方差分析的步骤

合集下载

方差分析

方差分析

方差分析方差分析是比较多个总体的均值是否相等,但本质上它所研究的是变量之间的关系。

在研究一个(或多个)分类型自变量与一个数值型因变量之间的关系时,方差分析就是其中的只要方法之一。

一、方差分析引论假设需要检验4个总体的均值分别为4321,,,μμμμ,如果用一般假设检验方法,如t 检验,一次只能研究两个样本,要检验4个总体的均值是否相等,需要做6次检验,如果在0.05的置信水平下检验,每次检验犯第Ⅰ类错误的概率都是0.05,检验完成时,犯第Ⅰ类错误的概率会大于0.05,即连续作6次检验第Ⅰ类错误的概率为6)1(1α--=0.265,而置信水平则会降低到0.735(即695.0)。

随着增加个体显著性检验的次数,偶然因素导致差别的可能性也会增加(并非均值真的存在差别)。

而方差分析方法则是同时考虑所有的样本,因此排除了错误累计的概率,从而避免拒绝一个真实的原假设。

1、方差分析及其有关术语方差分析:就是通过检验各总体均值是否相等来判断分类型自变量对数值型因变量是否有显著影响。

例1:为了对几个行业的服务质量进行评价,消费者协会在零售业、旅游业、航空公司、家电制造业分别抽取了不同的企业作为样本。

其中零售业7家,旅游业抽取6家,航空公司抽取5家,家电制造业抽取5家。

最后统计出最近一年中消费者对总共23家企业投诉的次数。

如下表所示。

消费者对四个行业的投诉次数行业零售业 旅游业 航空业 家电制造业57 68 31 44 66 39 49 51 49 29 21 65 40 45 34 77 34 56 40 58 53 51 44要分析四个行业之间的服务质量是否有显著差异,实际上就是要判断“行业”对“投诉次数”是否有显著影响,做出这种判断最终被归结为检验这四个行业被投诉次数的均值是否相等。

在方差分析中,要检验的对象称为因素或因子。

因素不同的表现称为水平或处理。

每个因子水平下得到的样本数据称为观测值。

在例1中,“行业”是要检验的对象,称为“因素”或“因子”;零售业,旅游业,航空公司,家电制造业是行业这一因素的具体表现,称为“水平”或“处理”;在每个行业下得到的样本数据(被投诉次数)称为观测值。

SPSS 教程 第五章 方差分析

SPSS 教程     第五章 方差分析

目录1、单因素方差分析1)准备分析数据2)启动分析过程3)设置分析变量4)设置多项式比较5)多重比较6)提交执行7)结果与分析2、多因素方差分析1)准备分析数据2)调用分析过程3)设置分析变量4)选择分析模型5)选择比较方法6)选择均值图7)选择多重比较8)保存运算值9)选择输出项10)提交执行11)结果分析方差分析是用于两个及两个以上样本均数差别的显著性检验。

由于各种因素的影响,研究所得的数据呈现波动状,造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。

方差分析的基本思想是:通过分析研究不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。

方差分析主要用途:①均数差别的显著性检验,②分离各有关因素并估计其对总变异的作用,③分析因素间的交互作用,④方差齐性检验。

在科学实验中常常要探讨不同实验条件或处理方法对实验结果的影响。

通常是比较不同实验条件下样本均值间的差异。

例如医学界研究几种药物对某种疾病的疗效;农业研究土壤、肥料、日照时间等因素对某种农作物产量的影响;不同化学药剂对作物害虫的杀虫效果等,都可以使用方差分析方法去解决。

方差分析原理方差分析的基本原理是认为不同处理组的均数间的差别基本来源有两个:(1) 随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示,记作SS w,组内自由度df w。

(2) 实验条件,实验条件,即不同的处理造成的差异,称为组间差异。

用变量在各组的均值与总均值之偏差平方和表示,记作SS b,组间自由度df b。

总偏差平方和 SS t = SS b + SS w。

组内SS t、组间SS w除以各自的自由度(组内dfw =n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均方MS w和MS b,一种情况是处理没有作用,即各组样本均来自同一总体,MS b/MS w≈1。

方差分析(单因素、多因素方差分析)

方差分析(单因素、多因素方差分析)

