二元一次方程教案

合集下载

二元一次方程教案

二元一次方程教案

二元一次方程教案二元一次方程教案(精选8篇)作为一名为他人授业解惑的教育工作者,总不可避免地需要编写教案,教案有助于学生理解并掌握系统的知识。

怎样写教案才更能起到其作用呢?下面是店铺为大家整理的二元一次方程教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

二元一次方程教案篇1一、教学目标:1.理解二元一次方程及二元一次方程的解的概念;2.学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;3.学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;4.在解决问题的过程中,渗透类比的思想方法,并渗透德育教育二、教学重点、难点:重点:二元一次方程的意义及二元一次方程的解的概念难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程三、教学方法与教学手段:通过与一元一次方程的比较,加强学生的类比的思想方法;通过“合作学习”,使学生认识数学是根据实际的需要而产生发展的观点四、教学过程:1.情景导入:新闻链接:桐乡70岁以上老人可领取生活补助,得到方程:80a+150b=902 880。

2.新课教学:引导学生观察方程80a+150b=902 880与一元一次方程有异同?得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程做一做:1.根据题意列出方程:①小明去看望奶奶,买了5 kg苹果和3 kg梨共花去23元,分别求苹果和梨的单价,设苹果的单价x元/kg ,梨的单价y元/kg;②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,可得方程:(2)课本P80练习2.判定哪些式子是二元一次方程方程。

合作学习:活动背景爱心满人间——记求是中学“学雷锋、关爱老人”志愿者活动。

问题:参加活动的36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人,团支书拟安排8个劳动组,2个文艺,单从人数上考虑,此方案是否可行?为什么?把x=8,y=2代入二元一次方程3x+6y=36,看看左右两边有没有相等?由学生检验得出代入方程后,能使方程两边相等,得出二元一次方程的解的概念:使二元一次方程两边的值相等的一对未知数的值叫做二元一次方程的一个解。

二元一次方程教案

二元一次方程教案

二元一次方程教案教学目标:1. 理解二元一次方程的定义和性质。

2. 掌握解二元一次方程的方法。

3. 能够应用二元一次方程解决生活中的实际问题。

教学重点:1. 解二元一次方程。

2. 运用解二元一次方程解决实际问题。

教学难点:运用解二元一次方程解决实际问题。

教学准备:1. 教师准备演示材料,包括黑板或白板、彩色粉笔或白板笔。

2. 学生准备纸和笔。

教学过程:Step 1:引入讨论教师可以通过提问的方式引导学生思考:什么是二元一次方程?有什么特点?我们能够应用它解决哪些问题?Step 2:解二元一次方程1. 观察和分析给定的二元一次方程。

2. 使用“消元法”或“代入法”解决方程,得到解集。

3. 检验解集是否满足原方程。

Step 3:应用解二元一次方程解决实际问题教师出示或讲解一些实际生活中涉及到二元一次方程的问题,如两个人的年龄、两个商品的价格等等。

学生可以运用所学的解二元一次方程的方法解决这些问题。

Step 4:巩固练习教师布置一些练习题,让学生独立或小组完成,并核对答案。

可以将解题过程和答案展示在黑板或白板上,便于学生理解和学习。

Step 5:总结与评价教师与学生一起总结解二元一次方程的要点和方法,并对学生的学习进行评价和反馈。

Step 6:拓展延伸教师可以提供更多的实际问题,让学生运用解二元一次方程的方法解决,进一步巩固和应用所学知识。

教学结束提示:为了让学生更好地理解和应用解二元一次方程的方法,教师可以设计一些实际例题,让学生进行解答和思考。

同时,鼓励学生多加练习,提高解问题的能力。

七年级数学二元一次方程组解法教案(优秀6篇)

七年级数学二元一次方程组解法教案(优秀6篇)

七年级数学二元一次方程组解法教案(优秀6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!七年级数学二元一次方程组解法教案(优秀6篇)《二元一次方程与一次函数》教学设计这次漂亮的本店铺为亲带来了6篇《七年级数学二元一次方程组解法教案》,希望能够满足亲的需求。

二元一次方程大班教案

二元一次方程大班教案

二元一次方程大班教案教学目标:1. 理解二元一次方程的概念和表示方法;2. 学会解二元一次方程;3. 能够应用解二元一次方程解决实际问题。

教学准备:1. 教师准备PPT或者黑板,用于呈现教学内容;2. 教师准备练习题,用于学生课堂练习。

教学过程:一、导入(5分钟)1. 教师通过提问的方式,复习一元一次方程的知识点,引导学生回忆并巩固已学内容;2. 教师介绍二元一次方程的概念,并与一元一次方程进行对比,激发学生的学习兴趣。

二、概念解释与示例(10分钟)1. 教师以具体的例子说明二元一次方程的表示方法,例如:2x + 3y = 8;2. 教师解释方程中的未知数、系数及常数项的意义;3. 教师给出几个实际问题,引导学生将问题转化为二元一次方程,并解释方程的含义。

三、解二元一次方程的方法(15分钟)1. 教师介绍两种解二元一次方程的方法:代入法和消元法;2. 教师以示例详细讲解代入法和消元法的步骤和注意事项;3. 教师鼓励学生多思考、多练习,熟练掌握解二元一次方程的方法。

四、课堂练习(15分钟)1. 教师出示多个二元一次方程的实际问题,让学生运用所学知识解题;2. 学生独立完成练习题,教师巡视并指导学生的解题思路;3. 教师选取几道典型题目,与学生一起讨论解题过程。

五、实际应用(10分钟)1. 教师以实际生活中的应用问题,如购买文具、购买食物等,引导学生运用所学知识解决问题;2. 学生积极参与,提出解题思路和答案,教师引导学生深入思考并给予认可。

六、拓展延伸(10分钟)1. 教师介绍更高级的二元一次方程,如含参数的二元一次方程等;2. 学生思考高级问题,并与同学一起合作解决;3. 教师提供实际生活中更复杂的二元一次方程问题,并鼓励学生尝试解决。

七、总结归纳(5分钟)1. 教师带领学生总结本节课学到的知识要点,并进行复习;2. 学生积极回答教师提问,巩固所学内容;3. 教师对学生的学习表现给予肯定和鼓励。

二元一次方程组教案3 篇

二元一次方程组教案3 篇

二元一次方程组教案3 篇一、学习内容分析:执教者钱嘉颖时间XXXX年6月12日1、选自初一年级(下)数学学科第八章(第一单元)第一节(课)(1课时45分钟)2、教材内容简要分析教材以引言中的一个实际例子,“一班和二班进行篮球比赛,总共打了22场。

每胜一场得2分,每负一场得1分,已知比赛结束一班累计得了40分,思考:一班胜了多少场,负了多少场”来开展这次课程。

以本例来首先回忆已学过的一元一次方程的知识内容,以此作为切入点,引导学生思考用两个未知数来表示方程,借此进入二元一次方程的介绍。

之后,引导学生利用一元一次方程的解法特点来思考二元一次方程组的解答方法,本次课程内容主要介绍了代入解答法(也称消元法)的详细解答过程,以及二元一次方程组的实际运用及解答,让学习者更好的吸收及掌握二元一次方程组和二元一次方程组的消元法。

另外,在本单元结束介绍了作为课外知识的“二元一次方程古代表示方法”。

3、学习内容分析表:知识点重点难点编号内容1二元一次方程组定义及特点二元一次方程组的两个特点二元一次方程组成立的条件(未知数要同时满足两个条件)2二元一次方程组代入消元法代入消元法的具体解法消元法与一元一次方程解法间的联系3二元一次方程组实际运用以实际例题列出方程并解答未知数的假设以及运用已知条件列出正确方程。

二、学习者分析:本次教学的对象是云南省某中学的初中一年级学生,平均年龄12岁。

初一年级是学生由幼稚的童年向青年转化和个性逐渐成型的重要转折点,初一年级学生具有其特殊性。

初一年级学生由于刚刚接触完全不同于小学的学习生活而有手足无措的情况。

而在这个时期的学生生理和心理飞速发展变化,自我意识开始强烈,有了自己的兴趣,独立性增强,感情趋于丰富复杂化,有一定独立思考的能力、一定程度的抽象思维能力和逻辑思维能力,处于识记能力最强的时期。

