模糊理论概述

合集下载

模糊理论综述

模糊理论综述

模糊理论综述引言模糊理论(Fuzzy Logic)是在美国加州大学伯克利分校电气工程系的L.A.zadeh(扎德)教授于1965年创立的模糊集合理论的数学基础上发展起来的,主要包括模糊集合理论、模糊逻辑、模糊推理和模糊控制等方面的内容.L.A.Zadeh教授在1965年发表了著名的论文,文中首次提出表达事物模糊性的重要概念:隶属函数,从而突破了19世纪末康托尔的经典集合理论,奠定模糊理论的基础。

1974年英国的E.H.Mamdani成功地将模糊控制应用于锅炉和蒸汽机的控制,标志着模糊控制技术的诞生。

随之几十年的发展,至今为止模糊理论已经非常成熟,主要包括模糊集合理论、模糊逻辑、模糊推理和模糊控制等方面的内容。

模糊理论是以模糊集合为基础,其基本精神是接受模糊性现象存在的事实,而以处理概念模糊不确定的事物为其研究目标,并积极的将其严密的量化成计算机可以处理的讯息,不主张用繁杂的数学分析即模型来解决问题。

二、模糊理论的一般原理由于客观世界广泛存在的非定量化的特点,如拔地而起的大树,人们可以估计它很重,但无法测准它实际重量。

又如一群人,男性女性是可明确划分的,但是谁是“老年人”谁又算“中年人”;谁个子高,谁不高都只能凭一时印象去论说,而实际人们对这些事物本身的判断是带有模糊性的,也就是非定量化特征。

因此事物的模糊性往往是人类推理,认识客观世界时存在的现象。

虽然利用数学手段甚至精确到小数点后几位,实际仍然是近似的。

特别是对某一个即将运行的系统进行分析,设计时,系统越复杂,它的精确化能力越难以提高。

当复杂性和精确化需求达到一定阈值时,这二者必将出现不相容性,这就是著名的“系统不相容原理”。

由于系统影响因素众多,甚至某些因素限于人们认识方法,水准,角度不同而认识不足,原希望繁荣兴旺,最后导致失败,这些都是客观存在的。

这些事物的现象,正反映了我们认识它们时存在模糊性。

所以一味追求精确,倒可能是模糊的,而适当模糊以达到一定的精确倒是科学的,这就是模糊理论的一般原理。

模糊集理论

模糊集理论

模糊集理论模糊集理论(Fuzzy Set Theory)是一种理论,主要关注定义和应用模糊(模糊)集合(fuzzy set)。

它由芬兰科学家Lotfi Zadeh在1965年提出,随后历经修正和扩展,今天已成为人工智能的重要研究概念。

它引入了模糊集合的概念,允许将不弱量化数据藉基于概率理论进行处理,以研究各种模式。

这种理论允许模糊集合随着数据流而变化,从而允许对诸如特征抽取、模式识别和对象识别等计算问题进行实例。

模糊集的一般定义是一组非常宽的概念,即这些概念可以模糊地概括其中的数据和事件。

典型的例子包括定义“热”时可以指的内容。

这可以指很热的水,但也可以指很热的空气,甚至指温度处于中间范围内的物体,如细砂沙。

由于我们通常在一种普通的处理方式中不能够构建这种多义性,因此出现了模糊集理论。

模糊集理论将条件分解成可被计算的成分,并提供了两种比较语句,以替代确定的相等和比较关系:“如果X属于Y”与“如果X不属于Y”。

模糊集理论和理论的一个重要舞台是节点(membership)函数。

节点函数将离散值链接到集合中,该集合可能建立在模糊集概念上,以及定义当值处于属性范围时,集合中元素的状态概念。

模糊集理论可以用来表示和处理有关诸如决策系统、专家系统、状态识别系统和控制系统等领域的许多模糊结构。

例如,模糊集理论可用来表示“暖”的语义,可以定义一个给定限度的暖度成分,用于计算属性范围内的暖度。

同样,你也可以定义一个语义表示“如果暖一点,就觉得很好”。

在其他方面,它也可以用来表示系统输入,以及它们之间的关系,以及它们到系统输出的影响。

因此,模糊集理论的应用范围非常广泛,被用于机器学习,数据挖掘,机器视觉,语音识别,建模和仿真,以及工业控制等计算机任务的解决方案。

它高度重视“不确定性”,减少了我们在研究实例时常常面临的困难,允许用户在可以定义的模糊集上使用模糊逻辑来解决复杂问题。

今天,它已经成为人工智能领域及其它多学科间的流行工具,并被许多应用领域所采用。

人工智能中的模糊理论与模糊推理

人工智能中的模糊理论与模糊推理

人工智能中的模糊理论与模糊推理人工智能(Artificial Intelligence,AI)是计算机科学的一个重要分支,旨在让机器能够模仿和模拟人类的智能行为。