单因素方差分析1.基本理解方差分析:是一种利用实验获取数据并进行分析的统计方法,经常用于研究不同效应对指定实验的影响是否显著。

方差分析用于检验连续型随机变量在三及以上分类数据不同水平上的差异情况。

方差分析包括:单因素方差分析、多元素方差分析、多元方差分析、协方差分析、重复测量方差分析。

在问卷数据中:单因素方差分析使用较多。

单因素方差分析:用于检验单个因素取不同水平是某因变量的均值是否有显著的变化,也可进一步用于因变量均值的多重比较(检验某些水平下的实验结果具体区别于其他水平的显著差异)。

图1检验步骤2.单因素方差分析操作步骤操作步骤第一步:首先将数据导入spss中并进行赋值后,点击分析、比较平均值、单因素ANOVA检验。

图2单因素方差分析第一步操作步骤第二步:进入图中对话框后将需检验的变量放入因变量列表中,在因子中放入分类变量,点击事后比较勾选假定等方差(LSD),不假定等方差(塔姆黑泥T2)点击继续。

图3单因素方差分析事后比较勾选3.当因素方差分析结果后点击线性进入图中下方选项框、勾选描述、方差齐性检验点击继续、确定。

图4单因素方差分析选项勾选然后单因素方差分析的描述、方差齐性、假设检验就出来了。

图5单因素方差分析结果单因素方差分析事后两两比较结果。

图6事后比较结果4.结果整理将首先将描述统计的结果粘贴复制到Excel表格中进行整理,保留均值和标准差及前面的内容,后在后面加入ANOVA表中的F和p值,将整理好的两两比较结果粘贴到表格的最后,最后将整理好的结果粘贴到Word文档中进行整理。

可参考图中结果整理。

(注:一般在看结果时首先看ANOVA表的结果,看显著情况,显著(p<0.05)看方差齐性检验的结果,若方差齐性检验的结果方差齐(p>0.05),然后再看事后比较的结果,方差齐看LSD,方差不齐看塔姆黑泥的结果,同样差异的显著看事后比较每行对应的显著性(若p<0.05,代表比较的对象显著。

单因素方差分析的计算步骤

单因素方差分析的计算步骤

单因素方差分析的计算步骤Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】一、 单因素方差分析的计算步骤假定实验或观察中只有一个因素(因子)A ,且A 有m 个水平,分别记为,,,21m A A A 在每一种水平下,做n 次实验,在每一次试验后可得一实验值,记做ij x 表示在第j 个水平下的第i 个试验值()m j n i ,2,1;,2,1==。

结果如下表:m A A A ,,21看成是m 个正态总体,而()m j n i x ij ,2,1;,2,1==看成是取自第j 总体的第i 个样品,因此,可设()m j n i a N x j ij ,2,1;,2,1,,~2==σ。

可以认为j j j a εεμ,+=是因素A 的第j 个水平j A 所引起的差异。

因此检验因素A 的各水平之间是否有显着的差异,就相当于检验:μ====m a a a H 210:或者 具体的分析检验步骤是:(一)计算水平均值令j x 表示第j 种水平的样本均值,式中,ij x 是第j 种水平下的第i 个观察值,j n 表示第j 种水平的观察值次数(二)计算离差平方和在单因素方差分析中,离差平方和有三个,它们分别是总离差平方和,组内离差平方和以及组间平方和。

首先,总离差平方和,用SST 代表,则,其中,n x x ij ∑∑=它反映了离差平方和的总体情况。

其次,组内离差平方和,用SSE 表示,其计算公式为:其中j x 反映的是水平内部或组内观察值的离散状况,即反映了随机因素带来的影响。

最后,组间平方和,用SSA 表示,SSA 的计算公式为:用各组均值减去总均值的离差的平方,乘以各组观察值个数,然后加总,即得到SSA 。

可以看出,它所表现的是组间差异。

其中既包括随机因素,也包括系统因素。

根据证明,SSA SSE SST ,,之间存在着一定的联系,这种联系表现在: 因为:在各组同为正态分布,等方差的条件下,等式右边最后一项为零,故有,即 SSA SSE SST +=(三)计算平均平方用离差平方和除以各自自由度即可得到平均平方。

variance analysis公式

variance analysis公式

variance analysis公式全文共四篇示例,供读者参考第一篇示例:方差分析(variance analysis)是一种常用的统计方法,用于比较和分析数据集中的变异情况。

