水声学-海洋的声学特性

合集下载

海洋的声学特性

海洋的声学特性
TL1 20 lg r
声波通过浅海声速负跃变层后的声传播。
TL1 30 lg r
பைடு நூலகம்
适用偶极子声源或计及平整海面虚源干涉的远
场声传播,相当于计入声波多途干涉后,对球面波传
播损失的修正。
TL1 40 lg r
第2章 海洋的声学特性 37
水声学
2.2 海水中的声吸收
3、声传播吸收损失和吸收系数
相当于全反射海底和全反射海面组成的理想波导中的 声传播。 n=3/2
TL1 10 lg r
适用计及海底声吸收时的浅海声传播 ,相当
于计入界面声吸收所引起的对柱面波传播损失修正。
TL1 15 lg r
水声学 第2章 海洋的声学特性 36
2.2 海水中的声吸收
3)典型的声传播扩展损失 n=2 n=3 n=4 适用球面波传播,例如开阔水域(自由场)。
• 经常用深度替代静压力,水深每下降10m压力
近似增加1个大气压;
• 1℃=(1 F-32)5/9。
o
水声学
第2章 海洋的声学特性
5
2.1 海水中的声速
精确计算声速有什么意义?
海水声速的数值变化相对于本身虽然很小,但它
对声传播特性可能产生大的改变,导致海水中的声
能分布、声传播距离、传播时间等量发生明显变化
传播损失 TL 扩展损失 TL 1 吸收损失 TL 2
水声学
第2章 海洋的声学特性
32
2.2 海水中的声吸收
2、声传播的扩展损失
1)平面波的扩展损失 在理想介质中,沿x轴方向传播简谐平面波声压:
p p0 expit kx
2 I p0
传播损失为:
I 1 TL1 10lg 0 I x

水声学原理:第1章 与声学相关的海洋特性

水声学原理:第1章 与声学相关的海洋特性

1.1 声学介质—海洋
• 声速剖面
– 表面声信道 • 表面声道可以看作声道轴上移到水面,通常出现在 热带和温和区域(tropical and moderate zones)。
水声学原理
22
1.1 声学介质—海洋
• 声速剖面
– 表面声信道 • 在南极和北极地区、热带海区的地中海、秋季和冬 季的浅海,声速持续增大并非常靠近海底。 • 北冰洋典型声速剖面如下图所示。表面层较薄、声 速最低,声速梯度大,为
水声学原理
15
1.1 声学介质—海洋
• 声速剖面
– 深海声信道 • 黑海与波罗的海,有时声道轴之下声速的增加是由 于深层暖流所引起的温度随深度的升高。 • 如果声道轴以下介质的声速只受静压力控制,则该 声信道称为hydrostatical。 • 如果声道轴以下由于高盐度暖水团的出现导致声速 升高,则称该声信道为thermal。 • 典型的thermal水下声信道发生在波罗的海和黑海。
水声学原理
a (4 5) 10 5 m1
23
1.1 声学介质—海洋
• 声速剖面
– 双轴声信道 • 表面声道和深海声道同时存在时出现这种声道。 • 声线1保持在表面声道中传播;声线2主要在深海声 道中传播;
水声学原理
24
1.1 声学介质—海洋
• 声速剖面
– 双轴声信道 • 双轴声道可在葡萄牙半岛沿岸的北大西洋中观测到。 上面的声轴深度在450-500m,底下的声轴深度在 2000m。此声速分布的形成是由于地中海高盐暖水 团入侵至大西洋1200m深水层的缘故。
k~
c~
c
(1 ix)
kr
iki
水声学原理
x ki / kr