在AI的发展过程中,模糊理论(Fuzzy Theory)和模糊推理(Fuzzy Reasoning)是扮演着重要角色的两个概念。

模糊理论和模糊推理可以帮助我们解决那些具有不确定性和模糊性的问题,并且在模拟人类的智能过程中起到了关键作用。

本文将详细介绍,并讨论其应用领域。

1. 模糊理论模糊理论是由扎德(Lotfi A. Zadeh)于1965年提出的,它是一种能够处理现实世界中不确定性和模糊性问题的数学工具。

与传统的逻辑学不同,模糊理论引入了“模糊集合”的概念,用来表示不同程度的隶属度。

在传统的二值逻辑中,一个元素只能属于集合或者不属于集合,而在模糊集合中,一个元素可以同时属于多个集合同时也可以部分属于某个集合。

模糊集合的定义通常采用隶属度函数(membership function)来表示,这个函数将每个元素在0到1之间的值来表示其属于程度。

这种思想可以很好地应用到处理模糊性问题的场景中。

例如,当我们描述一个人的高矮时,可以定义一个“高”的模糊集合,然后通过隶属度函数来表示每个人对于“高”的隶属度。

2. 模糊推理模糊推理是一种基于模糊逻辑的推理方法,它是基于模糊集合的运算来实现推理的过程。

模糊推理通过模糊集合之间的关系来表示模糊规则,从而得到推理的结果。

通常,模糊推理过程包括模糊化、模糊规则的匹配、推理方法的选择以及解模糊化等步骤。

在模糊化的过程中,将输入转化为模糊集合,并通过隶属度函数给出每个输入值的隶属度。

在模糊规则的匹配阶段,将输入的模糊集合与模糊规则进行匹配,根据匹配程度得到相应的隶属度。

然后,根据推理方法的选择,确定输出值的隶属度。

最后,通过解模糊化的过程,将模糊输出转化为确定的输出。

模糊推理的一个重要特点是能够处理模糊和不确定性的信息。

模糊数学原理及应用

模糊数学原理及应用

模糊数学原理及应用
模糊数学,也被称为模糊逻辑或模糊理论,是一种基于模糊概念和模糊集合的数学分析方法,用于处理不精确或不确定性的问题。

模糊数学允许将不明确的概念和信息进行量化和处理,以便更好地处理现实生活中存在的模糊性问题。

模糊数学的基本原理是引入模糊集合的概念,其中的元素可以具有模糊或不确定的隶属度。

模糊数学中的隶属函数可以用于刻画元素对于一个模糊集合的隶属程度。

模糊集合的运算可以通过模糊逻辑实现,模糊逻辑是概率逻辑和布尔逻辑的扩展,它允许使用连续的度量范围来推导逻辑结论。

模糊逻辑中的运算包括取补、交集和并集等,它们可以用来处理模糊概念之间的关系。

模糊数学在许多领域都有广泛的应用。

在控制系统中,模糊控制可以用于处理难以量化的问题,如温度、湿度和压力等。

在人工智能领域,模糊推理可以用于处理自然语言的不确定性和模糊性。

在决策分析中,模糊数学可以用于处理多个决策因素之间的不确定性和模糊性。

此外,模糊数学还在模式识别、图像处理、数据挖掘和人机交互等领域得到广泛应用。

通过使用模糊数学的方法,可以更好地处理现实世界中存在的不确定性和模糊性,从而提高问题解决的准确性和效率。

模糊数学理论

模糊数学理论

4)二元对比排序法
对于有些模糊集,很难直接给出隶属度,但通过
两两比较确定两个元素相应
隶属度的大小排出顺序, 再用数学方法加工得到隶属函数,其实是隶属函数矩阵 2.1 模糊关系与模糊矩阵的概念 1)模糊关系
