形状记忆高分子材料朱梦成 1308052064

合集下载

形状记忆高分子材料

形状记忆高分子材料

形状记忆高分子材料引言形状记忆高分子材料(SMP)作为一类智能材料,因其可以在适当的刺激条件(如温度、光、电磁或溶剂等)下,响应环境变化,而相应发生形状转变的能力,为解决科学技术难题带来了一种新的方法。

1950年,第一次报道了具有形状记忆效应的交联聚乙稀聚合物,并在文中描述了具体的表征方法。

这类形状记忆高分子材料与其它形状记忆材料如形状记忆合金和陶瓷相比,具有变形量大、赋形容易、响应温度易于调整,质量轻、价格低、以及易加工成型等优点。

而且易于设计成具有良好的生物相容性、可生物降解性的生物材料,比如手术缝合线、支架、心脏瓣膜、组织工程、药物释放、矫形术及光学治疗等。

1.形状记忆高分子材料的分类SMPs根据刺激响应的不同可分为热致型,电磁致型,光致型,化学型以及水致型,其中热致型是研究最广也是研究最成熟的一种高分子材料。

热致型SMPs 由固定相和可逆相两部分组成,其中固定相通常是由化学交联或物理交联点构成,其可以决定初始形变;可逆相通常由结晶结构构成,可随温度变化而进行可逆的软硬化转变。

1.1 热致型SMP热致型SMP是指材料在初始条件下开始受热,当加热温度达到相转变温度时,同时给材料施加外应力,然后再外力不变的情况下,将温度迅速下降至室温,材料会保持暂时形状,即使在撤去外应力后材料依旧可保持这种状态,直到再次在无应力条件下加热,温度再次达到相转变温度时,材料才会自发地恢复到初始形状。

以聚氨酯为例其可以通过改变嵌段共聚物的成分和比例,来改变聚氨酯材料物理化学性质、生物相容性、组织相容性,以及可生物降解性质。

形状记忆聚氨酯由软段和硬段组成,其中硬段主要由二异氰酸酯和扩链剂组成,因此刚度比较大,抑制了材料变形过程中大分子链的塑性滑移;软段主要由聚酯多元醇或聚醚多元醇等线性分子组成,因此能够进行较大的形变.一般情况下,在温度增加到软段的转变温度之上时形状记忆聚氨酯材料处于高弹态,而且软段微观布朗运动的加剧,致使材料容易变形,此时因为硬段还处于玻璃态,所以阻止了分子链滑移的同时产生了一个内部的回弹力;当温度从冷却的温度增加到软段的转变温度以上时,硬段储存的应力释放,进而导致了材料能够回复到初始形变。

第五十二讲 形状记忆聚氨酯高分子材料的研究进展

第五十二讲  形状记忆聚氨酯高分子材料的研究进展

玻璃 纤维 与形状记忆 聚氨 酯复合 改性可 以增 强材 料 的综合性 能,T k r h i 等用不 同质量 的玻璃 纤 aeuO k[ 1 卅 维( 1 S U进行 复合 改性 ,制各 了一 系列不 同玻 GF与 MP
璃 纤维含 量 的S U。对 该材 料 的机 械性 能与形状 记 MP 忆 效果进行 了研 究 ,结果 显示 ,由于加 入纤维 的增 强 作用 ,复合材料 的拉伸 强度 ,耐疲劳性都得 到提 高。
化转 变温度来 改变 。该材 料在生物 降解时具有两个 阶 实 验证 明加 入质 量 分数 为1 % ~ 0 0 2 %的GF 可使 段 即滞后期和 快速 降解 期,在滞后期 阶段仍 可使材料 S U有极小 的残余应 变 ,对 于形状 回复效果 而言 , MP 的机械 性能保 持稳定 ,这种 降解 的特 点符合 医保材 料 与 回复时 问相 比较温 度是一个 更显著 的因素,用不 同 的要 求 。 含量G  ̄ 备 的复合材料能保持优 良的形状记忆效果 。 FI J 在合 成形状记忆 聚氨酯 的过程 中可 以通 过化学 交 纳米粒 子有 比较 高的反应活 性 ,很容 易与聚合物 联 的方法引入 交联点 ,但是 交联点不 宜过大 ,过大 会 达到分 子水平上 的结合 ,能够提 高复合材料 的韧性 、 导致 强度大反而使材 料 失去 形状 记忆功 能。喻春红 _ 力学性 能等 ,因而 可 以作 为S U的复合 改性材 料 。 1 ] MP 用聚 己二酸 乙丙二醇酯 、聚 己二酸丁 二醇酯 、聚 己内 陈 少军 [ 等 先对 纳 米 SO, 子 用钛 酸 酯偶 联 剂进 行 1 i 粒 酯和4 ’二苯基 甲烷 二异氰酸酯 为原料 , 以丙三醇 为 表面处 理 ,然 后在合 成S U的过程 中加 入改性 后的 ,. 4 MP 化学交联剂合成 了一系列具有低度交联 的P U,分析 了 SO, i 粒子 ,制 备 了了纳米 SO / 状记忆聚氨酯 复合材 i, 形 组成 、配 比对其性 能的影响 ,比较 了这些低 度交联 的 料 。用F I T R、DS C、S M对其进行结构分析和 表征, E P U与 线型P U在 性能上 的差异 。结 果显示 软段 结 晶度 研究表 明偶联剂 的用量为 纳米粒 子质 量 的8 %时才 能 0 高的聚氨 酯具有优 良的体温形状 记忆性能 ,软段 的组 有效包敷好纳米粒子 ,只有包 敷好的纳米粒子, 能提 才 成、配 比对 聚氨酯形状 记忆功 能的影 响是 比较大 的, 高S U的形状 回复温度及 其力 学性能 ,否则性 能会 MP 选择 原料 时,尽量选择 室温下 结晶度高 的纯 软段做原 有所 下降 , 同时偶联剂 的引入对 形状 固定及形 状稳定 】 H5 0 料 。与线 型聚氨酯相 比较 ,力 学性能得到大 幅度 的提 都有一定 的负面作用 。朱荟【 等将 经过K 5 表 面处

