人教版七年级上册方案设计型应用题配答案样本

合集下载

人教版数学初一上册之方案问题

人教版数学初一上册之方案问题

本文档支持任意编辑, 下载使用,定会成功!
3:甲乙两商店作业本的标价都是1元, 甲商店的优惠条件是购买10本以上,从 第11本开始按标价的七折出售,乙商店 从第一本就按标价的八五折出售,请你 按购买的个数设计合理的省钱方案。
小结:通过今天的学习,我们怎么解 决方案选择问题?
解决方案问题的三步: 1.找出决定选择方案的关键因素,设为未 知数,并用其将不同的方案表示成代数式 2.找到使几种方案相等的临界值 3.通过特值得出的关系结合实际情况判断 选择
一元一次方程的应用
------方案选择问题
例1 两种移动电话计费方式 移 动 联 通 月租费 30元/月 0 本地通话费 0.30元/分 0.40元/分 你的父母各有一部手机,父亲业务繁 忙,通话时间比较长,母亲工作单一, 通话时间短,你能帮助你的父母设计 一个省钱的方案吗?
例1 两种移动电话计费方式 移 动 联 通 月租费 30元/月 0 本地通话费 0.30元/分 0.40元/分 (1)如果月通话时间为x分,你能用含x 的代数式表示两种计费方式吗? (2)对于某个本地通话时间,会出现两
种计费方式的收费一样的情况吗? (3)一个月内在本地通话200分和350 分,按两种计费方式各需交费多少元?
1.某地上网有两种收费方式,用户可以 任选其一:A. 计时制:3元/时 B. 包月制:60元/月。 此外,每一种上网方式都加收通讯费 1元/时。 (1)请你为用户设计一个方案,使用户 能合理地选择上选用哪种上网方式比较合算?

最新2022人教版七年级上册数学应用题类型大全及答案

最新2022人教版七年级上册数学应用题类型大全及答案

应用题类型大全及答案知能点2:方案选择问题6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,•在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?7.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50•元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1•分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的费用相同?(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?8.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费。

(1)某户八月份用电84千瓦时,共交电费30.72元,求a.(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦时?•应交电费是多少元?9.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C 种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?10.小刚为书房买灯。

人教版七年级上册 第3章:一元一次方程的应用-方案选择问题(含答案)

人教版七年级上册 第3章:一元一次方程的应用-方案选择问题(含答案)

人教版七年级上册 一元一次方程的应用-方案选择问题(含答案)一、单选题1.某汽车队运送一批货物,每辆汽车装4 t ,还剩下8 t 未装,每辆汽车装4.5 t 就恰好装完.该车队运送货物的汽车共有多少辆?设该车队运送货物的汽车共有x 辆,可列方程为( ) A .4x +8=4.5x B .4x -8=4.5x C .4x =4.5x +8D .4(x +8)=4.5x2.某服装店出售一种优惠卡,花200元买这种卡后,凭卡可以在这家商店按8折购物,下列情况买购物卡合算的是( ) A .购物高于800元 B .购物低于800元 C .购物高于1 000元 D .购物低于1 000元3.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.若设这个班有x 名学生,则依题意所列方程正确的是( ) A .3x -20=4x -25 B .3x +20=4x +25 C .3x -20=4x +25 D .3x +20=4x -254.41人参加运土劳动,有30根扁担,要安排多少人抬,多少人挑,可以使扁担和人数相配不多不少?若设有x 人挑土,则可列出的方程是( ) A.2(30)41x x --= B.(41)302x x +-= C.41302xx -+= D.3041x x -=-5.小华带x 元去买甜点,若全买红豆汤圆刚好可买30杯,若全买豆花刚好可买40杯.已知豆花每杯比红豆汤圆便宜10元,依题意可列出下列哪一个方程式( )A.103040x x=+ B.104030x x =+ C.104030x x += D.104030x x+= 6.某土建工程共需动用15台挖运机械,每台机械每分钟能挖土3 m 3或者运土2 m 3.为了使挖土和运土工作同时结束,安排了x 台机械运土,这里x 应满足的方程是( )A.2x=3(15-x) B.3x-2x=15C.15-2x=3x D.3x=2(15-x)7.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元) 每次游泳收费(元) A类50 25B类200 20C类400 15例如,购买A类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为()A.购买A类会员年卡B.购买B类会员年卡C.购买C类会员年卡D.不购买会员年卡二、填空题8.张老师带学生乘车外出郊游,甲车主说:”不论师生,每人8折,"乙车主说:“学生9折,老师免费,“张老师算了一下,不论坐谁的车,费用一样,则张老师带的学生人数是________.9.学校买来大、小椅子共20张,共花去275元.已知大椅子每张15元,小椅子每张10元,问买了大椅子共多少张?若设买了大椅子x张,填写下表:大椅子小椅子张数(张)x钱数(元)小椅子____张,大椅子的钱数为____,小椅子的钱数为________,本题中的等量关系为________________,列出方程为____________,解得x=_______.因此,买了大椅子_________张.10.将一批490吨的货物分给甲、乙两船运输,现甲、乙两船分别运走了其任务的57、37,在已运走的货物中,甲船比乙船多运30吨,则分配给甲、乙两船的任务数分别是_______吨、_______吨.三、解答题11.某商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元. (1)若该商场同时购进甲、乙两种商品共100件,恰好用去2700元,求能购进甲、乙两种商品各多少件?(2)按规定,甲种商品的进货不超过50件,甲、乙两种商品共100件的总利润不超过760元,请你通过计算求出该商场所有的进货方案;(3)在“五一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销活动:打折前一次性购物总金额优惠措施不超过300元不优惠超过300元且不超过400元售价打九折超过400元售价打八折按上述优惠条件,若贝贝第一天只购买甲种商品一次性付款200元,第二天只购买乙种商品打折后一次性付款324元,那么这两天他在该商场购买甲、乙两种商品各多少件?12.现有若干本书分给班上的同学,若每人分5本,则还缺20本;若每人分4本,则剩余25本.班上共有多少名同学?多少本书?(1)设班上共有x名同学,根据题意列方程;(2)设共有y本书,根据题意列方程;(3)选择上面的一种设未知数的方法,解决问题.13.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价的8折优惠;在乙超市购买商品超出200元之后,超出部分按原价的8.5折优惠,设某顾客预计累计购物x元(x>300元).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用;(2)当该顾客累计购物500元时,在哪个超市购物合算.14.小明用的练习本可以到甲、乙两家商店购买,已知两商店的标价都是每本2元,甲商店的优惠条件是购买10本以上,从第11本开始按标价的70%出售;乙商店的优惠条件是,从第一本起按标价的80%出售.(1)设小明要购买x(x>10)本练习本,则当小明到甲商店购买时,须付款元,当到乙商店购买时,须付款元;(2)买多少本练习本时,两家商店付款相同?(3)小明准备买50本练习本,为了节约开支,应怎样选择哪家更划算?15.淘淘到书店帮同学买书,售货员告诉他,如果用20元钱办会员卡,将享受八折优惠,请问在这次买书中,淘淘在什么情况下,办会员卡与不办会员卡费用一样?当淘淘买标价共计200元的书时,怎么做合算?能省多少钱?16.某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不少于5盒).问:(1)当分别购买20盒、40盒乒乓球时,去哪家商店购买更合算?(2)当购买乒乓球多少盒时,两种优惠办法付款一样?17.某原料供应商对购买其原料的顾客实行如下优惠办法:(1)一次购买金额不超过1万元,不予优惠;(2)一次购买金额超过1万元,但不超过3万元,全部9折优惠;(3)一次购买的超过3万元,其中3万元9折优惠,超过3万元的部分8折优惠.某人因库容原因,第一次在供应商处购买原料付7800元,第二次购买付款26100元,如果他是一次购买同样数量的原料,则应付款多少元?可少付款多少元?18.某地电话拨号上网有两种收费方式,用户可以任选其一:(A)计时制,0.05元∕分;(B)包月制,50元∕分(限一部个人住宅电话上网);此外,每种上网方式都附加通信费0.02元∕分。

人教版七年级上册方案设计型应用题配答案

人教版七年级上册方案设计型应用题配答案

七年级上册方案问题应用题及答案'于得英整理(方案设计型应用题1、据电力部门统计,每天8︰00至21︰00是用点高峰期,简称“峰时”,21︰00至次日8︰00是用电低谷期,简称“谷时”。

为了缓解供电需求紧张的矛盾,我市电力部门拟逐步统一换装“峰谷分时”电表,对用电实行“峰谷分时电价”新政策,具体见下表:[小明家对换表后最初使用的95度电进行测算,经测算比换表前使用95度电节约了元,问小明家使用“峰时”电和“谷时”电分别是多少度解:设问小明家使用“峰时”用电为x度,“谷时”用电分95-x度x+ ⨯(95-x)+ = 95 ⨯x=6095-60=35(度)答:小明家使用“峰时”用电为60 度,“谷时”电分35度2、电信部门推出两种电话计费方式如下表:(1)当通话时间是多少分钟时两种方式收费一样多解:设当通话时间是x分钟时两种方式收费一样多,根据题意得:+30= 解方程得:x= 300(2)当通话时间X>300分钟时,A种收费方式省钱;当通话时间X<300分钟时,B种收费方式省钱.¥3、某单位急需要用车,但无力购买,他们决定租车使用,某个体出租车司机的条件是:每月付1210元工资,另外每百千米付10元汽油费;另一国营出租车公司的条件是:每百千米付120元。