水声学第三章 海洋的声学特性

水声学第三章 海洋的声学特性
描述:覆盖海底之上的一层非凝固态(处于液态和 固态之间)的物质。
c 声速:沉积层中有压缩波速度(声速) 和切变波
速度 c s 两种。
衰减系数(dB/m)
Kf m
K为常数;f为频率,单位kHz;m为指数,通常取1
海底声反射损失
定义:反射声振幅相对入射声振幅减小的分贝数
BL20lgpr 20lgV pi
反向散射强度(朝声源方 向的声散射。) :单位 界面上单位立体角中所 散射出去的功率与入射 波强度之比。
深海平原海底反向散射强度与入射角的关系
在小入射角时,散射 强度随入射角增大而减小, 与频率一般无关
入射角>5度时,散射
强度10lgms近似与 cos2
成正比 大入射角时,散射强度可能与频率的四次方 成正比
海底反射系数模和反射损失BL值随掠射角的变化
高声速海底
低声速海底
深海实测的海底反射损失
海底反射损失的三个特征
存在一个“分界掠射角” ,是海底反射损失
的一个特征参数
当 时,反射损失值较小,随 增大而增加 当 时,反射损失较大,与 无明显依赖关系 海底反射损失简化模型-三参数模型
V 2 im co m c s s2 2 io n in s 2 c s 2 o 2 i n s / n 22 c2 o n s 2

1n2 M1iM2
令:
V V*02iM m 1M 1iM i2M 22
QReV V/2V* 0M 212m M M 222 Q 2 m 2M M 1 2 M 2 2
注意与书:上三结参果数:模型可用于分析海洋中声场的略有平不均同结!构
2、海面声学特性
海面波浪
周期性——周期、波长、波 速和波高等量描述其特征;

华北理工水声学讲义02海洋的声学特性

华北理工水声学讲义02海洋的声学特性

第2章 海洋的声学特性§2.1 海洋声学参数及传播损失本讲主要内容⏹ 声速经验公式(了解) ⏹ 海洋中声速的变化(重点) ⏹ 传播衰减概述(重点)⏹ 纯水和海水的超吸收(重点) ⏹ 非均匀液体中的声衰减(了解) 一、海水中的声速 1、声速(Sound Speed):海洋中重要的声学参数,也是海洋中声传播的最基本物理参数。

流体介质中,声波为弹性纵波,声速为:式中,密度 和绝热压缩系数都是温度T 、盐度S 和静压力P 的函数,因此,声速也是Temperature 、Salinity 、Pressure 的函数。

2、声速经验公式❑ 海洋中的声速c (m/s )随温度T (℃)、盐度S (‰)、压力P (kg/cm 2)的增大而增大。

❑ 经验公式是许多海上测量实验总结得到的。

※注:❑ 单位❑ 海水中盐度变化不大,典型值35‰; ❑ 经常用深度替代静压力,每下降10m 水深近似增加1个大气压的压力。

3、乌德公式4、声速测量❑ 声速剖面仪SVP ——Sound Velocity Profile❑ 温盐深测量仪CTD —Conductivity, Temperature, Depth ❑ 抛弃式温度测量仪XBT ——eXpendable BathyThermograph5、海洋中的声速变化❑ 海洋中声速的垂直分层性质❑ 声速梯度1)温度变化1度,声速变化约4m/s2)盐度变化1‰ ,声速变化约1m/ssc ρβ1=s β()P S T T c 175.03514.1037.021.414502+-+-+=()()z c z y x c =,,P P S S T T c g a g a g a dz dcg ++==ρ3)压力变化1个大气压,声速变化约0.2m/s6、海中声速的基本结构典型深海声速剖面温度垂直分布的“三层结构”:❑表面层(表面等温层或混合层):海洋表面受到阳光照射,水温较高,但又受到风雨搅拌作用。

海洋声学特征

海洋声学特征
第3章 海洋的声学特性
07:06
本章目的
• 本章从声学角度讨论海洋、海洋的不均匀 性和多变性,弄清声信号传播的环境,有 助于海中目标探测、声信号识别、通讯和 环境监测等问题的解决。
07:06
3.1 海水中的声速
1、声速( Sound Speed ) 海洋中的重要声学参数,也是海洋中声传
播的基本物理参数。
07:06
3.1 海水中的声速
2、声速测量
测量仪器设备:温度深度记录仪和声速仪 。
温度深度记录仪: 通过热敏探头测量 水中温度,同时通 过压力传感器给出 深度信息,可以转 换给出声速。
07:06
3.1 海水中的声速
2、声速测量
声速仪是声学装置: •声循环原理工作:
前一个脉冲到达接收 器,触发后一个脉冲从发 射器发出,记录每秒钟脉 冲的发射次数f,发射器 和接收器的距离L已知。 •声速:c=fL。
c 1449.22 cT cS cP cSTP
上式适用范围:-3℃<T<30℃、33‰<S<37‰
1.013 105 N / m2 1个大气压 P 980 105 N / m2
07:06
3.1 海水中的声速
声速经验公式
• 海水中盐度变化不大,典型值35‰; • 经常用深度替代静压力,每下降10m水深 近似增加1个大气压的压力; • 1℃=(1oF-32)5/9。
07:06
3.1 海水中的声速
海洋中声速的基本结构 典型深海声速剖面: 温度分布“三层结构”: (1)表面层(表面等温 层或混合层):
海洋表面受到阳光照 射,水温较高,但又受到 风雨搅拌作用。
07:06
3.1 海水中的声速
海洋中声速的基本结构