2) 模糊矩阵
2.2模糊等价关系与模糊相似关系 1)模糊等价关系
模糊数学的基本思想是隶属程度的思想,应用模糊数学方法建立数学模型的关键是建立符合实 际的隶属函数,下面介绍几种常用的确定隶属函数的方法:
1)模糊统计方法 它可以算是一种比较客观的方法,主要是基于模糊统计实验的基础上,根据隶属度的客观存 在性来确定的。
模糊统计试验的四要素为:
假设我们做n次模糊统计试验,则可算出 当n不断增大时,其频率的稳定值称为x0对A的隶属度,即
• 3.1 模糊聚类分析理论: 1)
2)
3) 4)
3.2 基于模糊等价关系的动态聚类分析 例题
此例题可以用截矩阵的方法来实现
3.3 基于模糊相似关系的聚类分析 1)建立模糊相似矩阵
2)传递闭包法 此外,还有直接聚类法、最大树法、编网法等。
4 模糊模式识别
模式识别的问题就是已知事物的各种类别,然后来判断给定的对象是属于哪一个类 别的问题。这里的“模式”是指标准的样本、式样、样品、图形等。在实际问题中,有 些事物的类别,即模式是明确、清晰和肯定的。如识别英文字母时,其模式是印刷体英 文字母.这是清楚的,但也有很多事物的模式带有不同程度的模糊性。例如,疾病的类 型.图象等。对于被识别的对象则往往特征具有更大的模糊性。例如,手写的英文字母, 患者等我们很难说它们属于那种标准类型。因此,应用模糊数学的方法进行模式识别显 得十分必要。
1.2 模糊集与隶属函数
• 论域:如果将所讨论的对象限制在一定范围内,并记所讨论的对象全体构成的集合为U, 称之为论域。 •普通集合——特征函数 设U是论域,A是U的子集,定义如下映射为集合A的特征函数 :(集合A可由特征函数唯一 确定)

07(模糊理论)讲解

07(模糊理论)讲解

1921年2月生于苏联巴库。
1949年获哥伦比亚大学电机工程博士。任 伯克利加利福尼亚大学电机工程与计算机 科学系教授。
1965年,扎德在《信息与控制》杂志第8
期上发表《模糊集》的论文,引起了各国
数学家和自动控制专家们的注意。模糊集
(系边统界的不新明 方显 法的 。类 他) 提提 出供 用了语一言种变分量•析代复替杂数
集合
•模糊集合 C = “合适的可拥有的自行车数目”
•C=
(0,0.1),(1,0.3),(2,0.7),(3,1.0),(4,0.7),(5,0.3) ,(6,0.1)}(序偶表示法)
•2) 连续形式: •令X = R+ 为人类年龄的集合,
•模糊集合 B = “年龄在50岁左右”,则B可表示
为:
•模糊集合:
• 允许在一个集合部分隶属。即 对象在模 糊集合中的隶属度可为从0 - 1之间的任何值。
• 即可以从“不隶属”到“隶属”逐步过 渡。
机械故障诊断学
模糊诊断
举个例子:
将0,1二值逻辑推广为可取[0,1]闭区间中任意值的连续逻 辑。
例:秃子问题:
发数<500=秃子 则计算机会认为499根是秃子,501根不是秃子;我们人会 认为多一根也是秃子呀?
机械故障诊断学
模糊诊断
•(一)模糊逻辑的起源 • 模糊逻辑 --- Fuzzy Logic
• 模糊概念、模糊现象到处存在。
•天气冷热
•雨的大小
•风的强弱
•人的胖瘦
•年龄大小
•个子高低
机械故障诊断学
模糊诊断
•模糊逻辑与计算机
电脑和人脑差别: 电脑扩大并延伸了人脑的功能,但两者存

