浙江省高职考数学模拟试卷20
2022年浙江高职单招数学试卷附答案
2022年浙江省单独考试招生文化考试数学试题卷(满分150分,考试时间120分钟)一、单项选择题(本大题共20小题,1―12小题每小题2分,13―20小题每小题3分)1、若集合A={x1-5<x<2},B={x1-3<x<3},则AI B=()A.{x1-3<x<2}B.{x1-5<x<2}C.{x1-3<x<3}D.{x-5<x<3}2、已知集A={l,2,3},B={1,3},则Al B=()A.{2}B.{1,2}C.{1,3}D.{1,2,3}3.若,,则的坐标是A. B. C. D.以上都不对4.在等差数列中,已知,且,则与的值分别为A.,B.,C.,D.,5.设,“”是“”的A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件6.函数的图象如图所示,则最大、最小值分别为A. B.C. D.7.设,,,其中为自然对数的底数,则,,的大小关系是A.B. C. D.8.设,,,都为正数,且不等于,函数,,,在同一坐标系中的图象如图所示,则,,,的大小顺序是A. B. C.D.9.命题p :a=1,命题q :2(1)0a -=.p 是q 的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件10.在△ABC 中,向量表达式正确的是()A.AB BC CA +=B.AB CA BC -=C.AB AC CB-= D.AB BC CA ++= 11.如图,在数轴上表示的区间是下列哪个不等式的解集()A.260x x --≤ B.260x x --≥ C.15||22x -≥D.302x x -+≥12.已知椭圆方程:224312x y +=,下列说法错误的是()A.焦点为(0,-1),(0,1)B.离心率12e =C.长轴在x 轴上D.短轴长为2313.下列函数中,满足“在其定义域上任取x1,x2,若x1<x2,则f (x1)>f (x2)”的函数为()A.3y x=B.32x y =-C.1()2xy -= D.ln y x=14.掷两枚骰子(六面分别标有1至6的点数)一次,掷出点数和小于5的概率为()A.16 B.18 C.19D.51815.已知圆锥底面半径为4,侧面面积为60,则母线长为()A.152B.15C.152pD.15p16.函数y =sin2x 的图像如何平移得到函数sin(23y x p=+的图像()A.向左平移6p个单位 B.向右平移6p个单位C.向左平移3p个单位D.向右平移3p个单位17.设动点M 到1( 0)F 的距离减去它到2F 的距离等于4,则动点M 的轨迹方程为()A.22 1 (2)49x y x -=-≤B.22 1 (2)49x y x -=≥C.221 (2)49y x y -=≥ D.22 1 (x 3)94x y -=≥18.已知函数()3sin f x x x =,则()12f p=()A.B. C. D.19.某商场准备了5份不同礼品全部放入4个不同彩蛋中,每个彩蛋至少有一份礼品的放法有()A.480种B.240种C.180种D.144种20.如图在正方体ABCD ‐A ′B ′C ′D ′中,下列结论错误的是()A.A ′C ⊥平面DBC ′B.平面AB ′D ′//平面BDC ′C.BC ′⊥AB ′D.平面AB ′D ′⊥平面A ′AC二、填空题(本大题共7小题,每小题4分,共28分)21.点A(2,-1)关于点B(1,3)为中心的对称点坐标是__________.22.设3 0 ()32 0x x f x x x ìï=í-ïî,≤,>,求f [f (-1)]=_____.23.已知A(1,1)、B(3,2)、C(5,3),若AB CA l =,则λ为_____.24.双曲线2212516y x -=的两条渐近线方程为_______________.25.已知1sin()3p a -=,则cos2α=_____.26.若x <-1,则函数1()21f x x x =--+的最小值为_____.27.设数列{an}的前n 项和为Sn ,若a1=1,an+1=2Sn (n ∈N*),则S4=_____.三、解答题(本大题共9小题,共74分)28.(本题满分6分)计算:133cos 3)27lg0.012p +-++29.(本题满分7分)等差数列{an}中,a2=13,a4=9.(1)求a1及公差d ;(4分)(2)当n 为多少时,前n 项和Sn 开始为负?(3分)30.(本题满分8分)如下是“杨辉三角”图,由于印刷不清在“▯”处的数字很难识别.(1)第6行两个“15”中间的方框内数字是多少?(2分)(2)若2)n x 展开式中最大的二项式系数是35,从图中可以看出n 等于多少?该展开式中的数项等于多少?(6分)31.(本题满分8分)如图平行四边形ABCD 中,AB =3,AD =2,AC =4.(1)求cos ∠ABC ;(4分)(2)求平行四边形ABCD 的面积.(4分)32.(本题满分9分)在△ABC 中,3sin 5A =,5cos 13B =.(1)求sinB ,并判断A 是锐角还是钝角;(5分)(2)求cosC.(4分)33.(本题满分9分)如图PC ⊥平面ABC ,AC =BC =2,PC =,∠BCA =120°.(1)求二面角P ‐AB ‐C 的大小;(5分)(2)求锥体P ‐ABC 的体积.(4分)34.(本题满分9分)当前,“共享单车”在某些城市发展较快.如果某公司要在某城市发展“共享单车”出租自行车业务,设一辆自行车(即单车)按每小时x 元(x ≥0.8)出租,所有自行车每天租出的时间合计为y (y >0)小时,经市场调查及试运营,得到如下数据(见表):(1)观察以上数据,在我们所学的一次函数、反比例函数、二次函数、指数函数中回答:y 是x 的什么函数?并求出此函数解析式;(5分)若不考虑其它因素,x 为多少时,公司每天收入最大?(4分)35.(本题满分9分)过点(-1,3)的直线l 被圆O :2242200x y x y +---=截得弦长8.(1)求该圆的圆心及半径;(3分)(2)求直线l 的方程.(6分)36.(本题满分9分)1992年巴塞罗那奥运会开幕式中,运动员安东尼奥·雷波洛以射箭方式点燃主会场的圣火成为历史经典.如图所示,如果发射点A 离主火炬塔水平距离AC =60m ,塔高BC =20m.已知箭的运动轨迹是抛物线,且离火炬塔水平距离EC =20m 处达到最高点O.(1)若以O 为原点,水平方向为x 轴,1m 为单位长度建立直角坐标系.求该抛物线的标准方程;(5分)(2)求射箭方向AD (即与抛物线相切于A 点的切线方向)与水平方向夹角θ的正切值.(4分)答案一、单项选择题1.A 2.C3.B4.A5.A6.D7.C8.C9.A10.C11.D12.C13.B14.A15.D 16.A17.B18.A19.B20.C二、填空题21.(0,7)22.-123.12-24.54y x=±25.7926.527.27三、解答题28.629.(1)115a =,2d =-;(2)当17n =时,前n 项和n S 开始为负。
高职高考一模数学试卷
一、选择题(本大题共10小题,每小题5分,共50分)1. 若函数f(x) = 2x + 3,则f(2)的值为()A. 7B. 9C. 11D. 132. 下列各数中,有理数是()A. √2B. πC. 3/4D. 无理数3. 已知等差数列{an}的首项为2,公差为3,则第10项an的值为()A. 27B. 30C. 33D. 364. 下列各函数中,是奇函数的是()A. y = x^2B. y = x^3C. y = |x|D. y = 2x5. 下列各式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^26. 下列各式中,正确的是()A. a^2 = aB. a^3 = aC. (ab)^2 = a^2b^2D. (a/b)^2 = a^2/b^27. 已知等比数列{an}的首项为2,公比为3,则第5项an的值为()A. 54B. 162C. 486D. 14588. 若函数f(x) = kx + 1,其中k为常数,则f(x)的图像是()A. 直线B. 抛物线C. 双曲线D. 椭圆9. 已知三角形的三边长分别为3、4、5,则这个三角形的面积是()A. 6B. 8C. 10D. 1210. 下列各式中,正确的是()A. log2(8) = 3B. log2(4) = 2C. log2(2) = 1D. log2(1) = 0二、填空题(本大题共10小题,每小题5分,共50分)11. 若sinθ = 1/2,则cosθ的值为________。
12. 已知复数z = 3 + 4i,则|z|的值为________。
13. 若等差数列{an}的首项为a1,公差为d,则第n项an的通项公式为________。
14. 若等比数列{an}的首项为a1,公比为q,则第n项an的通项公式为________。
2024年浙江省温州市普通高职单独考试2024届高三下学期二模数学试题(含答案)
2024届浙江省单独考试温州市模拟测试《数学》试卷(2024.3)本试卷共三大题.全卷共4页.满分150分,考试时间120分钟.注意事项:1.所有试题均需在答题卷上作答,未在规定区域内答题,每错一个区域扣卷面总分1分,在试卷上、草稿纸上作答无效.2.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题卷上.3.选择题每小题选出答案后,用2B 铅笔把答题卷上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题用黑色字迹的签字笔或钢笔将答案写在答题卷上.4.在答题卷上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑. 一、单项选择题(本大题共20小题,1-10小题每题2分,11-20小题每题3分,共50分).(在每小题列出的四个备选答案中,只有一个是符合题目要求的,错涂,多涂或未涂均不得分)1. 设x ∈R ,“2x >”是“24x >”的( )A. 充分不必要条件B. 必要不充分条件C. 充分且必要条件D. 既不充分也不必要条件 2. 下列函数在其定义域内单调递增的是( ) A. ()2f x x=B.()21f x x =+ C. ()e xf x = D.()sin f x x = 3. 已知角α的终边经过点()3,4P ,则cos α=( )A. 35- B. 35 C. 45- D. 454. 函数()513f x x =+-的定义域为( )A. {2x x ≠且}4x ≠-B. {}2x x ≠ C. {}4x x ≠- D.{}3x x ≠ 5. 已知集合{}2,N S x x k k ==∈,{}21,N T x x k k ==+∈,则S T ⋃=( )A. SB. TC. ND. ∅ 6. 从5名女同学和4名男同学中,选两名同学分别担任班长与学习委员,要求男女同学各一名,不同选法共有( )A. 9种B. 20种C. 40种D.72种 7. 已知扇形半径为9,圆心角为60︒,则该扇形的弧长为( )A. 3πB. 2πC. 10D. 9 8. 圆C :()()22132x y -+-=关于x 轴对称的圆的方程为( ) A. ()()22132x y -+-=()()22132x y -+-= C. ()()22132x y -++=()()22132x y -++=9. 已知数列{}n a 为等差数列,若238a a +=,4510a a +=,则67a a +=( )A. 8B. 10C. 12D. 14 10. 已知点()1,1A 、(3B ,过原点的直线l 与线段AB 有公共点,则直线l 倾斜角的取值范围为( )A. π0,4⎛⎤⎥⎝⎦B. ππ,43⎛⎫ ⎪⎝⎭C. ππ,43⎡⎤⎢⎥⎣⎦ D. ππ,32⎛⎫⎪⎝⎭11. 直线210ax y +-=与直线2310x y --=互相垂直,则常数a 的值为( )A. 3-B. 43- C. 2 D.3 12. 