通过计算方差,我们可以了解不同组别或因素之间的差异程度,从而帮助我们进一步探索数据背后的规律和趋势。

方差分析通常用于研究实验设计中不同处理组之间的差异,以及分析市场调查、商业报告等领域中的数据变化。

方差分析的基本公式为:\[SS_{total} = SS_{between} + SS_{within}\]\(F\)代表F统计量,\(MS_{between}\)代表组间均方,\(MS_{within}\)代表组内均方。

方差分析的步骤如下:1. 计算总平方和:首先计算所有数据点与整体平均值的离差的平方和,得到总平方和\(SS_{total}\)。

4. 计算F统计量:通过总平方和、组间平方和和组内平方和的比较,计算F统计量,用于判断不同组别之间的差异是否显著。

在进行方差分析时,通常需要进行假设检验,以确定数据之间的差异是否具有统计学意义。

常见的假设包括:- 零假设(\(H_0\)):不同组别或因素之间没有显著差异,即各组别或因素的均值相等。

- 备择假设(\(H_1\)):不同组别或因素之间存在显著差异,即至少有一个组别或因素的均值与其他组别或因素不同。

在方差分析中,我们利用F统计量进行假设检验,当F值大到足以拒绝零假设时,我们可以认为不同组别或因素之间的差异具有统计学意义。

除了用于比较不同组别或因素之间的差异,方差分析也可以用于研究单个组别或因素内部的数据变化。

通过计算组内平方和,我们可以了解同一组别或因素内部不同数据点之间的差异情况,从而更深入地分析数据的特征和规律。

第二篇示例:方差分析是一种用于比较实际结果与预期结果之间差异的统计方法。

在商业和财务领域,方差分析通常被用来评估实际成本与预算成本之间的差异。

这种分析可以帮助企业了解其业绩表现是否符合预期,以及对差异做出有效的管理决策。

方差分析(ANOVA)(转)

方差分析(ANOVA)(转)

⽅差分析(ANOVA)(转)转⾃:⽅差分析(analysis of variance,ANOVA),即变量分析,是对多个样本平均数差异显著性检验的⽅法。

在⼀个多处理试验中,可以得到⼀系列不同的观测值。

造成观测值不同的原因是多⽅⾯的,有的是不同的处理引起的,即处理效应;有的是试验过程中偶然性因素的⼲扰和测量误差造成的,即误差效应。

⽅差分析的基本思想就是将测量数据的总变异按变异原因不同分解为处理效应和试验误差,并作出其数量估计。

要正确认识观测值的变异是由处理效应还是误差效应引起的,我们可以计算出处理效应的均⽅和误差效应的均⽅,在⼀定意义下进⾏⽐较,从⽽检验处理间的差异显著性。

假设⼀个试验有k个处理,每个处理有n个观测数据,则总共有nk的观测值。

⽤表⽰第i个处理的第j个观测值,其中i=1,2,3,...,k;j=1,2,3,...,n。

表⽰第i个处理观测值的总体平均数,表⽰试验误差,则有:,即第i个处理的第j个观测值是由该处理的总体平均数加上不可避免的试验误差组成的。

⽽对于总体平均数(所有nk个观测数据的平均数),则有。

若将各⾃处理⽔平上的总体平均数视为在总体平均数的基础上施加了不同的处理效应造成了,则有。

综上,,即任⼀个观测数据都是由总体平均数加上处理效应以及试验误差组成的。

同理,对于由样本估计的线性模型为:,为样本平均数,为第i个处理的效应,为试验误差。

根据的不同假定,上述模型可分为: 固定模型(fixed model):各个处理的效应值是固定的,即除去随机误差外每个处理所产⽣的效应是固定的,是个常量且之和为0。