第2章海洋的声学特性

第2章海洋的声学特性

声速梯度。
在主跃变层(负)和深海 等温层(正)之间,有一 声速极小值—声道轴。
水声学 第2章 海洋的声学特性 18
2.1 海水中的声速
请解释一下深海声速梯度分布?
水声学
第2章 海洋的声学特性
19
2.1 海水中的声速
2)海水中声速的基本结构
温度的季节变化、日变化和纬度变化:
(1)季节变化: 百慕大海区温度随月份的变化情况,夏季既有表面 等温层,又有表面负梯度层;冬季有很深的表面混合 层。季节变化对海洋深处的温度影响较小。
水声学 第2章 海洋的声学特性
dB
33
2.2 海水中的声吸收
2)球面波的扩展损失
在理想介质中,沿r方向传播简谐球面波声压:
p0 p expit kx r
2 I p0 r2
传播损失为:
TL1 10lg I r I 1 20lg r
dB
水声学
第2章 海洋的声学特性
水声学
c0
Zm
c
c0
c
Zm
Z
Z
第2章 海洋的声学特性
26
2.1 海水中的声速
4)声速垂直分布分类 表面声道(混合层声道)声速分布: 特点:在某深度处有一声速极大值。 形成原因:在秋冬季节,水面温度较 低,加上风浪搅拌,海表面层温度均 匀分布,在层内形成正声速梯度分布。
Z
Zm
ch c
水声学
第2章 海洋的声学特性
2.1 海水中的声速
3、海水中声速变化
1)海水中声速的垂直分层性质 实测海洋等温线和等盐度线几乎是水平平行的, 在不同深度上取不同的值。温度、盐度和静压力均
具有水平分层和随深度变化的特性,所以声速具有

(完整版)第三章海洋的声学特性

(完整版)第三章海洋的声学特性

第三章海洋的声学特性本章从声学角度讨论海洋、海洋的不均匀性和多变性,弄清声信号传播的环境,有助于海中 目标探测、声信号识别、通讯和环境监测等问题的解决。

3.1海水中的声速声速:海洋中重要的声学参数,也是海洋中声传播的最基本物理参数。

海洋中声波为弹性纵波,声速为:1 c ----------s式中,密度 和绝热压缩系数 s 都是温度T 、盐度S 和静压力P 的函数,因此,声速也是 T 、S 、P 的函数。

1、声速经验公式海洋中的声速c (m/s )随温度T (C)、盐度S (%。

)、压力P (kg/cm 2)的增加而增加。

经验公式是许多海上测量实验的总结得到的,常用的经验公式为: 较为准确的经验公式:c ST p S 35 1.197 10 3T 2.61 10 4P 1.96 10 1P 2 2.09 10 6 PT P 2.796 10 4T 1.3302 10 5T 2 6.644 10 8T 3 P 22.391 10 1T 9.286 10 10T 21.745 10 10 P 3T上式适用范围:-3C <T<30 C 、33%<S<37%。

、1.013 105N /m 2 1 个大气压 注意I :海水中盐度变化不大,典型值 35% ;经常用深度替代静压力,每下降1个大气压的压力。

声速c 的数值变化虽然微小,但它对长距离传播声线的分布、射程、传播时间等量的影响很 大,因此需要有准确的声速数值。

但上式计算比较繁琐,在精度要求不太高时,可使用比较简单 的经验公式。

许多文献资料,都给出较为简单的声速经验公式,这里介绍|乌德公式|:式中,压力P 单位是大气压,1atm 1.013 105N/m 2 。

c 1449.22c TC sCPc STPc T4.6233T5.4585 10 2T 2 2.822 10 4T 3 5.07 10仃4C s 1.391 S 35 7.8 10 2 S 35 2c P1.60518 10 1P 1.0279 10 5P 2 3.451 10 9 P 3 3.503 10 12 P 4式中,52P 980 105N/m 2。