如图所示,在边长为1的正方形ABCD 中,点E 为折线段BCD 上动点,则BE BA -的最大值为( )A. 1B. 2C. 2D. 3 13. 从甲、乙、丙、丁、戊五名同学中随机选2人参加普法知识竞赛,则甲被选中的概率为( ) A.25 B. 15 C. 34D. 12 14. 如图所示,在正方体1111ABCD A B C D -中,点O 为侧面11ADD A 的中心,点E 为线段11C D 上的动点,则直线BE 与AO 的位置关系为( )A 平行 B. 相交 C. 异面 D. 平行或相交 15. 已知1x >-,则121x x ++的最小值为( )A. B. )221- C. 2 D. 2- 16. 已知函数23,04,0x x x y x +≤⎧=⎨>⎩的图像与直线y a =有两个交点,则a 的取值范围为( )A. 13a <£B. 13a <<C. 14a <≤D. 14a << 17. 已知一次函数()y f x =的图像如图所示,令()()g x xf x =,则()0g x >的解集为( )A. ()0,1B. ()1,+∞C. (),0∞-D. ()(),01,-∞⋃+∞18. 若221169x y -=,则下列各式为常数的是( )A.()225x y -+ B.()225x y ++C()224x y -+D.()224x y ++19. 如图所示,在由3个相同正方形拼接而成的矩形中,βα-=( )A.π2 B. π3 C.π4 D. π6..20. 如图所示,过抛物线22y px =(0p >)的焦点F 的直线交抛物线于点A 、B ,交其准线l 于点C ,若点F 是AC 的中点,且4AF =,则线段AB 的长为( )A. 5B. 6C.163 D. 203二、填空题(本大题共7小题,每小题4分,共28分) 21. 已知函数()21,01,0x x f x x x +≤⎧=⎨->⎩,则()3f =______.22. 在正项等比数列{}n a 中,若11a =,39a =,则公比q =______. 23. 已知1cos 3α=,且α为第四象限角,则sin α=______. 24. 已知双曲线221x y m -=的渐近线方程为33y x =±,则m =______.25. 有如下式子:①lg5lg 202+=;②0!0=;③02024C 0=;④202420232024202322322+=-;⑤13182-=-.其中正确的有______.(写出所有正确式子的序号)26. 如图所示,在矩形ABCD 中,1AB =,2BC =,点M 为边BC 的中点,将矩形ABCD 沿DM 剪去DCM △,将剩余部分绕直线AD 旋转一周,则所得到几何体的表面积为______.27. 过点()2,1P -且与原点距离为2的直线方程为______.三、解答题(本大题共8小题,共72分,解答应写出必要的文字说明、演算步骤.)28. 已知1nx x ⎛⎫+ ⎪⎝⎭的二项式系数之和为256,求:(1)n 的值;(2)二项式展开式中的常数项.29. 已知圆C 的圆心坐标为()1,1-2. (1)写出圆C 的标准方程;(2)若直线10x y +-=与圆C 相交于A ,B 两点,求弦长AB .30. 如图所示,在梯形ABCD 中,AD BC ∥,4AC BC ==,ACB ∠为锐角,且sin 8ACB ∠=.(1)求ABC 的面积与AB 的长. (2)若6CD =sin D .31. 已知函数()223cos 2sin 222x x x f x =-. (1)求()πf 值以及函数()f x 的最小正周期. (2)当[]π,0x ∈-时,求()f x 的最小值.32. 如图所示,在ABC 中,90ACB ︒∠=,CD AB ⊥,且3AC ==BC ,ACD 绕CD 旋转至A CD ',使得面A DC '⊥面BDC .求:(1)三棱锥C A BD '-的体积. (2)二面角C A B D -'-的正切值.33. 已知数列{}n a 满足21320n n n a a a ++-+=,11a =,24a =. (1)求3a ,4a 值.(2)判断数列{}1n n a a +-是否为等比数列. (3)求数列{}n a 的通项公式.的的34. 已知椭圆E :()222210y x a b a b+=>>的焦距为2,1F ,2F 分别是其上、下焦点,点P 在椭圆E 上,且123PF PF +=(1)求椭圆E 的标准方程;(2)已知直线l :y x m =+,当直线l 与椭圆E 相交时,求m 的取值范围;(3)若直线1y x =+与椭圆E 交于A ,B 两点,直线1y x =-与椭圆E 交于C ,D 两点,求四边形ABCD 面积.35. 如图所示,已知一堵“L ”形的现成墙面ABC ,AB BC ⊥,9AB =米,3BC =米,现利用这堵墙和总长为42米的篱笆围建一个“日”字形的小型农场DBEF (虚线表示篱笆,小型农场中间GH 也是用篱笆隔开),点D 可能在线段AB 上(如图①),也可能在线段BA 的延长线上(如图②,点E 在线段BC 的延长线上.设DF 为x 米,EF 为y 米.(1)当13x =时,小型农场DBEF 的面积为多少?(2)当“点D 在线段AB 上”和“点D 在线段BA 的延长线上”时,试分别写出y 关于x 的函数关系式; (3)当x 等于多少时,小型农场DBEF 的面积最大?最大面积为多少平方米?的参考答案:ACBAC CADCC DBADB ADBCC 8 33-3①④(3π2x =或34100x y --=28. (1)8 (2)7029. (1)()()22112x y ++-= (230. (12. (2)4.31. (1)()π2,2πf T =-=. (2)3-.32. (1)3. (2)2.33. (1)3410,22a a ==.34.(1)22132y x += (2)( (3)535.(1)()278m(2)()()327,3122453,1215x x y x x ⎧-<<⎪=⎨⎪-≤<⎩(3)当9x =时,小型农场面积最大,最大面积为2243m 2。
2024年浙江省中职数学高考押题模拟试卷(含答案)
浙江省2024年中职职教高考文化统考终极押题预测数学试卷姓名 准考证号本试卷共三大题,共4页。
满分150分,考试时间120分钟考生注意:1.答题前,请务必将自己的姓名,准考证号用黑色字迹的签字笔或钢笔分别写在试卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸上相应的位置上规范答题,在本试卷上作答一律无效。
一、单项选择题(本大题共20小题,1-10小题每小题2分,11-20小题每小题3分,共50分)在每小题列出的四个备选答案中,只有一个是符合题目要求的。
错涂、多涂或未涂均无分。
1.设全集U =R ,{|02}A x x =≤≤,{|11}B x x =-≤≤,则图中阴影部分表示的区间是( )A .[]0,1B .()(),12,-∞-+∞C .[]1,2-D .(,1][2,)-∞-+∞ 2.下列命题中正确的是( )A .若a b >,则11a b< B .若a b <,则22ac bc < C .若22a b >,则a b >D .若22a b c c>,则a b > 3.函数()121f x x =++的值域为( ) A .()(),11,-∞+∞B .()(),22,-∞+∞C .()(),11,-∞-⋃+∞D .()1,1- 4.若角α终边经过点()1,1-,则2sin 3cos cos 6cos 2sin ααααα++-的值为( ) A .54 B .1 C .34 D .32- 5. “x 为整数”是“21x +为整数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知直线l 的倾斜角θ10y +-=的倾斜角互补,则θ=( )A .30B .60C .120D .1507.已知数列{}n a 满足()*1111,21n n a a n a +==∈-N ,则5a 的值为( ) A .2 B .12 C .12- D .1-8.达-芬奇的经典之作《蒙娜丽莎》举世闻名,画中女子神秘的微笑,数百年来引无数观赏者对其进行研究.某业余爱好者对《蒙娜丽莎》的缩小影像作品进行粗略测绘,将画中女子的嘴唇近似看作一段圆弧,并测得圆弧AC 所对的圆心角α为60 ,弦AC 的长为10cm ,根据测量得到的数据计算:《蒙娜丽莎》缩小影像作品中圆弧AC 的长为( )(单位:cm )A .600πB .100π3C .10π3D .5π39.某广场有一喷水池,水从地面喷出,如图,以水平面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线24y x x =-+(单位:米)的一部分,则水喷出的最大高度是( )A .4米B .3米C .2米D .1米10.若点A 在x 轴上,点B 在y 轴上,线段AB 的中点M 的坐标是(3,4),则AB 的长为( )A .10B .5C .8D .611.已知向量()5,2a = ,()4,3b =-- ,若c 满足320a b c -+= ,则c = ( )A .()23,12--B .()23,12C .()7,0D .()7,0-12.直线220x y ++=与420ax y +-=互相垂直,则这两条直线的交点坐标为( )A .()1,4-B .()0,2-C .()1,0-D .0,12⎛⎫ ⎪⎝⎭13.湖州市书画历史悠久,渊源深厚,自东晋六朝以来形成了浓郁深厚的书画遗风,孕育出了一代代书法与绘画大家。
杭州市高职考试数学模拟卷(最新)
浙江省高等职业技术教育招生考试数 学 模 拟 试 卷一、单项选择题(本大题共18小题,每小题2分,共36分)在每小题列出的四个1.如图,,,M P S 是全U 的子集,则阴影部分所表示的集合是( )A.()MP S B.()M P S C.()U M P C S D.()U M P C S2.不等式组2142x a x a ⎧->⎨-<⎩有解,则实数a 的取值范围是( ) A.(1,3)- B.(,1)(3,)-∞-+∞ C.(3,1)- D.(,3)(1,)-∞-+∞3.条件“tan()0αβ-=”是“tan tan 0αβ-=”的( )A.充分不必要条件B.必要不充分已经C.既不充分又不必要条件D. 充分必要条件4.已知2211(),()f x x f x x x -=+则函数的表达式为( ) A.223x x -+ B.221x x -+ C.22x + D.221(1)(1)x x -+- 5对任意,,,a b c R +∈,则下列等式正确的是( )A.()b c b c a a +=B.bb c c a a a-= C.lg (lg lg )lg b b a a =- D .lg lg lg()a b a b ⋅=+6.若等比数列{}n a 的前n 项和为3,nn S k k =+=则( ) A.0 B.2π C.32π D.65π 7.数列1,2,5,4,9,6,13,8,……,则此数列的第21项为( )A.34B.36C.41D.458.停车场可将12辆车停放在一排,当有8辆车已停放后,恰有4个空位连在一起,这种情况发生的概率为( ) A.8127C B.8128C C.8129C D. 81210C 9.如果从南、北两个方向分别有5条、3条路可以通往上顶,那么某人从一面上山由另一面下山,共有( )种走法.A.53+B.35⨯C.35D.5310.若角β的终边经过点(2,0)P -,则β是( )A .第二象限角 B. 第三象限角 C. 第四象限角 D. 非象限角11.如果4cos(),5πα+=-则下列等式成立的是( ) A.3sin 5α=- B.3tan 4α=C.34sin()25πα-=- D.4cos(2)5πα-= 12.若cos()cos(),244ππθθθ-+==则cos ( )13.9(2)x y -展开式中,第5项的二项式系数为( )A.59CB.59C -C.49CD.49C -14. 若,αβ是两个不重合的平面,在下列条件中可判断两平面平行的条件是( )A.,αβγ都垂直于平面B.