质:
(4)若x为f(x)的连续点,则有
上一页
下一页
返回
上一页
下一页
返回
分布律的两条基本性质:
上一页
下一页
返回
X
p
0
1
2 a
(1)确定常数a的值;(2)求X的分布函数
解:(1)由分布律的性质知
因此
上一页
下一页
返回
(2)由分布函数计算公式易得X的分布函数为:
上一页
下一页
返回
1.两点分布 若在一次试验中X只可能取x1 或x2 两值(x1<x2), 它的概率分布是
}.
例3: 某仪器需安装一个电子元件,要求电子元件的 使用寿命不低于1000小时即可。现有甲乙两厂的电子 元件可供选择,甲厂生产的电子元件的寿命服从正态 分布N(1100,502), 乙厂生产的电子元件的寿命分布服从 正态分布N(1150,802)。问应选择哪个厂生产的产品呢? 若要求元件的寿命不低于1050小时,又如何?
解: 设X表示同一时刻发生故障的设备台数,依题意知 X~(300,0.01),若配备N位维修人员,所需解决的问题是 确定最小的N,使得:P{X>N}<0.01 (λ=np=3)
查表可知,满足上式最小的N是8。 至少需配备8个工人才能满足要求。
上一页
下一页
返回
3.泊松(Poisson)分布 设随机变量X的所有可能取值为0,1,2…,而取各值
(1) 最大值在x=μ处,最大值为 ;
(2) 曲线y=f(x)关于直线x= μ对称,于是对于任 意h>0,有
(3)曲线y=f(x)在 (4)当 处有拐点;
时,曲线y=f(x)以x轴为渐近线
上一页
下一页
返回
当固定,改变的值,y=f(x)的图形沿Ox轴平移而不 改变形状,故 又称为位置参数。若固定,改变的 值,y=f(x)的图形的形状随的增大而变得平坦。
上一页
下一页
返回
解 :设甲、乙两厂的电子元件的寿命分别为X和Y,则 X~ N(1100,502),Y~ N(1150,802). (1)依题意要比较概率 的大 小, 两个概率如下:
比较两个概率的大小就知应选甲厂的产品。
上一页
下一页
返回
(2)依题意要比较概率 , 两个概率如下:
的大小
比较两个概率的大小就知应选乙厂的产品。
则称X服从两点分布。 当规定x1=0,x2=1时两点分布称为(0-1)分布。 简记为X~(0-1)分布。 X pk 0 1-p 1 p
上一页
下一页
返回
2.二项分布
若离散型随机变量X的分布律为
其中0<p<1, 称X服从参数为n,p的二项分布,记为 X~b(n,p)。
上一页
下一页
返回
在n重贝努里试验中,假设A在每次试验中出现 的概率为p,若以X表示n次试验中A出现的次数。那 么由二项概率公式得X的分布律为:
f ( x) f ( x)
1
O
0.5
1 2
h h
1
x
O
上一页
x
下一页 返回
越小,X落在附近的概率越大。
参数 =0,=1的正态分布称为标准正态分布,记为 X~N(0,1)。其概率密度函数和分布函数分别用 和 表示,即
和
的图形如图所示。
上一页
下一页
返回
上一页
下一页
返回
表2-5
频 粒子数k 0 1 2 3 4 观察到的次数 Mk 57 203 383 525 532 0.022 0.078 0.147 0.201 0.204 率 按泊松分布 计算的概率 0.021 0.081 0.156 0.201 0.195
5
6 7 8 9
408
273 139 45 27 16
上一页
下一页
返回
第四节
随机变量函数的分布
设y=g(x)为一个通常的连续函数,X为定义在概率 空间上的随机变量,令Y=g(X),那么Y也是一个定义在 概率空间上的随机变量。 设X是离散型随机变量,Y是X的函数Y=g(X)。那么 Y也是离散型随机变量。
上一页
下一页
返回
例1: 设离散型随机变量X的分布律为 X -1 0 1 2 3 求:(1)Y=X-1; P 0.2 0.1 0.1 0.3 0.3 (2) Y=-2X2的分布律。 解:由X的分 布律可得 P 0.2 X -1 X-1 -2 -2X2 -2 0.1 0 -1 0 0.1 0.3 0.3 1 2 3 0 1 2 -2 -8 -18
的概率为
其中λ>0为常数,则称X服从参数为的泊松分布,记 为X~ ()。 上式给出的概率满足:pk=P{X=k} 0, 且