(1)这个单位若每月平均跑1000千米,租谁的车划算(2)求这个单位每月平均跑多少千米时,租哪家公司的车都一样(1)10÷100=元120÷100=元?1210+1000×=1310元×1000=1200元1310>1200答:租国营的车划算(2)解:设这个单位每月平均跑x千米时,租哪家公司的车都一样1210+x=xx=1100:答:这个单位每月平均跑1100千米时,租哪家公司的车都一样4、小明想在两种灯中选购一种,其中一种是10瓦(即千瓦)的节能灯,售价50元,另一种是100瓦(即千瓦)的白炽灯,售价5元,两种灯的照明效果一样,使用寿命也相同(3000小时内),节能灯售价高,但较省电,白炽灯售价低,但用电多,电费元/千瓦·时(1)照明时间500小时选哪一种灯省钱(2)照明时间1500小时选哪一种灯省钱(3)照明多少时间用两种灯费用相等?解:(1)××500+50=元××500+5=30元>30答:选白炽灯省钱(2)××1500+50=元××1500+5=80元<80解:照明x时间用两种灯费用相等××x+50=××x+5*x=45x=1000答:照明时间1000小时用两种灯费用相等5、某农户2000年承包荒山若干公顷,投资7800元改造后,种果树2000棵,今年水果总产量为18000kg,此水果在市场上每千克售a元,在果园每千克售b元(b<a),该农户将水果运到市场出售,平均每天出售1000kg,需8人帮助,每人每天付工资25元,汽车运费及其它各项税费平均每天100元。