αβ内不共线的三点到的距离相等 C.,,l m l m αββ是平面内的直线,且 D. ,,,,l m l m l m ααβα⊥是两条异面直线,且15.若0,0,0AC BC Ax By C <<++=则直线不经过( )A.第一象限B.第二象限C.第三象限D. 第四象限16.过点(1,),(,6)A m B m -的直线与直线210x y -+=垂直,则m 的值为( ) A.6- B.8-C. 9-D.017.与圆224630x y x y +-+-=的圆心相同,且圆经过点(1,1)-的圆的方程为( )A.22(2)(3)25x y -++=B.22(2)(3)5x y -++=C.22(2)(3)25x y ++-=D.22(2)(3)5x y ++-=18.已知抛物线的顶点为原点,对称轴为 x 轴,焦点在直线34120x y --=上,则抛物线的方程式( )A.216y x =- B. 216y x = C.212y x =- D. 212y x =二、填空题(本大题共8小题,每小题3分,共24分)19.用符号表示结论:“三个数,,x y z 不全为零”20.比较大小:0.10.7 0.20.6.21.函数()21f x x =+的图像具有的对称特征是22.在直角坐标系中,单位圆上两点111222(,),(,),P x y P x y O 为原点,12cos POP ∠则 21cos()POX POX =∠-∠= 23.长方体1111ABCD A BC D -中,棱11113,4,AA AB B C A BCD ==则直线与平面 的距离 .24.已知413,(0,),cos ,tan ,tan()259παβαβαβ∈==-=则 25.焦点在x 轴上的椭圆2211log 892P x y e +==的离心率,则p= 26.数列9,99,999,9999,……的一个通项公式是n a = .三、解答题(本大题共8小题,共60分)解答应写出文字说明及演算步骤.27. (本题满分6分) 由1,2,3,4四个数字组成的没有重复数字的四位数中,求共有多少个比1234大的四位数.28. (本题满分7分)在首项为1a 的等差数列{},,.n n m m n a a m a n S +==中,已知求29. (本题满分7分) 设2212,14x F F y -=是双曲线的两焦点,点P 是双曲线上一点,121290,.F PF PF ︒∠=且F 求面积S30. (本题满分7分)若A ABC ∠是的最大内角,函数sin cos y A A =-的值域.31.(本题满分8分) 已知(1,2),(,1),22a b x a b a b ==+-当与平行时,求:(1)x 的值;(2)a b +.32. (本题满分8分) 求值: (1)79sin()6π- (2)24cos cos cos ;777πππ⋅⋅33. (本题满分8分)求过圆22:82120C x y x y +--+=内一点(3,0)Q 的最长弦和最短弦所在的直线方程.34. (本题满分9分)如图,用一棱长为a 的正方体,制作一以各面中心为顶点的正八面体.求:(1) 此正八面体的表面积S ;(2) 此正八面体的体积V .。
浙江省高职考数学模拟试卷20
浙江省高职考数学模拟试卷(二十) 一、选择题 1. 设集合{}9,7,5,4=A ,{}9,8,7,4,3=B ,则集合B A 中的元素个数是 ( )A.4B.5C.6D.7 2. 下列选项中,p 是q 的必要不充分条件的是 ( )A.1:=x p ,x x q =2:B.φ=B A p :,φ=A q :或φ=BC.42:<x p ,22:<<-x qD.1:p ,x ,5成等差数列,3:=x q3. 设全集R U =,{}0442>+-=x x x A ,则A C U 等于 ( )A.RB.φC.{}2D.),2()2,(+∞--∞4. 设06)18(2=-+-m n m ,则点),(n m 与原点连线的斜率是 ( )A.6B.4C.61 D.49- 5. 抛物线x y 22-=的焦点到准线的距离是 ( )A.2B.1C.21D.41 6. 王老师上班途中要经过2个设有红绿灯的十字路口,下面图甲、图乙分别表示他上班和下班时的路程(s )关于时间(t )图像,下列说法正确的是 ( )A.王老师上、下班途中都只在一个十字路口等待了B.王老师上、下班途中运动时都是匀速运动C.下班途中停下的路口比上班途中停下的路口离家近D.上班途中与下班途中在十字路口等待的时间相同7. 椭圆14922=+x y 的焦点坐标是 ( ) A.)0,3(± B.)5,0(± C. )2,0(± D. )0,13(±8. 三角形ABC 的顶点分别是)1,1(A ,)4,5(B ,)4,1(C ,D 是BC 的中点,则AD 的坐标是 ( )A.)1,2(B.)3,2(C.)2,3(D.)2,1(9. 第19届亚运会将于2002年在杭州开幕,若从浙江大学、浙江工商大学、中国美术学院、杭州师范大学四所大学的体育馆中选3个举办3项比赛,则不同的举办方案有 ( )A.108 种B.72 种C.36种D.24种10. 下列函数中,在定义域上为增函数的是 ( )A.x y =B.12-=x yC.x y 2sin =D.2x y =11. 如图所示,在正方体中,点P 在线段11C A 上运动,则ADP ∠的变化范围是 ( )A.[]︒︒90,45B. []︒︒60,45C. []︒︒90,60D. []︒︒60,3012. 已知0tan sin >⋅θθ,且0tan cos <⋅θθ,则点)sin ,(cos θθP 所在的象限是 ( )A.一B.二C.三D.四13. 下列说法中错误的是 ( )A.两异面直线可能与同一个平面垂直B.两异面直线可能与同一平面所成的角相等C.两异面直线不相交D.两异面直线在同一个平面上的射影可能是两平行线14. 若函数b ax x x f ++=2)(对于任意实数x 均有)3()3(x f x f -=+,那么 ( )A.)5()2()3(f f f <<B. )5()3()2(f f f <<C. )2()5()3(f f f <<D. )3()2()5(f f f <<15. 已知等差数列{}n a 满足442=+a a ,1053=+a a ,则它的前10项的和10S 等于 ( )A.138B.135C.95D.2316. 获得2015年诺贝尔生理学或医学奖的宁波籍科学家屠呦呦,发现并提取了治疗疟疾的特效药青蒿素,拯救了数以万计的生命,从青蒿中提取青蒿素时,随温度的升高其药效急剧降低,屠呦呦利用低沸点的乙醚最为萃取物,经历一百多次实验才获得成功,假设温度为C ︒60时青蒿素的药效为%100,在C ︒100内,每上升10摄氏度,药效就变为原来的一半,那么采取普通的煎药方法煮沸到C ︒100时的药效是C ︒60时的 ( )A.41B.81C.161D.321 17. 函数⎪⎭⎫⎝⎛++-=x x x f 2sin 4)sin(3)(ππ的最大值和最小正周期分别为 ( )A.7,πB.7,π2C. 5,πD. 5,π218. 双曲线1422=-y x 的渐近线方程和离心率分别是 ( ) A.x y 21±=和5 B. x y 2±=和23 C. x y 21±=和23 D. x y 2±=和5 二、填空题19. 求值:=︒660tan ;20. 已知函数x x f lg )(=,则()=99100C f ; 21. ()721x -的展开式中系数最大的一项是 ; 22. 若集合⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎩⎨⎧=+-=-+=04202),(y x y x y x A ,{}222),(r y x y x B =+=,且B A ⊆,则集合B 表示图形的面积是 ;23. 已知0>a ,则aa 8216--的最大值为 ; 24. 已知数列{}n a 的通项公式为)1(1+=n n a n ,则它的前n 项和是 ; 25. 已知函数⎪⎩⎪⎨⎧>-+≤=1,311,)(2x x x x x x f ,则[]=-)2(f f ; 26. 方程2)3(log log 222++=x x 的解为 ;三、解答题27. 已知在等比数列{}n a 中,2614=-a a ,133-=S ,求1a ,q 和2016S 的值;28. 已知直线0322=++y x k 与直线0142=-+y x 平行,求k 的值及两平行直线间的距离;29. 在三角形ABC 中,︒=∠60B ,面积310=S ,周长是20,求各边的长;30. 求函数32)(2+--=x x x f 在区间[]1,2-上的值域和单调区间; 31. 已知函数)sin(ϕω+=x A y (0>A ,0>ω,πϕ<)的图像如下图所示,(1)求A ,ω,ϕ的值;(2)若1=y ,求对应x 的值;32. 已知向量)sin ,(cos αα=a ,)sin ,(cos ββ=b ,)0,1(-=c ,(1)求向量c b +长度的最大值;(2)设4πα=,且)(c b a +⊥,求βcos 的值;33. 如图所示,在直三棱柱111C B A ABC -中,1=AB ,31==AA AC ,︒=∠60ABC ,求:(1)三棱锥C AB A -1的体积;(2)二面角B C A A --1的正切值;34. 如图所示,已知双曲线199:221=-y x C ,圆4:222=+y x C ,过点)1,0(且斜率为21的直线l 与圆交于B 、C 两点,交双曲线为A 、D 两点,求:(1)直线l 的方程;(2)BD AC +的值;。
2024年浙江省中职高二数学试卷(模拟测试)
浙江省中职高二数学试卷(模拟测试)注意事项:1.本试卷分问卷和答卷两部分,满分150分,时间120分钟.2.所有试题均需在答题纸上作答,在试卷和草稿纸上作答无效.3.答题前,考生务必将自己的姓名、准考证号等用黑色字迹的签字笔或钢笔填写在答题卷上,并涂好准考证号码.一、单项选择题(共20小题,1-10小题每小题2分,11-20小题每小题3分,共50分.)1. 已知集合{}{}2,0,1,32A B x x =-=-<<∣,则A B ⋃=( )A. {}2,0,1-B. RC.{}31x x -<<∣ D. {}32x x -<<∣ 2. 若0a b <<,则下列不等式正确的是( )A. ||||a b >B. ||||a b <C. 33a b <D. 22a b <3. 520︒角的终边所在的象限为( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 已知|2|2x +<,则x 的取值范围是( )A. 0x ≥B. 20x -<<C. 40x -<<D. 2x ≤-5.下列函数中,与函数()f x = ) A. ()lg f x x = B. 1()f x x = C. ()||f x x = D. ()10x f x =6. 已知(1,2)AB =,且点A 的坐标为(2,3),点B 的坐标为( )A (1,1) B.(3,5) C. (1,1)-- D. (4,4) 7. “3x <”是“22x -<<”( )A. 充分条件B. 必要条件C. 充要条件D. 既非充分又非必要条件 8. 在ABC 中,若sin sin cos 0A B C =,则ABC 的形状是( )A. 等腰三角形B. 钝角三角形C. 锐角三角形D. 直角三角形 9. 在1012x x ⎛⎫- ⎪⎝⎭的展开式中,4x 的系数为( ) A. 120 B. 120- C. 15 D. 15- .的10. 在数列{}n a 中,若1111,2n n a a a +==+,则101a =( ) A. 51 B. 52 C. 53 D. 5411. 直线过点(1,1)-,(2,1,则此直线的倾斜角为( ) A. π6 B. π4 C. π3 D. 5π612. 直线340x y +=与圆22()(34)9x y ++-=的位置关系是( )A. 相切B. 相离C. 相交但不过圆心D. 相交且过圆心 13. 5位同学排成一排照相,要求甲,乙两人必须站相邻的排法有( )种A. 20B. 24C.36 D. 48 14. 