模糊理论总结

模糊理论总结

模糊理论总结简介模糊理论(Fuzzy Theory)是一种用于处理不确定性问题的数学方法,其背后的思想是模糊集合论。

模糊理论从模糊集合的角度对问题进行描述和处理,可以克服传统二值逻辑的限制,更符合人类思维的特点。

模糊理论主要应用于控制系统、人工智能、数据挖掘和模式识别等领域。

通过引入模糊概念,模糊理论能够有效处理模糊、不确定或不完全信息的问题,使得决策和系统设计更加灵活和适应实际应用。

模糊概念在模糊理论中,模糊概念是一个介于完全成员和完全非成员之间的概念。

与传统的二值逻辑相比,模糊概念允许元素有一定程度的隶属度。

模糊集合是由一系列隶属度在[0,1]范围内的元素组成的。

模糊概念的隶属函数描述了元素与模糊集合的关系。

常见的隶属函数包括三角函数、高斯函数和sigmoid函数等。

通过对隶属度的计算和操作,可以对元素进行模糊化处理,从而更好地表达和处理不确定性问题。

模糊推理模糊推理是模糊理论的核心。

与传统的逻辑推理相比,模糊推理能够处理模糊或不确定的条件和结论。

模糊推理根据输入的模糊规则和模糊事实,通过模糊逻辑运算得出模糊结论。

模糊推理的过程包括模糊化、模糊规则匹配和模糊合成三个步骤。

模糊化将输入的模糊事实转换为模糊集合,模糊规则匹配对输入的模糊事实和模糊规则进行匹配,模糊合成根据匹配结果和隶属度计算得出最终模糊结论。

模糊推理可以应用于各种决策问题,如模糊控制系统中的规则推理、模糊分类和模糊聚类等。

模糊控制模糊控制是模糊理论的一种重要应用,用于处理带有模糊或不确定性信息的控制问题。

传统的控制方法通常基于精确的模型和确定性的输入,而模糊控制则能够应对系统模型不确定或难以建立的情况。

模糊控制系统由模糊控制器和模糊规则库组成。

模糊控制器负责对输入模糊事实进行模糊推理,得出模糊控制命令。

模糊规则库包含了一系列模糊规则,用于将输入模糊事实映射到输出模糊命令。

模糊控制系统的设计包括确定模糊集合、编写模糊规则和确定隶属函数等步骤。

第22章模糊理论

第22章模糊理论
第22章 模糊理論
❖本章的學習主題 ❖ 1.認識模糊理論 2.模糊合成 3.模糊綜合評判 4.模糊運算 5.模糊推論 6.模糊控制 7.模擬理論之應用範例
企業研究方法 第 22 章 1
22.1 前言
一般可將資訊分為「可量化的資訊」與「不可量 化的資訊」,其中不可量化的資訊又稱為質化的 資訊,如:「這家公司總經理能力很強」、「這項 產品的品牌形象很好」等口語化的描述。 模糊理論(Fuzzy Theory)乃是積極承認主觀性問 題的存在,進而以模糊集合理論來處理不易量化 的問題,以便能適當而可靠的處理人們主觀評估 問題的方法。 模糊理論是為解決真實世界中普遍存在的模糊現 象而發展的一門學問,1965年美國自動控制學家 Lotfi. A. Zadeh首先提出的一種定量表達工具。
企業研究方法 第 22 章 3
22.2 模糊理論發展歷史
3.人類知識可說是用語言來表達的,而語言中存 在的模糊性,特別是因人而異所產生的主觀 性,也各不相同,這些模糊現象無法使用傳統 的數學工具例如機率等解決,故必須尋找另外 的替代途徑。
企業研究方法 第 22 章 4
22.3 模糊理論的基本概念
表 22-1 傳統集合與 Fuzzy 集合基本精神的比較
傳統集合 使用特徵函數 強調非此即彼的關係 只接受精確不模糊的資訊 硬性二分類法
Fuzzy 集合 (fuzzy set) 使用隸屬函數 接受亦此亦彼的關係 可接受精確不模糊的資訊 軟性的分類法
企業研究方法 第 22 章 5
22.3 模糊理論的基本概念
企業研究方法 第 22 章 6
在模糊集合的定義中,對某一元素X而言,是以μ(x) 來表示X屬於某集合的程度,即將X對應到[0,1]的 函數中,等級愈接近1,則表示該集合包合X元素的 程度愈大,此值稱為(degree of membership),所 以μ(x)稱為隸屬函數(membership function)。 隸屬函數的值只有0與1兩種時,該集合就是傳統的 明確集合(crisp set)。以圖22 - 1為例,來說明模糊 集合與明確集合間的不同。μ(x)表示「中年」的模 糊集合,而C (X)則表示傳統的明確集合。