此时,进行的教育可以更加重视独立思考,在数学教学中更加重视引导教学,致使学习者能够更加深刻的理解所学知识,达到教学目标。

公式法解二元一次方程教案六篇

公式法解二元一次方程教案六篇

公式法解二元一次方程教案六篇教案一:用公式法解简单的二元一次方程一、教学目标1、理解并掌握二元一次方程的求根公式。

2、能够熟练运用公式法解二元一次方程。

二、教学重难点1、重点(1)求根公式的推导过程。

(2)运用求根公式解二元一次方程。

2、难点求根公式的推导。

三、教学方法讲授法、练习法四、教学过程1、复习导入(1)回顾一元二次方程的一般形式:$ax^2 + bx + c =0$($a≠0$)。

(2)提问一元二次方程的配方法。

2、公式推导(1)将一元二次方程$ax^2 + bx + c = 0$($a≠0$)进行配方:\\begin{align}ax^2 + bx + c &= 0\\ax^2 + bx &= c\\x^2 +\frac{b}{a}x &=\frac{c}{a}\\x^2 +\frac{b}{a}x +(\frac{b}{2a})^2 &=(\frac{b}{2a})^2 \frac{c}{a}\\(x +\frac{b}{2a})^2 &=\frac{b^2 4ac}{4a^2}\end{align}\(2)当$b^2 4ac≥0$时,开方得到求根公式:$x =\frac{b ±\sqrt{b^2 4ac}}{2a}$3、公式讲解(1)强调公式中$a$、$b$、$c$的含义。

(2)说明判别式$b^2 4ac$的作用:判断方程根的情况。

4、例题讲解例 1:用公式法解方程$x^2 4x 5 = 0$(1)分析:$a = 1$,$b =-4$,$c =-5$(2)计算判别式:$b^2 4ac =(-4)^2 4×1×(-5) = 36 > 0$,方程有两个不相等的实数根。

(3)代入求根公式:$x =\frac{4 ±\sqrt{36}}{2×1} =\frac{4 ± 6}{2}$,解得$x_1 = 5$,$x_2 =-1$5、课堂练习让学生练习用公式法解下列方程:(1)$x^2 + 2x 3 = 0$(2)$2x^2 5x + 1 = 0$6、课堂小结(1)总结公式法解二元一次方程的步骤。

二元一次方程全章教案

二元一次方程全章教案

8.1二元一次方程组一、学习内容:教材课题 二元一次方程组二、学习目标:1、认识二元一次方程和二元一次方程组;2、了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解.三、自学探究1、例题:篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?思考:这个问题中包含了哪些必须同时满足的条件?设胜的场数是x ,负的场数是y ,你能用方程把这些条件表示出来吗? 由问题知道,题中包含两个必须同时满足的条件: 胜的场数+负的场数=总场数, 胜场积分+负场积分=总积分.这两个条件可以用方程 , 表示.观察上面两个方程可看出,每个方程都含有 未知数(x 和y ),并且未知数的 都是1,像这样的方程叫做二元一次方程. (P 93)把两个方程合在一起,写成x +y =22 ①2x +y =40 ②像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组. (P 94) 2、探究讨论:8.1满足方程①,且符合问题的实际意义的x 、y 的值有哪些?把它们填入表中.一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.思考:上表中哪对x 、y 的值还满足方程② x=18 y=4既满足方程①,又满足方程②,也就是说它们是方程①与方程②的公共解。

二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 四、自我检测1、 教材P94 练习2、已知方程:①2x+1y=3;②5xy-1=0;③x 2+y=2;④3x-y+z=0;⑤2x-y=3;⑥x+3=5,•其中是二元一次方程的有___ ___.(填序号即可)3、下列各对数值中是二元一次方程x +2y=2的解是( )A⎩⎨⎧==02y x B ⎩⎨⎧=-=22y x C ⎩⎨⎧==10y x D ⎩⎨⎧=-=01y x 变式:其中是二元一次方程组⎩⎨⎧-=+=+2222y x y x 解是( )五、学习小结:本节课学习了哪些内容?你有哪些收获?(什么叫二元一次方程?什么叫二元一次方程组?什么叫二元一次方程组的解?) 六、反馈检测1、方程(a +2)x +(b -1)y = 3是二元一次方程,试求a 、 b 的取值范围.2、若方程752312=+--n m y x 是二元一次方程.求m 、n 的值3、 已知下列三对值:x =-6 x =10 x =10 y =-9 y =-6 y =-1 (1) 哪几对数值使方程21x -y =6的左、右两边的值相等?(2) 哪几对数值是方程组 的解?4、 求二元一次方程3x +2y =19的正整数解.21x -y =6 2x +31y =-118.2 消元----二元一次方程组的解法(一)一、学习内容:教材课题 P96-97 消元----二元一次方程组的解法 二、学习目标:1.会用代入法解二元一次方程组.2.初步体会解二元一次方程组的基本思想――“消元”. 3.通过研究解决问题的方法,培养合作交流意识与探究精神三、自学探究1、复习提问:篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?如果只设一个末知数:胜x 场,负(22-x)场,列方程为: ,解得x= .在上节课中,我们可以设出两个未知数,列出二元一次方程组,设胜的场数是x ,负的场数是y , x +y =22 2x +y =40 那么怎样求解二元一次方程组呢?2、思考:上面的二元一次方程组和一元一次方程有什么关系?可以发现,二元一次方程组中第1个方程x +y =22写成y =22-x ,将第2个方程2x +y =40的y 换为22-x ,这个方程就化为一元一次方程40)22(2=-+x x .二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先解出一个未知数,然后再设法求另一未知数.这种将未知数的个数由多化少、逐一解决的想法,叫做消元思想.3、归纳:上面的解法,是由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.例1 用代入法解方程组 x -y =3 ① 3x -8y =14 ② 解后反思:(1)选择哪个方程代人另一方程?其目的是什么? (2)为什么能代?(3)只求出一个未知数的值,方程组解完了吗?(4)把已求出的未知数的值,代入哪个方程来求另一个未知数的值较简便? (5)怎样知道你运算的结果是否正确呢?(与解一元一次方程一样,需检验.其方法是将求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边是否相等.检验可以口算,也可以在草稿纸上验算) 四、自我检测教材P98练习 1、2 五、学习小结用代入消元法解二元一次方程组的步骤:(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来. (2)把(1)中所得的方程代入另一个方程,消去一个未知数. (3)解所得到的一元一次方程,求得一个未知数的值.(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解. 六、反馈检测1.已知x =2,y =2是方程ax -2y =4的解,则a =________.2.已知方程x -2y =8,用含x 的式子表示y ,则y =_________________,用含y 的式子表示x ,则x =________________3.解方程组21,328y x x y =-⎧⎨-=⎩把①代入②可得_______4.若x 、y 互为相反数,且x +3y =4,,3x -2y =_____________. 5.解方程组 y =3x -1 6 . 4x -y =52x +4y =24 3(x -1)=2y -37.已知12-==y x 是方程组54+=-=+a by x by ax 的解.求a 、b 的值.8.2 消元----二元一次方程组的解法(二)一、学习内容:教材课题 P97-98二、学习目标:1、熟练地掌握用代人法解二元一次方程组;2、进一步理解代人消元法所体现出的化归意识;3、体会方程是刻画现实世界的有效数学模型.三、自学探究:1、复习旧知:解方程组25437x y x y +=⎧⎨+=⎩,;2、结合你的解答,回顾用代人消元法解方程组的一般步骤3、探究思考例:根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250 g)两种产品的销售数量比(按瓶计算)为2:5.某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶装两种产品各多少瓶?解:设这些消毒液应分装x 大瓶和y 小瓶,则(列出方程组为):思考讨论:问题1:此方程与我们前面遇到的二元一次方程组有什么区别? 问题2:能用代入法来解吗?问题3:选择哪个方程进行变形?消去哪个未知数? 写出解方程组过程:质疑:解这个方程组时,可以先消去X 吗?试一试。

初中二元一次方程数学教案三篇

初中二元一次方程数学教案三篇

【导语】教案是教师为顺利⽽有效地开展教学活动,根据课程标准,教学⼤纲和教科书要求及学⽣的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学⽅法等进⾏的具体设计和安排的⼀种实⽤性教学⽂书。