以双曲线221169x y -=的焦点为两顶点,顶点为两焦点的椭圆的方程是( ) A. 2212516x y += B. 221259x y += C. 2251162x y += D. 221925x y += 15. 已知角α的终边过点(6,8)-,则sin cos αα+=( ) A. 58- B. 15- C. 85 D. 43- 16. 若方程22124x y m m+=--表示焦点在y 轴上的椭圆,则( ) A. 23m << B. 34m << C. 24m << D. 3m >17. 下列命题中正确的是( )A. 平行于同一平面的两直线平行B. 垂直于同一直线的两直线平行C. 与同一平面所成的角相等的两直线平行D. 垂直于同一平面的两直线平行18. 盒子中有2个白球,3个红球,从中任取两个球,则至少有一个白球的概率为( ) A. 25 B. 23 C. 35 D. 71019. 已知函数2(1)2f x x x +=-+,则(3)f =( )A. 8B. 6C. 4D. 220. 已知双曲线22221x y a b-=的一条渐近线方程是43y x =.则双曲线的离心率为( )A. 53B. 43C. 54D. 32 二、填空题(共7小题,每小题4分,共28分)21. 函数2log (1)y x =-的定义域为____________.22. 已知0x >,则41x x++的最小值是____________. 23. 使2sin 1x a =+有意义的a 的取值范围是____________.24. 圆22(2)(2)2x y -++=截直线50x y --=所得的弦长为____________.25. 公比2q =-的等比数列{}n a 中,已知34,32n a a =-=,则n =____________.26. 如果圆锥高为4cm ,底面周长为10πcm ,那么圆锥的体积等于____________.27. 直线2y x =-与双曲线2213x y -=交于A 、B 两点,求弦长||AB =____________. 三、解答题(共8小题,共72分.解答应写出文字说明及演算步骤)28. 计算:22lg137114π125log 3432cos (2π)23-⎛⎫+-++- ⎪⎝⎭. 29. 已知函数2()22f x x bx c =++,当=1x -时,()f x 有最小值8-.(1)求b 、c 值;(2)解不等式:()0f x >. 30.已知n ⎛+ ⎝展开式中各项二项式系数之和64. (1)求n 的值.(2)求展开式中的常数项.31. 在ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,且222b c a bc +-=.(1)求角A 的度数;(2)若c =2ABC S = ,求b 边长. 32. 已知过点(2,0)的直线l 与圆224x y +=相交,所得弦长为2,求直线l 的方程.33. 已知数列{}n a 是等差数列,前n 项和2n S n =,求: 的为第4页/共6页(1)4a 的值;(2)数列的通项公式;(3)求前25项的和25S .34. 如图,已知ABCD 是正方形,P 是平面ABCD 外一点,且PA ⊥面ABCD ,3PA AB ==.求:(1)二面角P CD A --的大小;(2)三棱锥P ABD -的体积.35. 如图,已知抛物线22(0)y px p =>的焦点为F ,A 是抛物线上横坐标为4,且位于x 轴上方的点,A 到抛物线准线的距离等于5,过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M .(1)求抛物线的方程;(2)以AF 为直径作圆C ,请判断点M 与圆C 位置关系,并说明理由.的浙江省中职高二数学试卷(模拟测试)注意事项:1.本试卷分问卷和答卷两部分,满分150分,时间120分钟.2.所有试题均需在答题纸上作答,在试卷和草稿纸上作答无效.3.答题前,考生务必将自己的姓名、准考证号等用黑色字迹的签字笔或钢笔填写在答题卷上,并涂好准考证号码.一、单项选择题(共20小题,1-10小题每小题2分,11-20小题每小题3分,共50分.) DCBCABBDDAACDBBADDCA二、填空题(共7小题,每小题4分,共28分)【答案】{1}x x >∣【答案】5【答案】[3,1]-【答案】6 【答案】3100πcm 3【答案】6三、解答题(共8小题,共72分.解答应写出文字说明及演算步骤)【28题答案】【答案】26【29题答案】【答案】(1)2,6b c ==-(2){3x x <-∣或1}x >【30题答案】【答案】(1)6n =.(2)540.【31题答案】【答案】(1)60A =︒(2)3b =【32题答案】0y --=0y +-=【33题答案】【答案】(1)7 (2)21n a n =- (3)625【34题答案】【答案】(1)45︒(2)92【35题答案】【答案】(1)24y x =(2)点M 在圆C 上,理由见解析。
浙江省高职考数学全真综合模拟试卷
一、选择题1. 设{}1≤=x x P ,32=a ,则下列各式中正确的是 ( ) A.P a ⊆ B.P a ∉ C. {}P a ∈ D. {}P a ⊆2. 已知1>ab ,0<b ,则有 ( ) A.b a 1>B.b a 1<C.b a 1->D.ab 1> 3. 已知函数)(x f 在)5,2(-上是增函数,则下列各式正确的是 ( ) A. )3()2(f f <- B. )3()4(f f < C.)1()1(f f =- D.)1()0(->f f 4. 下列四个直线方程中有三个方程表示的是同一条直线,则表示不同直线的方程是 ( ) A.012=+-y x B.12+=x y C.112=+-yx D.)0(21-=-x y 5. 一次函数b kx y -=(0<k ,0>b )的图象一定不经过的象限为 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 6. 函数xx y -+=11的定义域是 ( )A.[)()+∞,11,0YB. ()()+∞,11,0YC.),0(+∞D.[)1,1- 7. 若x 的不等式a x -≥-32的解集为R ,则实数a 的取值范围是 ( ) A.),3(+∞ B. ),3[+∞ C.)3,(-∞ D. ]3,(-∞ 8. 在数列{}n a 中,若95=a ,且1223+=++n n a a ,则=3a ( ) A.53 B.52 C.23 D.549. 若直线1l :062=++y x 与2l :013=-+ky x 互相不垂直,则k 的取值范围是 ( )A.⎪⎭⎫ ⎝⎛+∞-⎪⎭⎫ ⎝⎛-∞-,2323,Y B. ⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛∞-,2323,YC. ⎪⎭⎫ ⎝⎛+∞-⎪⎭⎫ ⎝⎛-∞-,2323,I D. ⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛∞-,2323,I10. 已知平面//α平面β,且α⊂a ,β⊂b ,则直线a 与直线b ( )A.平行B.相交C.异面D.没有公共点11. 抛掷两颗骰子,出现点数和为6的概率是 ( ) A.61 B.365C.121D.181 12. 已知)3,1(-=a ,若0a 是的单位向量,则下列各式正确的是 ( )A.0a a >B.10=aC. ⎪⎪⎭⎫⎝⎛-=23,210a D. 02a a = 13. 若22sin -=α,α为第三象限角,则ααπcos )sin(--的值为 ( ) A.1- B.0 C.1 D.214. 抛物线22x y -=的焦点坐标是 ( ) A.⎪⎭⎫ ⎝⎛-0,21 B.)0,8(- C.⎪⎭⎫ ⎝⎛-81,0 D.)2,0(-15. 若方程1sin cos 22=-y x θθ表示焦点在y 轴上的双曲线,则θ是 ( ) A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角 二、填空题16. 已知0>x ,则xx 43--有最大值 ; 17. 直线l 过点)0,1(-且与直线01=-y 的夹角是︒60,则直线l 的一般式方程为 ;18. 若x ,y 是实数,则913113+-+-=x x y ,则=--32)(y x ;19. 将半径为4米的半圆围成圆锥的侧面,则圆锥的体积为 ; 20. 已知81cos sin -=θθ,⎪⎭⎫⎝⎛∈ππθ2,23,则=-θθcos sin ; 21. 若点),(y x M 满足0>xy ,0<+y x ,则以射线OM 为终边的对应角α为第 象限角; 三、解答题22. 求不等式02342>---x x x 的解集;23. 求以直线012=+-y x 与02=++y x 的交点为圆心,且与直线042=+-y x 相切的圆;24. 在ABC ∆中,已知︒=∠45B ,22=AC ,32=AB ,求C ∠;25. 求多项式5432)1()1()1()1()1(x x x x x -+-+-+-+-的展开式中含3x 的项;26. 已知双曲线C 与椭圆364922=+y x 有共同的焦点,且离心率为25,求: (1) 双曲线C 的标准方程; (2) 双曲线的渐近线方程;27. 已知正方形ABCD 的边长为1,分别取BC ,CD 的中点E ,F ,连结AE ,EF ,AF 以AE ,EF ,AF 为折痕折叠,使点B 、C 、D 重合于上点P ,求: (1) 二面角A EF P --的平面角的正弦值; (2) 三棱锥AEF P -的体积;28. 已知x x x x f cos sin 34sin 4)(2+=:求:(1) )(x f 的最小正周期; (2) )(x f 的最小值及相应x 的值;29. 已知数列{}n a 满足1a ,11-=-+n n a a ,数列{}n b 满足11a b =,241a a b b n n =+,求: (1) 数列{}n a 的通项公式; (2) 数列{}n b 的前10项和;30. 如图所示,在一张矩形纸的边上找一点E ,过E 点减去两个边长分别是AE 、DE 的正方形得到图形M (图中阴影部分)已知,,(1) 设x DE =,图形M 的面积为y ,写出y 与x 之间的函数关系式; (2) 当x 为何值时,图形M 的面积最大? (3) 求出图形M 面积的最大值;。
2024年5月浙江省高职考模拟试数学试卷
2024年5月浙江省高职考模拟试数学试卷姓名:______ 准考证号:______本试题卷共三大题,共4页,满分150分,考试时间120分钟.考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效.一、单项选择题(本大题共20小题,1~10小题每小题2分,11~20小题每小题3分,共50分.)(在每小题列出的四个备选答案中,只有一个是符合要求的,错涂、多涂或未涂均无分.)1. 已知集合, 0,1,3B ,则A B ( )A. 1B. 0,1C. 1,0,1D. 1,0,1,22. 直线x 的倾斜角为( )A. 30B. 45C. 60D. 903. 点 0,1A 关于点 10B ,的对称点C 的坐标为( ) A. 2,1 B. 12 C. 11,22 D. 0,24. 若a b ,则下列不等式正确的是( ) A. 11a b B. 22ac bc C. 22a b D. 22a b5. 已知直线l :220x y 与两坐标轴交于A ,B 两点,则AB ( )A. 1B.C. 2D. 56. 解集为 ,01, 的不等式(组)为( )A. 221x xB. 211xC. 01x xD. 1011x x7. 双曲线22184x y 的虚轴长为( )A. 2B.C. 4D.8. 如图所示,正六边形ABCDEF 的边长为1,O 为正六边形的中心,则OA CD ( )A. FOB. 0C. 1D. 29. 下列函数在 e,π上是减函数的是( )A. 1y xB. 3x yC. ln y xD. π,0e,0x y x 10. 中国载人月球探测工程已经具备全面开展工程实施的条件,未来计划从4名男航天员和2名女航天员中选择3人送入环月轨道,则其中有且仅有一名女航天员被选中的选法有( )A. 2种B. 4种C. 6种D. 12种11. 