部编数学七年级上册专题一元一次方程的应用(5)方案设计问题(重难点培优)同步培优(人教版】含答案

部编数学七年级上册专题一元一次方程的应用(5)方案设计问题(重难点培优)同步培优(人教版】含答案

【讲练课堂】2022-2023学年七年级数学上册尖子生同步培优题典【人教版】专题3.10一元一次方程的应用(5)方案设计问题(重难点培优)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,试题共26题,其中选择10道、填空8道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置. 一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的. 1.(2022·全国·七年级专题练习)今年开学,由于疫情防控的需要,某学校统一购置口罩,其中给七年级(1)班全体学生配备了一定数量的口罩,若给每个学生发3个口罩,则多30个口罩,若给每个学生发5个口罩,则少50个口罩,请问该班有多少名学生?设该班有为x 名学生,可列方程( )A .3x +30=5x +50B .3x +30=5x ―50C .3x ―50=5x +30D .3x ―30=5x ―50【答案】B【分析】由题意可知无论怎样发口罩,口罩的总数量是不变的,由此即可列出方程.【详解】设该班有x 名学生,根据题意可列方程:3x +30=5x ―50,故选B .【点睛】本题考查一元一次方程的实际应用.根据题意找出等量关系,列出等式是解答本题的关键.2.(2022·江苏宿迁·七年级期末)某小组有m 人,计划做n 个“中国结”,若每人做5个,则可比计划多做9个;若每人做4个,则将比计划少做15个.①5m +9=4m ﹣15;②n 95=n 154;③n 95=n 154;④5m ﹣9=4m +15.其中正确的是( )A .①②B .②④C .②③D .③④【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.3.(2022·重庆丰都·七年级期末)如图为某快餐店促销活动的内容,某同学到该快餐店购买相差6元的2种快餐各1份,结账时,店员说:“你多买2瓶指定饮料,按促销活动优惠价的金额,和你只买2份快餐的金额一样.”这位同学想了想说:“我还是只多买1瓶指定饮料吧,麻烦您以最便宜的方式给我结账,谢谢!”这位同学要付的金额是()A.55B.54C.58D.61【答案】A【分析】设价格较低的快餐的单价为x元,则价格较高的快餐的单价为(x+6)元,根据“你多买2瓶指定饮料,按促销活动优惠价的金额,和你只买2份快餐的金额一样”即可得出关于x的一元一次方程,解之即可得出x的值,再将其价格较高的快餐搭配1瓶指定饮料,求出该同学应付金额即可得出结论.【详解】解:设价格较低的快餐的单价为x元,则价格较高的快餐的单价为(x+6)元,依题意得:x+(x+6)=29×2,解得:x=26,∴x+6=26+6=32,∴这位同学要付的金额是x+29=26+29=55.故选:A.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.4.(2021·江苏苏州·七年级期末)商店将标价为6元的笔记本,采用如下方式进行促销;若购买不超过3本,则按原价付款;若一次性购买3本以上,则超过的部分打七折.小明有54元钱,他购买笔记本的数量是( )A.11本B.最少11本C.最多11本D.最多12本【答案】C【分析】易得54元可购买的商品一定超过了3本,关系式为:3×原价+超过3本的本数×打折后的价格≤54,把相关数值代入计算求得最大的正整数解即可.【详解】解答:解:设他购买笔记本的数量是x本,依题意有3×6+(x﹣3)×6×0.7≤54,丽平均每小时采摘7kg.采摘结束后,王芳从她采摘的樱桃中取出0.25kg给了李丽,这时两人的樱桃一样多.她们采摘用了多长时间?设她们采摘所用时间为t小时,下列方程正确的是()A.8t―0.25=7t B.(8―0.25)t=7tC.(8―0.25)t=(7+0.25)t D.8t―0.25=7t+0.25【答案】D【分析】根据王芳从她采摘的樱桃中取出0.25kg给了李丽,这时两人的樱桃一样多得出方程求出答案.【详解】设她们采摘用了t小时,根据题意可得:8t―0.25=7t+0.25,故选:D.【点睛】本题主要考查了由实际问题抽象出一元一次方程,根据采摘的质量间的数量关系得出等式是解题关键.6.(2021·全国·七年级专题练习)某超市推出如下优惠方案:(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元,但不超过300元一律九折;(3)一次性购物超过300元一律八折;兰兰两次购物分别付款80元,252元.如果兰兰一次性购买和上两次相同的物品应付款()A.288元B.288元和332元C.332元D.288元和316元【答案】D【分析】要求他一次性购买以上两次相同的商品,应付款多少元,就要先求出两次一共实际买了多少元,第一次购物显然没有超过100,即是80元.第二次就有两种情况,一种是超过100元但不超过300元一律9折;一种是购物超过300元一律8折,依这两种计算出它购买的实际款数,再按第三种方案计算即是他应付款数.【详解】解:(1)第一次购物显然没有超过100,即在第一次消费80元的情况下,他的实质购物价值只能是80元.(2)第二次购物消费252元,则可能有两种情况,这两种情况下付款方式不同(折扣率不同):①第一种情况:他消费超过100元但不足300元,这时候他是按照9折付款的.设第二次实质购物价值为x,那么依题意有x×0.9=252,解得:x=280.①第二种情况:他消费超过300元,这时候他是按照8折付款的.设第二次实质购物价值为x,那么依题意有x×0.8=252,解得:x=315.即在第二次消费252元的情况下,他的实际购物价值可能是280元或315元.综上所述,他两次购物的实质价值为80+280=360或80+315=395,均超过了300元.因此均可以按照8折付款:360×0.8=288元395×0.8=316元故选D.【点睛】本题考查了一元一次方程的应用,解题关键是第二次购物的252元可能有两种情况,需要讨论清楚.本题要注意不同情况的不同算法,要考虑到各种情况,不要丢掉任何一种.7.(2021·安徽合肥·七年级期末)某超市在“元旦”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠;小敏在该超市两次购物分别付了85元和270元,如果小敏把这两次购物改为一次性购物,则小敏至少需付款()元A.284B.308C.312D.320当y>350时,0.8y=270,∴y=337.5(不符合题意,舍去);∴y=300;∴0.8×(85+300)=308(元).∴小敏至少需付款308元.故选:B.【点睛】此题主要考查了一元一次方程的应用,解题关键是第一次购物的90元可能有两种情况,需要讨论清楚.本题要注意不同情况的不同算法,要考虑到各种情况,不要丢掉任何一种.8.(2021·江西吉安·七年级期末)甲、乙两店以同样价格出售一种商品,并推出不同的优惠方案在甲店累计购物超过100元后,超出100元的部分打9折;在乙店累计购物超过50元后,超出50元的部分打9.5折,则顾客到两店购物花费一样时为()A.累计购物不超过50元B.累计购物超过50元不超过100元C.累计购物超过100元D.累计购物不超过50元或刚好为150元家取一鹿,不尽,又三家共一鹿,适尽.问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的每3家共取一头,恰好取完.问城中有多少户人家?()A.55户B.65户C.75户D.85户【答案】C【分析】设城中有x户人家,由题意列一元一次方程,解一元一次方程即可解题.【详解】解:设城中有x户人家,根据题意得,的基本框架.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三.问人数,羊价各几何?”译文:“假设有若干人共同出钱买羊,如果每人出5钱,那么还差45钱;如果每人出7钱,那么仍旧差3钱,求买羊的人数和羊的价钱.”设羊是x 钱,则可列方程为( )A .x 457=x 35B .x 455=x 37C .x 455=x 37D =x 35二、填空题11.(2022·江苏扬州·七年级期末)把一些图书分给某组学生阅读,如果每人分4本,则剩余1本;如果每人分5本,则还缺4本,这个小组的学生有____人.【答案】5【分析】设这个班有x 名学生,根据“如果每人分4本,则剩余1本;如果每人分5本,则还缺4本”建立方程求解即可.【详解】解:设这个小组的学生有x本4x+1=5x-4x=5故答案为:5.【点睛】本题考查一元一次方程的应用,读懂题意找到等量关系式是解题的关键.12.(2022·山东烟台·七年级期末)22年冬奥会开幕式上,烟台莱州武校的健儿们参演的立春节目让全世界人民惊艳和动容,小明想知道这震撼人心的队伍的总人数.张老师说你可以自己算算:若调配55座大巴若干辆接送他们,则有8人没有座位;若调配44座大巴接送,则用车数量将增加两辆,并空出3个座位,你能帮小明算出一共去了_______名健儿参演节目吗?【答案】393【分析】设有55座大巴x辆,则44座大巴(x+2),根据人数相等列出一元一次方程,解方程,进而即可求解.【详解】解:设有55座大巴x辆,则44座大巴(x+2),根据题意得,55x+8=44(x+2)―3,解得x=7,则总人数为55×7+8=393(人),故答案为:393.【点睛】本题考查了一元一次方程的应用,根据题意列出方程是解题的关键.13.(2022·全国·七年级专题练习)七年级部分学生去某处旅游,如果每辆汽车坐30人,那么有15个学生没有座位;如果每辆汽车坐45人,那么空出1辆汽车.若设有x辆汽车,则可列方程为______.【答案】30x+15=45(x―1)【分析】设有x辆汽车,根据如果每辆汽车坐30人,那么有15个学生没座位,可得学生有30x+15;如果每辆汽车坐45人,那么空出一辆汽车,可得学生有45(x﹣1),由学生人数相等可列出方程.【详解】解:设有x辆汽车,根据题意列方程得,30x+15=45(x―1)故答案为:30x+15=45(x―1).【点睛】本题主要考查了由实际问题抽象出一元一次方程,根据设出汽车数,以人数做为等量关系列方程求解是解题关键.14.(2022·北京·七年级期末)周末,小康一家和姑姑一家(共6人)相约一起去观看电影《长津湖》.小康用手机查到家附近两家影城的票价和优惠活动如下:影城票价(元)优惠活动时光影城48学生票半价遇见影城50网络购票,总价打八折小康利用网络给所有人都购了票,他发现在两家影城购票的总费用相同,则购票的总费用是_____元,两家共有学生______.某复印店的收费标准如下:①印制册数不超过100册时,每册2元;②印制册数超过100册但不超过300册时,每册按原价打八折;③印制册数超过300册时,前300册每册按原价打八折,超过300册的部分每册按原价打六折;学校在复印店印制了两次宣传册,分别花费192元和576元,如果学校把两次复印的宣传册合并为一次复印,则可节省______元.【答案】76.8或48【分析】先求出三类收费标准对应的花费钱数的取值范围,根据题目中所花费的金额,分类讨论,求出两次对应购买的册数,然后对应求出合并后的花费,最后即可求出答案.【详解】解:设:印制册的花费为a元,由题意可知:当印制册数不超过100册时,对应的花费a≤200元,当印制册数超过100册但不超过300册时,对应的花费为160<a≤480元,当印制册数超过300册时,对应的花费为a>480元,对于第一次花费来说,设宣传册数为x,由于花费为192元,故分两种情况讨论,①当x≤100时,2x=192,解得:x=96,②当100<x≤300时,2x⋅0.8=192,解得:x=120,对于第二次花费来说,设宣传册数为y,由于花费为576元,故只能是第③种优惠方案,∴300×2×0.8+2(y―300)⋅0.6=576,解得:y=380∴第一次购买是96册时:优惠为192+576―[300×2×0.8+2(96+380―300)⋅0.6]=76.8元,第一次购买是120册时:优惠为192+576―[300×2×0.8+2(120+380―300)⋅0.6]=48元,故答案为:76.8或48.【点睛】本题主要是考查了一元一次方程的实际应用,熟练根据不同方案,进行分类讨论,列出对应方程,求解未知量,这是解决该题的关键.16.(2022·北京·清华附中七年级期末)甲、乙两商场在做促销,如下所示,已知两家商场相同商品的标价都一样.甲商场:全场均打八五折;乙商场:购物不超过200元,不给予优惠;超过了200元而不超过500元,一律打八八折;超过500元时,其中的500元打八八折,超过500元的部分打八折.(1)某顾客要购买商品的总标价为600元,该顾客选择_____(填“甲”或“乙”)商场更划算;(2)当购物总额是_____元时,甲、乙两商场实付款相同.【答案】甲800【分析】(1)根据两商场的促销方案,即可求出哪家商场更划算;(2)设购物总额是x元时,甲、乙两商场实付款相同,选择适当的等量关系列出一元一次方程解方程求解即可【详解】解:(1)甲商场需要:600×0.85=510(元)乙商场需要:500×0.88+(600―500)×0.8=520(元)∵510<520∴该顾客选择甲商场更划算;故答案为:甲(2)设购物总额是x元时,甲、乙两商场实付款相同,当x<200时,0.85x=x,此方程无解,当200<x<500时,则0.85x=0.88x,此方程无解当x>500时依题意,0.85x=500×0.88+0.8(x―500)解得x=800故答案为:800【点睛】本题考查了一元一次方程的应用,找出题目中的数量关系是解题的关键.17.