©⽆忧考⽹准备了以下内容,供⼤家参考!篇⼀:应⽤⼆元⼀次⽅程组——鸡兔同笼 教学⽬标: 知识与技能⽬标: 通过对实际问题的分析,使学⽣进⼀步体会⽅程组是刻画现实世界的有效数学模型,初步掌握列⼆元⼀次⽅程组解应⽤题.初步体会解⼆元⼀次⽅程组的基本思想“消元”。

培养学⽣列⽅程组解决实际问题的意识,增强学⽣的数学应⽤能⼒。

过程与⽅法⽬标: 经历和体验列⽅程组解决实际问题的过程,进⼀步体会⽅程(组)是刻画现实世界的有效数学模型。

情感态度与价值观⽬标: 1.进⼀步丰富学⽣数学学习的成功体验,激发学⽣对数学学习的好奇⼼,进⼀步形成积极参与数学活动、主动与他⼈合作交流的意识. 2.通过"鸡兔同笼",把同学们带⼊古代的数学问题情景,学⽣体会到数学中的"趣";进⼀步强调课堂与⽣活的联系,突出显⽰数学教学的实际价值,培养学⽣的⼈⽂精神。

重点: 经历和体验列⽅程组解决实际问题的过程;增强学⽣的数学应⽤能⼒。

难点: 确⽴等量关系,列出正确的⼆元⼀次⽅程组。

教学流程: 课前回顾 复习:列⼀元⼀次⽅程解应⽤题的⼀般步骤 情境引⼊ 探究1:今有鸡兔同笼, 上有三⼗五头, 下有九⼗四⾜, 问鸡兔各⼏何? “雉兔同笼”题:今有雉(鸡)兔同笼,上有35头,下有94⾜,问雉兔各⼏何? (1)画图法 ⽤表⽰头,先画35个头 将所有头都看作鸡的,⽤表⽰腿,画出了70只腿 还剩24只腿,在每个头上在加两只腿,共12个头加了两只腿 四条腿的是兔⼦(12只),两条腿的是鸡(23只) (2)⼀元⼀次⽅程法: 鸡头+兔头=35 鸡脚+兔脚=94 设鸡有x只,则兔有(35-x)只,据题意得: 2x+4(35-x)=94 ⽐算术法容易理解 想⼀想:那我们能不能⽤更简单的⽅法来解决这些问题呢? 回顾上节课学习过的⼆元⼀次⽅程,能不能解决这⼀问题? (3)⼆元⼀次⽅程法 今有鸡兔同笼,上有三⼗五头,下有九⼗四⾜,问鸡兔各⼏何? (1)上有三⼗五头的意思是鸡、兔共有头35个, 下有九⼗四⾜的意思是鸡、兔共有脚94只. (2)如设鸡有x只,兔有y只,那么鸡兔共有(x+y)只; 鸡⾜有2x只;兔⾜有4y只. 解:设笼中有鸡x只,有兔y只,由题意可得: 鸡兔合计头xy35⾜2x4y94 解此⽅程组得: 练习1: 1.设甲数为x,⼄数为y,则“甲数的⼆倍与⼄数的⼀半的和是15”,列出⽅程为_2x+05y=15 2.⼩刚有5⾓硬币和1元硬币各若⼲枚,币值共有六元五⾓,设5⾓有x枚,1元有y枚,列出⽅程为05x+y=65. 三、合作探究 探究2:以绳测井。