已知二次函数的图像如图所示,根据图中提供的信息,使得 3f x 成立的x 的取值范围为( )A. 0,2B. 0,2C. 1,3D. 1,3 12. 若2 ,4sin 5,则 cos ( ) A. 35B. 35C. 45D. 45 13. 函数 lg 3x f x x x的定义域为( ) A. 0,B. 0,3C. 0,33,D. 0,33, 14. “1n ”是“3C 3n ”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 15. 下列说法正确的是( )A. 过直线外一点有且只有一条直线与这条直线平行B 过直线外一点有且只有一个平面与这条直线平行C. 如果两条直线与同一个平面所成的角相等,则这两条直线一定平行D. 空间中与两条异面直线都垂直的直线只有一条16. 已知tan22 ,则2sin2cos22cos 1的值是( )A. 2B. 2C. 1D. 117. 两人玩“石头、剪刀、布”游戏,则两人同时出石头的概率是( ) A. 13 B. 16 C. 19 D.23 18. 在等比数列 n a 中,已知1a ,4045a 是方程210160x x 的两根,则2023a ( )A. 8B. 8C. 4D. 4 19. 已知直线260kx y 与直线 2110x k y k 平行,则k 等于( )A. 1B. 2C. 1 或2D. 0或120. 已知点 4,5A ,抛物线28x y 的焦点为F ,P 为抛物线上与直线AF 不共线的一点,则PAF △周长的最小值为( )A. 18B. 13C. 12D. 7二、填空题(本大题共7小题,每小题4分,共28分.)21. 已知函数 2log ,02,0x x x f x x ,则12f f ______. 22. 若1x ,则41x x 取得最小值时x 值为______. 23. 一个边长为2米的正方体容器中放入了一个与各面都相切的实心球,现在往正方体容器里注水,最多能注水______立方米.(π取3)24. 102x x______. 25. 已知圆C :2220x y y F 与x 轴相切,则圆C 标准方程为______.26. 已知(0,π),且cos 2,则 _____________. 27. 已知数列 n a 满足10a,1n a ,则其前2023项的和2023S ______. 三、解答题(本大题共8小题,共72分.解答需写出文字说明及演算步骤.)28. 计算:25π3sin 20236420231log 25C 8 . 29. 已知直线l 经过两点 0,4A , 2,6B .(1)求直线l 的方程;(2)若直线l 被圆心为 5,3的圆C 所截得的弦长为4,求圆C 的标准方程.的的30. 已知函数 πππcos 22sin cos 344f x x x x.求: (1)函数 f x 的最小正周期T 和值域;(2)函数的单调递增区间.31. 在四棱锥P ABCD 中,底面ABCD 是边长为2的正方形,PC PD 且PC PD ,二面角A CD P 为直二面角.(1)求四棱锥P ABCD 的体积;(2)求二面角P AB D 的正切值.32. 如图,梯形ABCD 中,//AD BC ,2AD ,8BC ,45B ,75C .(1)求CD 长;(2)求梯形ABCD 面积.33. 第十九届亚运会将于2023年9月23日在杭州举行,此次亚运会吉祥物的组合名为“江南忆”,它是一组承载深厚底蕴和充满时代活力的机器人.现指定某工厂专项生产该吉祥物,通过市场调查,生产x 万套收入W x 万元, 2120100,03244350,38x x W x x x x ,生产这种吉祥物的成本为 2020x 万元.根据市场调研,该吉祥物销路畅通,供不应求.(1)求利润 f x 的函数解析式;(2)当产量为多少万套时,该产品利润最大?最大利润是多少?34. 已知等差数列 n a 中,14a ,12324a a a ,求:(1)数列 n a 的前n 项和n S ;(2)若数列 n b 满足:11b a ,12n n nb b S ,求数列 n b 的通项公式. 35. 已知椭圆C : 222210x y a b a b ,四点 11,1P , 20,1P,31,2P,41,2P中恰有三点在椭圆C 上.(1)求椭圆的标准方程;(2)经过椭圆的左焦点且倾斜角为45 的直线l 与椭圆交于A ,B 两点,点Q 是椭圆上一动点,求ABQ 的最大面积.的的参考答案BDACB BCCBD DACAA CCDAC21.12##0.522. 3 23. 4 .24. 45 25. 2211x y 26. 5π6 27. 028. 计算:25π3sin 20236420231log 25C 8 .原式23113224211log 45221121221542122. 29. 已知直线l 经过两点 0,4A , 2,6B .(1)求直线l 的方程;(2)若直线l 被圆心为 5,3的圆C 所截得的弦长为4,求圆C 的标准方程.(1)直线经过两点 0,4A , 2,6B所以斜率64120k , 所以直线l 的方程为:4y x ,化为一般式方程为:40x y .(2)直线l 被圆心为 5,3的圆C 所截得的弦长为4,所以圆心 5,3到直线l的距离d,所以半径r , 所以圆C 的标准方程为: 225312x y .30. 已知函数 πππcos 22sin cos 344f x x x x.求:(1)函数 f x 的最小正周期T 和值域;(2)函数的单调递增区间.函数 πππcos 22sin cos 344f x x x xπππcos2cos sin2sin sin2334x x x1πcos2sin2sin 2222x x x1cos2sin2cos222x x x1sin2cos222x xπsin 26x故函数 f x 最小正周期2ππ2T ,值域为 1,1由(1)知 πsin 26f x x当πππ2π22π262k x k ,Z k 时,函数单调递增 解得ππππ63k x k ,Z k 时,函数单调递增 即函数的单调递增区间为πππ,πZ 63k k k.31. 在四棱锥P ABCD 中,底面ABCD 是边长为2的正方形,PC PD 且PC PD ,二面角A CD P 为直二面角.(1)求四棱锥P ABCD 的体积;(2)求二面角P AB D 的正切值.【小问1详解】设CD 的中点为M ,连接PM的在等腰直角PCD 中,CD 的中点为M ,∴PM CD ,∵二面角A CD P 为直二面角,PM 面PCD ,∴PM 平面ABCD ,即线段PM 为四棱锥P ABCD 的高,在等腰直角PCD 中,2CD ,∴1PM , ∴114221333P ABCD ABCD V S PM 正方形, 故四棱锥P ABCD 的体积为43. 【小问2详解】设AB 中点为N ,连接MN ,PN由于M ,N 为正方形ABCD 中点,显然AB MN ①,又∵PM 平面ABCD ,AB 平面ABCD ,∴AB PM ②,∴PM MN M ,,PM MN 面,∴AB 面PMN ,又∵PN 面PMN ,∴AB PN ,∴PNM 为二面角P AB D 的平面角,Rt PMN △中,1PM ,2MN , 故1tan 2PM PNM MN , 即二面角P AB D 的正切值为12.32. 如图,梯形ABCD 中,//AD BC ,2AD ,8BC ,45B ,75C .(1)求CD 的长;(2)求梯形ABCD 的面积.【小问1详解】如图,过点A 作//AE CD 交BC 于点E ,因为//AD BC ,所以AECD 为平行四边形,所以AE CD ,AD EC ,又2AD ,8BC ,45B ,75C则826BE BC AD ,75AEB C ,180457560BAE 由sin sin AE BE B BAE 得:6sin45sin60AE解得AE ,即CD 【小问2详解】因为75C ,6BE ,CD 2EC所以4sin sin 75sin(4530)sin 45cos30cos 45sin 30C, 所以ABE AECD ABCD S S S 梯形 1sin sin 2BE CD C EC CD C 16sin752sin75216224415 .33. 第十九届亚运会将于2023年9月23日在杭州举行,此次亚运会吉祥物的组合名为“江南忆”,它是一组承载深厚底蕴和充满时代活力的机器人.现指定某工厂专项生产该吉祥物,通过市场调查,生产x 万套收入W x 万元, 2120100,03244350,38x x W x x x x ,生产这种吉祥物的成本为 2020x 万元.根据市场调研,该吉祥物销路畅通,供不应求.(1)求利润 f x 的函数解析式;(2)当产量为多少万套时,该产品利润最大?最大利润是多少?【小问1详解】当03x 时,120100202010080f x x x x ,当38x 时,22443502020f x x x x2224330x x , 所以函数解析式为 210080,03224330,38x x f x x x x. 【小问2详解】①当03x 时, 10080f x x 单调递增当3x 时,函数有最大值为380(2)当38x 时,222243302(6)402f x x x x即当6x 时,函数有最大值为402∴402380∴当产量为6万套时,利润最大,最大为402万元.34. 已知等差数列 n a 中,14a ,12324a a a ,求: (1)数列 n a 的前n 项和n S ;(2)若数列 n b 满足:11b a ,12n n nb b S,求数列 n b 通项公式. 【小问1详解】在等差数列 n a 中,设公差为d ,∵12324a a a∴ 111224a a d a d∴4d , 的∴数列 n a 的通项公式为 4414n a n n , ∴ 12442222n n a a n n n S n n . 【小问2详解】∵114b a ,由12n n nb b S 知, 1221221n n b b n n n n, ∴21112b b , 32123b b , …111n n b b n n, 将上一组等式累加得:111112231n b b n n11111112231n n(裂项相消) 11n, ∴15114n n b n n.35. 已知椭圆C : 222210x y a b a b ,四点 11,1P , 20,1P ,31,2P ,41,2P中恰有三点在椭圆C 上.(1)求椭圆的标准方程;(2)经过椭圆的左焦点且倾斜角为45 的直线l 与椭圆交于A ,B 两点,点Q 是椭圆上一动点,求ABQ 的最大面积.【小问1详解】因为椭圆关于x 轴对称,关于y 轴对称,关于原点中心对称所以31,2P,41,2P必在椭圆上,则 11,1P 就不在椭圆上, 20,1P 在椭圆上. 故椭圆经过点 20,1P,31,2P,41,2P这三点,则有22222222011211a b a b ,解得2a ,1b , ∴椭圆的标准方程为2214x y . 【小问2详解】由(1)可知,c ,∴椭圆的左焦点为.∵tan415k ,∴直线l的方程为y x .设 11,A x y , 22,B x y ,则2214y x x y ,消去y得2580x ,∴12x x ,1285x x ,∴12855AB x设过点Q 且与直线l 平行的直线方程为y x m ,此直线与椭圆相切且这两条平行线间距离最大的时候面积最大时,ABQ 的面积最大. 即有2214y x m x y 消去y 得 2258410x mx m ,∵ 22Δ(8)45410m m ,∴m当m 时,12d ,当m 时,22d, ∵21d d ,∴22h d ,∴ABQ 的最大面积为182525 .。
中职数学 2024年浙江省高职理论考临海、温岭、玉环县高考数学模拟试卷