此时的试验处理⽔平常是根据⽬的事先主观选定的,如⼏种不同温度下⼩麦籽粒的发芽情况。

随机模型(random model):各个处理的效应值不是固定的,⽽是由随机因素所引起的效应。

是从期望均值为0,⽅差为的正态总体中得到的随机变量。

如调查不同⽣境下某物种的⽣长状况时,不同⽣境的⽓候、⼟壤条件及⽔分条件等属于⽆法认为控制的因素,就要⽤随机模型来处理。

第一节-方差分析的基本原理与步骤

第一节-方差分析的基本原理与步骤

第一节方差分析的基本原理与步骤方差分析有很多类型,无论简单与否,其基本原理与步骤是相同的。

本节结合单因素试验结果的方差分析介绍其原理与步骤。

一、线性模型与基本假定假设某单因素试验有k个处理,每个处理有n次重复,共有nk个观测值。

这类试验资料的数据模式如表6-1所示。

表6-1k个处理每个处理有n个观测值的数据模式处理观测值合计平均A1 x11 x12 …x1j …x 1nA2 x21 x22 …x2j …x 2n……A i x i1 x i2 …x ij …x in……A k x k1 x k2 …x kj …x kn xk .合计表中表示第i个处理的第j个观测值(i=1,2,…,k;j=1,2,…,n);表示第i个处理n 个观测值的和;表示全部观测值的总和;表示第i 个处理的平均数;表示全部观测值的总平均数;可以分解为(6-1)表示第i个处理观测值总体的平均数。

为了看出各处理的影响大小,将再进行分解,令(6-2)(6-3)则(6-4)其中μ表示全试验观测值总体的平均数,是第i个处理的效应(treatmenteffects)表示处理i对试验结果产生的影响。

显然有(6-5)εij是试验误差,相互独立,且服从正态分布N(0,σ2)。

(6-4)式叫做单因素试验的线性模型(linearmodel)亦称数学模型。

在这个模型中表示为总平均数μ、处理效应αi、试验误差εij之和。

由εij相互独立且服从正态分布N(0,σ2),可知各处理Ai(i=1,2,…,k)所属总体亦应具正态性,即服从正态分布N(μi,σ2)。

尽管各总体的均数可以不等或相等,σ2则必须是相等的。

所以,单因素试验的数学模型可归纳为:效应的可加性(additivity)、分布的正态性(normality)、方差的同质性(homogeneity)。

这也是进行其它类型方差分析的前提或基本假定。

若将表(6-1)中的观测值xij(i=1,2,…,k;j=1,2,…,n)的数据结构(模型)用样本符号来表示,则(6-6)与(6-4)式比较可知,、、分别是μ、(μi-μ)=、(xij-)=的估计值。

单因素方差分析步骤(1)

单因素方差分析步骤(1)

单因素方差分析步骤:对于只有一种因素影响的资料,例如本例只检测血型这一种变量是否影响肺活量。

我们先确立假设和确立检验标准H0:假设不同血型的人的肺活量是有差异的H1:假设不同血型的人的肺活量是没有差异的。

第一步:选择检验方式第二步:确定比较方式第三布:在选项里选择描述方式第四步:得出结果:由本图可知,p》0.05,可知肺活量的总体方差无差异,方差齐则可做方差分析再有下图可知:p= 0.789是大与0.05的,所以不是小概率事件,不拒绝H0,所以认为不同血型的人的肺活量是没有差异的。

随机区组设计资料的方差分析2.如果对四种饲料对猪体重增加量有无差异进行分析,则可将猪随机分组,本例中以a代表分组,b代表饲料,x代表体重增加量如图:对于这种资料分析,应选用单变量方差分析,主要是影响因素是多样的,主要描述的是体重增加量。

那么我们首先应1、确定假设:对于处理组:H0,假设三种处理方式体重增加量是相等的H1,假设三种处理方式体重增加量是不等的。

对于区组:H0,假设三组之间体重增加量是相等的H1,假设三组之间体重增加量是不等的。

2、确立检验标准a=0.053、计算统计量F F1=MS处理/MS误差F2=MS区组/MS误差4、确定p值,做出推断结论。

第一步:选择分析方式第二步:选择确立因变量,本题描述的是体重增加量,故选用x,确立区间,处理措施。

如图:第三步:确定模型,本题为确定区组a与处理措施b的交互作用,因此选用a,b交互模式。

如图:如需作图比较分组a 与处理措施b 的交互作用对体重影响有无差异可添加对比组,如图:确定观察均值的两两比较,主要针对与各分组的均值比较,及各处理方式的均值比较:在选项里设定输出,描述统计及方差齐性检验,显示分组及处理方式的均值。

最后得出结果:有本图可知F<3,p>0.05,可知各组间方差齐,可做方差检验。

如下图所示,可知p≥0.05,统计无差异,所以可知,三种处理方式对体重增加是无差异的。

单因素方差分析(one-wayANOVA)

单因素方差分析(one-wayANOVA)