初二数学二元一次方程教案

初二数学二元一次方程教案

初二数学二元一次方程教案理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.一起看看初二数学二元一次方程教案!欢迎查阅!初二数学二元一次方程教案1一.复习引入1.前面我们学习过解一元二次方程的〝直接开平方法〞,比如,方程(1)_2=4 (2)(_-2)2=7提问1 这种解法的(理论)依据是什么?提问2 这种解法的局限性是什么?(只对那种〝平方式等于非负数〞的特殊二次方程有效,不能实施于一般形式的二次方程.)2.面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够〝直接开平方〞的形式.)(学生活动)用配方法解方程 2_2+3=7_(老师点评)略总结用配方法解一元二次方程的步骤(学生总结,老师点评).(1)先将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(_+p)2=q的形式,如果q≥0,方程的根是_=-p±q;如果q 0,方程无实根.二.探索新知用配方法解方程:(1)a_2-7_+3=0 (2)a_2+b_+3=0如果这个一元二次方程是一般形式a_2+b_+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知a_2+b_+c=0(a≠0),试推导它的两个根_1=-b+b2-4ac2a,_2=-b-b2-4ac2a(这个方程一定有解吗?什么情况下有解?)分析:因为前面具体数字已做得很多,我们现在不妨把a,b,c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:a_2+b_=-c二次项系数化为1,得_2+ba_=-ca配方,得:_2+ba_+(b2a)2=-ca+(b2a)2即(_+b2a)2=b2-4ac4a2∵4a2 0,当b2-4ac≥0时,b2-4ac4a2≥0∴(_+b2a)2=(b2-4ac2a)2直接开平方,得:_+b2a=±b2-4ac2a即_=-b±b2-4ac2a∴_1=-b+b2-4ac2a,_2=-b-b2-4ac2a由上可知,一元二次方程a_2+b_+c=0(a≠0)的根由方程的系数a,b,c而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式a_2+b_+c=0,当b2-4ac≥0时,将a,b,c代入式子_=-b±b2-4ac2a就得到方程的根.(2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.公式的理解(4)由求根公式可知,一元二次方程最多有两个实数根.例1 用公式法解下列方程:(1)2_2-_-1=0 (2)_2+1.5=-3_(3)_2-2_+_=0 (4)4_2-3_+2=0分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.补:(5)(_-2)(3_-5)=0三.巩固练习教材第_页练习1.(1)(3)(5)或(2)(4)(6).四.课堂小结本节课应掌握:(1)求根公式的概念及其推导过程;(2)公式法的概念;(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a 2)找出系数a,b,c,注意各项的系数包括符号;3)计算b2-4ac,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果.(4)初步了解一元二次方程根的情况.五.作业布置教材第_页习题4初二数学二元一次方程教案2通过复习用配方法.公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题.重点用因式分解法解一元二次方程.难点让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便.一.复习引入(学生活动)解下列方程:(1)2_2+_=0(用配方法) (2)3_2+6_=0(用公式法)老师点评:(1)配方法将方程两边同除以2后,_前面的系数应为_,_的一半应为_,因此,应加上(_)2,同时减去(_)2.(2)直接用公式求解.二.探索新知(学生活动)请同学们口答下面各题.(老师提问)(1)上面两个方程中有没有常数项?(2)等式左边的各项有没有共同因式?(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解.因此,上面两个方程都可以写成:(1)_(2_+1)=0 (2)3_(_+2)=0因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)_=0或2_+1=0,所以_1=0,_2=-_.(2)3_=0或_+2=0,所以_1=0,_2=-2.(以上解法是如何实现降次的?)因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.例1 解方程:(1)10_-4.9_2=0 (2)_(_-2)+_-2=0 (3)5_2-2_-_=_2-2_+34 (4)(_-1)2=(3-2_)2思考:使用因式分解法解一元二次方程的条件是什么?解:略 (方程一边为0,另一边可分解为两个一次因式乘积.)练习:下面一元二次方程解法中,正确的是( )A.(_-3)(_-5)=10_2,∴_-3=10,_-5=2,∴_1=_,_2=7B.(2-5_)+(5_-2)2=0,∴(5_-2)(5_-3)=0,∴_1=25,_2=35C.(_+2)2+4_=0,∴_1=2,_2=-2D._2=_,两边同除以_,得_=1三.巩固练习教材第_页练习1,2.四.课堂小结本节课要掌握:(1)用因式分解法,即用提取公因式法.十字相乘法等解一元二次方程及其应用.(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.五.作业布置教材第_页习题6,8,10,_初二数学二元一次方程教案31.掌握一元二次方程的根与系数的关系并会初步应用.2.培养学生分析.观察.归纳的能力和推理论证的能力.3.渗透由特殊到一般,再由一般到特殊的认识事物的规律.4.培养学生去发现规律的积极性及勇于探索的精神.重点根与系数的关系及其推导难点正确理解根与系数的关系.一元二次方程根与系数的关系是指一元二次方程两根的和.两根的积与系数的关系.一.复习引入1.已知方程_2-a_-3a=0的一个根是6,则求a及另一个根的值.2.由上题可知一元二次方程的系数与根有着密切的关系.其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?3.由求根公式可知,一元二次方程a_2+b_+c=0(a≠0)的两根为_1=-b+b2-4ac2a,_2=-b-b2-4ac2a.观察两式右边,分母相同,分子是-b+b2-4ac与-b-b2-4ac.两根之间通过什么计算才能得到更简洁的关系?二.探索新知解下列方程,并填写表格:方程 _1 _2 _1+_2 _1?_2_2-2_=0_2+3_-4=0_2-5_+6=0观察上面的表格,你能得到什么结论?(1)关于_的方程_2+p_+q=0(p,q为常数,p2-4q≥0)的两根_1,_2与系数p,q之间有什么关系?(2)关于_的方程a_2+b_+c=0(a≠0)的两根_1,_2与系数a,b,c之间又有何关系呢?你能证明你的猜想吗?解下列方程,并填写表格:方程 _1 _2 _1+_2 _1?_22_2-7_-4=03_2+2_-5=05_2-__+6=0小结:根与系数关系:(1)关于_的方程_2+p_+q=0(p,q为常数,p2-4q≥0)的两根_1,_2与系数p,q的关系是:_1+_2=-p,_1?_2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零.)(2)形如a_2+b_+c=0(a≠0)的方程,可以先将二次项系数化为1,再利用上面的结论.即:对于方程a_2+b_+c=0(a≠0)∵a≠0,∴_2+ba_+ca=0∴_1+_2=-ba,_1?_2=ca(可以利用求根公式给出证明)例1 不解方程,写出下列方程的两根和与两根积:(1)_2-3_-1=0 (2)2_2+3_-5=0(3)__2-2_=0 (4)2_2+6_=3(5)_2-1=0 (6)_2-2_+1=0例2 不解方程,检验下列方程的解是否正确?(1)_2-__+1=0 (_1=2+1,_2=2-1)(2)2_2-3_-8=0 (_1=7+734,_2=5-734)例3 已知一元二次方程的两个根是-1和2,请你写出一个符合条件的方程.(你有几种方法?)例4 已知方程2_2+k_-9=0的一个根是-3,求另一根及k的值.变式一:已知方程_2-2k_-9=0的两根互为相反数,求k;变式二:已知方程2_2-5_+k=0的两根互为倒数,求k.三.课堂小结1.根与系数的关系.2.根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零.四.作业布置1.不解方程,写出下列方程的两根和与两根积.(1)_2-5_-3=0 (2)9_+2=_2 (3)6_2-3_+2=0(4)3_2+_+1=02.已知方程_2-3_+m=0的一个根为1,求另一根及m的值.3.已知方程_2+b_+6=0的一个根为-2,求另一根及b的值初二数学二元一次方程教案4教学目标1.知识与技能能应用所学的函数知识解决现实生活中的问题,会建构函数〝模型〞.2.过程与方法经历探索一次函数的应用问题,发展抽象思维.3.情感.态度与价值观培养变量与对应的思想,形成良好的函数观点,体会一次函数的应用价值.重.难点与关键1.重点:一次函数的应用.2.难点:一次函数的应用.3.关键:从数形结合分析思路入手,提升应用思维.教学方法采用〝讲练结合〞的教学方法,让学生逐步地熟悉一次函数的应用.教学过程一.范例点击,应用所学【例5】小芳以200米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间_(单位:•分)变化的函数关系式,并画出函数图象.y=【例6】A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C.D两乡.从A城往C.D两乡运肥料的费用分别为每吨20元和25元;从B城往C.D•两乡运肥料的费用分别为每吨_元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,•怎样调运总运费最少?解:设总运费为y元,A城往运C乡的肥料量为_吨,则运往D乡的肥料量为(200-_)吨.B城运往C.D乡的肥料量分别为(240-_)吨与(60+_)吨.y与_的关系式为:y=•20_+25(200-_)+_(240-_)+24(60+_),即y=4_+10_0(0≤_≤200).由图象可看出:当_=0时,y有最小值10_0,因此,从A城运往C乡0吨,运往D•乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10_0元.拓展:若A城有肥料300吨,B城有肥料200吨,其他条件不变,又应怎样调运?二.随堂练习,巩固深化课本P_9练习.三.课堂总结,发展潜能由学生自我评价本节课的表现.四.布置作业,专题突破课本P_0习题_.2第9,10,_题.板书设计_.2.2一次函数(4)1.一次函数的应用例:初二数学二元一次方程教案。

二元一次方程公开课教案【优秀8篇】

二元一次方程公开课教案【优秀8篇】

二元一次方程公开课教案【优秀8篇】教学建议这次帅气的为您整理了8篇《二元一次方程公开课教案》,希望可以启发、帮助到大朋友、小朋友们。

元一次方程教学设计篇一一、教材分析《·》本课内容是在学生掌握了二元一次方程组有关概念之后的学习内容,用代入消元法解二元一次方程组是学生接触到的解方程组的第一种方法,是解二元一次方程组的方法之一,消元体现了“化未知为已知”的重要思想,它是学习本章的重点和难点。

学完以后可以帮助我们解决一些实际的问题,也是为了今后学习函数、线性方程组及高次方程组奠定了基础。

二、教学目标1、使学生学会用代入消元法解二元一次方程组。

2、理解代入消元法的基本思想;了解化“未知为已知”的转化过程,体会化归思想。

三、教学重难点1、重点:用代入法解二元一次方程组。

2、难点:在“消元”的过程中能够判断消去哪个未知数,使得解方程组的运算转为较简便的过程。

四、教学过程(1)复习引入在上节课中我们学习了二院一次方程组的有关概念,并学习了二元一次方程组的概念还学会判断一组值是否是二元一次方程组的解的问题,同学们还记得二元一次方程组和二元一次方程组的解的概念吗?追问二元一次方程组既然有解那么它们的解又怎么求呢?设计意图:让学生复习巩固二元一次方程组和二元一次方程组解的概念,追问其他一个抛砖引玉的效果,激起学生的学习兴趣,引出课题。

(2)探究新知此过程通过播放洋葱视频中的代入消元法片段视频,播放致列出二元一次方程组和一元一次后点击暂停,先让学生考虑想清楚两个问题。

一个问题是为什么能用一元一次方程解决的实际问题我们要用二元一次方程组来解决?第二个问题观察二元一次方程组和一元一次方程组之间有何异同?学生想清楚这两个问题后,渗透消元的思想,然后继续播放视频让学生知道二元一次方程组完整的解题过程,并在每一步做出相应的解释,怎么变化而来。

播放视频完后先让学生自主总结归纳解二元一次方程组的基本步骤,教师引导总结。

接着完成配套的3个习题,强化训练。

二元一次方程教案15篇

二元一次方程教案15篇

二元一次方程教案15篇二元一次方程教案1一、教材分析本节内容共安排2个课时完成。

该节内容是二元一次方程(组)与一次函数及其图像的综合应用。

通过探索方程与函数图像的关系,培养学生数学转化的思想,通过二元一次方程方程组的图像解法,使学生初步建立了数(二元一次方程)与形(一次函数的图像(直线))之间的对应关系,进一步培养了学生数形结合的意识和能力。