具有形状记忆功能的高分子材料研究

具有形状记忆功能的高分子材料研究

具有形状记忆功能的高分子材料研究随着科技的不断进步,人们对材料的需求也越来越高。

而其中一种备受关注的材料就是具有形状记忆功能的高分子材料。

形状记忆是指材料能够根据外界刺激或者内部条件,自主改变自身形状,并在刺激消失后回复到最初的形态。

这种材料的研究在医疗、智能材料和工程领域有着广泛的应用前景。

形状记忆功能的高分子材料的研究始于二十世纪五十年代,当时的科研工作者开始对具有嵌段结构的聚合物进行研究。

随后,研究人员发现,在这些聚合物中,具有相干结构的片段能够形成物理交联点,从而赋予材料形状记忆功能。

这种交联点可以通过加热或者其他方式来打破,使材料恢复到初始形状。

这项研究成果引起了广泛关注,并在此后的几十年里得到了持续的探索和发展。

目前,研究人员主要专注于两种形状记忆高分子材料:热致形状记忆材料和光致形状记忆材料。

热致形状记忆材料是最常见的一种,其材料中添加了热塑性嵌段,能够在一定温度范围内发生熔融和再结晶。

这些嵌段之间形成的序列结构使材料具有记忆形状的能力。

当材料被加热到临界温度时,分子链之间的交联点会被打破,材料变得软化,可以任意塑性变形。

当材料冷却后,分子链之间的交联点再次形成,材料恢复到原始状态。

而光致形状记忆材料是一种相对较新的研究领域。

这类材料的形状变化是通过光敏染料的光热效应实现的。

光敏染料可以在特定波长的光照下吸收光能并将其转化为热能。

当材料暴露在特定光照下时,光敏染料吸收的光能会导致局部温度升高,从而改变材料的形状。

而当材料不再受到光照时,温度也会回落,材料恢复到原始形态。

形状记忆高分子材料的应用潜力巨大。

在医疗领域,这种材料可以用于智能药物释放系统。

例如,一种植入体可以被设计成在特定温度下打开,释放药物,并在其他条件下关闭,从而实现精确的药物控释。

这种智能药物释放系统可以减少药物滥用和副作用,提高临床治疗的效果。

在智能材料领域,形状记忆高分子材料可以应用于可穿戴设备和机器人。

这种材料可以通过外界刺激实现形状变化,使得可穿戴设备和机器人能够更加贴合用户的需求和动作。

具有形状记忆功能高分子材料的研究进展

具有形状记忆功能高分子材料的研究进展

具有形状记忆功能高分子材料的研究进展摘要:本世纪以来,随着高分子合成以及改性技术与高分子学理论的迅猛发展,形状记忆高分子材料正快速地渗透到我们的日常生活中,成为了一种不可或缺的材料。

本文通过查阅相关的文献,对该材料的研究发展过程、应用现状进行综述。

形状记忆高分子材料种类丰富,本文将着重阐述热致型形以及光致型形状记忆高分子材料,最后并进行展望。

关键词:形状记忆,记忆效应,热致型,光致型Abstract:Since the beginning of this century, with the rapid development of polymer synthesis and modification technology and polymer theory, shape memory polymer materials are rapidly infiltrating into our daily life and become an indispensable material.Key words:s hape memory,memory effect,thermal induced polymer,photo induce polymer1 概述1.1 形状记忆高分子材料的概念判断一类高分子材料是否为形状记忆高分子材料,即在于看这类材料是否能产生记忆效应,这是形状记忆高分子材料最核心的本质。