单因素⽅差分析(one-wayANOVA)单因素⽅差分析(⼀)单因素⽅差分析概念是⽤来研究⼀个控制变量的不同⽔平是否对观测变量产⽣了显著影响。

这⾥,由于仅研究单个因素对观测变量的影响,因此称为单因素⽅差分析。

例如,分析不同施肥量是否给农作物产量带来显著影响,考察地区差异是否影响妇⼥的⽣育率,研究学历对⼯资收⼊的影响等。

这些问题都可以通过单因素⽅差分析得到答案。

(⼆)单因素⽅差分析步骤第⼀步是明确观测变量和控制变量。

例如,上述问题中的观测变量分别是农作物产量、妇⼥⽣育率、⼯资收⼊;控制变量分别为施肥量、地区、学历。

第⼆步是剖析观测变量的⽅差。

⽅差分析认为:观测变量值的变动会受控制变量和随机变量两⽅⾯的影响。

据此,单因素⽅差分析将观测变量总的离差平⽅和分解为组间离差平⽅和和组内离差平⽅和两部分,⽤数学形式表述为:SST=SSA+SSE。

第三步是通过⽐较观测变量总离差平⽅和各部分所占的⽐例,推断控制变量是否给观测变量带来了显著影响。

(三)单因素⽅差分析原理总结在观测变量总离差平⽅和中,如果组间离差平⽅和所占⽐例较⼤,则说明观测变量的变动主要是由控制变量引起的,可以主要由控制变量来解释,控制变量给观测变量带来了显著影响;反之,如果组间离差平⽅和所占⽐例⼩,则说明观测变量的变动不是主要由控制变量引起的,不可以主要由控制变量来解释,控制变量的不同⽔平没有给观测变量带来显著影响,观测变量值的变动是由随机变量因素引起的。

(四)单因素⽅差分析基本步骤1、提出原假设:H0——⽆差异;H1——有显著差异2、选择检验统计量:⽅差分析采⽤的检验统计量是F统计量,即F值检验。

3、计算检验统计量的观测值和概率P值:该步骤的⽬的就是计算检验统计量的观测值和相应的概率P值。

4、给定显著性⽔平,并作出决策(五)单因素⽅差分析的进⼀步分析在完成上述单因素⽅差分析的基本分析后,可得到关于控制变量是否对观测变量造成显著影响的结论,接下来还应做其他⼏个重要分析,主要包括⽅差齐性检验、多重⽐较检验。

方差分析

方差分析

单因素方差分析(一)单因素方差分析概念理解步骤:是用来研究一个控制变量的不同水平是否对观测变量产生了显著影响。

这里,由于仅研究单个因素对观测变量的影响,因此称为单因素方差分析。

例如,分析不同施肥量是否给农作物产量带来显著影响,考察地区差异是否影响妇女的生育率,研究学历对工资收入的影响等。

这些问题都可以通过单因素方差分析得到答案。

单因素方差分析的第一步是明确观测变量和控制变量。

例如,上述问题中的观测变量分别是农作物产量、妇女生育率、工资收入;控制变量分别为施肥量、地区、学历。

单因素方差分析的第二步是剖析观测变量的方差。

方差分析认为:观测变量值得变动会受控制变量和随机变量两方面的影响。

据此,单因素方差分析将观测变量总的离差平方和分解为组间离差平方和和组内离差平方和两部分,用数学形式表述为:SST=SSA+SSE。

单因素方差分析的第三步是通过比较观测变量总离差平方和各部分所占的比例,推断控制变量是否给观测变量带来了显著影响。

(二)单因素方差分析原理总结容易理解:在观测变量总离差平方和中,如果组间离差平方和所占比例较大,则说明观测变量的变动主要是由控制变量引起的,可以主要由控制变量来解释,控制变量给观测变量带来了显著影响;反之,如果组间离差平方和所占比例小,则说明观测变量的变动不是主要由控制变量引起的,不可以主要由控制变量来解释,控制变量的不同水平没有给观测变量带来显著影响,观测变量值的变动是由随机变量因素引起的。

(三)单因素方差分析基本步骤1、提出原假设:H0——无差异;H1——有显著差异2、选择检验统计量:方差分析采用的检验统计量是F统计量,即F值检验。

3、计算检验统计量的观测值和概率P值:该步骤的目的就是计算检验统计量的观测值和相应的概率P值。

4、给定显著性水平,并作出决策(四)单因素方差分析的进一步分析在完成上述单因素方差分析的基本分析后,可得到关于控制变量是否对观测变量造成显著影响的结论,接下来还应做其他几个重要分析,主要包括方差齐性检验、多重比较检验。