本节要注意的是由两条直线求交点,其交点的横纵坐标为二元一次方程组的近似解,要得到准确的结果,应从图像中获取信息,确立直线对应的函数表达式即方程,再联立方程应用代数方法求解,其结果才是准确的.二、学情分析学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识,学习本节知识困难不大,关键是让学生理解二元一次方程和一次函数之间的内在联系,体会数和形间的相互转化,从中使学生进一步感受到数的问题可以通过形来解决,形的问题也可以通过数来解决.三、目标分析1.教学目标知识与技能目标(1) 初步理解二元一次方程和一次函数的关系;(2) 掌握二元一次方程组和对应的两条直线之间的关系;(3) 掌握二元一次方程组的图像解法.过程与方法目标(1) 教材以问题串的形式,揭示方程与函数间的相互转化,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法;(2) 通过做一做引入例1,进一步发展学生数形结合的意识和能力.(3) 情感与态度目标(1) 在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神.(2) 在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力.2.教学重点(1)二元一次方程和一次函数的关系;(2)二元一次方程组和对应的两条直线的关系.3.教学难点数形结合和数学转化的思想意识.四、教法学法1.教法学法启发引导与自主探索相结合.2.课前准备教具:多媒体课件、三角板.学具:铅笔、直尺、练习本、坐标纸.五、教学过程本节课设计了六个教学环节:第一环节设置问题情境,启发引导;第二环节自主探索,建立方程与函数图像的模型;第三环节典型例题,探究方程与函数的相互转化;第四环节反馈练习;第五环节课堂小结;第六环节作业布置.第一环节: 设置问题情境,启发引导内容:1.方程x+y=5的解有多少个? 是这个方程的解吗?2.点(0,5),(5,0),(2,3)在一次函数y= 的图像上吗?3.在一次函数y= 的图像上任取一点,它的坐标适合方程x+y=5吗?4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y= 的图像相同吗?由此得到本节课的第一个知识点:二元一次方程和一次函数的图像有如下关系:(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;(2) 一次函数图像上的点的坐标都适合相应的二元一次方程.意图:通过设置问题情景,让学生感受方程x+y=5和一次函数y= 相互转化,启发引导学生总结二元一次方程与一次函数的对应关系.效果:以问题串的形式,启发引导学生探索知识的形成过程,培养了学生数学转化的思想意识.前面研究了一个二元一次方程和相应的一个一次函数的关系,现在来研究两个二元一次方程组成的方程组和相应的两个一次函数的关系.顺其自然进入下一环节.第二环节自主探索方程组的解与图像之间的关系内容:1.解方程组2.上述方程移项变形转化为两个一次函数y= 和y=2x ,在同一直角坐标系内分别作出这两个函数的图像.3.方程组的解和这两个函数的图像的交点坐标有什么关系?由此得到本节课的第2个知识点:二元一次方程和相应的两条直线的关系以及二元一次方程组的图像解法;(1) 求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;(2) 求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解.(3) 解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种.注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.意图:通过自主探索,使学生初步体会数(二元一次方程)与形(两条直线)之间的对应关系,为求两条直线的'交点坐标打下基础.效果:由学生自主学习,十分自然地建立了数形结合的意识,学生初步感受到了数的问题可以转化为形来处理,反之形的问题可以转化成数来处理,培养了学生的创新意识和变式能力.第三环节典型例题探究方程与函数的相互转化内容:例1 用作图像的方法解方程组例2 如图,直线与的交点坐标是 .意图:设计例1进一步揭示数的问题可以转化成形来处理,但所求解为近似解.通过例2,让学生深刻感受到由形来处理的困难性,由此自然想到求这两条直线对应的函数表达式,把形的问题转化成数来处理.这两例充分展示了数形结合的思想方法,为下一课时解决实际问题作了很好的铺垫.效果:进一步培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.第四环节反馈练习内容:1.已知一次函数与的图像的交点为 ,则 .2.已知一次函数与的图像都经过点A(2,0),且与轴分别交于B,C两点,则的面积为( ).(A)4 (B)5 (C)6 (D)73.求两条直线与和轴所围成的三角形面积.4.如图,两条直线与的交点坐标可以看作哪个方程组的解?意图:4个练习,意在及时检测学生对本节知识的掌握情况.效果:加深了两条直线交点的坐标就是对应的函数表达式所组成的方程组的解的印象,培养了学生的计算能力和数学转化的能力,使学生进一步领悟到应用数形结合的思想方法解题的重要性.第五环节课堂小结内容:以问题串的形式,要求学生自主总结有关知识、方法:1.二元一次方程和一次函数的图像的关系;(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;(2) 一次函数图像上的点的坐标都适合相应的二元一次方程.2.方程组和对应的两条直线的关系:(1) 方程组的解是对应的两条直线的交点坐标;(2) 两条直线的交点坐标是对应的方程组的解;3.解二元一次方程组的方法有3种:(1)代入消元法;(2)加减消元法;(3)图像法. 要强调的是由于作图的不准确性,由图像法求得的解是近似解.意图:旨在使本节课的知识点系统化、结构化,只有结构化的知识才能形成能力;使学生进一步明确学什么,学了有什么用.第六环节作业布置习题7.7附:板书设计六、教学反思本节课在学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识的基础上,通过教师启发引导和学生自主学习探索相结合的方法,进一步揭示了二元一次方程和函数图像之间的对应关系,从而引出了二元一次方程组的图像解法,以及应用代数方法解决有关图像问题,培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.教学过程中教师一定要讲清楚图像解法的局限性,这是由于画图的不准确性,所求的解往往是近似解.因此为了准确地解决有关图像问题常常把它转化为代数问题来处理,如例2及反馈练习中的4个问题.二元一次方程教案2知识与技能(1) 初步理解二元一次方程和一次函数的关系;(2) 掌握二元一次方程组和对应的两条直线之间的关系;(3) 掌握二元一次方程组的图像解法.过程与方法(1) 教材以“问题串”的形式,揭示方程与函数间的相互转化,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法;(2) 通过“做一做”引入例1,进一步发展学生数形结合的意识和能力.情感与态度(1) 在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神.(2) 在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力.教学重点(1)二元一次方程和一次函数的关系;(2)二元一次方程组和对应的两条直线的关系.教学难点数形结合和数学转化的思想意识.教学准备教具:多媒体课件、三角板.学具:铅笔、直尺、练习本、坐标纸.教学过程第一环节: 设置问题情境,启发引导(5分钟,学生回答问题回顾知识)内容:1.方程x+y=5的解有多少个? 是这个方程的解吗?2.点(0,5),(5,0),(2,3)在一次函数y= 的图像上吗?3.在一次函数y= 的图像上任取一点,它的坐标适合方程x+y=5吗?4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y= 的图像相同吗?由此得到本节课的第一个知识点:二元一次方程和一次函数的图像有如下关系:(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;(2) 一次函数图像上的点的坐标都适合相应的二元一次方程 .第二环节自主探索方程组的解与图像之间的关系(10分钟,教师引导学生解决)内容:1.解方程组2.上述方程移项变形转化为两个一次函数y= 和y=2x ,在同一直角坐标系内分别作出这两个函数的图像.3.方程组的解和这两个函数的图像的交点坐标有什么关系?由此得到本节课的第2个知识点:二元一次方程和相应的两条直线的关系以及二元一次方程组的图像解法;(1) 求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;(2) 求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的'解.(3) 解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种.注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.第三环节典型例题 (10分钟,学生独立解决)探究方程与函数的相互转化内容:例1 用作图像的方法解方程组例2 如图,直线与的交点坐标是 .第四环节反馈练习(10分钟,学生解决全班交流)内容:1.已知一次函数与的图像的交点为 ,则 .2.已知一次函数与的图像都经过点A(—2, 0),且与轴分别交于B,C两点,则的面积为.(A)4 (B)5 (C)6 (D)73.求两条直线与和轴所围成的三角形面积.4.如图,两条直线与的交点坐标可以看作哪个方程组的解?第五环节课堂小结(5分钟,师生共同总结)内容:以“问题串”的形式,要求学生自主总结有关知识、方法:1.二元一次方程和一次函数的图像的关系;(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;(2) 一次函数图像上的点的坐标都适合相应的二元一次方程.2.方程组和对应的两条直线的关系:(1) 方程组的解是对应的两条直线的交点坐标;(2) 两条直线的交点坐标是对应的方程组的解;3.解二元一次方程组的方法有3种:(1)代入消元法;(2)加减消元法;(3)图像法. 要强调的是由于作图的不准确性,由图像法求得的解是近似解.第六环节作业布置习题7.7A组(优等生)1、 2、3 B组(中等生)1、2 C组1、2二元一次方程教案3教学目标1、经历用方程组解决实际问题的过程,体会方程组是刻画现实世界的有效数学模型;2、能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程组;3、学会开放性地寻求设计方案,培养分析教学难点用方程组刻画和解决实际问题的过程。