(2021·北京市第八十中学管庄分校七年级期中)某企业有A,B两条加工相同原材料的生产线.在一天内,A生产线共加工a吨原材料,加工时间为(4a+1)小时;在一天内,B生产线共加工b吨原材料,加工时间为(2b+3)小时.该企业计划将5吨原材料分配到A,B两条生产线,两条生产线都在一天内完成了加工.若分配到A生产线1.8吨,分配到B生产线3.2吨,两条生产线同时开工,则该企业的加工时间为___小时;若要使该企业加工这5吨原材料的时间最短,则分配到A生产线___吨.说明:该企业的加工时间为从由生产线开始加工到两条生产线都停止加工的时间.【答案】 9.4 2【分析】(1)把a=1.8,b=3.2分别代入4a+1和2b+3,比较即可得答案;(2)设分配到A生产线x吨,则分配到B生产线(5-x)吨,要使加工这5吨原材料的时间最短,则两个生产线要同时停止加工,据此列方程求出x的值即可得答案.【详解】(1)∵分配到A生产线1.8吨,分配到B生产线3.2吨,∴A生产线加工时间为4×1.8+1=8.2(小时),B生产线加工时间为2×3.2+3=9.4(小时),∵8.2<9.4,∴该企业的加工时间为9.4小时,故答案为:9.4(2)设分配到A生产线x吨,则分配到B生产线(5-x)吨,∵加工这5吨原材料的时间最短,∴两个生产线要同时停止加工,∴4x+1=2(5-x)+3,去括号得:4x+1=10-2x+3,移项、合并得:6x=12,解得:x=2,∴分配到A生产线2吨,故答案为:2【点睛】本题考查代数式求值及一元一次方程的应用,正确理解题意,找出等量关系列方程是解题关键.18.(2021·江西赣州·七年级期末)元旦期间某商店进行促销活动,活动方式有如下两种:方式一:每满200元减50元;方式二:若标价不超过400元时,打8折;若标价超过400元,则不超过400元的部打8折,超出400元的部分打6折.某一商品的标价为x元,当200<x<600时,x取值为____时,两种方式的售价相同.【答案】250或450.【分析】根据题意,分两种情况讨论,当200<x<400或当400≤x<600时,列出方程进行解得即可.【详解】解:当200<x<400时,0.8x=x―50解得x=250;当400≤x<600时,400×0.8+0.6(x―400)=x―100320+0.6x―240=x―1000.4x=180解得x=450,∴当200<x<600时,x取值为250或450时,两种方式的售价相同,故答案为:250或450.【点睛】本题考查一元一次方程的应用,是重要考点,难度较易,掌握相关知识是解题关键.三、解答题19.(2021·黑龙江哈尔滨·七年级期末)公园门票价格规定如下表:购票张数1-50张51-100张100张以上每张票的价格13元11元9元某校七年级一、二两个班共104人去游公园,其中二班有40多人,不足50人,经计算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两个班联合起来,作为一个团体购票,可省多少钱?(3)如果七年级二班单独组织去游公园,班长作为组织者将如何购票才最省钱?【答案】(1)一班有56人,二班有48人(2)304元(3)购51张票【分析】(1)设二班有x人,则一班有(104−x)人,且40<x<50,从而有13x+11(104-x)=1240,再解方程可得答案;(2)由题意可得购买104张票时,每张票的价格为9元一张,列式计算即可得到答案;(3)由于购买51张票时只要11元一张,从而可得购买51张票比购买48张票更省钱,从而可得答案.【详解】(1)解:设二班有x人,则一班有(104―x)人,且40<x<50,因此,一班人数大于50人,且小于100人.依题意,得13x+11×(104―x)=1240解方程,得x=48.104―x=104―48=56答:一班有56人,二班有48人;(2)104×9=936,1240―936=304.答:两班合起来购团体票可省304元;(3)若按二班人数购票,需13×48=624元,若购51张票,需11×51=561元,可见,二班购51张票时,用钱最少,因此,组织者应购51张票最省钱.【点睛】本题考查的是最优化设计问题,一元一次方程的应用,掌握利用一元一次方程解决分段费用问题是解题的关键.20.(2021·河南南阳·七年级期中)某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.(1)某客户要到该服装厂购买西装20套,领带30条.通过计算说明此时按哪种方案购买较为合算.(2)若客户要到该服装厂购买西装20套,领带x条(x>20).Ⅰ:若该客户按方案①购买,需付款 元(用含x的代数式表示);Ⅱ:若该客户按方案②购买,需付款 元(用含x的代数式表示);Ⅲ:当x= 时,两种优惠方案所付的钱数相同.(直接填空,不说明理由)【答案】(1)按方案①购买较为合算(2)Ⅰ:(3200+40x);Ⅱ:(3600+36x);Ⅲ:100【分析】(1)分别求出两种优惠方案下,客户所需付款钱数,再比较大小即可得;(2)Ⅰ:所需付款钱数等于20套西装的钱数加上(x―20)条领带的钱数即可得;Ⅱ:所需付款钱数等于20套西装的钱数与x条领带的钱数之和,再乘以90%即可得;Ⅲ:根据两种优惠方案所付的钱数相同建立方程,解方程即可得.(1)解:方案①所需付款钱数为20×200+40×(30―20)=4400(元),方案②所需付款钱数为90%×(20×200+40×30)=4680(元),因为4400<4680,所以按方案①购买较为合算.(2)解:Ⅰ:所需付款钱数为20×200+40(x―20)=3200+40x(元),故答案为:(3200+40x);Ⅱ:所需付款钱数为90%(20×200+40x)=3600+36x(元),故答案为:(3600+36x);Ⅲ:由题意得:3200+40x=3600+36x,解得x=100,即当x=100时,两种优惠方案所付的钱数相同,故答案为:100.【点睛】本题考查了列代数式、一元一次方程的应用,找准等量关系,正确建立方程是解题关键.21.(2022·山东聊城·七年级期中)明明妈妈在超市购买商品A、B共三次,只有一次购买时,商品A、B同时打折,其余两次均按标价购买,三次购买商品A、B的数量和费用如表:购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物631030第二次购物981040第三次购物371010(1)求出商品A、B的标价;(2)若商品A、B的折扣相同,问该超市是打几折出售这两种商品的?【答案】(1)商品A的标价为80元,商品B的标价为110元种类配餐价格(元)优惠活动A餐1份盖饭20B餐1份盖饭+1杯饮料28 C餐1份盖饭+1杯饮料+1份小菜32消费满150元,减24元消费满300元,减48元……小韩记录大家的点餐种类,并根据菜单一次点好,已知他们所点的餐共有11份盖饭,x杯饮料和5份小菜.(1)他们共点了______份B餐;(用含x的式子表示)(2)若他们套餐共买6杯饮料,求实际花费多少元;(3)若他们点餐优惠后一共花费了256元,请通过计算分析他们点的套餐是如何搭配的.【答案】(1)(x―5)(2)264元(3)A套餐6份,C套餐5份或A套餐3份,B套餐3份,C套餐5份,见解析【分析】(1)由三种套餐中均包含盖饭且只有C套餐中含小菜,即可得出他们点了(x−5)份B 套餐;(2)依题意知:C套餐5份,B套餐1份,A套餐5份,据此即可解答;(3)依题意知:C套餐5份,B套餐(x―5)份,A套餐(11―x)份,再分两种情况,列方程即可分别求得.(1)解:因为三种套餐中均包含盖饭且只有C套餐中含小菜,有5份小菜,所以共点了5份C套餐,因为只有B和C套餐中有饮料,一共点了x杯饮料,C套餐有5份,所以他们点了(x−5)份B套餐.故答案为:(x−5);(2)解:依题意:C套餐5份,B套餐1份,A套餐5份,所以5×20+1×28+5×32=288(元),因为满150元,减24元,所以实际花费为:288―24=264(元);(3)解:因为只有C套餐含小菜,所以依题意C套餐点了5份;因为有x份饮料,所以B套餐共(x―5)份,因为共11份盖饭,所以A套餐(11―x)份.当满150优惠时:32×5+28(x―5)+20(11―x)―24=256,解得:x=5,故A套餐6份,C套餐5份;当满300优惠时:32×5+28(x―5)+20(11―x)―48=256,解得:x=8,故A套餐3份,B套餐3份,C套餐5份.综上,他们点的套餐是A套餐6份,C套餐5份或A套餐3份,B套餐3份,C套餐5份.【点睛】本题考查了应用类问题,列代数式,一元一次方程的实际应用,根据各数量之间的关系,正确列出一共的花费及方程是解题的关键.23.(2022·河北承德·七年级期末)小韩和同学们在一家快餐店吃饭,下表为快餐店的菜单:种类配餐价格(元)优惠活动A餐1份盖饭20B餐1份盖饭+1杯饮料28 C餐1份盖饭+1杯饮料+1份小菜32消费满150元,减24元消费满300元,减48元……小韩记录大家的点餐种类,并根据菜单一次点好,已知他们所点的餐共有11份盖饭,x杯饮料和5份小菜.(1)他们共点了______份B餐;(用含x的式子表示)(2)若他们套餐共买6杯饮料,求实际花费多少元;(3)若他们点餐优惠后一共花费了256元,请通过计算分析他们点的套餐是如何搭配的.【答案】(1)(x―5)(2)264元(3)A套餐6份,C套餐5份或A套餐3份,B套餐3份,C套餐5份,见解析【分析】(1)由三种套餐中均包含盖饭且只有C套餐中含小菜,即可得出他们点了(x−5)份B 套餐;(2)依题意知:C套餐5份,B套餐1份,A套餐5份,据此即可解答;(3)依题意知:C套餐5份,B套餐(x―5)份,A套餐(11―x)份,再分两种情况,列方程即可分别求得.(1)解:因为三种套餐中均包含盖饭且只有C套餐中含小菜,有5份小菜,所以共点了5份C套餐,因为只有B和C套餐中有饮料,一共点了x杯饮料,C套餐有5份,所以他们点了(x−5)份B套餐.故答案为:(x−5);(2)解:依题意:C套餐5份,B套餐1份,A套餐5份,所以5×20+1×28+5×32=288(元),因为满150元,减24元,所以实际花费为:288―24=264(元);(3)解:因为只有C套餐含小菜,所以依题意C套餐点了5份;因为有x份饮料,所以B套餐共(x―5)份,因为共11份盖饭,所以A套餐(11―x)份.当满150优惠时:32×5+28(x―5)+20(11―x)―24=256,解得:x=5,故A套餐6份,C套餐5份;当满300优惠时:32×5+28(x―5)+20(11―x)―48=256,解得:x=8,故A套餐3份,B套餐3份,C套餐5份.综上,他们点的套餐是A套餐6份,C套餐5份或A套餐3份,B套餐3份,C套餐5份.【点睛】本题考查了应用类问题,列代数式,一元一次方程的实际应用,根据各数量之间的关系,正确列出一共的花费及方程是解题的关键.24.(2022·河北邯郸·七年级期末)学校为举行社团活动,准备向某商家购买A、B两种文化衫.已知购买3件A种文化衫和2件B种文化衫需要180元;购买2件A种文化衫和4件B 种文化衫需要200元.活动一:“疯狂打折”A种文化衫八折B种文化衫四折活动二:“买一送一”购买一件A种文化衫送一件B种文化衫(1)求A、B两种文化衫的单价;(2)学校决定向该商家购买A、B两种文化衫共100件(其中A种文化衫不超过50件),恰逢商家搞促销,现有如图所示两种优惠活动,请说明学校按照哪种活动方案购买更划算.【答案】(1)A种文化衫的单价为40元,B种文化衫的单价为30元;(2)当购买A种文化衫的数量小于45件时,选择活动一购买更划算;当购买A种文化衫的数量等于45件时,选择两种活动购买所需费用相同;当购买A种文化衫的数量大于45件小于50件时,选择活动二购买更划算.【分析】(1)设A种文化衫的单价为x元,B种文化衫的单价为y元,利用总价=单价×数量,结合“购买3件A种文化衫和2件B种文化衫需要180元;购买2件A种文化衫和4件B种文化衫需要200元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)利用总价=单价×数量,结合两种活动的优惠策略,即可用含m的代数式表示出按照两种活动购买100件文化衫所需费用;分20m+1200<−20m+3000,20m+1200=−20m+3000及20m+1200>−20m+3000三种情况,求出m的取值范围(或m的值),再结合m≤50即可得出结论.(1)解:设A种文化衫的单价为x元,B种文化衫的单价为y元.依题意得:3x+2y=1802x+4y=200.解得:x=40y=30.答:A种文化衫的单价为40元,B种文化衫的单价为30元;(2)解:设购买A种文化衫m件,活动一所需费用:40×0.8m+30×0.4(100−m)=20m+1200.活动二所需费用:40m+30(100−m−m)=(−20m+3000).当20m+1200<−20m+3000时,m<45.当20m+1200=−20m+3000时,m=45.当20m+1200>−20m+3000时,m>45.综上所述,当购买A种文化衫的数量小于45件时,选择活动一购买更划算;当购买A种文化衫的数量等于45件时,选择两种活动购买所需费用相同;当购买A种文化衫的数量大于45件小于50件时,选择活动二购买更划算.【点睛】本题考查了二元一次方程组的应用、列代数式、一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,用含m的代数式表示出选择各活动方案所需费用.25.(2022·重庆南开中学七年级期末)今年神舟十四号成功发射,某航天博物馆顺势推出了“我要做太空人”系列航天纪念品,提供“漫步星河”、“梦想远航”两种不同的纪念品套餐供游客选择.已知购买2份“漫步星河”与5份“梦想远航”共需付款160元,购买2份“漫步星河”比购买1份“梦想远航”多付款40元.。