人工智能中的模糊理论与模糊推理

人工智能中的模糊理论与模糊推理

人工智能中的模糊理论与模糊推理在人工智能领域,模糊理论与模糊推理作为重要的研究方向,一直备受关注。

模糊理论是模糊逻辑的基础,其核心思想是在不确定性和模糊性条件下进行推理和决策。

模糊推理则是基于模糊理论,通过一种模糊推理机制对不确定性问题进行建模和求解。

模糊推理不仅可以用于知识表示和推理,还可以应用于模糊控制、模糊优化等领域,具有广泛的应用前景。

模糊理论起源于上世纪60年代,由L.A.扎德开创,被广泛应用于模糊系统、人工智能、模糊控制等领域。

模糊理论的核心概念是隶属度函数和模糊集合。

隶属度函数描述了一个元素对于一个模糊集合的隶属程度,其取值范围在[0,1]之间。

模糊集合则是由隶属度函数定义的模糊概念,用来描述具有模糊性质的事物。

在模糊理论中,模糊集合的运算规则和逻辑规则是通过模糊推理来确定的。

模糊推理是基于模糊集合的逻辑推理方法,主要用于处理不确定性和模糊性问题。

在传统的逻辑推理中,命题之间的关系通常是二元的,即真或假。

而在模糊推理中,命题的真假取决于其隶属度函数的取值,可以是0到1之间的任意值。

模糊推理的核心思想是通过模糊集合的交、并、补等运算,进行推理和决策。

在模糊推理中,通常采用的推理规则有模糊推理系统、模糊关系、模糊规则等。

模糊推理系统是一个自动推理系统,用于推断输入变量和输出变量之间的关系。

模糊关系是描述输入和输出之间的模糊映射关系的方法,通常用模糊集合表示。

模糊规则是描述输入变量和输出变量之间关系的一种模糊逻辑规则,用于模糊推理系统的推断过程。

模糊推理在人工智能领域有着广泛的应用。

在模糊系统中,通过模糊推理可以进行知识表示和推理,从而实现对不确定性问题的求解。

模糊控制系统利用模糊推理对控制过程进行建模和控制,具有对非线性、模糊系统具有很好的适应性。

在模糊优化问题中,模糊推理可以用于解决多目标、多约束等复杂问题,提高优化问题的求解效率。

让我们总结一下本文的重点,我们可以发现,是一个重要的研究方向,有着广泛的应用前景。

模糊集(fuzzy set)相关理论知识简介

模糊集(fuzzy set)相关理论知识简介
36
2、模糊度计算公式 (1)海明(haming)模糊度 海明(haming)模糊度
其中, 是论域U中元素的个数, 其中,n是论域U中元素的个数, 1 µA (ui)≥0.5 )≥0 µA 0.5(ui)= 0 µA (ui)<0.5
37
(2)欧几里德(Euclid)模糊度 欧几里德(Euclid)模糊度
模糊理论(1 模糊理论(1)
1
一、集合与特征函数
1、论域 处理某一问题时对有关议题的限制范围称为该问题 的论域。 的论域。
2
2、集合 在论域中,具有某种属性的事物的全体称为集合。 在论域中,具有某种属性的事物的全体称为集合。
3
3、特征函数 设A是论域U上的一个集合,对任何u∈U,令 是论域U上的一个集合,对任何u 1 当u∈A CA(u)= 0 当u A 则称C (u)为集合A的特征函数。 则称CA(u)为集合A的特征函数。 显然有: A={ u | CA(u)=1 } (u)=1
13
三、模糊集表示法
1、扎德表示法1 扎德表示法1 设论域U 设论域U是离散的且为有限集: U={ u1, u2, …, un, } 模糊集为:A={µ 模糊集为:A={µA(u1), µA(u2), … , µA(un) } 则可将A 则可将A表示为:
14
A=µA(u1)/ u1+µA(u2)/ u2+ … +µA(un)/ un 或 A={ µA(u1)/ u1,µA(u2)/ u2,… ,µA(un)/ un } 或 A= n µA(ui)/ ui ∑ 或 i =1 A= µA(u)/ u u∈U
27
模糊理论(2 模糊理论(2)
28
一、模糊集的λ水平截集 模糊集的λ