一高分子聚合物在起初被赋予一定的形状后,固定其形状得到它的“初始态”。

随后对其施加一定的外力,让它产生变形,偏离其“初始态”时所固定的形状,而后进行加热、光照、电磁等外界刺激后,此时该高分子聚合物便可回复至“初始态”时的形状,此即为形状记忆高分子材料。

根据外界刺激条件的差异,形状记忆高分子材料可分为热致型、光致型、电感应型、化学感应型等类型,种类和应用技术手段都比较丰富。

[1]形状记忆高分子材料目前在医疗、纺织、军工领域都得到了广泛的运用,已经和我们的生活密切相关,尽管它的发展历史并不是很久远,并且目前在应用过程中也发现了存在着不少问题,但从目前的研究现状来看,该种材料拥有非常大的应用前景,很值得我们继续探索,发挥它最大的潜能。

高分子材料的形状记忆性能研究

高分子材料的形状记忆性能研究

高分子材料的形状记忆性能研究近年来,高分子材料的形状记忆性能一直受到广泛关注。

形状记忆性能是指在受到外界刺激后,高分子材料能够自动恢复到其原始形状的能力。

这种记忆能力使得高分子材料在许多领域都有着广泛的应用前景,如人工智能、生物医学工程和可穿戴设备等。

形状记忆性能的研究主要涉及到两个方面:首先是高分子材料的记忆效应。

高分子材料的形状记忆机制是由其特殊的结构决定的。

大多数高分子材料都是由线性或交联聚合物链组成的,当受到外界温度、光线或电场等刺激时,高分子材料的分子链会经历某种结构转变,从而改变材料的形状。

当外界刺激消失时,高分子材料又会自动恢复到原来的形状。

这种形状记忆效应是由于高分子材料的内部结构发生了可逆性改变。

第二个方面是高分子材料的形状记忆机理。

形状记忆机理主要包括两种类型:一种是热致形状记忆,另一种是光致形状记忆。

热致形状记忆是指高分子材料在恢复原状时,利用外界的温度变化来驱动分子链的结构恢复。

光致形状记忆则是通过外界的光线刺激实现形状的恢复。

这两种形状记忆机理有着不同的优缺点和应用范围,研究人员正在不断深入探索它们的机制,并提出更加高效的方法。

形状记忆性能的研究还面临一些挑战。

首先是高分子材料的制备。

高分子材料的形状记忆性能需要通过合成合适的聚合物来实现。

为了达到理想的形状记忆性能,研究人员需要精确控制聚合物的结构和分子链的排列方式。

其次是形状记忆性能的稳定性问题。

由于高分子材料的形状记忆性能是由分子链结构的可逆变化决定的,因此在长时间使用或多次形状转变后,高分子材料的形状记忆性能可能会出现衰退或丢失的情况。

针对这个问题,研究人员正在尝试将形状记忆性能与其他物理性能相结合,以提高材料的稳定性。

高分子材料的形状记忆性能研究不仅局限于实验室的理论探索,还涉及到许多实际应用。

例如,在可穿戴设备中,形状记忆材料能够根据人体的形态变化,自动调整设备的形状,提供更好的舒适度和适配性。

在生物医学工程领域,形状记忆材料可用于制作人工血管、智能药物释放系统等,以实现更加精确和有效的治疗。

形状记忆高分子材料

形状记忆高分子材料
但目前的超分子形状记忆 材料都是以静电作用力或高分 子间的氢键作用为驱动力,要 求聚合物含有带电基团或羟基、 N、O等易于形成氢键的基团 或原子,因此种类有限。
彭宇行等又利用聚 (丙烯酸-co-甲基丙烯 酸甲酯)交联网络与聚 乙二醇(PEG)间的氢 键作用力作为驱动力制 备了具有良好形状记忆 性能的P(AA-coMMA)-PEG形状记忆 材料,形变恢复率几乎 可以达到99%。
➢形状记忆聚氨酯
由聚四亚甲基二醇(PTMG)、4,4-二苯甲烷二异氰酸酯 (MDI)和链增长剂三种单体原料聚合而成的,它是含有部分 结晶态的线型聚合物。
通过原料的配比调节Tg,可得到不同响应温度的形状记忆 聚氨酯。现已制得Tg分别为25℃、35℃、45℃和55℃的形状 记忆聚氨酯。
聚氨酯分子链为直链结构,具有热塑性,因此可通过注射、挤 出和吹塑等加工方法加工。
构成的混合体系经光照射后,由于低分 子化合物同分子链之间的憎水作用发生 变化而导致的形状记忆现象。 c. 充分利用了分子链主链中PCR的顺式反式异构化反应,紫外光的照射通常使 材料收缩。 d. 是引入TLD的分子链在光照时离解出正 电 荷,分子链相互排斥,材料一般表 现为伸长。 e. 是引入螺苯并吡喃等侧链的高分子,经 紫外光照射时,分子链极性的增加使得 高分子-高分子#高分子-溶剂的相互作 用发生显著性变化,使材料收缩。
美国利弗莫尔国家实验室将聚氨酯聚降冰片烯或聚异戊二烯等注射成为螺旋形加热后拉直再冷却定型即制得血栓治疗仪中的关键部件微驱动器装配到治疗系统上后利用光电控制系统加热使其恢复到螺旋形可拉出血栓这种方法快捷彻底没有毒副作用是治疗血栓的有效途径之一美国麻省理工学院报道了用形状记忆材料来固定骨折部位的方法将二次成型后的聚乳酸制件放入带有裂纹的骨髓腔内利用消毒后的盐水对其进行加热使骨髓腔内的形状记忆材料恢复到最初的形状变得较厚从而和骨髓腔的内表面紧密接触而不会滑移固定作用良好