人教版七年级数学上册期末复习题1方案设计与方案选择练习(初一数学)

人教版七年级数学上册期末复习题1方案设计与方案选择练习(初一数学)

人教版七年级数学上册期末复习题1方案设计与方案选择练习(初一数学)人教版七年级数学上册期末复习题1专题一、方案设计与方案选择(初一)1、(例1)▲某校为了改善办学条件,计划购置一批电子白板和一批笔记本电脑。

经投标,购买1块电子白板比买3台笔记本电脑多3000元,购买4块电子白板和5台笔记本电脑共需8万元。

(1)求购买1块电子白板和一台笔记本电脑各需多少元?(2)根据该校实际情况,需购买电子白板和笔记本电脑的总数为396,要求购买的资金不超过2700000元,并且购买笔记本电脑的台数不超过电子白板数量的3倍。

该校共有哪几种购买方案?(方案设计)(3)上面的哪种购买方案最省钱?按最省钱的方案购买需要多少钱?(方案选择①▲)2、(练习)某校师生积极为汶川地震灾区捐款捐物,在得知灾区急需帐篷后,立刻到当地的一家帐篷厂采购。

帐篷有两种规格,可供3人居住的小帐篷,价格每顶160元;可供10人居住的大帐篷,价格每顶400元。

学校花去捐款96000元采购这两种帐篷,正好可供2300人居住。

学校准备租用甲、乙两种型号的卡车共20辆将所购帐篷紧急运往灾区,已知甲型卡车每辆可同时装运4顶小帐篷和11顶大帐篷;乙型卡车每辆可同时装运12顶小帐篷和7顶大帐篷。

(1)求该校采购了多少顶3人小帐篷,多少顶10人大帐篷?(2)学校应如何安排甲、乙两种型号的卡车可一次性将这批帐篷运往灾区?有几种方案?3、(例2)▲暑假期间,2名家长计划带领若干名学生去旅游,他们联系了报价均为每人500元的两家旅行社。

经协商,甲旅行社的优惠条件是两名家长全额收费,学生都按7折收费;乙旅行社的优惠条件是家长学生都按8折收费,他们应该选择哪家旅行社?(方案选择②▲)4、(练习1)某单位“十一”组织员工到野外旅游,A、B两旅行社的服务质量相同,且组织到该地旅游的价格都是每人300元。

该单位在联系时,A旅行社表示可给予每位旅客七五折的优惠;B旅行社表示可免去一位旅客的费用,其余八折优惠。

人教版七年级上册方案设计型应用题配答案讲解学习

人教版七年级上册方案设计型应用题配答案讲解学习

七年级上册方案问题应用题及答案于得英整理方案设计型应用题1、据电力部门统计,每天8︰00至21︰00是用点高峰期,简称“峰时”,21︰00至次日8︰00是用电低谷期,简称“谷时”。

为了缓解供电需求紧张的矛盾,我市电力部门拟逐步统一换装“峰谷分时”电表,对用电实行“峰谷分时电价”新政策,具体见下表:换表后时间换表前峰时(8︰00—21︰谷时(21︰00—8︰00) 00)0.52每度每度0.30元每度0.55元电价元度电进行测算,经测算比换表前小明家对换表后最初使用的95 电和问小明家使用“峰时”“谷时”元,使用95度电节约了5.9 电分别是多少度?xx解:设问小明家使用“峰时”用电为度,“谷时”用电分95-度?xx?? 0.52 )(95-+5.9 = 95 0.55+ 0.30x =6095-60=35(度)答:60度?35电分“谷时”度,用电为小明家使用“峰时”、电信部门推出两种电话计费方式如下表:2BA30月租费(月通话费(0.50.40钟)当通话时间是多少分钟时两种方式收费一样多?(1)解:设当通话时间是x分钟时两种方式收费一样多,根据题意得: 0.4X+30=0.5X 解方程得:x= 300X>300分钟时,A种收费方式省钱(2)当通话时间 ;X<300分钟时,B种收费方式省钱. 当通话时间3、某单位急需要用车,但无力购买,他们决定租车使用,某个体出租车司机的条件是:每月付1210元工资,另外每百千米付10元汽油费;另一国营出租车公司的条件是:每百千米付120元。

(1)这个单位若每月平均跑1000千米,租谁的车划算?(2)求这个单位每月平均跑多少千米时,租哪家公司的车都一样?÷100=0.1元 120÷100=1.2元)10(1 1210+1000×0.1=1310元1.2×1000=1200元1310>1200答:租国营的车划算x)(2千米时,租哪家公司的车都一样解:设这个单位每月平均跑xx =1.2+ 12100.1x=1100答:这个单位每月平均跑1100千米时,租哪家公司的车都一样4、小明想在两种灯中选购一种,其中一种是10瓦(即0.01千瓦)的节能灯,售价50元,另一种是100瓦(即0.1千瓦)的白炽灯,售价5元,两种灯的照明效果一样,使用寿命也相同(3000小时内),节能灯售价高,但较省电,白炽灯售价低,但用电多,电费0.5元/千瓦·时(1)照明时间500小时选哪一种灯省钱?(2)照明时间1500小时选哪一种灯省钱?(3)照明多少时间用两种灯费用相等?解:(1)0.01×0.5×500+50=52.5元0.1×0.5×500+5=30元 52.5>30答:选白炽灯省钱(2)0.01×0.5×1500+50=57.5元57.5<80元 0.1×0.5×1500+5=80x时间用两种灯费用相等照明解:xx+50.5××0.010.5×+50=0.1×x=450.045x=1000小时用两种灯费用相等1000答:照明时间.5、某农户2000年承包荒山若干公顷,投资7800元改造后,种果树2000棵,今年水果总产量为18000kg,此水果在市场上每千克售a元,在果园每千克售b元(b<a),该农户将水果运到市场出售,平均每天出售1000kg,需8人帮助,每人每天付工资25元,汽车运费及其它各项税费平均每天100元。

人教版七年级上册数学一元一次方程实际问题——方案问题

人教版七年级上册数学一元一次方程实际问题——方案问题

一元一次方程实际问题——方案问题1、学校需要到印刷厂印刷x份材料,甲印刷厂提出:每份材料收0.2元印刷费,另收500元制版费;乙印刷厂提出:每份材料收0.4元印刷费,不收制版费。

(1)两印刷厂的收费各是多少元?(用含x的代数式表示)(2)学校要印刷2400份材料,若不考虑其他因素,选择哪家印刷厂比较合算?试说明理由。

2、某中学库存若干套桌凳,准备修理后支援贫困山区学校,现有甲、乙两木工组,甲组每天修桌凳16套,乙组每天修桌凳比甲组多8套,甲组单独修完这些桌凳比乙组单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费。

(1)问:该中学库存多少套桌凳?(2)再修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助贴,现有三种修理方案:①由甲单独修理;②由乙单独修理;③甲、乙合作同时修理,你认为哪种方案省时又省钱,为什么?3、某市按如下规定收取每月煤气费:煤气月用量如果不超过60立方米,每立方米按1元收费,如果月用量超过60立方米,超过部分按每月1.5元收费,已知12月份某用户的煤气费平均每立方米1.2元,那么12月份该用户煤气用量是多少立方米?4、一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是70km/h。

卡车的行驶速度是60km/h,客车比卡车早1小时到达B地,则客车经过多少小时到达B地?5、春节快到了,移动公司为了方便学生上网查资料,提供了两种上网优惠方法:A计时制:0.05元/分;B包月制:50元/月(只限一台电脑上网)。

另外,不管哪种收费方法,上网时都得加收通信费0.02元/分。

(1)设小明某月上网时间为x分钟,请写出两种付费方法下小明应该支付的费用;(2)上网时间为多少时,两种方法付费一样多?(3)如果你一个月只上网15小时,你会选择哪种方法付费呢?6、某超市为了回馈广大新老客户,元旦期间决定实行优惠活动。

优惠一:非会员购物,所有商品价格可获九折优惠;优惠二:缴纳200元会费成为该超市一员,所有商品价格可获得八折优惠。

七年级数学一元一次方程应用题(方案设计问题)(人教版)(专题)(含答案)

七年级数学一元一次方程应用题(方案设计问题)(人教版)(专题)(含答案)