方差分析

方差分析

• 例题:探讨噪音对解决数学问题的影响作用。
噪音是自变量,划分为三个强度水平:强、中、 弱。因变量是解决数学问题时产生的错误频数。 随机抽取12名被试,再把他们分到强、中、无 三个实验组。每组被试接受数学测验时戴上耳 机。强噪音组、中噪音组的被试通过耳机分别 接受100、50分贝的噪音; 无噪音组的被试 则没有任何噪音。数学测验完后,计算每位被 试的错误频数。
查F值表进行F检验并作出决断
• 注意:
• 1.确定显著性水平 • 2.明确用单侧检验还是双侧检验
方差齐性检验
• 哈特莱最大F比率法:找出要比较的几个组内 方差中的最大值与最小值代入下式:
F max
S 2 S
2
max min
• 然后查F max临界值表,当算出的 F max小于表中相 应的临界值,就可认为要比较的样本方差两两 之间均无显著差异。
SSB MSB df B
SSW MSW df w
自由度的计算
• 组间自由度
• 组内自由度 • 总自由度
df B =k-1 df w =N-k
dfT
=N-1
• dfT = df B + df w
两个均方值之比为F统计量:
SSB / (k 1) MSB F SSW / (N k ) MSWE0.05来自SE X MS
n
E
• 4 用标准误乘以q的临界值就是对应于某 一个r值的两个平均数相比较时的临界值。
• 临界值,又称阀值,英文称 critical value,是指一个效应能 够产生的最低值或最高值。临界 值在数据分析中常常用来判定差 异情况 。
4、把5个平均数两两之间的差异与相应的 比较。但用这些差数与 q .SE 比较时一定要注意对应 于哪个r值。 例如: X E - X C =4.5,这时r=4-2+1=3,当r=3时 q0.05.SE X =3.49×1.738=6.06,因此应该将4.5与6.06 相比较。

第八讲-方差分析

第八讲-方差分析

x2 ij
j 1i 1
xij
N
k
2
SS B n j X j X t
i 1
2
k
j 1
nj
2
( xij)
i 1
nj
k nj
j 1i 1
xij
N
SSW SST SSB
2
nj
x k nj
x n j1 i1
k
2
ij j 1
ij i 1
j
3、确定自由度
df k 1 B
df N k W
二、(单因素)随机区组实验设计
1、模型
处理1
处理2 ……
区组1 被试1 x11 被试1 x21 ……
区组2 被试2 x12 被试2 x22 ……
处理k
被试1 xk1
被试2
xk
2
……… ……… ……
区组a 被试a x1a 被试a x2a ……
……
被试a xka
■注:每个区组内被试分配方式可以是以下 三种
T1
T2
8
39
20
26
12
31
14
45
10
40
T3
T4
17
32
工创问 具造题
21 20
23 28
教 程
丰 富 教
性 思 维
解 决 模
17
25
程教式 程教
20
29

T1: T2: T3: T4:CoRT
变异来源 自由度 平方和
处理 误差

3
1553.7
16 378.80
19 1932.55
均方

生物统计——方差分析的基本原理与步骤

生物统计——方差分析的基本原理与步骤
第一节
方差分析的基本原理与步骤
一、线性模型与基本假定
假设某单因素试验有k个处理,n次重 复,完全随机设计,则共有nk个观察值, 其数据结构和符号如表5-1所示。
xij可以表示为
xij i ij
其中, i
ij
为第i个处理观测值总体平均数;
为试验误差、相互独立、且 服从正态分布N(0,σ2)。
SSe SST SSt
(二)总自由度的分解 在计算总平方和时,资料中kn个观测值
的离均差 ( xij x ) 要受
( x
i 1 j 1
k
n
ij
x )0
这一条件的约束,故总自由度等于资料中观
测值的总个数减一, 即kn-1。总自由度记为
dfT,dfT=kn-1。
在计算处理间平方和时,k个处理均数的
统计学上,这种分解是通过将总均方
的分子──称为总离均差平方和,简称为总
平方和,分解为处理间平方和与处理内平
方和两部分;将总均方的分母──称为总自
由度,分解为处理间自由度与处理内自由
度两部分来实现的。
(一)总平方和的分解
在表5-1中,反映全部观测值总变异的总 平方和是各观测值xij与总平均数 x .. 的离均 差平方和,记为SST。即
离均差 ( xi x ) 要受
(x
i 1
k
i
x )0
这一条件的约束,故处理间自由度为处理数 减一,即k-1。处理间自由度记为dft,dft=k-1
在计算处理内平方和时,kn个离均差
( xij xi ) 要受k个条件的约束,即
(x
j 1
n
ij
xi ) 0 (i=1,2,…,k)