形状记忆高分子材料

形状记忆高分子材料
范围内保持稳定,用以保持成型制品形状即记忆 起始态。
• 可逆相 能够随温度变化在结晶与结晶熔融态(Tm)
或玻璃态与橡胶态间可逆转变(Tg),相应结构 发生软化、硬化可逆变化—保证成型制品可以改 变形状。
热致感应型SMP
物理交联结构 固定相
热致感应型
化学交联结构
SMP的相结构 可逆相
结晶态
(物理交联结构) 玻璃态等
产生结晶与结晶可逆变化 的部分结晶相
发生玻璃态和橡胶态可逆 转变的相结构
高分子的形状记忆过程和原理
产生记忆效应的内在原因: 由于柔性高分子材料的长链结构,分子链的长度与直径 相差十分悬殊,柔软而易于互相缠结,而且每个分子链 的长短不一,要形成规整的完全晶体结构是很困难的。 这些结构特点就决定了大多数高聚物的宏观结构均是结 晶和无定形两种状态的共存体系。高聚物未经交联时, 一旦加热温度超过其结晶熔点,就表现为暂时的流动性 质,观察不出记忆特性;高 聚物经交联后,原来的线性 结构变成三维网状结构,加 热到其熔点以上时,不再熔 化,而是在很宽的温度范围 内表现出弹性体的性质。
高分子的形状记忆过程和原理
在玻璃化温度Tg以下的 A段为玻璃态,在这个 状态,分子链的运动是 冻结的,表现不出记忆 效应,当升高到玻璃化 温度以上时,运动单元 得以解冻,开始运动, 受力时,链段很快伸展 开来,外力去除后,又 可恢复原状,即高弹形 变,由链段运动所产生 的高弹形变 是高分子材 料具有记忆效应的先决 条件。
பைடு நூலகம்
热固性SMP形状记忆示意图
形状记忆效果
由形状记忆原理可知,可逆相对SMP的形变特 性影响较大,固定相对形状恢复特性影响较大。 其中可逆相分子链的柔韧性增大,SMP的形变量 就相应提高,形变应力下降。

生物医用形状记忆高分子材料

生物医用形状记忆高分子材料

生物医用形状记忆高分子材料摘要:形状记忆聚合物作为一种智能材料,已经在生物医用领域显示出了巨大的应用前景。

基于形状记忆聚合物材料的原理,组成和结构可以设计兼具生物降解性、生物相容性等多种功能的新型智能材料。

本文综述了三种典型的生物降解性形状记忆聚合物材料(聚乳酸、聚己内酯、聚氨酯)的发展,从结构上对三种形状记忆聚合物进行了分类讨论,详细分析了不同种类聚合物形状记忆的机理、形状变化的固定率和回复率、回复速率等,并介绍了一些形状记忆聚合物材料在生物医学中的应用。

最后对医用形状记忆聚合物未来发展进行了展望:双程形状记忆聚合物及体温转变形状记忆材料将会受到研究者的重点关注。

关键词:生物医用;形状记忆聚合物;聚乳酸;聚己内酯;聚氨酯形状记忆聚合物(shape memory polymers)是一类具有刺激-响应的新型智能高分子材料,其能感知外界环境变化,并对外界刺激做出响应,从而自发调节自身状态参数恢复到预先设计的状态[1]。

兼具生物相容性和生物降解性的SMPs已经在微创外科手术[2,3]、血管支架[4,5]、骨组织的固定[6,7]、可控药物缓释[8,9]、血栓移除[10]中得到了应用。