一元一次方程应用题(方案设计问题)(人教版)(专题)一、单选题(共6道,每道16分)1.某市为鼓励市民节约用水,对自来水用户按如下标准收费:若每月用户用水不超过15立方米时,按每立方米a元收费;超过15立方米时,不超过的部分每立方米扔按a元收费,超过的部分每立方米按2a元收费.如果某居民在一个月内用水35立方米,那么他该月应缴纳的水费是( )A.35a元B.55a元C.52.5a元D.70a元答案:B解题思路:根据题意,用水超过15立方米时,居民所交水费应分为两部分:15立方米的水费和超过15立方米部分的水费.因此该居民在一个月内用水35立方米时,应交水费:(元).故选B.试题难度:三颗星知识点:一元一次方程的应用—方案设计问题2.某城市按以下规定收取每月煤气费:用煤气如果不超过60立方米时,按每立方米0.8元收费;超过60立方米时,不超过部分仍按每立方米0.8元收费,超过部分按每立方米1.2元收费.已知某用户4月份的煤气费平均每立方米0.88元,那么这位用户4月份应交煤气费( )A.66元B.60元C.78元D.75元答案:A解题思路:4月份的煤气费平均每立方米0.88元,那么所用煤气一定超过60立方米.交煤气费包括60立方米的煤气费和超过60立方米的煤气费,设4月份用了煤气x立方米,根据题意得,解得x=75,4月份应交煤气费:75×0.88=66(元).故选A.试题难度:三颗星知识点:一元一次方程的应用—方案设计问题3.某单位要购置一批某型号的电脑,该型号的电脑市场价为每台5800元.现有甲、乙两电脑商进行竞标,甲电脑商提出的优惠条件是购买10台以上,则从第11台开始每台按七折计价;乙电脑商提出的优惠条件是每台均按八五折计价.假设这两家电脑商在品牌、质量、售后服务等方面都相同.设购买电脑x台(x>10),用含x的代数式分别表示在甲、乙两电脑商购买时付的钱数,下列正确的是( )A.B.C.D.答案:D解题思路:由题意得,在甲处购买需要花钱数:在乙处购买需要花钱数:故选D.试题难度:三颗星知识点:一元一次方程的应用—方案设计问题4.(上接第3题)若要使得在甲、乙两电脑商购买电脑花钱一样多,则应该买电脑( )A.18台B.19台C.20台D.21台答案:C解题思路:根据第3题,要使得在甲、乙两电脑商购买电脑花钱一样多,则,解得x=20.故选C.试题难度:三颗星知识点:一元一次方程的应用—方案设计问题5.某种海产品,若直接销售,每吨可获利1 200元;若粗加工后销售,每吨可获利5 000元;若精加工后销售,每吨可获利7 500元.某公司现有这种海产品100吨,该公司的生产能力是:如果进行粗加工,每天可加工15吨;如果进行精加工,每天可加工5吨,但两种加工方式不能同时进行.受各种条件限制,公司必须在10天内(含10天)将这批海产品全部销售或加工完毕,为此该公司设计了三种方案:方案一:全部进行粗加工;方案二:尽可能多地进行精加工,没来得及进行精加工的直接销售;方案三:将一部分进行精加工,其余的进行粗加工,并恰好10天完成.若采用方案三,则需要精加工( )A.3天B.4天C.5天D.6天答案:C解题思路:设精加工的有x天,则粗加工的有(10&#61485;x)天,根据题意可列方程为,解得x=5,即需要精加工5天,粗加工5天.故选C.试题难度:三颗星知识点:一元一次方程的应用—方案设计问题6.(上接第5题)5题的三种方案中,获利最多的方案和对应的利润分别为( )A.方案三,562 500元B.方案二,435 000元C.方案三,600 000元D.方案一,500 000元答案:A解题思路:根据题意,列表梳理信息如下:由题意和第5题的计算结果得方案一:,所以利润为5000×100=500 000(元);方案二:利润为7 500×5×10+1 200×(100-5×10)=435000(元);方案三:利润为7 500×5×5+5 000×5×15=562 500(元).综上可知,方案三的利润最高,为562 500元.故选A.试题难度:三颗星知识点:一元一次方程的应用—方案设计问题。

人教版七年级上册方案设计型应用题配答案

人教版七年级上册方案设计型应用题配答案

人教版七年级上册方案设计型应用题配答案嘿,小朋友,今天我要跟你分享一份超实用的方案设计型应用题攻略,让你在数学世界里所向披靡,轻松应对各种难题。

准备好了吗?那我们就开始吧!一、认识图形我们要了解一些基本的图形概念。

比如,点、线、面、体。

这些概念是数学的基础,一定要掌握牢固。

下面是一些典型题目:1.在平面直角坐标系中,点(2,3)表示什么?答案:点(2,3)表示在平面直角坐标系中,横坐标为2,纵坐标为3的位置。

2.画出线段AB和线段CD,并说明它们的特点。

答案:线段AB和线段CD是直线的一部分,两端都有端点,长度是有限的。

二、角的度量我们要学习角的度量。

角是由两条射线共同组成的图形,它的度量单位是度(°)。

下面是一些典型题目:1.一个直角是多少度?答案:一个直角是90°。

2.如果一个角是30°,那么它的补角是多少度?答案:一个角和它的补角的度数和为180°,所以这个角的补角是180°30°=150°。

三、几何图形的性质了解了基本概念后,我们要深入研究几何图形的性质。

比如,三角形、四边形、圆等。

下面是一些典型题目:1.一个等边三角形的内角是多少度?答案:一个等边三角形的内角都是60°。

2.证明:平行四边形的对角线互相平分。

答案:设平行四边形ABCD的对角线交于点E,要证明AE=CE,BE=DE。

因为ABCD是平行四边形,所以AB∥CD,AD∥BC。

在三角形ABE和三角形CDE中,∠BAE=∠DCE,∠ABE=∠CDE,AB=CD。

根据三角形的全等条件,可得三角形ABE≌三角形CDE,从而得出AE=CE,BE=DE。

四、应用题实战1.一个长方形的长是8厘米,宽是5厘米,求它的面积。

答案:长方形的面积=长×宽=8厘米×5厘米=40平方厘米。

2.在一个三角形ABC中,∠A=60°,∠B=70°,求∠C的度数。

(完整)人教版七年级上册数学应用题及答案

(完整)人教版七年级上册数学应用题及答案

一元一次方程应用题知能点1:市场经济、打折销售问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为()A.45%×(1+80%)x-x=50B. 80%×(1+45%)x - x = 50C. x-80%×(1+45%)x = 50D.80%×(1-45%)x - x = 504.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.知能点2:方案选择问题6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,•在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?7.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50•元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1•分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的费用相同?(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?8.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a 千瓦时,则超过部分按基本电价的70%收费。

2023-2024年人教版七年级上册数学第三章一元一次方程应用题(方案选择问题)训练(含解析)

2023-2024年人教版七年级上册数学第三章一元一次方程应用题(方案选择问题)训练(含解析)
2023-2024 年人教版七年级上册数学第三章一元一次方程应 用题(方案选择问题)训练
1.小颖购买练习本可以到甲店购买,也可以到乙店购买,已知两店的标价都是每本 1 元,甲店的优惠条件是:购买 10 本以上,从第 11 本开始按标价的 70%出售;乙商店的 优惠条件是:从第 1 本开始按标价的 80%出售. (1)小颖要买 20 本练习本时,到哪个店购买较省钱? (2)买多少本练习本时,在两店购买练习本付的费用相等? (3)小颖现有 24 元,最多可买多少本练习本?
9.一种蔬菜在某市场上的销售价格如下: 购买数量 不超过 20 千克 20 千克以上但不超过 40 千克 40 千克以上
价格
5 元/千克
4 元/千克
3 元/千克
已知小明两次购买了此种蔬菜共 70 千克(第二次购买数量多于第一次). (1)若第一次购买 15 千克,则两次的总费用为________元; (2)若两次购买蔬菜的总费用为 236 元,求第一次、第二次分别购买此种蔬菜多少千克?
(1)分别用含 x 的式子表示 M,N; (2)交费时间为多少个月时,两种方案费用相同? (3)若交费时间为 12 个月《义务教育课程方案》和课程标准(2022 年版),将劳动从原 来的综合实践活动课程中独立出来.我县某中学初中部为了让学生体验农耕劳动,开辟 了一处种植园,需要采购一批某种菜苗开展种植活动,已知甲、乙两菜苗基地该种菜苗 每捆的标价都是 6 元(菜苗的质量一样好),但甲、乙两菜苗基地的优惠条件却不同. 甲菜苗基地:若购买不超过 15 捆,则按标价付款;若一次购 15 捆以上,则超过 15 捆 的部分按标价的 60%付款; 乙菜苗基地:按标价的 80%付款. (1)若学校决定购买该种菜苗 20 捆,则在甲菜苗基地购买,需付款________元,在乙菜 苗基地购买,需付款________元; (2)若学校决定购买该种菜苗 x 捆( x 15),请用含 x 的式子分别表示在甲、乙两个菜苗 基地购买该种菜苗的费用; (3)学校决定购买该种菜苗多少捆时,到甲、乙两菜苗基地用的钱一样多?说明理由.