124-其他资源-海水的声速

124-其他资源-海水的声速

第二章 海洋的声学特性第一讲 海水的声速2.1 海水中的声速声速:海洋中重要的声学参数,也是海洋中声传播的最基本物理参数。

海洋中声波为弹性纵波,声速为:sc ρβ1=式中,密度ρ和绝热压缩系数s β都是温度T 、盐度S 和静压力P 的函数,因此,声速也是T 、S 、P 的函数。

1、声速经验公式海洋中的声速c (m/s )随温度T (℃)、盐度S (‰)、压力P (kg/cm 2)的增加而增加。

经验公式是许多海上测量实验的总结得到的,常用的经验公式为:较为准确的经验公式:STPP S T c c c c c ∆∆∆∆++++=22.1449式中,4734221007.510822.2104585.56233.4T T T T c T ---⨯-⨯+⨯-=∆()()2235108.735391.1-⨯--=-S S c S ∆4123925110503.310451.3100279.11060518.1P P P P c P ----⨯-⨯+⨯+⨯=∆()[][][]T P T T P T T T P PT P P T S c STP 31021012382546214310745.110286.910391.210644.6103302.110796.21009.21096.11061.210197.135----------⨯-⨯+⨯-+⨯-⨯+⨯-+⨯-⨯-⨯+⨯--=∆上式适用范围:-3℃<T<30℃、33‰<S<37‰、()2525/109801/10013.1m N P m N ⨯<<⨯个大气压。

注意:海水中盐度变化不大,典型值35‰;经常用深度替代静压力,每下降10m 水深近似增加1个大气压的压力。

声速c 的数值变化虽然微小,但它对长距离传播声线的分布、射程、传播时间等量的影响很大,因此需要有准确的声速数值。

但上式计算比较繁琐,在精度要求不太高时,可使用比较简单的经验公式。

第三章海洋的声学特性

第三章海洋的声学特性

7
声速测量
声速剖面仪SVP—— 声速剖面仪 Sound Velocity Profile 温盐深测量仪CTD— 温盐深测量仪 Conductivity, Temperature, Depth 抛弃式温度测量仪 XBT —— eXpendable BathyThermograph
College of Underwater Acoustic Engineering
College of Underwater Acoustic Engineering 25
吸收系数
均匀介质的声吸收 介质切变粘滞的声吸收(经典声吸收) 切变粘滞的声吸收 介质切变粘滞的声吸收(经典声吸收) 介质热传导声吸收(经典声吸收) 热传导声吸收 介质热传导声吸收(经典声吸收) 驰豫吸收 超吸收) 吸收( 驰豫吸收(超吸收)
College of Underwater Acoustic Engineering
12
海中声速的基本结构
Caution: :ቤተ መጻሕፍቲ ባይዱ在主跃变层 和深海等温 层之间, 层之间,有 一声速极小 声道轴 值—声道轴
典型深海声速剖面
College of Underwater Acoustic Engineering 13
Z
第二类 表面声道声速分布
20
College of Underwater Acoustic Engineering
声速分布分类
右图为反声道声速分布,特点: 右图为反声道声速分布,特点:
•声速随深度单调下降。 声速随深度单调下降。 声速随深度单调下降
c
形成原因: 形成原因:
•海洋上部的海水受到太阳强烈照 •海洋上部的海水受到太阳强烈照 射的结果。 射的结果。