本文详细讨论了聚乳酸基、聚己内酯基和聚氨酯基三种最常见的生物降解形状记忆聚合物的研究状况。

1 聚乳酸基形状记忆聚合物聚乳酸类材料是一种典型的生物医用材料,具有良好的生物相容性和生物降解性,小分子降解产物能通过体内代谢排出体外[11]。

按照形状记忆聚乳酸的分子结构可将其分为聚乳酸共聚物,聚乳酸共混物和聚乳酸基复合材料三类。

1.1 聚乳酸共聚物纯的聚乳酸材料脆而硬,亲水性差,强度高但其韧性较差,极大地限制了其在生物医学领域中的应用[12]。

在聚乳酸基体中引入第二单体形成聚乳酸基共聚物,能显著地改善其性能。

通过调节PLA与其他单体的比例,可以得到韧性好、降解速率可调,力学性能优异的共聚形状记忆聚乳酸材料[13,14]。

聚己内酯(PCL)[15-17]和聚乙醇酸(PGA)[18]是聚乳酸基形状记忆聚合物常用共聚单元,此外对二氧环酮[19,20],乙交酯[19]与PLA的共聚物也能表现出形状记忆性能。

形状记忆高分子材料

形状记忆高分子材料

形状记忆高分子材料20世纪60年代初,英国科学家A.Charlesby在其所著的《原子辐射与聚合物》中,首次报道了经辐射交联后的聚乙烯具有记忆效应。

当时这种发现并没有引起人们的足够的重视。

随后美国国家航空航天局(NASA)考虑其在航空航天领域的潜在应用价值,对不同牌号的聚乙烯辐射交联后的记忆特性又进行了研究,证实了辐射交联聚乙烯的形状记忆性能。

70年代末到80年代初,美国Raychem,RDI(Radiation Dynamics Inc.)公司进一步将交联聚烯烃类形状记忆聚合物商品化,广泛应用于电线电缆,管道的接续与防护,至今F系列战斗机,Boeing飞机上的电线接续与线挽仍在广泛使用这类记忆材料。

此外,国内长春应化所,西北核技术研究所等单位80年代后期以来也有研究和生产。

因此,形状记忆材料以其独特的性能引起了人们极大的兴趣。

所谓形状记忆高分子材料,是指具有初始形状的高分子物体经形变并固定之后,经过加热等外部条件刺激手段的处理又可使其恢复初始形状的高分子材料。

外部条件除热能外,还可是光能、电能等物理因素及酸碱度、相转变反应和螯合反应等化学因素。

通过这些外加刺激,触发材料作出响应,从而改变材料的技术参数,诸如形状、位置、应变、硬度、频率、摩擦和动态或静态特征等。

由于形状记忆材料具有优异的性能,诸如形状记忆效应、高回复形变、良好的抗震性和适应性,以及易以线、颗粒或纤维的形式与其他材料结合形成复合材料等,使其发展越来越受到重视。

形状记忆高分子或形状记忆聚合物(SMP,ShapeMemoryPolymer)作为一种功能性高分子材料,是高分子材料研究、开发、应用的一个新分支,并且由于形状记忆高分子与纺织材料具有相容性,在纺织、服装以及医疗护理产品中具有潜在应用优势。

1 形状记忆高分子材料种类、结构和性能1.1 形状记忆高分子材料种类形状记忆高分子材料根据其形状回复原理可分为:热感应SMP,电致感应型SMP,光致感应型SMP,化学感应型SMP等,热致型SMP:在室温以上变形,并能在室温固定形变且可长期存放,当温度再升至某一特定响应温度时,制件能很快回复初始形状的聚合物。

[课外阅读]科研人员制备出形状记忆高分子材料

[课外阅读]科研人员制备出形状记忆高分子材料

[课外阅读]科研人员制备出形状记忆高分子材料
1月18日,记者从中科院宁波材料所获悉,该所智能高分子科研团队在一项新研究中,将超分子作用引入形状记忆高分子材料,制备了基于超分子作用的形状记忆高分子材料。

相关研究成果已发表于《化学通讯》,并被选为当期的内封面文章。

形状记忆高分子材料是指具有保持临时变形形状的能力,当受到外界刺激后,可以恢复到初始形状,从而表现出对初始形状具有记忆功能的一类高分子材料,具有非常广阔的应用前景。

在这项研究中,科研人员首先合成了含有苯硼酸侧基的海藻酸钠,利用苯硼酸和聚乙烯醇羟基间的动态硼酸酯键,制备了具有自修复功能的水凝胶。

然后借助于海藻酸钠和Ca2+之间的配位络合作用,得到在宏观和微观层面都具有形状记忆功能的水凝胶。

这种水凝胶利用了双重超分子作用,成功实现了形状记忆和自修复两种功能的结合。

同时,该研究团队利用硼酸酯键保持材料的临时形状,制备了pH和糖响应的形状记忆高分子材料,此工作不但得到了生物分子响应的形状记忆高分子材料,还大大缩短了材料的形状恢复时间。