2024年浙江省高职理论考临海、温岭、玉环县高考数学模拟试卷一、单项选择题(本大题共20小题,1~10小题每小题2分,11~20小题每小题2分,共50分)(在每小题列出的四个案中,只有一个是符合要求的,错涂、多涂或未涂均无分.)A .{2,0}B .{-2,4}C .{0,4}D .{-2,0,2,4}1.(2分)已知全集U ={-2,0,2,4},集合A ={2,0},则如图中阴影部分表示的集合为( )A .(-4,8)B .(2,8)C .(8,2)D .(2,2)2.(2分)点A (4,0)关于点B (0,4)的对称点的坐标为( )A .B .C .D .3.(2分)直线x -y =0的倾斜角是( )M 3π6π32π35π6A .充分条件B .必要条件C .充要条件D .既不充分又不必要条件4.(2分)设x ∈R ,则“x >2”是“x 3>8”的( )A .(x -1)(4-x )>0B .|x -1|<4C .D .≤05.(2分)函数y =f (x )的图像如图所示,下列不等式中,解集与f (x )<0相同的是( ){x <1x >4x -1x -46.(2分)函数y =•lgx 的定义域为( )M 1-xA .(0,1]B .(0,1)C .(1,+∞)D .(0,1)⋃(1,+∞)A .30°B .168°C .πD .47.(2分)已知sinαcos 168°>0,则α的值可能为( )A .6种B .12种C .24种D .48种8.(2分)有4名同学参加演讲比赛,甲第一位出场的排法有( )A .f (-4)=f (4)B .函数在[3,6]上的最大值为f (3)C .f (4)>f (5)D .函数在[-6,-3]上单调递减9.(2分)函数f (x )关于y 轴对称,且f (x )在[3,6]上是减函数,下列不正确的选项是( )A .(0,-1)B .(0,1)C .(1,0)D .(-1,0)10.(2分)已知圆x 2+y 2+Dx -3=0经过点A (-1,2),则圆的圆心坐标为( )A .B .-C .D .-11.(3分)已知tanα=,且tan (α+β)=1,则tanβ的值为( )3417173434A .7B .6C .5D .412.(3分)抛物线y 2=8x 上点M 到直线x =-1的距离为5,F 为焦点,则|MF |=( )13.(3分)已知函数y =x 2-1与x 轴交于A 、B 两点,点P 为圆(x -3)2+y 2=8上一动点,则△PAB 面积的最大值是(A .3B .2C .3D .4M 2M 2M 2A .平行B .相交C .异面且垂直D .异面但不垂直14.(3分)如图所示,正四棱锥P -ABCD 中,点E 为PB 中点,则AC 与DE 的位置关系为( )A .36B .37C .38D .3915.(3分)已知数列{a n }中,a 1=1,a 2=4,a 3=9,且{a n +1-a n }是等差数列,则a 6=( )A .B .C .D .16.(3分)为了弘扬“孝心文化”,台州市某职业学校开展为父母捶背活动,要求同学们在某周的周一至周五任选两天为父母背,则该校的甲同学连续两天为父母捶背的概率为( )710352512A .(-4,-2)B .(-4,0)C .(2,4)D .(4,2)17.(3分)已知点N (0,1),MP =(-1,1),MN =(3,2),则点P 的坐标为( )→→A .B .C .D .18.(3分)已知tan (θ+)=2,则co (θ+)=( )π6s 2π6453107101519.(3分)已知F 1、F 2是椭圆+=1(a >b >0)的两个焦点,过点F 2的直线与椭圆交于A ,B 两点.若|AF 1|:|ABF 1|=5:12:13,则该椭圆的离心率为( )x 2a 2y 2b2二、填空题(本大题共7小题,每小题4分,共28分)三、解答题(本大题共8小题,共72分)(解答需写出文字说明及演算步骤)A .B .C .D .M 52M 32M 53M 22A .36分钟B .37分钟C .41分钟D .46分钟20.(3分)某学校组织团员举行“江南长城文化节”宣传活动,从学校骑自行车出发,先上坡到达甲地后,宣传了5分钟,然后下坡到乙地又宣传了5分钟返回,上坡和下坡均按原来速度保持不变,行程情况如图所示.若返回时,在甲地仍要宣传5分钟,那么他们从乙地原路返回学校所用的时间是( )21.(4分)已知数列-1,-2,x ,y 前三项成等比,后三项成等差,则xy = .22.(4分)直线y =x +1与双曲线x 2-y 2=1的交点个数为.23.(4分)的展开式中,记二项式系数之和为m ,常数项的值为n ,则m +n =.(-)√x 1x624.(4分)已知α∈(0,π),2sinαcosα=cos 2α,则α= .M 325.(4分)将边长为2的正三角形绕着它一边上的高旋转一周,所得几何体的侧面积为 .26.(4分)折扇轻摇,清风徐来,炎炎夏日尽收眼底.如图所示,一把折扇完全展开后,得到的扇形OAB 的面积为900cm 2,当该折扇的周长最小时,OA 的长度为.27.(4分)某研究机构通过研究学生的“日能力值”来激励学生.假设甲和乙刚开始的“日能力值”相同,在往后的学习过程勤奋学习,乙疏于学习.通过研究发现,经过n 天之后,甲的“日能力值”是乙的T 倍,n 与T 有如下关系:n =.若“日能力值”是乙的20倍,则至少需要经过天.(参考数据:lg 102≈2.0086,lg 99≈1.9956,lg 2≈0.3010)lgT lg 102-lg 9928.(5分)计算:-lg 4-2lg 5+++2sin .()169-12M (1-)M 23C 2024202411π429.(5分)如图所示,已知△ABC 为等腰三角形,∠A =120°,AC =2,点E 为AB 延长线上一点,且B E =AB .(1)求CE 的长;(2)求∠BCE 的正弦值.30.(10分)已知圆C 的圆心坐标为(1,-2),且过点(2,-2).(1)求圆C 的标准方程;(2)过点P (5,0)作斜率为1的直线l 交圆C 于A 、B 两点,与点P 较近的点为B ,求线段PB 的长.M 331.(10分)如图所示,已知四棱锥P -ABCD ,底面ABCD 为菱形,AC ,BD 交于点O ,PD ⊥平面ABCD ,且PD =AD =2,∠ABC =120°.(1)求四棱锥P -ABCD 的体积;(2)求半平面PAC 与底面ABCD 所成二面角的余弦值.32.(10分)函数f (x )=Asin (ωx +φ)(ω>0,|φ|<)的部分图像如图所示,且|MN |=2.(1)求函数f (x )的解析式;(2)若点P 为图像上一点,且锐角△MNP 的面积为,求点P 的坐标.π2M 233.(10分)某公司生产一类电子芯片,且该芯片的年产量不超过35万件,每万件电子芯片的计划售价为16万元.已知生产电子芯片的固定成本为30万元/年,每生产x (万件)电子芯片需要投入的流动成本为y (万元)的部分数据如下:x (万件)34562025y (万元)184828036180311033根据市场调查分析,当0≤x ≤14时,流动成本y (万元)与年生产x (万件)之间满足函数模型y =ax 2+bx ;当14<x ≤35时动成本y (万元)与年生产x (万件)之间满足函数模型y =kx +-80.假设该公司每年生产的芯片都能售完.(1)求流动成本y (万元)关于年生产x (万件)的函数关系式;(2)写出年利润g (x )(万元)关于年产量x (万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(3)为使公司获得的年利润最大,每年应生产多少万件该芯片?400x34.(10分)如图所示,已知双曲线C :-=1(a >0,b >0)的一个顶点为(1,0),离心率为2,直线l :y =x +2与双曲线C 交于A 、B 两点.(1)求双曲线的标准方程;(2)若在x 轴上存在点P ,使△PAB 是以P 为顶点的等腰三角形,求点P 的坐标;(3)在(2)的条件下,求△PAB 的面积.x 2a 2y 2b21235.(12分)已知数列{a n }满足=2(n ∈),a 1=1,a 2=2.(1)求a 3,a 4,a 5的值;(2)求{a n }的通项公式;(3)设=,求数列{b n }的前n 项和为S n .a n +2a n N *b n log 2a2na 2n -1。
2024浙江省高职考(中职高考)联合体第一次模拟(数学试卷(含答案))
第1 页(共6页)2023 2024学年浙江省职教高考研究联合体第一次联合考试数学试卷参考答案一㊁单项选择题(本大题共20小题,1 10小题每小题2分,11 20小题每小题3分,共50分)1.D ʌ解析ɔȵA ɣB ={-1,0,1,3},ʑ2∉(A ɣB ).2.A ʌ解析ɔȵx =2,y =5,ʑx +y =7,反之不一定成立.3.D ʌ解析ɔ特殊值代入法或利用不等式的性质分析.4.C ʌ解析ɔȵA O ң=(0,0)-(2,0)=(-2,0),B O ң=(0,0)-(0,-1)=(0,1),ʑA O ң+B O ң=(-2,1).5.D ʌ解析ɔ由题意得4-x 2>0,x +1>0,{解得-1<x <2.6.C ʌ解析ɔ120ʎ-180ʎ=-60ʎ.7.D ʌ解析ɔP 44=24(种).8.C ʌ解析ɔ根据指数函数㊁对数函数的图像和性质进行比较.9.A ʌ解析ɔ画图或化为0ʎ~360ʎ范围内的角.10.B ʌ解析ɔ斜率k =-63-12+3=-33.11.D ʌ解析ɔ由题意得m +1ɤ0,解得m ɤ-1.12.C ʌ解析ɔȵ函数t (x )=c x 是减函数,ʑ0<c <1.令x =1,则g (1)=b >f (1)=a .ʑb >a >c .13.C ʌ解析ɔP =18.14.A ʌ解析ɔȵt a n α㊃s i n α=s i n αc o s α㊃s i n α=s i n 2αc o s α>0,且s i n 2α>0,ʑc o s α>0.15.C ʌ解析ɔȵT 4=C 36x 3(-2x )3=(-2)3C 36x 3㊃x -32,ʑ第4项的系数为-23C 36=-160.16.D ʌ解析ɔȵ点P (4,0),且|MP |=3,ʑ动点M 的轨迹方程为(x -4)2+y 2=9.17.D ʌ解析ɔȵf (1)=f (3)=0,ʑ对称轴方程为x =1+32,即x =2.又ȵ二次函数f (x )的图像开口向下,ʑf (6)<f (-1)<f (2).18.B ʌ解析ɔA 项中,A 1B 与B 1C 成60ʎ角;B 项中,A D 1与B 1C 是异面垂直关系,即成90ʎ角,正确;C 项中,A 1B 与底面A B C D 成45ʎ角;D 项中,连接A C (图略),A 1C 与底面A B C D 所成的角为øA C A 1ʂ30ʎ.故选B .19.B ʌ解析ɔȵa =|A F 1|=2,c =|O F 1|=1,ʑb 2=3,ʑ椭圆C 的标准方程为x 24+y 23=1.第2 页(共6页)20.D ʌ解析ɔ由题意得2b =a +c ,c -a =2,c 2=a 2+b 2,ìîíïïïï解得a =3,b =4,c =5,ìîíïïïïʑ双曲线C 的标准方程为x 29-y 216=1.二㊁填空题(本大题共7小题,每小题4分,共28分)21.-22 ʌ解析ɔȵx >0,ʑx +2x ȡ2x ㊃2x =22,ʑ-(x +2x)ɤ-22.当且仅当x =2x (x >0),即x =2时,等号成立.22.1 ʌ解析ɔȵf (-1)=-(-1)2+1=0,ʑf [f (-1)]=f (0)=0+1=1.23.1103 ʌ解析ɔS 10=(1+2+4+ +29)+(-1+1+3+ +17)=1ˑ(1-210)1-2+10ˑ(-1+17)2=1023+80=1103.24.4π3 ʌ解析ɔȵV 圆柱=πr 2h =πˑ22ˑ4=16π,V 圆锥=13πO A 2㊃O B =13πˑ22ˑ11=443π,ʑV 圆柱-V 圆锥=16π-44π3=4π3.25.20 ʌ解析ɔȵ抛物线y 2=16x 的焦点为F (4,0),代入直线方程得2ˑ4+0+m =0,解得m =-8,即y =8-2x .将其代入y 2=16x 得x 2-12x +16=0,由韦达定理得x 1+x 2=12.