模糊数学原理及应用

模糊数学原理及应用

模糊数学原理及应用
模糊数学,又称模糊逻辑或模糊理论,是一种用于处理模糊和不确定性问题的数学方法。

它与传统的二值逻辑不同,二值逻辑中的命题只能有“是”和“否”两种取值,而模糊数学允许命题
取任意模糊程度的值,介于完全是和完全否之间。

模糊数学的基本原理是模糊集合论。

在模糊集合中,每个元素都有一个属于该集合的隶属度,代表了该元素与集合之间的模糊关系。

隶属度的取值范围通常是0到1之间,其中0表示不
属于该集合,1表示完全属于。

模糊集合的隶属函数则用来描
述每个元素的隶属度大小。

模糊数学的应用广泛。

在工程领域中,它常用于模糊控制系统的设计与分析。

传统的控制系统中,输入和输出之间的关系是通过确定性的数学模型来描述的,而模糊控制则允许系统中存在不确定性和模糊性,并通过模糊推理来实现系统的控制。

在人工智能领域中,模糊数学也有着重要的应用。

模糊逻辑可以用来处理自然语言的模糊性和歧义性,对于机器翻译、信息检索和智能对话系统等任务具有重要意义。

此外,模糊数学还可以应用于风险评估、决策分析、模式识别、数据挖掘等领域。

通过将模糊数学方法应用于这些问题,可以更好地处理不确定性和模糊性信息,并得到更准确的结果。

总而言之,模糊数学是一种处理模糊和不确定性问题的数学方法,通过模糊集合论和模糊推理来建模和分析。

它在各个领域
都有广泛的应用,可以帮助人们更好地处理现实世界中的复杂问题。

模糊集理论

模糊集理论

模糊集理论
模糊集理论,也称模糊集合,是一种表达模糊性的数学工具。

它允许将复杂的情况抽象为简单的模糊集合,从而更容易进行计算和分析。

模糊集理论是一种处理不确定性和模糊性的数学模型,其中可以表示某个状态属于某个集合的程度。

模糊集理论的最大特点是它可以表达不确定的事物,而不是确定的事物。

模糊集合允许在模糊集合中使用模糊变量,用来表示模糊性,而不是使用数字来表示确定性。

模糊集合中的每个元素都有一个模糊系数,用来表示它在集合中的重要程度。

这种模糊系数可以是0到1之间的任何实数,表示该元素在集合中的程度。

模糊集理论在计算机科学、自然语言处理、机器学习等领域有着广泛的应用。

在计算机科学领域,模糊集理论用于解决模糊推理和模糊控制问题。

它可以帮助计算机识别不同的状态,从而更好地进行模糊推理和模糊控制。

在自然语言处理领域,模糊集理论可以帮助机器理解自然语言,从而进行更好的自然语言处理。

在机器学习领域,模糊集理论可以帮助机器学习系统更好地处理不确定性和模糊性。

模糊集理论可以用来帮助解决不同类型的问题,而且能够更好地处理不确定性和模糊性。

模糊集理论的应用越来越广泛,它是一个有效的工具,可以帮助解决复杂的问题。

vague集理论

vague集理论

vague集理论
模糊集理论是一种试图解释简单条件反应式和抽象逻辑学习等心理学科学解释的理论。

这一理论最初是于 1965 年由美国哲学家和科学家拉斯特·贝尔登提出,它的基本思想是用属性模糊逻辑来描述事物的属性,诸如色彩、大小和形状等,并且用属性与分类或聚类之间的定义不确定性来建立非常量条件关系,即依据概率及随机性而取舍。

这一模糊理论是基于概率量化的方法,以建立经典关系模型和随机曲线模型,从而精确描述混乱或复杂的议题。

模糊集理论有助于理解复杂的、易变的参照物,例如人的性格和行为倾向等,其使用模糊数字的延伸性原理及模糊函数可以表达出某事情的可能性和未来发展的可能性,从而为教育、社会科学及环境学等领域乃至实用工程学等领域提供建模手段和设计方法。

模糊集理论另一个较重要的方面是作为抽象逻辑的融合解释,可以运用属性、概率和逻辑等基本概念来了解不确定系统的行为,从而对提高人们对问题处理的准确性及有效性进行分析模拟研究,有助于预测影响不确定现象的结果,并据此来给出有针对性的模式预测,利于实现决策的准确性及有效性。

模糊集理论目前在不同领域有着广泛应用,尤其是在情感分析,社会网络分析及人工智能等方面,能够起到如何有效削减模型中的随机性,考虑有限的系统的性质,以及帮助避免传统抽象逻辑研究中的偏见性,帮助人们准确捕捉在约束系统中的变化进而有助于实现相关政策及民意调查布局。

综上所述,模糊集理论在现在及未来长期运用对实用和科学学科有着重要意义。

使用Matlab进行模糊控制系统设计

使用Matlab进行模糊控制系统设计

使用Matlab进行模糊控制系统设计引言:近年来,随着科学技术的快速发展和应用场景的不断扩展,控制系统设计成为众多领域中的热点问题之一。

而模糊控制作为一种有效的控制方法,在自动化领域得到了广泛的应用。

本文将介绍如何使用Matlab进行模糊控制系统设计,旨在帮助读者更好地理解和运用这一方法。

一、模糊控制基础1.1 模糊理论概述模糊理论是由日本学者庵功雄于1965年提出的一种描述不确定性问题的数学工具。

模糊控制是指在系统建模和控制设计过程中,使用模糊集合和模糊规则进行推理和决策,从而实现对复杂、非线性和不确定系统的控制。

1.2 模糊控制的优势相比于传统的控制方法,模糊控制具有以下优势:- 模糊控制能够处理复杂、非线性和不确定系统,适用范围广。

- 模糊控制不需要精确的系统数学模型,对系统环境的变化较为鲁棒。

- 模糊控制方法简单易懂,易于实现和调试。

二、Matlab在模糊控制系统设计中的应用2.1 Matlab模糊工具箱的介绍Matlab提供了一个专门用于模糊逻辑和模糊控制设计的工具箱,该工具箱提供了丰富的函数和命令,使得模糊控制系统的设计过程更加简单和高效。