初中数学教案:二元一次方程组【优秀8篇】

初中数学教案:二元一次方程组【优秀8篇】

初中数学教案:二元一次方程组【优秀8篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!初中数学教案:二元一次方程组【优秀8篇】元一次方程组篇一第1课 5.1二元一次方程组(1)教学目的1、使学生二元一次方程、二元一次方程组的概念,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。

解二元一次方程组教案(优秀6篇)

解二元一次方程组教案(优秀6篇)

解二元一次方程组教案(优秀6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!解二元一次方程组教案(优秀6篇)作为一名教师,编写教案是必不可少的,教案是教学活动的依据,有着重要的地位。

解二元一次方程组教案优秀9篇

解二元一次方程组教案优秀9篇

解二元一次方程组教案优秀9篇课前预习:篇一一、阅读教材P96-P98的内容二、独立思考:1、满足方程组的x的值是-1,则方程组的解是_____________.2、用代入法解方程组比较容易的变形是()、A、由①得B、由①得C、由得D、则得3、用代入消元法解方程以下各式正确的是()A、B、C、D、4、如果是二元一次方程,则的值是多少?二元一次方程篇二数学七年级下册《二元一次方程》数学教案一、教学目标:1、认知目标:1)了解二元一次方程组的概念。

2)理解二元一次方程组的解的概念。

3)会用列表尝试的方法找二元一次方程组的解。

2、能力目标:1)渗透把实际问题抽象成数学模型的思想。

2)通过尝试求解,培养学生的探索能力。

3、情感目标:1)培养学生细致,认真的学习习惯。

2)在积极的教学评价中,促进师生的情感交流。

二、教学重难点重点:二元一次方程的意义及二元一次方程的解的概念。

难点:把一个二元一次方程形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。

三、教学过程(一)创设情景,引入课题1、本班共有40人,请问能确定男女生各几人吗?为什么?(1)如果设本班男生x人,女生y人,用方程如何表示?(x+y=40)(2)这是什么方程?根据什么?2、男生比女生多了2人。

设男生x人,女生y人、方程如何表示?x,y的值是多少?3、本班男生比女生多2人且男女生共40人、设该班男生x人,女生y人。

方程如何表示?两个方程中的x表示什么?类似的两个方程中的y都表示?像这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。

4、点明课题:二元一次方程组。

(设计意图:从学生身边取数据,让他们感受到生活中处处有数学)(二)探究新知,练习巩固1、二元一次方程组的概念(1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。

[让学生看书,引起他们对教材重视。

找关键词,加深他们对概念的了解、](2)练习:判断下列是不是二元一次方程组,学生作出判断并要说明理由。

公式法解二元一次方程教案六篇

公式法解二元一次方程教案六篇

公式法解二元一次方程教案六篇关键信息项:1、教案数量:六篇2、教学目标:明确学生应掌握的知识和技能3、教学方法:详细阐述所采用的教学手段4、教学重点:突出重点内容5、教学难点:指明学生可能遇到的困难6、教学过程:包括导入、讲解、练习、总结等环节7、评估方式:说明如何考核学生的学习成果11 教学目标111 学生能够理解公式法解二元一次方程的基本原理。

112 学生能够熟练运用求根公式求解一般形式的二元一次方程。

113 培养学生的数学运算能力和逻辑推理能力。

12 教学方法121 讲授法:通过详细讲解公式的推导和应用,让学生掌握知识点。

122 练习法:安排适量的练习题,让学生在实践中巩固所学。

123 讨论法:组织学生讨论解题过程中的疑惑和难点,促进思维碰撞。

13 教学重点131 求根公式的推导和记忆。

132 正确运用求根公式求解方程。

14 教学难点141 求根公式中根的判别式的理解和应用。

142 对于复杂系数的方程,准确代入求根公式计算。

15 教学过程151 导入通过回顾一元二次方程的一般形式,引出求解方法的话题。

提出一些简单的一元二次方程,让学生尝试用配方法求解,为引入公式法做铺垫。

152 讲解推导求根公式,详细解释每一步的变形依据。

强调求根公式中各项的含义和使用条件。

举例说明如何运用求根公式求解方程,并展示完整的解题过程。

153 练习安排学生进行课堂练习,教师巡视指导,及时纠正错误。

挑选典型错题进行讲解,强化正确的解题思路。

154 总结总结公式法解二元一次方程的步骤和注意事项。

强调求根公式的重要性和应用范围。

16 评估方式161 课堂表现:观察学生的参与度、回答问题的准确性等。

162 作业完成情况:检查学生作业的正确率、书写规范等。

163 测验:定期进行小测验,检测学生对知识点的掌握程度。

21 教案一:基础概念与求根公式推导211 明确一元二次方程的一般形式:$ax^2 + bx + c = 0$($a \neq 0$)。

数学教案-二元一次方程与一次函数(优秀6篇)

数学教案-二元一次方程与一次函数(优秀6篇)

数学教案-二元一次方程与一次函数(优秀6篇)元一次方程教案篇一一、复习引入1.已知方程x2-ax-3a=0的一个根是6,则求a及另一个根的值。

2.由上题可知一元二次方程的系数与根有着密切的关系。

其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?3.由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的两根为x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.观察两式右边,分母相同,分子是-b+b2-4ac与-b-b2-4ac.两根之间通过什么计算才能得到更简洁的关系?二、探索新知解下列方程,并填写表格:方程 x1 x2 x1+x2 x1?x2x2-2x=0x2+3x-4=0x2-5x+6=0观察上面的表格,你能得到什么结论?(1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q之间有什么关系?(2)关于x的方程ax2+bx+c=0(a≠0)的两根x1,x2与系数a,b,c之间又有何关系呢?你能证明你的猜想吗?解下列方程,并填写表格:方程 x1 x2 x1+x2 x1?x22x2-7x-4=03x2+2x-5=05x2-17x+6=0小结:根与系数关系:(1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q的关系是:x1+x2=-p,x1?x2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零。

)(2)形如ax2+bx+c=0(a≠0)的方程,可以先将二次项系数化为1,再利用上面的结论即:对于方程ax2+bx+c=0(a≠0)∵a≠0,∴x2+bax+ca=0∴x1+x2=-ba,x1?x2=ca(可以利用求根公式给出证明)例1 不解方程,写出下列方程的两根和与两根积:(1)x2-3x-1=0 (2)2x2+3x-5=0(3)13x2-2x=0 (4)2x2+6x=3(5)x2-1=0 (6)x2-2x+1=0例2 不解方程,检验下列方程的解是否正确?(1)x2-22x+1=0 (x1=2+1,x2=2-1)(2)2x2-3x-8=0 (x1=7+734,x2=5-734)例3 已知一元二次方程的`两个根是-1和2,请你写出一个符合条件的方程。

一元二次方程解法公式法教案 公式法解二元一次方程教案六篇

一元二次方程解法公式法教案 公式法解二元一次方程教案六篇

一元二次方程解法公式法教案公式法解二元一次方程教案六篇篇一:2023公式法解二元一次方程教案教学内容:人教版七年级数学下册第八章二元一次方程组第2节P96页教学目标(1)基础知识与技能目标:会用代入消元法解简单的二元一次方程组。

(2)过程与方法目标:经历探索代入消元法解二元一次方程的过程,理解代入消元法的基本思想所体现的化归思想方法。

(3)情感、态度与价值观目标:通过提供适当的情境资料,吸引学生的注意力,激发学生的学习兴趣;在合作讨论中学会交流与合作,培养良好的数学思想,逐步渗透类比、化归的意识。

教学重、难点关键教学重点:用代入消元法解二元一次方程组教学难点:探索如何用代入消元法解二元一次方程组,感受消元思想。

教学关键:把方程组中的某个方程变形,而后代入另一个方程中去,消去一个未知数,转化成一元一次方程。

学生分析授课对象为少数民族地区的七年级学生,基础知识薄弱,特别是对一元一次方程内容掌握的不够透彻,再加上厌学现象严峻,团结协作的能力差,本节课设计了他们感兴趣的篮球比赛和常用的消毒液作为题材来研究二元一次方程组,既能调动他们的学习兴趣,又能解决本节课所涉及到的问题,为以后的进一步学习二元一次方程组做好铺垫。