专家认为,这些研究成果是对形状记忆高分子材料的有效补充及创新,为开发生物医用形状记忆高分子材料提供了新的思路。

文章来源网络整理,请自行参考编辑使用
1。

一种聚氨酯形状记忆高分子材料及其合成工艺[发明专利]

一种聚氨酯形状记忆高分子材料及其合成工艺[发明专利]

(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 201610971345.0(22)申请日 2016.11.07(71)申请人 黑龙江鑫达企业集团有限公司地址 150060 黑龙江省哈尔滨市平房区哈南一路9号(72)发明人 马海清 崔成杰 谢众 (51)Int.Cl.C08G 18/76(2006.01)C08G 18/66(2006.01)C08G 18/48(2006.01)C08G 18/32(2006.01)C08G 18/10(2006.01)C08G 65/28(2006.01)D06M 15/568(2006.01)(54)发明名称一种聚氨酯形状记忆高分子材料及其合成工艺(57)摘要本发明涉及温控型形状记忆聚合物的制备技术领域,具体涉及一种聚氨酯形状记忆高分子材料及其合成工艺。

本发明要克服现有技术存在的形状记忆效果不理想,产品的防水、透气和透湿效果不理想,织物经整理后往往有色变现象和实用价值小的问题。

其技术方案是:合成工艺依次包括下述步骤:(1)原料真空脱水;(2)预聚反应:N 2保护的条件下加入2,4-甲苯二异氰酸酯和DMF,滴加计量的多元醇,得预聚物;(3)扩链反应:将1,4-BDO和二羟甲基丙酸(DMPA)进行扩链反应;(4)中和反应:用三乙胺(TEA)完全中和DNPA的羧基,同时加入300-1000ml的水,最后溶液的质量浓度为15-25%。

权利要求书1页 说明书4页CN 108059710 A 2018.05.22C N 108059710A1.一种聚氨酯形状记忆高分子材料,由下述工艺合成而成,合成工艺依次包括下述步骤,(1)原料真空脱水:N,N-二甲基甲酰胺DMF和1,4-丁二醇BDO干燥,多元醇在100-130℃的条件下抽真空脱水1.5-3h,水分小于0.01%;(2)预聚反应:N 2保护的条件下加入2,4-甲苯二异氰酸酯20-40g和DMF20-35ml,滴加计量的多元醇80-150g,在65-80℃搅拌反应1.5-3h得预聚物;(3)扩链反应:将1-5g1,4-BDO和二羟甲基丙酸DMPA20-50g加入反应器中进行扩链反应1-3h,得到扩链后的产物;(4)中和反应:用三乙胺10-40g完全中和DMPA的羧基,中和反应在20-50℃下进行15-30min,同时加入300-1000ml的水,最后溶液的质量浓度为15-25%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

形状记忆高分子材料的研究及应用(南通大学化学化工学院高分子材料与工程132 朱梦成1308052064)[摘要]简要介绍了形状记忆高分子材料的形状记忆原理、形状记忆高分子材料类型和用途。

其类型大致分为电致感应型、光致感应型、化学感应型和热致感应型,重点介绍了热致感应型高分子材料的主要品种、研究现状和用途。

概括了形状记忆高分子材料的研究方向。

[关键词]形状记忆;高分子材料;记忆原理功能性;形状记忆高分子材料(Shape Memory Polymer,简称SMP)可通过热、化学、机械、光、磁或电等外加刺激,触发材料做出响应,从而改变材料的技术参数,即形状、位置、应变、硬度、频率、摩擦和动态或静态特征等。

由于形状记忆材料具有优异的性能,诸如形状记忆效应、高回复形变、良好的抗震性和适应性,以及易以线、颗粒或纤维的形式与其他材料结合形成复合材料等,使其发展越来越受到重视。

形状记忆高分子材料或形状记忆聚合物作为一种功能性高分子材料,是高分子材料研究、开发、应用的一个新分支,并且由于形状记忆高分子材料与纺织材料具有相容性,在纺织、服装以及医疗护理产品中具有潜在应用优势。

迄今为止,法国、日本、美国等国家已相继开发出聚降冰片烯、苯乙烯一丁二烯共聚物、聚酰胺等多种形状记忆高分子材料【l,2】。

近年来我国的一些科研及生产单位也开展了相关的研究工作【3,4】。

笔者将形状记忆高分子材料的形状记忆原理、各类型形状记忆高分子材料的用途及研究方向介绍如下。

1形状记忆原理形状记忆性是指某种材料在成型加工过程中形成某种固有形状的物品,在某些条件下发生变形并被固定下来后,当需要时只要对它施加一定手段(如加热、光照、通电、化学处理等),使其迅速恢复到初始形状。