上一页
下一页
返回
例6: 放射性物质在规定的一段时间内,其放射的粒子 数X服从泊松分布。罗瑟福和盖克观察与分析了放射 性物质放出的粒子个数的情况。他们做了2608次观
察(每次时间为7.5秒),整理与分析如表2-5所示:
上一页
下一页
返回
f(x)和F(x)可用图形表示
f ( x) f ( x)
1
O
x
O
x
上一页
下一页
返回
3.正态分布 设随机变量X的概率密度为
其中 ,(>0)为常数,则称X服从参数为 , 的正态分 布或高斯分布,记为X~N(,2). X的分布函数为 利用 可以证明 ,
上一页
下一页
返回
正态分布的密度函数f(x)的几何特征:
所以 a=1/2
上一页
返回
概率密度函数f(x)与分布函数F(x)的图形可用图示
上一页
下一页
返回
2.指数分布
设连续型随机变量X具有概率密度
则称X服从参数为的指数分布。 X的分布函数为
上一页
下一页
返回
1.均匀分布
设连续型随机变量X的概率密度函数为
则称X在区间(a,b)上服从均匀分布,记为X~U(a,b), X的分布函数为 :
在实际计算中,当
作为 而当
时用
的近似值效果很好。 时效果更佳。
(λ=np)
的值有表2-5可查。
上一页
下一页
返回
例5: 有同类设备300台,各台工作状态相互独立。已 知每台设备发生故障的概率为0.01,若一台设备发生故 障需要一人去处理,问至少需要配备多少工人,才能保 证设备发生故障而不能及时修理的概率小于0.01?
的坐标X。那么X是一随机变量,根据试验条件可以认为
X取到[0,1]上任一点的可能性相同。求X的分布函数。 解 : 由几何概率的计算不难求出X的分布函数
当x<0时
所以:
上一页
下一页
返回
上一页
下一页
返回
第二节
离散型随机变量及其分布
如果随机变量所有的可能取值为有限个或可列无 限多个,则称这种随机变量为离散型随机变量。 设离散型随机变量X的可能取值为xk (k=1,2,…),事 件 发生的概率为pk ,即 称为随机变量X的概率或分布律。 分布律常用表格 形式表示如下: X pk x1 p1 x2 p2 … … xk… pk…
(2)各小块是否放出粒子,是相互独立的。
上一页
下一页
返回
在这两条假定下,1秒内这一放射性物质放出k个粒 子这一事件,可近似看作该物质的n个独立的小块中, 恰有k小块放出粒子。
放出k个粒子的概率: 其中P{X=k}是随n而变的,它是一个近似式。 把物质无限细分, 得到 P{X=k} 的精 确式,即 由泊松定理知 其中
0.156
0.105 0.053 0.017 0.010 0.006
0.151
0.097 0.054 0.026 0.011 0.007
上一页
总计
2608
0.999
1.000 下一页
返回
分析推导放射的粒子数为何服从泊松分布
考虑单位时间1秒内放射出的粒子数X。
设想把体积为V的放射性物质分割为n份相同体积 △V 的小块,并假定: (1)对于每个小块,在1秒内放出一个粒子数的概率p为 其中μ>0是常数(与n无关且与每小块的位置无关)。 在1秒内放出两个或两个以上粒子的概率为0
由正态密度函数的几何特性易知 函数 写不出它的解析表达式,人们已编制了它 的函数表,可供查用。 一般的正态分布,其分布函数F(x)可用标准正态分布 的分布函数表达。若X~ 为 , X的分布函数F(x)
因此,对于任意的实数a,b(a<b),有
上一页
下一页
返回
例2: 设X~(0,1),求P{1<X<2},P{
第二章
随机变量
第一节 随机变量及其分布函数
第二节 离散型随机变量及其分布 第三节 连续型随机变量及其分布 第四节 随机变量函数的分布
第一节
定义2.1:
随机变量及其分布函数
定义2.2:设X是一随机变量,x为任意实数,函数 称为随机变量X的分布函数。
上一页
下一页
返回
证明:
上一页
下一页
返回
上一页
下一页
在涉及二项分布的概率计算时,直接计算很困难时, 采用了近似计算。下面给出近似公式:
上一页
下一页
返回
定理2.1 (泊松定理) 设 λ>0是一常数,n是任意整数, 设npn=λ,则对任意一固定的非负整数k,有