海洋声学基础——水声学原理-吴立新

海洋声学基础——水声学原理-吴立新

海洋声学基础——水声学原理绪论各种能量形式中,声传播性能最好。

在海水中,电磁波衰减极大,传播距离有限,无法满足海洋活动中的水下目标探测、通讯、导航等需要。

声传播性能最好,水声声道可以传播上千公里,使其在人类海洋活动中广泛应用,随海洋需求增大,应用会更广。

§0-1节水声学简史01490年,意大利达芬奇利用插入水中长管而听到航船声记载。

11827年,瑞士物理学家D.colladon法国数学家c.starm于日内瓦湖测声速为1435米每秒。

21840年焦耳发现磁致伸缩效应1880年居里发现压电效应31912年泰坦尼克号事件后,L.F.Richardson提出回声探测方案。

4第一次世界大战,郎之万等利用真空管放大,首次实现了回波探测,表示换能器和弱信号放大电子技术是水声学发展成为可能。

(200米外装甲板,1500米远潜艇)5第二次世界大战主被动声呐,水声制导鱼雷,音响水雷,扫描声呐等出现,对目标强度、辐射噪声级、混响级有初步认识。

(二战中被击沉潜艇,60%靠的是声呐设备)6二、三十年代——午后效应,强迫人们对声音在海洋中的传播规律进行了大量研究,并建立起相关理论。

对海中声传播机理的认识是二次大战间取得的最大成就。

7二战后随着信息科学发展,声呐设备向低频、大功率、大基阵及综合信号处理方向发展,同时逐步形成了声在海洋中传播规律研究的理论体系。

81、1945年,Ewing发现声道现象,使远程传播成为可能,建立了一些介质影响声传播的介质模型。

2、1946年,Bergman提出声场求解的射线理论。

3、1948年,Perkeris应用简正波理论解声波导传播问题。

4、50-60年代,完善了上述模型(利用计算技术)。

5、1966年,Tolstor 和Clay 提出声场计算中在确定性背景结构中应计入随机海洋介质的必要性。

§0-2 节 水声学的研究对象及任务1、 水声学:它是声学的一个重要分支,它基于四十年代反潜战争的需要,在经典声学的基础上吸收雷达技术及其它科学成就而发展起来的综合性尖端科学技术。

第三章 海洋的声学特性

第三章 海洋的声学特性

第三章 海洋的声学特性本章从声学角度讨论海洋、海洋的不均匀性和多变性,弄清声信号传播的环境,有助于海中目标探测、声信号识别、通讯和环境监测等问题的解决。

3.1 海水中的声速声速:海洋中重要的声学参数,也是海洋中声传播的最基本物理参数。

海洋中声波为弹性纵波,声速为:s c ρβ1=式中,密度ρ和绝热压缩系数s β都是温度T 、盐度S 和静压力P 的函数,因此,声速也是T 、S 、P 的函数。

1、声速经验公式海洋中的声速c (m/s )随温度T (℃)、盐度S (‰)、压力P (kg/cm 2)的增加而增加。

经验公式是许多海上测量实验的总结得到的,常用的经验公式为:较为准确的经验公式:STP P S T c c c c c ∆∆∆∆++++=22.1449式中,4734221007.510822.2104585.56233.4T T T T c T ---⨯-⨯+⨯-=∆()()2235108.735391.1-⨯--=-S S c S ∆4123925110503.310451.3100279.11060518.1P P P P c P ----⨯-⨯+⨯+⨯=∆()[][][]TP T T P T T T P PTP P T S c STP 31021012382546214310745.110286.910391.210644.6103302.110796.21009.21096.11061.210197.135----------⨯-⨯+⨯-+⨯-⨯+⨯-+⨯-⨯-⨯+⨯--=∆上式适用范围:-3℃<T<30℃、33‰<S<37‰、()2525/109801/10013.1m N P m N ⨯<<⨯个大气压。