也就是说,具有形状记忆性的物质就像有生命的东西,当其在成型加工中被塑造成具有某种固有的初始形状的物品后,就对自己所获得的这种初始形状始终保持有终生记忆的特殊功能,即使在某些情况下被迫改变了本来面目,但只要具备了适当的条件,就会迅速回复到原有的初始形状。

这种可逆性的变化可循环往复许多次,甚至几万次。

高分子材料的形状记忆性,是通过它所具有的多重结构的相态变化来实现,如结晶的形成与熔化、玻璃态与橡胶态的转化等。

迄今开发的形状记忆高分子材料都具有两相结构,即能够固定和保持其成型物品固有初始形状的固定相以及在一定条件下能可逆地发生软化与固化,而获得二次形状的可逆相。

这两相结构的实质就是对应着形状记忆高分子内部多重结构中的结点(如大分子键问的缠绕处、聚合物中的晶区、多相体系中的微区、多嵌段聚合物中的硬段、分子键间的交联键等)和这些结点之间的柔性链段。

所以DMC收率很低。

2形状记忆高分子材料类型及用途形状记忆高分子材料种类很多,根据形状回复原理大致可分为:电致感应型、光致感应型、化学感应型、热致感应型等。

这几种类型的高分子材料性能和用途简要介绍如下,由于热致感应型材料应用范围较广,是目前形状记忆高分子材料研究和开发较为活跃的品种,因此,对其研究现状及用途作较详细介绍。

2.1电致感应型它是热致型形状记忆高分子材料与具有导电性能物质(如导电炭黑、金属粉末及导电高分子等)的复合材料。

其记忆机理与热致感应型SMP相同,该复合材料通过电流产生的热量使体系温度升高,致使形状回复,所以既具有导电性能,又具有良好的形状记忆功能,主要用于电子通讯及仪器仪表等领域,如电子集束管、电磁屏蔽材料等[引。

2.2光致感应型它是将某些特定的光致变色基团引入高分子主链或侧链中,当受到光照射时,光致变色基团发生光异构化反应,使分子链的状态发生显著变化,材料在宏观上表现为光致形变;光照停止时,光致变色基团发生可逆的光异构化反应,分子链的状态回复,材料也回复其初始形状。

高分子材料通过光致感应发生的可逆形变与化学物质引起的形变不同,它不需要与化学物质直接接触或发生物质交换,只要外部供给非接触性的能量,就能实现其形状的控制。

该材料用作印刷材料、光记忆材料、“光驱动分子阀”和药物缓释剂等。

2.3化学感应型某些高分子材料在化学物质的作用下,也具有形状记忆现象【6,7】。

它利用材料周围介质性质的变化来激发材料变形和形状回复。

常见的化学感应方式有pH变化、平衡离子置换、螯合反应、相转变反应和氧化还原反应等,这类物质有部分皂化的聚丙烯酰胺、聚乙烯醇和聚丙烯酸混合物薄膜等。

该材料用于蛋白质或酶的分离膜、“化学发动机”等特殊领域。

2.4热致感应型它是指在一定温度下,即记忆温度下,具有橡胶的特性,主要表现为材料的可变形性和形状回复性,也就是材料的记忆性能。

在记忆温度下,使材料变形至所需要形状并保持该形状,冷却至室温成为坚硬固体,一旦需要,将该同型体加热至记忆温度,该形变体又可回复至原来的形状,循环往复。

该类高分子材料的形变温度控制方法比较简单、实用,且制备简便,应用范围比较广。

2.4.1热致感应型材料主要品种迄今所开发的热致感应型形状记忆高分子组成已有很多种,如聚降冰片烯、反式聚异戊二烯、聚氨酯、苯乙烯一丁二烯共聚物、聚烯烃、聚己内酸酯、聚酰胺、聚乙烯一醋酸乙烯共聚物(EV A)、聚偏氟乙烯等。

而且日本已拥有4种热致感应型SMP的工业化生产技术,即聚降冰片烯、聚氨酯、高反式聚异戊二烯以及苯乙烯一丁二烯共聚物。

2.4.2热致感应型材料研究现状国内外工作者对其进行了广泛的研究【8】,杨哲【9】探讨了热致感应型形状记忆高分子材料的记忆机理,并对几种形状记忆高聚物的实施方法进行了研究,认为该类材料集塑料一橡胶的特性于一体,在记忆温度下的行为与橡胶的弹性理论相一致【10】,李府春等【11】也对这一领域的相关问题进行了研究。