人教版七年级数学上册热点:第3章:方案设计问题(附模拟试卷含答案)

人教版七年级数学上册热点:第3章:方案设计问题(附模拟试卷含答案)

学生做题前请先回答以下问题问题1:方案设计问题思考步骤:①理解题意,找关键词,确定_____________或者_____________.②信息,列表,确定_____________.③表达或计算_____________,比较、选择适合方案.方案设计问题(人教版)一、单选题(共6道,每道16分)1.某市为鼓励市民节约用水,对自来水用户按如下标准收费:若每月用户用水不超过15立方米时,按每立方米a元收费;超过15立方米时,不超过的部分每立方米扔按a元收费,超过的部分每立方米按2a元收费.如果某居民在一个月内用水35立方米,那么他该月应缴纳的水费是( )A.35a元B.55a元C.52.5a元D.70a元答案:B解题思路:试题难度:三颗星知识点:一元一次方程的应用——方案类应用题2.某城市按以下规定收取每月煤气费:用煤气如果不超过60立方米时,按每立方米0.8元收费;超过60立方米时,不超过部分仍按每立方米0.8元收费,超过部分按每立方米1.2元收费.已知某用户4月份的煤气费平均每立方米0.88元,那么这位用户4月份应交煤气费( )A.66元B.60元C.78元D.75元答案:A解题思路:试题难度:三颗星知识点:一元一次方程的应用——方案类应用题3.某单位要购置一批某型号的电脑,该型号的电脑市场价为每台5800元.现有甲、乙两电脑商进行竞标,甲电脑商提出的优惠条件是购买10台以上,则从第11台开始每台按七折计价;乙电脑商提出的优惠条件是每台均按八五折计价.假设这两家电脑商在品牌、质量、售后服务等方面都相同.设购买电脑x台(x >10),用含x的代数式分别表示在甲、乙两电脑商处购买时付的钱数,下列正确的是( )A.B.C.D.答案:D解题思路:试题难度:三颗星知识点:一元一次方程的应用——方案类应用题4.(上接第3题)若要使得在甲、乙两电脑商购买电脑花钱一样多,则应该买电脑( )A.18台B.19台C.20台D.21台答案:C解题思路:试题难度:三颗星知识点:一元一次方程的应用——方案类应用题5.某种海产品,若直接销售,每吨可获利1 200元;若粗加工后销售,每吨可获利5 000元;若精加工后销售,每吨可获利7 500元.某公司现有这种海产品100吨,该公司的生产能力是:如果进行粗加工,每天可加工15吨;如果进行精加工,每天可加工5吨,但两种加工方式不能同时进行.受各种条件限制,公司必须在10天内(含10天)将这批海产品全部销售或加工完毕,为此该公司设计了三种方案:方案一:全部进行粗加工;方案二:尽可能多地进行精加工,没来得及进行精加工的直接销售;方案三:将一部分进行精加工,其余的进行粗加工,并恰好10天完成.若采用方案三,则需要精加工( )A.3天B.4天C.5天D.6天答案:C解题思路:试题难度:三颗星知识点:一元一次方程的应用——方案类应用题6.(上接第5题)上题的三种方案中,获利最多的方案和对应的利润分别为( )A.方案三,562 500元B.方案二,435 000元C.方案三,600 000元D.方案一,500 000元答案:A解题思路:试题难度:三颗星知识点:一元一次方程的应用——方案类应用题2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A.3a+bB.3a-bC.a+3bD.2a+2b2.小李同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A .垂线段最短B .经过一点有无数条直线C .经过两点有且只有一条直线D .两点之间线段最短3.计算75°23′12″﹣46°53′43″=( ) A .28°70′69″B .28°30′29″C .29°30′29″D .28°29′29″4.购买一本书,打八折比打九折少花2元钱,那么这本书的原价是( ) A .10 B .15 C .20 D .255.已知22x n a b -与233m a b -是同类项,则代数式(3)xm n -的值是( ). A.4-B.4C.14-D.146.已知|m -2|+(n -1)2=0,则关于x 的方程2m +x =n 的解是( ) A.x =-4B.x =-3C.x =-2D.x =-17.若关于x 的方程230m mx m --+=是一元一次方程,则这个方程的解是( ) A.0x =B.3x =C.3x =-D.2x =8.如图,每个图形都是由一些黑点按一定的规律排列组成的,其中第①个图形中有3个黑点,第②个图形中有14个黑点,第③个图形中有33个黑点,按此规律,则第⑦个图中黑点的个数是( )A.189B.190C.245D.2469.下列计算正确的是( )A .23=6 B .﹣4﹣16=﹣20 C .﹣8﹣8=0 D .﹣5﹣2=﹣3 10.下列结论不正确的是( )A .若a >0,b >0,则ab >0B .若a <0,b <0,则a ﹣b <0C .若a >0,b <0,且|a|>|b|,则a ﹣b >0D .若a <0,b >0,且|a|>|b|,则a ﹣b <0 11.-|-(-2)|的相反数( ) A.2B.12-C.-2D.1212.如果单项式212a x y -与313bx y 是同类项,那么a ,b 分别为( )A.2,2B.﹣3,2C.2,3D.3,2二、填空题13.计算:21°17′×5=___________.(结果用度、分、秒表示)14.如图①所示的是一个正方体的表面展开图,将对应的正方体从如图②所示的位置依次翻到第1格、第2格、第3格,这时正方体朝上的一面上的字是________.15.甲、乙两人在400 m 环形跑道上练习跑步,甲的速度是5m/s ,乙的速度是7m/s .两人站在同一起点,同时同向出发,那么当乙第一次恰好追上甲时,甲跑了________m .16.142.2016年元旦期间日月峡水伊方优惠开放.门票售价为:成人票每张150元,儿童票每张70元.如果某日水伊方售出门票100张,门票收入共11000元.那么当日售出成人票________张.17.若关于,x y 的多项式323225mx nxy x xy y ---++中不含三次项,则25m n +的值为_________18.单项式237x y π-的系数是____,次数是_____,多项式2253x y y -的次数是___.19.|﹣5|=________.20.|a|=1,|b|=4,且ab <0,则a +b =________. 三、解答题21.已知:点D 在线段AB 上,点C 是线段AD 的中点,AB=4。

人教版七年级数学上册第二单元整式应用题(word版含答案)

人教版七年级数学上册第二单元整式应用题(word版含答案)

整式应用题1、育才羽毛球队需要购买10支羽毛球拍和x盒羽毛球(x>10),羽毛球拍市场价为150元/支,羽毛球为30元/盒,滔博运动店的优惠方案为:所有商品九折。

劲浪运动店的优惠方案为:买1支羽毛球拍送1盒羽毛球,其余原价销售。

(1)分别用x的代数式表示在滔博运动店和劲浪运动店购买所有物品的费用;(2)请计算说明买多少羽毛球时,到两运动店购买一样省钱。

2、水资源透支现象令人担忧,节约用水迫在眉睫.针对居民用水浪费现象,重庆市政府和环保组织进行了调查,并制定出相应的措施.(1)针对居民用水浪费现象,市政府将向每个家庭收取污水处理费,按每立方米1元收费.此外,市政府还将向市民收取自来水费,收费标准为:规定每个家庭每月的用水量不超过10立方米,则按每立方米2.5元收费;超过10立方米的部分,按每立方米3.2元收费.若我市某家庭某月用水量为x立方米,产生的污水量也为x立方米,则这个家庭在为多少钱?(用含x的代数式该月应缴纳的水费(包括污水处理费)W1表示)(2)在近期由市物价局举行的水价听证会上,有一代表提出一新的水价收费设想:不再收取污水处理费,每天6:00至22:00为用水高峰期,水价可定为每立方米4元;22:00至次日6:00为用水低谷期,水价可定为每立方米3.2元,若某家庭高低峰时期都有用水,且高峰期的用水量比低谷期多20%.设这个家庭这个月用水低谷期的用水量为y立方米,请计算该家庭在这个月按照此方案应缴纳的水费W为多少钱?2(用含y的代数式表示)(3)若某三口之家按照(1)问中的方案与(2)问中的方案所交水费都为392元,请计算表示哪种方案下的用水量较少?3、小张在自家土地上平整出了一块苗圃,并将这块苗圃分成了四个长方形区域,其尺寸如图所示(图中长度单位:米),小张计划在这四个区域上按图中所示分别种植草本花卉1号、2号、3号、4号.(1)用式子表示这块苗圃的总面积;(2)已知种植草本花卉1号、2号、3号、4号的成本分别是每平方米4元、6元、8元、10元.①用式子表示小张在这块苗圃上种植草本花卉的总成本;②当a=9时,求小张在这块苗圃上种植草本花卉的总成本。