35‰;经常用深度替代静压力,每下降10m 水深近似增加1个大气压的压力。

声速c 的数值变化虽然微小,但它对长距离传播声线的分布、射程、传播时间等量的影响很大,因此需要有准确的声速数值。

2.1.13海洋的声学特性 - 声速剖面插值仿真程序说明文档

2.1.13海洋的声学特性 - 声速剖面插值仿真程序说明文档

声速剖面插值简介本算例是对水声学原理第二章关于水下声速问题的部分内容进行仿真,利用MATLAB对声速进行插值。

1.1 基本原理声速是影响声波在水中传播的最基本物理量。

海水中声速的变化会导致声传播规律的改变,因此,精确的声速数据在理论研究和工程应用中都具有十分重要的意义。

本算例提供两种方法进行声速插值计算。

第一种方法利用快速傅里叶插值的方法。

利用FFT算法把测得的实验数据转换到变换域中,再通过补零的方法,然后用更多点的傅里叶逆变换变换回来得到更多的数据,其结果相当于是对数据进行升采样。

第二种方法利用分段线性插值的方法。

分段线性插值具有计算简单、稳定性好、收敛性好、各小段曲线在连接点上连续、且容易实现等多种优点。

具体原理可以参阅各类数值计算的参考书籍,在此不作展开。

1.2 数值仿真仿真参数:声速极小值1500m/s;声道轴深度1000m;同时可以调整傅里叶插值的点数,本例程中设置点数为原始数据长度的50倍。

仿真结果:本例程使用Munk声速分布作为测量得到的数据。

声速/(m/s)深度/m图1 利用快速傅里叶插值的方法得到的插值结果声速/(m/s)深度/m图2 利用分段线性插值的方法得到的插值结果1.3 结论(1)从仿真结果中可以看出利用分段线性插值得到的数据较好,由于FFT 运算的特点,插值中会引入截断效应和混叠,导致插值结果的起伏,但有时傅里叶变换插值也不失为一种方法。

(2)实验测量的声速仅是在某些深度上,而理论和工程研究中需要用到任意深度的声速数据,此时便可通过函数插值来获得该深度的数据。

参考文献[1] 刘伯胜,雷家煜.水声学原理(第二版)[M].哈尔滨:哈尔滨工程大学出版社,2010:[2] 易大义,沈云宝,李有法.计算方法[M].杭州:浙江大学出版社,2010:。

海洋中声波的特性

海洋中声波的特性

一:声波情况声波类型:弹性波,在弹性介质中传播,属纵波。

水中声速为1500m/s,空气中为330m/s。

声场:声波作用的空间范围。

声波频率:声源每秒振动次数,单位赫兹(Hz)。

人耳可听到的最高频率为20KHz,因此该频率以上的声波称为超声波(ultrasonic);可听到的最低频率为20Hz,低于此的称为次声波(infrasound)。

折射(refraction)、反射(reflection)定律:声线总是向声速小的方向弯曲。

声波在海洋中的传播分为波导型,反波导型,分裂型二:海洋声学特性海水的声吸收:将声能变为不可逆的海水分子内能海面波浪的声散射:因不平整性、气泡和浮游生物的散射,声能弥散到其他方向而损失海底声学特性:声波经过海底不仅有纵波也产生横波。

反射和吸收是海底声学的重要物理量。

与海底的密度和其中的声速度有关。

海底岩石组成、表面粗糙度、密度及孔隙率有关海洋内部不均匀性对声波影响:气泡、冷暖水体、湍流、内波和深水声散射层等,都可引起声场起伏三:应用水下声道和Sofar系统水下声道(sofar channel):声波在海水中反射或者折射时,从声源发出的声线束将向声速极小值所在的水层弯曲,此时声能大部分限制在此水层间,没经过海面和海底的反射、散射和吸收,声能损失很少。

物理噪声:来自海洋介质本身运动,波浪、海流、湍流及冰层破裂等产生的噪声。

生物噪声:动物噪声,鲸、海豚、虾群碰撞等引起的噪声。

海洋噪声源在空间的分布是无规则的、运动随时间无规则变化。

海洋噪声可应用到声纳探鱼。

声纳技术对目前军事,渔业等各领域有着重要的应用价值。

水声学基础第二章

水声学基础第二章

2021/2/21
Z
27
2.1 海水中的声速
声速垂直分布分类 浅海常见声速分布:
c
特点:声速随深度单调下降。 形成原因:海洋上部的海水受到太 阳强烈照射的结果。
反声道声速分布与浅海常见 Z
声速分布有何不同?
2021/2/21
28
2.2 海水中的声吸收
1、传播损失概述
声波传播的强度衰减(传播损失)原因:
海洋中声速的基本结构 浅海声速剖面:
浅海声速剖面分 布具有明显的季节特 征。在冬季,大多属于 等温层的声速剖面,夏 季为负跃变层声速梯 度剖面。
2021/2/21
22
2.1 海水中的声速
海水温度起伏变化
• 描述海洋声速变化粗略近似:将温度和声速看成不随 时间变化,只随深度变化; • 等温层是宏观而言,微观而言温度随时间起伏变化。 • 温度起伏在下午和靠近海面最大。 • 温度起伏原因多种多样:湍流、海面波浪、涡旋和海 中内波等因素。
2021/2/21
23
2.1 海水中的声速
声速描述 在水声学中,经常将声速表示成为确定性的声速垂
直分布与随机不均匀声速起伏的线性组合:
cczc
2021/2/21
24
2.1 海水中的声速
声速垂直分布分类 深海声道声速分布:
特点:在某一深度
处有一声速最小
Zm
值。
c0 c
Zm
Z
Z
2021/2/21
c0 c
吸收系数
在介质中,声吸收和声散射引起的声传播损失经常
同时存在,很难区分开来。
假设平面波传播距离dx后,由于声吸收而引起声
强降低dI,则
dI2Idx
IxI0e2x