教学内容分析:本节主要内容是在上节已认识二元一次方程(组)和二元一次方程(组)的解等概念的基础上,来学习解方程组的第一种方法代入消元法。

并初步体会解二元一次方程组的基本思想消元。

二元一次方程组的求解,不但用到了前面学过的一元一次方程的解法,是对过去所学知识的一个回顾和提高,同时,也为后面的利用方程组来解决实际问题打下了基础。

通过实际问题中二元一次方程组的应用,进一步增强学生学习数学、用数学的意识,体会学数学的价值和意义。

初中阶段要掌握的二元一次方程组的消元解法有代入消元法和加减消元法两种,教材都是按先求解后应用的顺序安排,这样安排既可以在前一小节中有针对性的学习解法,又可在后一小节的应用中巩固前面的知识,但教材相对应的练习安排较少,不过这样也给了学生一较大的发挥空间。

初中数学二元一次方程精品教案

初中数学二元一次方程精品教案

初中数学二元一次方程精品教案二元一次方程教学目标:一、知识与技能目标:1.理解二元一次方程的定义;2.能够准确叙述二元一次方程解的概念;3.能熟练求出二元一次方程的一个解。

二、过程与方法目标:通过探索二元一次方程的解的过程,培养学生的数学交流和归纳猜想的能力。

三、情感态度与价值观目标:体会到数学推理的奥妙,能用数学知识解决实际问题。

重点:1.探索二元一次方程的解的过程;2.利用一元一次方程求解的方法求二元一次方程的一个解。

难点:二元一次方程的解的求解。

教学过程:一、课前回顾在前面的研究中,我们已经了解了一元一次方程的概念,包括定义和相关概念。

请大家回忆一下相关知识。

一元一次方程是指“含有一个未知数,并且未知数的项的次数为一次的方程”。

例如“x=3x、2x=6x-1、9x-6=2x”都是一元一次方程,特别注意的是这里的一元是指含有一个未知数,一次是指未知数的次数为一次。

那么如果含有两个未知数,那么我们应该如何处理呢?在本节课中,我们将进一步研究有两个未知数的方程的相关知识。

二、活动探究在高速公路上,一辆轿车行驶2小时的路程比一辆卡车行驶3小时的路程多20千米。

设轿车的速度为a千米/时,卡车的速度为b千米/时,可列方程:2a = 3b + 20.1)这是一元一次方程吗?2)一元一次方程是怎样的?3)你觉得这个方程应该叫什么?探究结果:请阅读教材第32页,与你的答案有何不同?三、课堂练通过课堂练,巩固概念,介绍二元一次方程解的概念。

归纳:1)解的形式(成对出现);2)一般情况下,二元一次方程的解有无数个。

三、例题讲解归纳:提问:根据表格,你能写出该方程的一个解吗?例2:已知方程3x+2y=10.1)用关于x的代数式表示y。

2)求当x=-2,0,3时对应的y值,并写出3x+2y=10的三个解。

分析:要用关于x的代数式表示y,只要把3x+2y=10看做未知数是y的一元一次方程。

解:1)移项,得2y=10-3x。

二元一次方程组的数学教案最新9篇

二元一次方程组的数学教案最新9篇

二元一次方程组的数学教案最新9篇公式法解二元一次方程教案篇一一。

教学目标(一)教学知识点1、代入消元法解二元一次方程组。

2、解二元一次方程组时的消元思想,化未知为已知的化归思想。

(二)能力训练要求1、会用代入消元法解二元一次方程组。

2、了解解二元一次方程组的消元思想,初步体会数学研究中化未知为已知的化归思想。

(三)情感与价值观要求1、在学生了解二元一次方程组的消元思想,从而初步理解化未知为已知和化复杂问题为简单问题的化归思想中,享受学习数学的乐趣,提高学习数学的信心。

2、培养学生合作交流,自主探索的良好习惯。

二。

教学重点1、会用代入消元法解二元一次方程组。

2、了解解二元一次方程组的消元思想,初步体现数学研究中化未知为已知的化归思想。

三。

教学难点1、消元的思想。

2、化未知为已知的化归思想。

四。

教学方法启发自主探索相结合。

教师引导学生回忆一元一次方程解决实际问题的方法并从中启发学生如果能将二元一次方程组转化为一元一次方程。

二元一次方程便可获解,从而通过学生自主探索总结用代入消元法解二元一次方程组的步骤。

五。

教具准备投影片两张:第一张:例题(记作7.2A);第二张:问题串(记作7.2B)。

六。

教学过程Ⅰ。

提出疑问,引入新课[师生共忆]上节课我们讨论过一个希望工程义演的问题;没去观看义演的成人有x个,儿童有y个,我们得到了方程组成人和儿童到底去了多少人呢?[生]在上一节课的做一做中,我们通过检验是不是方程x+y=8和方程5x+3y=34,得知这个解既是x+y=8的解,也是5x+3y=34的解,根据二元一次方程组解的定义得出是方程组的解。

所以成人和儿童分别去了5个人和3个人。

[师]但是,这个解是试出来的。

我们知道二元一次方程的解有无数个。

难道我们每个方程组的解都去这样试?[生]太麻烦啦。

[生]不可能。

[师]这就需要我们学习二元一次方程组的解法。

Ⅰ。

讲授新课[师]在七年级第一学期我们学过一元一次方程,也曾碰到过希望工程义演问题,当时是如何解的呢?[生]解:设成人去了x个,儿童去了(8-x)个,根据题意,得:5x+3(8-x)=34解得x=5将x=5代入8-x=8-5=3答:成人去了5个,儿童去了3个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“二元一次方程”教案、教案说明及点评执教人朱周刚(浙江省诸暨市璜山镇中)点评人张福生(上海市教委教研室)教案教学内容七年级下册(浙江版)第四章二元一次方程组的第一节。

教学目标1.理解二元一次方程及二元一次方程的解的概念;2.学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;3.学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示。

教学重点、难点重点:二元一次方程的意义及二元一次方程的解的概念难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。

教学过程1.创设情境,引入新知课前播放一段录象:《舞蹈世界》,录象内容是2006年春节联欢晚会上轰动一时的由60-85岁的老年朋友组成的业余舞蹈队演出的舞蹈节目《俏夕阳》。

多媒体出示从中国社会保障网站上找到了一则新闻(新闻链接),从中截取了主要部分如下:桐乡70岁以上老人可领取生活补助根据桐乡市2008年的有关规定,70周岁至89周岁的城镇居民每人每月补助80元, 90周岁以上的城镇居民每人每月补助150元 ,桐乡市梧桐街道三月份共发放生活补助金902 880元.如果设70周岁至89周岁的城镇居民有x人, 90周岁以上的城镇居民有y人,则可列等式: 8x+150y=902 880.多媒体出示求是实验中学校园网站中一则新闻资料:爱心满人间——记求是中学“学雷锋、关爱老人”志愿者活动参加活动的36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人.设劳动组有x个,文艺组有y个,则可得等式:3x+6y=36.2、类比旧知,归纳新知请学生观察刚才得到的两个方程80x+150y=902 8803x+6y=36.然后引导:这两个方程是我们学过的一元一次方程吗?由一名学生来阐述什么叫做一元一次方程,它的特征有哪些?含有一个未知数并且未知数的次数为一次的整式方程叫一元一次方程,它的特征有三个:①含有一个未知数;②未知数的次数是一次;③方程两边都是整式。

(中间过程不完整的由教师补充并完善)与一元一次方程的特征作比较,我们对类似于上述两个方程取一个怎样的名称呢?(二元一次方程)(板书)二元一次方程鼓励学生找出二元一次方程有怎样的特征?①含有两个未知数;②未知数的次数是一次;③方程两边都是整式。

(多媒体上同页显示,便于学生逐条比较)重点理解处,用举例的方法说明:对于方程xy+8=5x,大家认为它是二元一次方程吗?xy(多媒体中红色记号圈出)这个项的次数是几次?xy作为一个单项式,它的次数是几次?(两次)那么大家认为xy+8=5x是二元一次方程吗?小结:所以我们把②未知数的次数是一次;③方程两边都是整式两条应归结为:含有未知数的项的次数是一次,其意义中已包含了等式两边都是整式,因为单项式与多项式统称为整式。