方差分析的基本原理及分析过程

方差分析的基本原理及分析过程

三 方差分析的步骤
步骤三:
计算各变异源引起数据变异的方差,即均方MS
均方等于变异平方和除以自由度
MS = SS / df
MSb = SSb / dfb MSw = SSw / dfw
三 方差分析的步骤
步骤四:
计算各效应是否显著的检验统计量 F 比率
方差分析中关心的是MSb是否显著大于MSw ,如果经步骤三 发现MSb小于MSw ,则无需进行是否小到显著性水平;反之, 则进行单侧检验,所以总是将MSb放在分子的位置。
断多个总体均数有无 差异,所以又叫变异 分析。
二 方差分析的基本思想
依据An的al基ysi本s 原of理Va是ri变an异ce的(可AN加OVA ) 性,不同来源的变异只有可加 时,才能保证变异分解的可能。
将所有测量值间的总变异按照其变异的 来源分解为多个部份,然后进行比较,评价 由某种因素所引起的变异是否具有统计学意 义。
处理因素
组间变异
随机误差
组内变异
总变异
方差分析的主要功能是 分析因变量的总变异中不同来源的变异,或者说是分析
实验数据中不同来源的变异对总变异的贡献大小, 以确定自变量是否对因变量有重要影响。
F检验是 计算组间变异与组内变异的比率F = MSb / MSw
三 方差分析的步骤
步骤一: 计算数据总变异量并对总变异进行分解
一组数据的变异量是用该组数据与平均数离差的平方和来计 算的,也叫平方和(sum of square),平方和的通用公式:
SS=∑(X﹣ ¯X)2 = ∑X2 ﹣ (∑X)2/ N
SSt = SSb ﹢SSw
三 方差分析的步骤
• 总平方和
一组数据的观测数据与平均数离差的平方总和,代表该组数据 总体的变异程度。计算方式:每个观测值与该组数据的总平均 数相减的平方之和。