海洋的声学特性课件

海洋的声学特性课件

声呐技术有多种类型,包括主 动声呐和被动声呐,以及用于 不同探测目的的特殊声呐。
声学多普勒测流技术
声学多普勒测流技术是一种利用声波测量水流速度和方向的无损测量技术 。
该技术基于多普勒效应原理,通过测量声波在水流中的频率变化来推算水 流的速度和方向。
声学多普勒测流技术广泛应用于海洋学、河流水文学等领域,为研究水流 动力学和环境变化提供了重要手段。
声学温度测量技术
声学温度测量技术是一种利用声 波测量水下温度场的方法。
该技术通过测量声波在水中传播 的速度,结合已知的声速与温度 之间的关系,推算出水下的温度
分布。
声学温度测量技术对于研究海洋 热力学、气候变化等领域具有重
要意义。
海洋声学测量技术的发展趋势
海洋声学测量技术不断发展,未来将朝 着高精度、高分辨率、高效率的方向发 展。
在海洋考古研究中的应用
声波成像
利用声波成像技术探测海底沉船、古迹等文化遗产,为海洋考古研究提供新的 方法和手段。
声学测年
通过测量海底沉积物的声学特性,确定沉积物的年代和历史,为海洋历史和考 古研究提供重要依据。
05
未来展望与挑战
BIG DATA EMPOWERS TO CREATE A NEW
ERA
20世纪初
声呐技术开始应用于军事领域。
20世纪中叶
声学在海洋资源探测和环境监测方面 的应用逐渐普及。
21世纪
高分辨率和高灵敏度声学技术的发展 ,推动了海洋声学研究的深入。
海洋声学的研究意义
促进海洋科学的发展
声学技术为海洋科学研究提供 了重要的工具和方法。
保障国家安全
军事应用领域的声呐技术对于 国家安全具有重要意义。
在海洋环境监测中的应用
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可编辑ppt
23
三、海洋内部的不均匀性
湍流
描述:流体流经固体表面或是流体内部出现的一种不 规则运动。它是一种随机运动的旋转流。
它形成海水中温度和盐度的细微结构变化,引起声速 的微结构变化。
内波
描述:两种不同密度液体在其叠合界面上所产生的波 动。
波长可达几十公里到几百公里,波高从10米到100米。 对低频、远距离的声传播信号有重大影响。
当 时,反射损失值较小,随 增大而增加
当 时,反射损失较大,与 无明显依赖关系
可编辑ppt
15
一、海底声学特性
海底反射损失简化模型——三参数模型
Q
,0
lnV
lnV0
con,st
2
可编辑ppt
16
一、海底声学特性
海底反射损失简化模型——三参数模型 三参数: 、 lnV0 、Q 参数计算
可编辑ppt
20
二、海面的声学特性
海面波浪 周期性——周期、波长、波速和波高等量描述其特征; 随机起伏性——概率密度分布、方差、谱和相关函数等 描述其特征。
可编辑ppt
21
二、海面的声学特性
波浪的基本特征 重力表面波:以重力作为恢复力的波动 表面张力波:以表面张力作为恢复力的波动 波浪的形成和等级 平均波高、有效波高、平均1/10最大波高
令: 1n2 M1iM2
V V*02iM m 1M 1iM i2M 22
可编辑ppt
19
一、海底声学特性
海底反射损失简化模型——三参数模型 Q的计算具体过程
QReV V/2V* 0M 212m M M 222
教材上:
Q 2 m 2M M 1 2 M 2 2
:三参数模型可用于分析海洋中声场的平均结构
第三章 海洋的声学特性
第六讲 海面和海底的声学特性
本讲主要内容
本章知识点测试 海底的声学特性 海面的声学特性 海洋内部的不均匀性
可编辑ppt
2
0、第三章知识点测试
画出三种常见的海水声速分布,解释其形成的原因。
深海声道声速分布
摇号
表面声道声速分布 浅海负梯度声速分布
平台
声波在海水中传播时其声强会逐渐减少的原因有哪些?
可编辑ppt
18
一、海底声学特性