(多媒体上两种方程的特征同页显示,让学生再作比较,为得出二元一次方程的概念作准备)得出概念:含有两个未知数,并且所含未知数的项的次数是一次的方程叫做二元一次方程(教师板书,同时多媒体投影)你认为这里哪几个是关键词呢?(两个未知数,项的次数,一次)在上述过程中,我们通过与一元一次方程的比较得出了什么叫二元一次方程,其中用到了一种重要的数学思想:类比思想(板书),是同学们以后学习新知识中经常会遇到的,希望大家引起重视。

练习:请你判断下列式子是否为二元一次方程?(1) x-2y=8;(2) x2+y=0;(3) x=2/y+1;(4) a+1/2b;(5) xy+y=2;(6)x/3 +2y=0.(生逐一判定,师做响应解释)3.尝试探究,深入了解回到刚才的爱心满人间活动,请看问题:参加活动的36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人.团支书拟安排8个劳动组,2个文艺组,单从人数上考虑,此方案是否可行?为什么?结合一元一次方程解的概念,引导学生:把x=8,y=2 代入二元一次方程3x+6y=36,看看左右两边有没有相等?与一元一次方程的解相类似我们可以得出:使二元一次方程两边的值相等的一对未知数的值叫做二元一次方程的一个解(同时板书).强调其书写方格式为⎩⎨⎧==.28y x ;(出示试一试)检验下列各组数是不是方程2x=y+1的解。

①⎩⎨⎧==45.2y x ②⎩⎨⎧==34y x ③⎩⎨⎧-=-=136y x ①③是方程的解②不是方程的解。

大家是否注意到这里有两个解都符合此方程,你觉得此方程还有其它解吗? 那么你的解又怎样呢?(学生报出各自的答案,教师帮着一一板书)我们这样写得完吗?(此时学生已充分感知)(引导)由此我们能得到什么结论?一般情况下,二元一次方程有无数个解。

4.合作学习,感悟方法一起来探求2x+y=8,如果已知x 的值:1,5,-2,0.5(多媒体在表格中显示),请同学们求出对应y 的值(y 的对应值为:6,-2,12,7)你是怎样求出来的呢?思考过程可以表示为下面的过程对2x+y=8 把2x 移项 得 y=8-2x我们发现当已知x 的值时,用形如y=8-2x 的形式求对应y 的值显得更方便,我们把形如 y=8-2x 的过程称为用含x 的代数式表示y,这样当已知x 的值时,可使求y 的值简单方便。

(同时多媒体显示:2x+y=8 用含x 的代数式表示y : y=8-2x )那么当已知y 的值时,我们可用?(含用含y 的代数式表示x (同时多媒体显示用含y 的代数式表示x )并板书变形过程得出 ,同时在多媒体上用一个页面显示下列过程: 2y 4x -=用含x 的代数式表示y : y=8-2x2x+y=8用含y 的代数式表示x : ) 让学生体会到用含x 的代数式表示y 或用含y 的代数式表示x ,能使求方程解的过程变得简洁明了。

5.范例分析,强化应用(出示例题)已知二元一次方程 3x+2y=10.(1)用关于x 的代数式表示y ;(2) 求当x= 2,0,-3时,对应的y 的值,并写出方程3x+2y=10的三个解。

(师生合作,教师在黑板上规范书写,起到示范作用)6.新知盘点,分享收获屏幕上显示的16个字(寿比南山 福如东海 儿孙满堂 尽享天伦)通常用来祝福老年人,每一句话后面都隐藏着与本节课有关的一个问题,有信心来挑战吗?①小红到邮局给远在农村的爷爷寄挂号信,需要邮资3元8角。

小红有票额为6角和8角的邮票若干张,设6角的邮票有x 张,8角的邮票有y 张,可列方程:②下列方程是二元一次方程的是( )(A )x 2+x=1. (B )2x+3y -1=0.(C )x+y -z=0. (D )x+1/y +1=0.生丙: 我选福如东海③下列各组数中,是二元一次方程5x -y=2的一个解的是( )x = 3 ,x = 0 , x = 2 ,,y = 1; y = 2 ; y = 0 ;④已知二元一次方程3x-y=10,用x 代数式表示y= ;当x=6时,y 得值= .(学生答对后教师对前一填空设问)你是怎样变形得到y=3x-10的呢?7.课堂小结,思想升华第一个问题中小红同学在学习的同时不忘给远在农村的爷爷写信,今天老师2y 4x -=也要求同学们给爷爷写一封信(轻音乐伴响,给人一种温馨和谐的感觉,学生经过紧张的学习后可以作适当的调节、放松),请看,信的开头老师已经帮助写上:(亲爱的爷爷,您好!最近身体好吧?我很想念您.今天,来自绍兴的朱老师带领我们一起学习了……)师小结:我们今天学习了形如x+y=100的方程,我们用x代表数学知识,y 代表数学思想,如果你两者都掌握了,那么我们今天这节课可以打100分,希望同学们在今后的学习中能更加认真地学好数学知识,领会数学思想,取得更优异的成绩!8.布置作业:1、教材P82 2、作业本。

教案说明(1)教学内容选自浙教版七年级下册第四章“二元一次方程组”第一节“二元一次方程。

本节课的授课内容属于概念课教学。

数学学科的内容有其固有的组成规律和逻辑结构,它总是由一些基本的数学概念作为核心和逻辑起点,形成系统的数学知识,所以数学概念是数学课程的核心。

二元一次方程作为初中阶段接触的第二类方程,形成概念并不难,关键如何理解它的概念。

因此本节课的教学重点是二元一次方程的概念及二元一次方程解的概念。

把一个二元一次方程变形成为用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程,这对于七年级学生来讲比较困难,如何突破是本节课设计中的关键。

(2)学习本节内容的基础是等式概念,方程概念和一元一次方程知识,该内容是二元一次方程组的起始部分,在本章教学中起着承上启下的作用,并为以后学习一次函数打下基础。

(3)由于是概念课,让学生理解二元一次方程的概念尤为重要,学生对“含有未知数的项的次数”的内涵的理解是最困难的,针对学生已有一元一次方程的概念,充分采用类比的方法,先让学生罗列一元一次方程的三个特征①含有一个未知数;②未知数的次数是一次;③方程两边都是整式。

然后对照上述三个特征,组织学生观察二元一次方程的特征,学生一般都会得出三条对比后得到的特征:①含有两个未知数;②未知数的次数是一次;③方程两边都是整式。

此时,用举例的方法说明:对于方程xy+8=5x,大家认为它是二元一次方程吗?xy这个项的次数是几次?xy作为一个单项式,它的次数是几次?那么大家认为xy+8=5x是二元一次方程吗?引导学生明白②未知数的次数是一次;③方程两边都是整式。

两条应归结为:含有未知数的项的次数是一次,其意义中已包含了等式两边都是整式,因为单项式与多项式统称为整式,继而说明二元一次方程的概念。

学生对二元一次方程解的个数和写法的理解和掌握需要与一元一次方程的方程再次类比,说清楚产生根本区别是因为未知数个数的增加。

例题中的把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,学生接受比较困难,设计时采用通过降低例题的难度,使学生迅速掌握用关于一个未知数的代数式表示另一个未知数的方法,体会运用这种方法可使求二元一次方程解的过程更简便。

(4)本课题的设计总体以人为本,在充分理解教材编写意图的前提下,以新课程理念为指导,通过创设问题情境,让学生感受数学知识的产生、发展与形成过程,体现了自主探究、合作交流的教学方式,重在培养学生的观察、比较、分析、思考、探究的能力,在课堂实施过程中不但重视知识的发生与形成过程,同时注重数学思想方法和思想情感教育的渗透,使学生的思想情操在此得到升华。

教学方法与教学手段:主要运用类比与转化思想,通过与一元一次方程的比较引出二元一次方程的概念,加强学生对类比思想的感悟与认识;结合多媒体通过创设实际问题情境使学生认识到数学是根据实际需要产生发展的,在学习过程中同时也培养了学生的初步的数学建模意识。

相关文档
最新文档