左兰【12】认为聚氨酯是一种多嵌段共聚物,可通过调节原料的组成和配比,得到性能各异的新型功能高分子材料。

由硬段、软段交替排列组成的聚氨酯分子链,具有微相分离的本体结构,符合热致形状记忆高分子材料的条件,并具有良好的强度、硬度、耐磨性、耐挠曲性和生物相容性等优异性能。

乙烯一丙烯酸乙酯共聚物(EEA)【13,14】材料与其他高分子形状记忆材料相比具有很多明显的优点,如与EV A 相比,具有高温下稳定、低温下柔软、优良的抗拉、抗冲击性能,适用于注射、挤出及吹塑等方法成型;而与聚乙烯(PE)相比,EEA具有结晶度较低、低温性能、优良的耐弯曲开裂及环境应力开裂性能和较大的弹性。

王诗任等【15,16】根据高分子的粘弹理论提出了形状记忆的数学模型,构建高分子内分子链的自由度以及发生形状恢复时的弹性和恢复速率。

2.4.3热致感应型材料的应用近年来,科研工作者对热致感应型纤维产生了浓厚的兴趣。

韩永良等【17,18】指出今后应大力开发智能型热致感应形状记忆纤维的直接纺丝生产技术,提高纤维的形变回复力及尺寸稳定性,纤维的应用前景看好。

胡金莲及周风飞等【19】驯阐述了形状记忆高分子材料在纺织中的应用性能。

聚烯烃类热致感应型材料就其性能又可分为通用型和阻燃型两大类,通用型价格便宜,使用面广,可大量用于包装工业;阻燃型则大多用于国防尖端技术,如导弹、火箭、飞机等工业。

聚酯类有良好的电学性能及极好的机械物理性能,所以广泛应用于电器工业的包封材料。

氟塑料类则由于它们的耐高温、耐老化、耐化学腐蚀及优异的电学性能,因而这一类收缩材料的应用领域主要是国防军事工业及尖端工业,可用于不同口径高分子管材的接口和铆钉、医疗固定器具、火灾报警器感温装置等。

某些用形状记忆高分子材料做成的便携式容器和玩具在登山、旅游时携带十分方便。

需要时用热水加热使之回复到原状,取出冷却固定后即可使用。

高强度的形状记忆高分子材料还可做汽车的挡板和保险杠等,在汽车发生碰撞之后只需要热风加热即可使变形部分恢复原形。

3形状记忆高分子材料研究方向随着形状记忆高分子材料研究技术的发展,研究方向主要集中于以下几个方面:(1)进一步改进高分子材料的性能,降低成本。

(2)在保持形状记忆功能的前提下,充分运用分子设计技术和材料的改性技术,提高SMP的综合性能。

(3)将成本较高的形状记忆树脂与价廉的通用树脂共混,开发兼有多种效用的新型形状记忆高分子材料,或者将通用的工程树脂开发为形状记忆树脂,使其既具有工程技术性能又具有特异形状记忆功能的高分子材料。

(4)把高温侧和低温侧的单向形状记忆性巧妙地组合起来,开发双向性形状记忆树脂以及多重可逆性形状记忆复合高分子材料。

参考文献[1]John K,Borchardt.Mater/a/s Today,2005,8(6):15[2]Smith N A,Antoun G G,Ellis A B et a1.Applied Science and Manu—factwing,2004,35(11):1307—1312[3]敬松.四川化工,1991,(4):43—49[4]韩志仁,陶华,朱莉.航空学报,2005,26(1):125~128[5]Seon Jeong Kim,Han II Kim,Sang JunPark et a1.Physical,2004,15(1):146—150[6]张福强.高分子通报,1993,(3):34—42[7]韦复海.金和,顾有伟等.化工进展,2004,23(3):273—276[8]Bin Yang,Wei Min Huang,Chuan L et a1.European Polymer Journal·2005,41(5):1123—1128 9[9]杨哲。

高分子材料科学与工程,1997,13(4):19~23 10[10]金关泰.高分子化学的理论与应用进展.北京:中国石化出版社,199511[11]李府春,韦复海.贵州化工,2004,29(4):3~7[12]左兰,陈大俊.弹性体。

2002,12(6):56—60[13]吕智,季守振,李冰泉等.北京航空航天大学学报,2001。

27(1):9~11[14]林莉萍,徐修成,季守振等.航空工程与维修,2001,(1):20—2l[15]王诗任,吕智,赵伟岩等.高分子材料科学与工程,2000,16(1):1~4[16]王诗任,徐修成,詹茂盛等.功能高分子学报,1999,12(2):132[17]韩永良,陈莉,宋雪飞.合成纤维工业,2005,28(1):50—53[18]韩永良,陈莉.河北化工,2004,(5):1~5[19]胡金莲,杨卓鸿.印染,2004,(3):44—47[20]周风飞,陈莉.纺织科学研究,2004,(3):9一13。

相关文档
最新文档