2.2 Matlab模糊控制系统设计流程在使用Matlab进行模糊控制系统设计时,可以按照以下步骤进行:1) 确定模糊控制系统的输入和输出变量;2) 设计模糊集合和决策规则;3) 确定模糊推理的方法和模糊控制器的类型;4) 设计模糊控制器的输出解模糊方法;5) 对设计好的模糊控制系统进行仿真和调试。

2.3 Matlab中常用的模糊控制函数和命令为方便读者进行模糊控制系统的设计和实现,Matlab提供了一系列常用的函数和命令,如:- newfis:用于创建新的模糊推理系统;- evalfis:用于对输入样本进行推理和解模糊;- gensurf:用于绘制模糊控制系统的输出曲面;- ruleview:用于直观地查看和编辑模糊规则等。

三、使用Matlab进行模糊控制系统设计的案例分析为了帮助读者更好地理解和运用Matlab进行模糊控制系统设计,本节将以一个实际案例进行分析。

模糊理论及控制讲解

模糊理论及控制讲解

-2
-1
0
1
2
3
x
图 三角形隶属函数曲线
例: 设计评价一个学生成绩的隶属函数,在[0,100]之 内按A、B、C、D、E分为五个等级,即{不及格,及格, 中,良,优}。分别采用五个高斯型隶属函数来表示, 建立一个模糊系统,仿真结果如图所示。
Degree of membership
E
D
C
B
A
1
0.8
C = 0.1/0+0.3/1+0.7/2+1.0/4+0.3/5+0.1/6
B
1
/x
R1 ( x 50)4
10
/ 不是除法运算
精确集合
1 模糊集合
X 6
X 6
A 0
A 1
13
X 6
A(x) 1
A(x) [01]
1
13
6
0
0 01 1
1 0 0 0.2 0.4 0.6 0.8 1 1
(a) 精确集合
A A (u) 0
A = 0/1 + 0/2 + 0/3 then A is empty
(2)全集 模糊集合的全集为普通集,它的隶属度为1,即
A E A(u) 1
(3)等集 两个模糊集A和B,若对所有元素u,它们的隶属
函数相等,则A和B也相等。即
A B A (u) B (u)
“学习好”的隶属度为(张三)=0.95,(李四)=0.90,(王五)=0.85。 用“学习好”这一模糊子集A可表示为:
A {0.95,0.90,0.85}
其含义为张三、李四、王五属于“学习好”的程度 分别是0.95,0.90,0.85。

第3章 模糊理论

第3章 模糊理论
确定隶属度函数的方法具有主观性,但主观 的反映和客观的存在有一定的联系,是受客观制 约的。
确定隶属函数应遵守的一些基本原则:
1、表示隶属度函数的模糊集合必须是凸模糊集合
从最大隶属度函数点向两边延伸时,其隶属函数的值是 必须是单调递减的,而不允许有波浪形。
二、模糊控制的特点 1、无需知道被控对象的数学模型 2、是一种反映人类智慧思维的智能控制 模糊控制采用人类思维中的模糊量,如“高”、
“中”、“低”等,且控制量由模糊推理导出
3、易于被人们所接受(核心:控制规则) 4、构造容易 5、鲁棒性好
第二节 模糊集合论基础
一、模糊集的概念
集合:具有某种特定属性的对象全体。 集合中的个体通常用小写英文字母如:u表 示; 集合的全体又称为论域。通常用大写英文字 母如:U表示。
u U u U
例:设集合U由1到5的五个自然数组成,用上 述方法写出该集合的表达式。 解:(1)列举法 U={1,2,3,4,5}
(2)定义法 U={u|u为自然数且u5}
(3)归纳法 U={ui+1=ui+1, i=1,2,3, 4, u1=1}
经典集合论中任意一个元素与任意一个集 合之间的关系,只是“属于”或“不属于”两 种,两者必居其一而且只居其一。它描述的是 有明确分界线的元素的组合。
模糊集合 特征函数 隶属度函数(0~1连续变化 值)
例:人对温度的感觉(0C ~40C的感觉):
“舒适”:15C ~25C “热”:25C以上 “冷”:15C 以下
经典集合:14.99C属于“冷”;15.01 C属于 舒适。与人的感觉一致吗?
(T) (T)
1.0 冷