海底反射损失简化模型——三参数模型 Q的计算具体过程
取: Vmcosi i sin2i n2 mcosi i sin2i n2
V 2 ic m o m c ss2 2 i o n in s 2 c s 2 o 2 i n s /n 22 c2 o n s 2
为什么人们关心海底反向散射强度? 传统的声纳为收发合置声纳 传统声纳的工作频率较高 海底的声散射形成海底混响
一维、二维界面的声散射强度 双基地声纳 多基地声纳 低频声散射强度
可编辑ppt
8
一、海底声学特性
海底声散射 原因: 海底表面的不平整性 海底内部的不均匀性 建模: 微扰法 小斜率近似
: arccons
nc1/c2
V0: Q:
V0
mn mn
m2/1
QlnV0
可编辑ppt
17
一、海底声学特性
海底反射损失简化模型——三参数模型 Q的计算具体过程
lnV12lnVV*
1V/V*VV*/ ReV/V*
2
V2
V2
:实际海底存在吸收,可将海底声速视为复数, 此时不再发生全内反射。
可编辑ppt
9
一、海底声学特性
人们关心的海底参数 声速(反演) 密度(反演) 衰减系数(反演) 底质(取样) 垂直分层结构(取样)
:如何获取海底的声学参数? 如何快速准确获取?
可编辑ppt
10
一、海底声学特性
多波束侧扫声纳探测海底底质可编辑pLeabharlann t11一、海底声学特性
海底沉积层的声学特性
描述:覆盖海底之上的一层非凝固态(处于液态和固态 之间)的物质。
声速:沉积层中有压缩波速度(声速)和切变波速度两
种。 衰减系数(dB/m)
w1.02g4/cm 3
Kf m
s
海底声反射损失
定义:反射声振幅相对入射声振幅减小的分贝数
BL20lgpr 20lgV pi
可编辑ppt
12
一、海底声学特性
海底反射系数模和反射损失BL值随掠射角的变化 高声速海底
:a曲线有一段是直线,表示什么物理含义?
可编辑ppt
13
一、海底声学特性
海底反射系数模和反射损失BL值随掠射角的变化 低声速海底
可编辑ppt
14
一、海底声学特性
深海实测的海底反射损失
特征: 存在一个“分界掠射角” ——海底反射损失的一 个特征参数
几何扩展、吸收、散射
海水声吸收的原因是什么?
切变粘滞声吸收、热传导声吸收、驰豫吸收
含气泡群的海水声吸收的原因是什么?
切变粘滞声吸收、热传导声吸收、散射
可编辑ppt
3
一、海底声学特性
海底结构、地形和沉积层是影响声波传播的重要因素
可编辑ppt
4
一、海底声学特性
海底对声波的吸收、散射和反射等声学特性关系到水声设 备作用距离的远近
波浪的统计特征 波浪的概率密度分布: :在水声学中经常将波面的概率分布视为高斯分布 充分成长的海浪谱 Pierson-Moskowitz谱(P-M谱)
可编辑ppt
22
二、海面的声学特性
海面表面层内的气泡层 声波的吸收体 声波的散射体
海面对声传播的影响简介 镜反射 漫散射:形成散射场。随着海面粗糙度增加,漫散射 场占主要分量。 反向声散射:形成海面混响 海面波动:导致海面散射波产生多普勒频移
入射角>5度时,散射 强度10lgms近似与 cos2 成正比
大入射角时,散射强度可能与频率的四次方成正比
可编辑ppt
6
一、海底声学特性
非常粗糙海底反向散射强度与入射角的关系 反向散射强度几乎与入射角无关 反向散射强度几乎与频率无关
:为什么人们关心海底反向散射强度?
可编辑ppt
7
一、海底声学特性
海底声波反射系数与海底地形有明显的依赖关系。高于几 千赫频率的声波,海底粗糙度是 影响声波反射的主要作用
反向散射强度(朝声源方向的声散射) 定义:单位界面上单位立体角中 所散射出去的功率与入射波强度 之比。
可编辑ppt
5
一、海底声学特性
深海平原海底反向散射强度与入射角的关系
在小入射角时,散射 强度随入射角增大而减小, 与频率一般无关
相关文档
最新文档