ʑ|A B |=(x 1+p 2)+(x 2+p 2)=x 1+x 2+p =12+8=20.26.31250 ʌ解析ɔȵs i n α=45,c o s α=-35,ʑs i n 2α=2s i n αc o s α=2ˑ45ˑ(-35)=-2425,c o s 2α=c o s 2α-s i n 2α=(-35)2-(45)2=-725,ʑs i n (2α+5π4)=s i n 2αc o s 5π4+c o s 2αs i n 5π4=(-2425)ˑ(-22)+(-725)ˑ(-22)=24250+7250=31250.27.(-ɕ,-2)ɣ(4,+ɕ) ʌ解析ɔ由题意得(m +2)(4-m )<0,ʑ(m +2)(m -4)>0,解得m <-2或m >4.三㊁解答题(本大题共8小题,共72分)(以下评分标准仅供参考,请酌情给分)28.(本题7分)解:原式=223ˑ32+l o g 225-l o g 334+1+C 19-4ˑ3ˑ2ˑ1=2+5-4+1+9-24每项正确各得1分,共6分 =-11.结果正确得1分29.(本题8分)解:(1)ȵs i n (π+α)=32,且αɪ(-π2,0),ʑα=-π3.1分第3 页(共6页)ʑf (x )=s i n (2x -π3)+c o s (2x +π3)+1=s i n 2x c o s π3-c o s 2x s i n π3+c o s 2x c o s π3-s i n 2x s i n π3+1=12s i n 2x -32c o s 2x +12c o s 2x -32s i n 2x +1=1-32s i n 2x +1-32c o s 2x +1=2-62s i n (2x +π4)+1,1分 ʑ函数f (x )的最小正周期T =2π2=π.1分 (2)当s i n (2x +π4)=1时,函数f (x )取最小值,最小值为2-6+22,2分 此时2x +π4=2k π+π2(k ɪZ ),解得x =k π+π8(k ɪZ ),2分 即函数f (x )取最小值时x 的集合为x x =k π+π8(k ɪZ ){}.1分 30.(本题9分)解:(1)联立x +y -5=0,2x -y -1=0,{解得x =2,y =3,{ʑ圆心Q (2,3).1分 又ȵ坐标原点(0,0)到直线y =2的距离d =2,ʑ半径r =2.1分 ʑ圆C 的标准方程为(x -2)2+(y -3)2=4.2分 (2)ȵM Q ʅMP ,ʑ直线MP 为圆C 的切线.1分①当直线MP 的斜率存在时,设直线MP 的方程为y -6=k (x -4),即k x -y +6-4k =0.由r =d 得|2k -3+6-4k |k 2+1=2,解得k =512,ʑ此时,直线MP 的方程为y -6=512(x -4),即5x -12y +52=0.2分 ②当直线MP 的斜率不存在时,直线MP 的方程为x -4=0.1分 综上所述,直线MP 的方程为5x -12y +52=0或x -4=0.1分 31.(本题9分)解:(1)在әA B C 中,由正弦定理得a s i n A =b s i n B ,即2s i n A =2s i n B,ʑs i n B =2s i n A .1分 又ȵc o s A =32,ʑøA 是әA B C 的一个内角,ʑøA =30ʎ.ʑs i n A =12,ʑs i n B =22.1分 ȵb >a ,ʑøB =45ʎ或135ʎ.1分第4 页(共6页)当øB =45ʎ时,øC =105ʎ,由余弦定理得c 2=a 2+b 2-2a b c o s C =(2)2+22-2ˑ2ˑ2㊃c o s 105ʎ=6-42ˑ2-64=4+23,ʑc =3+1.1分 当øB =135ʎ时,øC =15ʎ,由余弦定理得c 2=a 2+b 2-2a b c o s C =(2)2+22-2ˑ2ˑ2ˑ2+64=4-23,ʑc =3-1.1分 注:只要答案正确,用其他方法解答也可得分.(2)当øC =105ʎ时,S әA B C =12a b s i n C =12ˑ2ˑ2ˑ6+24=3+12;2分 当øC =15ʎ时,S әA B C =12a b s i n C =12ˑ2ˑ2ˑ6-24=3-12.2分 32.(本题9分)解:(1)ȵA C =1,A B =2,B C =3,ʑA B 2=A C 2+B C 2,ʑәA C B 是直角三角形,且øA C B =90ʎ.1分 ȵP A ʅ平面A B C ,B C ⊂平面A B C ,ʑP A ʅB C ,又ȵB C ʅA C ,且P A 与A C 交于点A ,ʑB C ʅ平面P A C ,ʑP B 与平面P A C 所成的角为øB P C .1分ȵP A =A C =1,P B =P A 2+A B 2=5,ʑP C =2,ʑ在R t әP C B 中,c o s øB P C =P C P B =25=105,1分 ʑP B 与平面P A C 所成角的余弦值为105.1分 (2)由(1)得B C ʅP C ,又ȵA C ʅB C ,ʑøP C A 为二面角P B C A 的平面角.1分 ȵ在R t әP A C 中,A P =A C =1,P A ʅ平面A B C ,ʑøP C A =45ʎ,即二面角P B C A 的大小为45ʎ.2分(3)V C P A B =V P A B C =13S әA B C ㊃P A =13ˑ12ˑ1ˑ3ˑ1=36.2分 33.(本题10分)解:(1)ȵa 2和a 3是一元二次方程x 2-3x +2=0的两个实数根,且数列{a n }单调递增,ʑa 2=1,a 3=2,ʑ公差d =a 3-a 2=1,首项a 1=a 2-d =0,ʑa n =n -1.1分 又ȵb 1=l o g 2a 3=l o g 22=1,b 2=l o g 2a 5=l o g 24=2,1分 ʑ公比q =b 2b 1=2,ʑb n =b 1q n -1=2n -1.1分第5 页(共6页)(2)ȵc n =a n +1+1b n,ʑc n =n +21-n .1分 ʑT n =c 1+c 2+ +c n=(1+2+3+ +n )+(1+12+14+ +12n -1)=n (n +1)2+1-12n 1-121分=n 2+n 2+2-12n -1.1分 (3)ȵd n =(2+a n )b n =(n +1)㊃2n -1,1分 ʑM n =d 1+d 2+d 3+ +d n ,即M n =2ˑ20+3ˑ21+4ˑ22+ +(n +1)㊃2n -1①ʑ2M n =2ˑ21+3ˑ22+4ˑ23+ +(n +1)㊃2n ②由①-②得-M n =2ˑ20+21+22+ +2n -1-(n +1)㊃2n 1分 =2+2(1-2n -1)1-2-(n +1)㊃2n =-n ㊃2n ,1分 ʑM n =n ㊃2n .1分 34.(本题10分)解:(1)ȵәA B F 2的周长为|A F 1|+|A F 2|+|B F 1|+|B F 2|=4a =8,ʑa =2.1分 又ȵe =c a =12,ʑc =1,ʑb 2=a 2-c 2=22-12=3.1分 ʑ椭圆C 的标准方程为x 24+y 23=1.1分 (2)ȵ椭圆C :x 24+y 23=1的右焦点为F 2(1,0),ʑ抛物线y 2=2p x 的焦点为(1,0),1分 ʑp =2,ʑ抛物线的标准方程y 2=4x .1分 ȵ直线l 的倾斜角为135ʎ,ʑ斜率k =t a n 135ʎ=-1,ʑ直线l 的方程为y =-x +1,联立y =-x +1,①y 2=4x ,②{将①代入②并消去y 得x 2-6x +1=0,ʑΔ=(-6)2-4ˑ1ˑ1=32,ʑ弦长|MN |=1+1ˑ321=8,1分第6 页(共6页)又ȵ坐标原点O 到直线y =-x +1的距离d =12=22,1分 ʑS әO MN =12|MN |㊃d =12ˑ8ˑ22=22.1分 (3)联立y =-x +1,①x 24+y 23=1,②ìîíïïïï将①代入②并消去y 得7x 2-8x -8=0,ʑΔ=(-8)2-4ˑ7ˑ(-8)=288,ʑ|P Q |=1+1ˑ2887=247,1分 ʑ247-8=-327<0,ʑ|P Q |<|MN |.1分 35.(本题10分)解:(1)设D C =2x ,则A B =2x ,D C ︵=A B ︵=πx ,1分 ʑA D =B C =l -(4x +2πx )2=l 2-(π+2)x ,2分 ʑS =S 矩形A B C D +πx 2=2x ˑ[l 2-(π+2)x ]+πx 21分=l x -2(π+2)x 2+πx 2=-(π+4)x 2+l x .2分 (2)由(1)得S =-(π+4)x 2+l x .由二次函数的性质得:当x =l 2(π+4)米时,S 取得最大值,S m a x =l 24(π+4)平方米.4分。
2020年浙江高职考数学试卷(word)
2020年浙江单独考试招生数学试题一、单项选择题(本大题共20小题,1—10小题每小题2分,11—20小题每小题3分,共50分)(在每小题列出的四个备选答案中,只有一个是符合题目要求的.错涂、多涂或未涂均不得分)1.集合{}8,7,2,1=A ,集合{}8,5,3,2=B ,则=B A = A. {2} B. {3,5} C. {2,8} D.,8}{1,2,3,5,72."45"︒=α是”“22sin =α的 A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件3.函数()xx x f 21-=的定义域为A.]1,0()0,1[ -B.[-1,1]C.(0,1]D.),1[]1,(+∞--∞ 4.从2名医生、4名护士中,选出1名医生和2名护士组成三人医疗小组,选派的种数是A.8B.12C.20D.24 5.如图,正方形ABCD 的边长为1,=BD +++++AB A. 0 B. 2 C. 2 D.226.直线3=x 的倾斜角为A.0°B.30°C.60°D.90°7. 角α的终边上有一点()512-,P ,则=αsin A.125-B.125C. 135D.135- 8. 双曲线122=-y x 与直线1=-y x 交点的个数为A.0B. 1C. 2D.4 9. 下列叙述中,错误的是A.平行于同一个平面的两条直线平行B.平行于同一条直线的两条直线平行C.垂直于同一条直线的两个平面平行D.垂直于同一个平面的两条直线平行 10. 李老师每天采取"先慢跑、再慢走"的方式锻炼身身体,慢跑和慢走都是匀速的,运动的距离s (米)关于时间t (分钟)的函数图像如图所示,他慢走的速度为A.55米/分钟B.57.5米/分钟C.60米/分钟D.67.5米/分钟 11. 若直线b x y +=经过抛物线y x 42=的焦点,则b 的值是A.-2B.-1C.1D.2 12. 角2020°的终边在A.第一象限B.第二象限C.第三象限D.第四象限 13. 已知点()()6,7,4,3B A -,则线段AB 的中点坐标为A.(5,1)B.(2,5)C. (10,2)D.(4,10) 14. 若函数12++=kx x y 的图像与x 轴没有交点,则k 的取值范围是A.()+∞,2B.()2,-∞-C.()()+∞-∞-,22,D.()2,2- 15. 抛掷二枚骰子,"落点数之和为9"的概率是 A.21 B 31. C.61 D.91 16. 16.下列直线中,,与圆()()52122=++-y x 相切的是A.012=+-y xB.012=--y xC.012=++y xD.012=-+y x 17. 已知a,b,c 是实数,下列命题正确的是A.若b a >,则22b a > B.若22b a >,则b a > C.若22bc ac >,则b a > D.若b a >,则22bc ac > 18. 函x x y cos sin =的最小正周期为A.2πB. πC.π2D.1 19. 设数列{}n a 的前n 项和为n S ,若()*1112,1N n a S a n n ∈-==+,则=3aA. -2B. -1C. 1D.220. 20.设直线m x y +=与曲()0122≥=+x y x 有公共点,则实数m 的取值范围是A.[]2,2-B. []1,1-C. []2,1-D.[]1,2- 二、填空题(本大题共7小题,每小题4分,共28分)21. 已知函数()2,32,1{2≥+<+=x x x x x f ,则()[]=-2f f22. 若42,1,1++-x x x 成等差数列,则=x23. 若正数b a ,满足20=ab ,则b a 2+的最小值为 24. 函数()()x x y -++=ππcos sin 4的最大值为25. 6212⎪⎭⎫ ⎝⎛-x x 展开式中第二项的系数为26. 如图所示,某几何体由正四棱锥和正方体构成,正四棱锥侧棱长为23,正方体棱长为1,则PB =27. 已知双曲线2222by a x -的渐近线方程为x y 2±=,则该双曲线的离心率为三、解答题(本大题共8小题,共72分)(解答应写出文字说明及演算步骤) 28. (本题7分)计算:()()2210663492019202001ln12log 3log ππ-+⎪⎭⎫ ⎝⎛+-++++-!e29. (本题8分)在△ABC 中,角C B A ,,所对的边分别为c b a ,,,已知︒=∠60A ,32=a ,22=b 。