初一数学方案设计问题试题及答案

初一数学方案设计问题试题及答案

初一数学方案设计问题试题及答案初一数学方案设计问题试题(2012北海,23,8分)23.某班有学生55人,其中男生与女生的人数之比为6:5。

(1)求出该班男生与女生的人数;(2)学校要从该班选出20人参加学校的合唱团,要求:①男生人数不少于7人;②女生人数超过男生人数2人以上。

请问男、女生人数有几种选择方案?(1)根据题目中的等量关系,设出未知数,列出方程,并求解,得男生和女生的人数分别为30人,25人。

(2)根据题意列出不等式组,并求解。

又因为人数不能为小数,列出不等式组的整数解,可以得出有两种方案。

解:(1)设男生有6x人,则女生有5x人。

1分依题意得:6x+5x=552分∴x=5∴6x=30,5x=253分答:该班男生有30人,女生有25人。

4分(2)设选出男生y人,则选出的女生为(20-y)人。

5分由题意得:6分解之得:7≤y ∴y的整数解为:7、8。

7分当y=7时,20-y=13当y=8时,20-y=12答:有两种方案,即方案一:男生7人,女生13人;方案二:男生8人,女生12人。

8分本题是方程和不等式组的应用,使用性比较强,适合方案设计。

解题时注意题目的隐含条件,就是人数必须是非负整数。

是历年中考考查的知识点,平时教学的时候多加训练。

难度中等。

24.(2012年广西玉林市,24,10分)一工地计划租用甲、乙两辆车清理淤泥,从运输量来估算:若租两辆车合运,10天可以完成任务;若单独租用乙车完成任务则比单独租用甲车完成任务多用15天.(1)甲、乙两车单独完成任务分别需要多少天?(2)已知两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元.试问:租甲乙车两车、单独租甲车、单独租乙车这三种方案中,哪一种租金最少?请说明理由.分析:(1)设甲车单独完成任务需要x天,乙单独完成需要y天,根据题意所述等量关系可得出方程组,解出即可;(2)结合(1)的结论,分别计算出三种方案各自所需的费用,然后比较即可.解:(1)设甲车单独完成任务需要x天,乙单独完成需要y 天,由题意可得:,解得:即甲车单独完成需要15天,乙车单独完成需要30天;(2)设甲车租金为a,乙车租金为b,则根据两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元可得:,解得:.①租甲乙两车需要费用为:65000元;②单独租甲车的费用为:15×4000=60000元;③单独租乙车需要的费用为:30×2500=75000元;综上可得,单独租甲车租金最少.点评:此题考查了分式方程的应用,及二元一次方程组的知识,分别得出甲、乙单独需要的天数,及甲、乙车的租金是解答本题的关键.27.(2012黑龙江省绥化市,27,10分)在实施“中小学校舍安全工程”之际,某县计划对A、B两类学校的校舍进行改造.根据预测,改造一所A类学校和三所B类学校的校舍共需资金480万元,改造三所A类学校和一所B类学校的校舍共需资金400万元.⑴改造一所A类学校和一所B类学校的校舍所需资金分别是多少万元?⑵该县A、B两类学校共有8所需要改造.改造资金由国家财政和地方财政共同承担,若国家财政拨付资金不超过770万元,地方财政投入的资金不少于210万元,其中地方财政投入到A、B两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出有几种改造方案,每个方案中A、B 两类学校各有几所.解:(1)等量关系为:①改造一所A类学校和三所B类学校的校舍共需资金480万元;②改造三所A类学校和一所B类学校的校舍共需资金400万元;设改造一所A类学校的校舍需资金x万元,改造一所B类学校的校舍所需资金y万元,则,解得答:改造一所A类学校的校舍需资金90万元,改造一所B 类学校的校舍所需资金130万元.(2)不等关系为:①地方财政投资A类学校的总钱数+地方财政投资B类学校的总钱数≥210;②国家财政投资A类学校的总钱数+国家财政投资B类学校的总钱数≤770.设A类学校应该有a所,则B类学校有(8-a)所.则,解得∴1≤a≤3,即a=1,2,3.答:有3种改造方案.方案一:A类学校有1所,B类学校有7所;方案二:A类学校有2所,B类学校有6所;方案三:A类学校有3所,B类学校有5所.⑴改造一所A类学校和一所B类学校的校舍所需资金分别是90万元、130万元;⑵共有三种方案.方案一:A类学校1所,B类学校7所;方案二:A类学校2所,B类学校6所;方案三:A类学校3所,B类学校5所.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.理解“国家财政拨付的改造资金不超过770万元,地方财政投入的资金不少于210万元”这句话中包含的不等关系是解决本题的关键.难度中等.22.(2012山东莱芜,22,10分)(本题满分10分)为表彰在“缔造完美教室”活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;4个文具盒、7支钢笔共需161元.(1)每个文具盒、每支钢笔个多少元?(2)时逢“五一”,商店举行“优惠促销”活动,具体办法如下:文具盒“九折”优惠;钢笔10支以上超出部分“八折”优惠.若买x个文具盒需要元,买x支钢笔需要元;求、关于x的函数关系式;(3)若购买同一种奖品,并且该奖品的数量超过10件,请你分析买哪种奖品省钱.(1)设每个文具盒x元,每支钢笔y元,可列方程组得,解之得答:每个文具盒14元,每支钢笔15元.……………………………………………………..4分(2)由题意知,y1关于x的函数关系式为y1=14×90%x,即y1=12.6x.由题意知,买钢笔10以下(含10支)没有优惠,故此时的函数关系式为y2=15x.当买10支以上时,超出部分有优惠,故此时函数关系式为y2=15×10+15×80%(x-10)即y2=12x+30 (7)(3)当y1 当y1=y2即12.6x=12x+30时,解得x=50;当y1>y2即12.6x>12x+30时,解得x>50.综上所述,当购买奖品超过10件但少于50件时,买文具盒省钱;当购买奖品超过50件时,买文具盒和买钢笔钱数相等;当购买奖品超过50件时,买钢笔省钱..……………………………………………………..10分(1)答:每个文具盒14元,每支钢笔15元.(2)y1=12.6x;y2=12x+30.(3)当购买奖品超过10件但少于50件时,买文具盒省钱;当购买奖品超过50件时,买文具盒和买钢笔钱数相等;当购买奖品超过50件时,买钢笔省钱.本题考察了列二元一次方程组解实际问题,求一次函数的解析式和利用一元一次不等式组选择最优化的方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上册方案问题应用题及答案
于得英整理
方案设计型应用题
1、据电力部门统计, 每天8︰00至21︰00是用点高峰期, 简
称”峰时”, 21︰00至次日8︰00是用电低谷期, 简称”谷时”。

为了缓解供电需求紧张的矛盾, 我市电力部门拟逐步统一换装”峰谷分时”电表, 对用电实行”峰谷分时电价”
新政策, 具体见下表:
小明家对换表后最初使用的95度电进行测算, 经测算比换表前使用95度电节约了5.9元, 问小明家使用”峰时”电和”
谷时”电分别是多少度?
解: 设问小明家使用”峰时”用电为x度, ”谷时”用电分95-x度?
0.55x+ 0.30 ⨯( 95-x) +5.9 = 95 ⨯ 0.52
x =60
95-60=35(度)
答: 小明家使用”峰时”用电为60 度, ”谷时”电分35度?
2、电信部门推出两种电话计费方式如下表:
(1)当通话时间是多少分钟时两种方式收费一样多?
解: 设当通话时间是x分钟时两种方式收费一样多, 根据题意得:
0.4X+30=0.5X 解方程得:x= 300
(2)当通话时间 X>300 分钟时, A种收费方式省钱;
当通话时间X<300分钟时, B种收费方式省钱.
3、某单位急需要用车, 但无力购买, 她们决定租车使用, 某个
体出租车司机的条件是: 每月付1210元工资, 另外每百千米付10元汽油费; 另一国营出租车公司的条件是: 每百千米付120元。

( 1) 这个单位若每月平均跑1000千米, 租谁的车划算? ( 2) 求这个单位每月平均跑多少千米时, 租哪家公司的车都一样?
( 1) 10÷100=0.1元 120÷100=1.2元
1210+1000×0.1=1310元
1.2×1000=1200元
1310>1200
答: 租国营的车划算
( 2) 解: 设这个单位每月平均跑x千米时, 租哪家公司的车都一样
1210+0.1x=1.2x
x=1100
答: 这个单位每月平均跑1100千米时, 租哪家公司的车都一样
4、小明想在两种灯中选购一种, 其中一种是10瓦( 即0.01千
瓦) 的节能灯, 售价50元, 另一种是100瓦( 即0.1千瓦) 的白炽灯, 售价5元, 两种灯的照明效果一样, 使用寿命也相同( 3000小时内) , 节能灯售价高, 但较省电, 白炽灯售价低, 但用电多, 电费0.5元/千瓦·时
( 1) 照明时间500小时选哪一种灯省钱?
( 2) 照明时间1500小时选哪一种灯省钱?
( 3) 照明多少时间用两种灯费用相等?
解:
( 1) 0.01×0.5×500+50=52.5元
0.1×0.5×500+5=30元 52.5>30
答: 选白炽灯省钱
( 2) 0.01×0.5×1500+50=57.5元
0.1×0.5×1500+5=80元 57.5<80
解:照明x时间用两种灯费用相等
0.01×0.5×x+50=0.1×0.5×x+5
0.045x=45
x=1000
答: 照明时间1000小时用两种灯费用相等
5、某农户承包荒山若干公顷, 投资7800元改造后, 种果树棵,
今年水果总产量为18000kg, 此水果在市场上每千克售a元, 在果园每千克售b元( b<a) , 该农户将水果运到市场出售, 平均每天出售1000kg, 需8人帮助, 每人每天付工资25元, 汽车运费及其它各项税费平均每天100元。

①分别用a、 b表示用两种方式出售水果的收入。

②若a=1.3元, b=1.1元, 且两种出售水果方式都在相同时
间内售完全部水果, 请经过计算说明, 选择哪种出售方式较好、( 1) 运到市场共需要的杂费
( 8×25+100) ×( 18000÷1000) =5400元
市场销售收入为18000a-5400
果园销售收入为18000b
( 2) 市场销售 18000a-5400=18000×1.3-5400=18000元果园销售18000b=18000×1.1=19800元
19800>18000
答: 市场收入较少, 选择在果园销售。

相关文档
最新文档