全流程总结方差分析

全流程总结方差分析

大家好!这里是SPSSAU~为了帮大家快速度过新手期,我们整理了一份常见分析方法的流程总结。

其中包括每种分析方法的分析流程,以及每个环节中可能出现的问题及应对方法。

不会分析的同学可以按照图中的流程一步步操作,就能得到准确可靠的结果。

方差分析流程图方差分析是一种分析调查或试验结果是否有差异的统计分析方法,也就是检验各组别间是否有差异。

本文我们就一起来梳理下方差分析的分析流程。

1.数据类型方差分析用于分析定类数据与定量数据之间的关系情况,可以比较2组或多组数据的差异。

分析前首先应根据数据类型判断使用的方法是否正确。

●如果X是定类数据,Y是定类数据,则应该使用卡方分析。

●如果X是定类数据,Y是定量数据,且X组别仅为两组,则应该使用T检验。

2.方差分析的类型方差分析按照自变量个数的不同,可以分为单因素方差分析、双因素方差分析、以及多因素方差分析。

单因素方差分析可以比较一个自变量(比如品牌);而双因素方差可以比较两个自变量(品牌和销售地区);多因素方差可比较三个及以上的自变量。

单因素方差分析在问卷研究中常用于分析个人背景信息对核心研究变量的影响(比如不同性别人群对工作满意度是否有显著差异)。

同时也可用于对聚类分析效果的判断。

在得到聚类类别之后,通过方差分析去对比不同类别的差异,如果全部呈现出显著性差异,以及研究人员结合专业知识可以对类别进行命名时,则说明聚类效果较好。

而双因素和多因素方差分析,可以研究多个自变量对因变量Y的交互影响。

通常只有在实验研究中才会使用,一般的问卷数据很少使用。

本文将主要针对单因素方差分析说明。

3.正态性检验方差分析要求Y项满足需要正态性,SPSSAU提供多种检验正态性的方法,选择其中一种方法检验即可。

问卷数据很难保证数据的正态性,而正态性检验的判断标准较为严格,因为更推荐使用正态图或P-P/Q-Q图查看正态性,当数据基本满足正态性特征即可接受为正态分布。

P-P图P-P图中散点近似呈现为一条对角直线,则说明数据呈现出正态分布。

第六章 方差分析

第六章 方差分析

班组
水平
观测值
因素
分析均值间是否有明显差异。
3、方差分析的基本假定
方差分析基本假定的一般性的表述为,设因
素 A 有个 k 水平,在每个具体水平下,总体分布
为 N j, 2 ,j 1, 2, ,k 。注意这里个总体
方差均相等,并且在每个水平下抽取一个样本,
所取得的个样本相互独立。
注:
最后,构造统计量: 不加证明的引入如下的结论: 1)SSA与SSE相互独立
2) SSE ~ 2 n k 2 3)原假设成立情况下 SSA ~ 2 k 1 2 因此构造统计量:
SSA 2 k 1 F = SSE 2 n k SSA H 0为真 k 1 ,则F ~ F k 1,n k SSE nk
实际计算中主要有如下计算流程 a)水平均值 水平均值是指根据具体水平下的观察值的均 值。有计算公式为 nj 1 xi xij ni j 1 b)总均值 总均值是指全部观察值的均值
x 1
ni
i 1
k
x
i 1 j 1
k
ni
ij

1
ni
i 1
k
x
i 1
k
i
ni
c)总离差平方和 反映了全部观察值离散程度的总规模。有
H1:1, 2, , k 不全相等
2) 构造统计量及拒绝域 首先,分析三类离差平方和: a)总离差(总变差)平方和: 各样本观察值之间的差异称之为总差异,用总 离差平方和来表示。总离差平方和是每一观察值与 其总均值的离差的平方的总和。 b)组内离差(组内变差)平方和: 同一水平下观察值之间的差异,用组内离差平 方和来度量。 c)组间离差(组间变差)平方和: 不同水平观察值之间的差异,称之为组间离差, 用组间离差平方和来度量。

第5章 方差分析的原理与步骤(田间试验与统计分析 四川农业大学)

第5章 方差分析的原理与步骤(田间试验与统计分析 四川农业大学)

All Rights Reserved
田间试验与统计分析
Field Experiment and Statistical Analysis
计算各变异来源的平方和与自由度
Copyright © 2019
Sichuan Agricultural University Producer: Dr. Liu Yongjian

SST

k i 1
n j 1
xi2j

x2 nk
平方和:SSt

1 n
k i 1
xi2

x2 nk

SSe SST SSt
自由度:ddffTt

nk k
1
1
dfe dfT dft
Copyright © 2019
Sichuan Agricultural University Producer: Dr. Liu Yongjian
i1 j 1
i1 j 1
kn

[(xi x )2 2(xi x )(xij xi ) (xij xi )2 ]
i1 j 1
k
k
n
kn
n (xi x )2 2 (xi x ) (xij xi )
处理
A1(氨水1)
24 30 28 26
108
27.0
A2(氨水2)
27 24 21 26
98
24.5
A3(碳酸氢铵)
31 28 25 30
114
28.5
A4(尿素)
32 33 33 28
126
31.5
A5(不施) 合计
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方差分析的基本步骤
Ⅰ 求平方和
①总平方和是所有观测值与总平均数的离差的平方总和 ()
22T G SS X N =-∑其中G 表示所有数据的总合,N 表示总共的数据个数
②组间平方和是每组的平均数与总平均数的离差的平方再与该组数据个数的乘积的总和 ()2
22i B i i T G SS n X G n N ⎡⎤=-=-⎢⎥⎣⎦∑∑,G 为数据总均值,i T 为每组数据和,i n 为该组数据个数
③组内平方和是各被试的数值与组平均数之间的离差的平方总和 W i SS SS =∑
(注:T B W SS SS SS =+推荐用于检验之前的计算,而不是被当作快
捷计算的方式)
Ⅱ 计算自由度
()1
1
1T B W df N df k df k n N k =-=-=-=-
Ⅲ 计算均方 B B B
SS MS df =
W W W
SS MS df =
Ⅳ 计算F 值 B W
MS F MS =
Ⅴ 查F 值表进行F 检验并做出判断
Ⅵ 陈列方差分析表
文章来源:博仁教育。

相关文档
最新文档