2023浙江省高职考数学真试题
2023年浙江省高等职业技术教育招生考试数学本式卷共三大题,共4页。
满分150分,考试时间120分钟。
考试注意:1.答题前,请务必将自己的姓名、准考证号用黑色签字笔或钢笔分别填写在试卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本题卷上的作答一律无效。
一、单项选择题(本大题共20小题,1一10小题每小题2分,11-20小题每小题3分,共50分)(在每小题列出的四个备选答案中,只有一个是符合题目要求.错涂、多涂或末涂均无分.)1.已知集合S={1,2,4},T={2,3},则S ∩T =()A.{1,2,3,4}B.{2}C.{1,3,4}D.φ2.己知角a 的终边经过点(2,-5),则a 是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角3.直线0=23 -y -x 3的倾斜角是()A.150°B.120°C.60°D.30°.4.函数5)+6x -ln(x =y 2的定义域是()A.(1,5)B.[1,5]C.(-∞,1)U (5,+∞)D.(-∞,1]U [5,+∞)5.已知)23,(,31cos ππαα∈-=,则=αsin ()A.322-B.322 C.31-D.316.已知M (2,0),N(6,4),则以线段MN 为直径的圆的圆心坐标是()A.(2,2)B.(2,4)C.(8,4)D.(4,2)7.由2,3,5,7四个数字组成没有重复数字的三位数,其中比500大的三位数共有()A.24个B.12个C.8个D.6个8.“e x =1”是“x=0”的()A.充分不必要条件. B.必要不充分条件 C.充要条件 D.既不充分也不必要条件9.中国刺绣作为一项传统手工技艺,是中国传统文化的重要组成部分。
某个椭圆形的刺绣艺术品的尺寸如图所示,则这个椭圆的离心率是()55.25.65.35.D C B A10.观察两个函数y=f(x),y=g(x)图象,在下列区间中,同为单调递减的区间是()A.(0,1) B.(2,4)C.(5,6) D.(6,8)11.已知实数a>b>c ,则下列结论正确的是()A.a+b<2c B.a+b>2c C.a+c>2b D.a+c<2b12.当x >-1时,函数1102x =f(x)2+++x x 的最小值是()A.2B.3C.6D.1013.若a ,b ,c 是公差为1的等差数列,则cba5,5,5构成()A.公差为1的等差数列B.公差为5的等差数列C.公比为1的等比数列D.公比为5的等比数列14.截至2023年2月,被誉为“中国天眼”的500米口径的射电望远镜(FAST),已经发现超740颗脉冲星,为世界各国探索宇宙星空,提供了中国智慧和中国力量。
高职高考模拟数学试卷
一、选择题(每题4分,共40分)1. 若函数f(x) = x^2 - 4x + 3的图像开口向上,则该函数的对称轴为:A. x = -1B. x = 1C. x = 2D. x = 32. 已知等差数列{an}中,a1 = 3,d = 2,则第10项an等于:A. 17B. 18C. 19D. 203. 若复数z = 2 + 3i的模为√13,则z的共轭复数为:A. 2 - 3iB. 3 + 2iC. -2 + 3iD. -3 + 2i4. 下列不等式中,正确的是:A. 2x + 3 > 5B. 3x - 2 < 4C. x^2 + 1 > 0D. x^2 - 1 < 05. 已知函数y = log2(x - 1),则该函数的定义域为:A. x > 1B. x ≥ 1C. x < 1D. x ≤ 16. 若等比数列{bn}中,b1 = 3,公比q = 2,则第4项bn等于:A. 12B. 24C. 48D. 967. 下列各式中,正确的是:A. (a + b)^2 = a^2 + 2ab + b^2B. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^2 = a^2 - 2ab + b^2D. (a - b)^2 = a^2 + 2ab - b^28. 已知函数y = sin(x + π/2),则该函数的周期为:A. πB. 2πC. 3πD. 4π9. 若等差数列{cn}中,c1 = 5,d = -2,则第n项cn等于:A. 5 - 2(n - 1)B. 5 + 2(n - 1)C. 5 - 2(n + 1)D. 5 + 2(n + 1)10. 下列函数中,单调递增的是:A. y = x^2B. y = 2xC. y = -xD. y = x^3二、填空题(每题5分,共50分)11. 已知函数f(x) = x^3 - 3x^2 + 4x - 6,则f(1)的值为______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省高职考数学模拟试卷(二十) 一、选择题 1. 设集合{}9,7,5,4=A ,{}9,8,7,4,3=B ,则集合B A 中的元素个数是 ( )
A.4
B.5
C.6
D.7 2. 下列选项中,p 是q 的必要不充分条件的是 ( )
A.1:=x p ,x x q =2:
B.φ=B A p :,φ=A q :或φ=B
C.42:<x p ,22:<<-x q
D.1:p ,x ,5成等差数列,3:=x q
3. 设全集R U =,{}0442>+-=x x x A ,则A C U 等于 ( )
A.R
B.φ
C.{}2
D.),2()2,(+∞--∞
4. 设06)18(2=-+-m n m ,则点),(n m 与原点连线的斜率是 ( )
A.6
B.4
C.
61 D.49- 5. 抛物线x y 22-=的焦点到准线的距离是 ( )
A.2
B.1
C.21
D.4
1 6. 王老师上班途中要经过2个设有红绿灯的十字路口,下面图甲、图乙分别表示他上班和
下班时的路程(s )关于时间(t )图像,下列说法正确的是 ( )
A.王老师上、下班途中都只在一个十字路口等待了
B.王老师上、下班途中运动时都是匀速运动
C.下班途中停下的路口比上班途中停下的路口离家近
D.上班途中与下班途中在十字路口等待的时间相同
7. 椭圆14
92
2=+x y 的焦点坐标是 ( ) A.)0,3(± B.)5,0(± C. )2,0(± D. )0,13(±
8. 三角形ABC 的顶点分别是)1,1(A ,)4,5(B ,)4,1(C ,D 是BC 的中点,则AD 的坐标
是 ( )
A.)1,2(
B.)3,2(
C.)2,3(
D.)2,1(
9. 第19届亚运会将于2002年在杭州开幕,若从浙江大学、浙江工商大学、中国美术学院、
杭州师范大学四所大学的体育馆中选3个举办3项比赛,则不同的举办方案有 ( )
A.108 种
B.72 种
C.36种
D.24种
10. 下列函数中,在定义域上为增函数的是 ( )
A.x y =
B.12-=x y
C.x y 2sin =
D.2x y =
11. 如图所示,在正方体中,点P 在线段11C A 上运动,则ADP ∠的变化
范围是 ( )
A.[]︒︒90,45
B. []︒︒60,45
C. []︒︒90,60
D. []︒︒60,30
12. 已知0tan sin >⋅θθ,且0tan cos <⋅θθ,则点)sin ,(cos θθP 所在
的象限是 ( )
A.一
B.二
C.三
D.四
13. 下列说法中错误的是 ( )
A.两异面直线可能与同一个平面垂直
B.两异面直线可能与同一平面所成的角相等
C.两异面直线不相交
D.两异面直线在同一个平面上的射影可能是两平行线
14. 若函数b ax x x f ++=2)(对于任意实数x 均有)3()3(x f x f -=+,那么 ( )
A.)5()2()3(f f f <<
B. )5()3()2(f f f <<
C. )2()5()3(f f f <<
D. )3()2()5(f f f <<
15. 已知等差数列{}n a 满足442=+a a ,1053=+a a ,则它的前10项的和10S 等于 ( )
A.138
B.135
C.95
D.23
16. 获得2015年诺贝尔生理学或医学奖的宁波籍科学家屠呦呦,发现并提取了治疗疟疾的
特效药青蒿素,拯救了数以万计的生命,从青蒿中提取青蒿素时,随温度的升高其药效急剧降低,屠呦呦利用低沸点的乙醚最为萃取物,经历一百多次实验才获得成功,假设温度为C ︒60时青蒿素的药效为%100,在C ︒100内,每上升10摄氏度,药效就变为原来的一半,那么采取普通的煎药方法煮沸到C ︒100时的药效是C ︒60时的 ( )
A.41
B.81
C.161
D.32
1 17. 函数⎪⎭⎫
⎝⎛++-=x x x f 2sin 4)sin(3)(ππ的最大值和最小正周期分别为 ( )
A.7,π
B.7,π2
C. 5,π
D. 5,π2
18. 双曲线142
2
=-y x 的渐近线方程和离心率分别是 ( ) A.x y 21±=和5 B. x y 2±=和23 C. x y 2
1±=和23 D. x y 2±=和5 二、填空题
19. 求值:=︒660tan ;
20. 已知函数x x f lg )(=,则()
=99100C f ; 21. ()7
21x -的展开式中系数最大的一项是 ; 22. 若集合⎪⎭⎪⎬⎫⎪⎩⎪
⎨⎧⎩⎨⎧=+-=-+=04202),(y x y x y x A ,{}
222),(r y x y x B =+=,且B A ⊆,则集合B 表示图形的面积是 ;
23. 已知0>a ,则a
a 8216--的最大值为 ; 24. 已知数列{}n a 的通项公式为)1(1+=
n n a n ,则它的前n 项和是 ; 25. 已知函数⎪⎩
⎪⎨⎧>-+≤=1,311,)(2x x x x x x f ,则[]=-)2(f f ; 26. 方程2)3(log log 222++=x x 的解为 ;
三、解答题
27. 已知在等比数列{}n a 中,2614=-a a ,133-=S ,求1a ,q 和2016S 的值;
28. 已知直线0322
=++y x k 与直线0142=-+y x 平行,求k 的值及两平行直线间的距
离;
29. 在三角形ABC 中,︒=∠60B ,面积310=S ,周长是20,求各边的长;
30. 求函数32)(2+--=x x x f 在区间[]1,2-上的值域和单调区间; 31. 已知函数)sin(ϕω+=x A y (0>A ,0>ω,πϕ<)的图像如下图所示,(1)求A ,
ω,ϕ的值;(2)若1=y ,求对应x 的值;
32. 已知向量)sin ,(cos αα=a ,)sin ,(cos ββ=b ,)0,1(-=c ,(1)求向量c b +长度
的最大值;(2)设4π
α=,且)(c b a +⊥,求βcos 的值;
33. 如图所示,在直三棱柱111C B A ABC -中,1=AB ,31==AA AC ,︒=∠60ABC ,
求:(1)三棱锥C AB A -1的体积;(2)二面角B C A A --1的正切值;
34. 如图所示,已知双曲线199:221=-y x C ,圆4:222=+y x C ,过点)1,0(且斜率为2
1的直线l 与圆交于B 、C 两点,交双曲线为A 、D 两点,求:(1)直线l 的方程;(2)BD AC +的值;。