适 温


F 1.0 0.9 0.75 0.5 0.2 0.1 01 2 345

模糊理论

模糊理论

图像复原就是研究如何才能把那些已经由于各种因素变得不再清晰,不在准确的图像,恢复到它最原始的真实本真中来。

也就是要根据已有的模糊图像通过现代科技与手段反演推导出原始图像。

图像复原的关键,是要了解图像退化的过程,并据此采取相反的过程用以得到原始图像。

图像复原技术是图像处理领域中一类非常重要的处理技术,与图像增强等其他基本图像处理技术类似,也是以获取视觉质量某种程度的改善为目的,所不同的是图像复原过程实际上是一个估计过程,需要根据某些特定的图像退化模型,对退化图像进行复原。

简言之,图像复原的处理过程就是对退化图像品质的提升,并通过图像品质的提升来达到图像在视觉上的改善。

由于引起图像退化的因素众多,且性质各不相同,目前没有统一的复原方法,众多研究人员根据不同的应用物理环境,采用了不同的退化模型、处理技巧和估计准则,从而得到了不同的复原方法。

图像复原算法是整个技术的核心部分。

目前,国内在这方面的研究才刚刚起步,而国外却已经取得了较好的成果。

早期的图像复原是利用光学的方法对失真的观测图像进行校正,而数字图像复原技术最早则是从对天文观测图像的后期处理中逐步发展起来的。

其中一个成功例子是NASA的喷气推进实验室在1964年用计算机处理有关月球的照片。

照片是在空间飞行器上用电视摄像机拍摄的,图像的复原包括消除干扰和噪声,校正几何失真和对比度损失以及反卷积。

另一个典型的例子是对肯尼迪遇刺事件现场照片的处理。

由于事发突然,照片是在相机移动过程中拍摄的,图像复原的主要目的就是消除移动造成的失真[2]。

早期的复原方法有:非邻域滤波法,最近邻域滤波法以及效果较好的维纳滤波和最小二乘滤波等。

随着数字信号处理和图像处理的发展,新的复原算法不断出现,在应用中可以根据具体情况加以选择。

目前国内外图像复原技术的研究和应用主要集中于诸如空间探索、天文观测、物质研究、遥感遥测、军事科学、生物科学、医学影象、交通监控、刑事侦察等领域。

如生物方面,主要是用于生物活体细胞内部组织的三维再现和重构,通过复原荧光显微镜所采集的细胞内部逐层切片图,来重现细胞内部构成;医学方面,如对肿瘤周围组织进行显微观察,以获取肿瘤安全切缘与癌肿原发部位之间关系的定量数据;天文方面,如采用迭代盲反卷积进行气动光学效应图像复原研究等。

第五讲模糊理论.ppt

第五讲模糊理论.ppt

S(A (ui ))
其中S(x)是定义在[0,1]上的香农函数,即
S
(
x)

x 0,
ln
x

(1
x)
ln(1

x),
x x

(0,1) 1 or x

0
模糊度(5)
例2.12 设U={u1,u2,u3,u4}
A=0.8/u1+0.9/u2+0.1/u3+0.6/u4

d1( A)

定义2.18 设A∈F(U),d是定义在F(U)上的一个实函数,如果它满足
以下条件:
(1)对任意A∈F(U),有d(A)∈[0,1];
(2)当且仅当A是一个普通集合时,d(A)=0; (3)若A的隶属函数μA(u)≡0.5,则d(A)=1;
(4)若A,B∈F(U),且对任意u∈U,满足
μB(u)≤μA(u)≤0.5或者μB(u)≥μA(u)≥0.5 则有d(B)≤d(A)
(1)设A,B ∈F(U),则:
(A∪B)λ=Aλ∪Bλ (A∩B)λ=Aλ∩Bλ (2)若λ1, λ2∈[0,1],且λ1<λ2 ,则: • 阈值λ越大,其水平截集Aλ越小,当λA=1 1时A,2 Aλ最小,称 它为模糊集的核。
模糊集的λ水平截集(2)
• 定义2.17 设A∈F(U) ,则称
[1 (u 25)2 ]1 / u
50uu
u 50
uu100
5
A 1/ u
1[1 ( 5 )2 ]1 / u
0u50
50u100
u 50
模糊集的运算(4)
其它的模糊集运算:
• 有界和算子和有界积算子 A B : min{1, A (u) B (u)}
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模糊理论概述
在我们的日常生活中有许多的事物,或多或少都具有模糊性和混淆不清的特性。

“模模糊糊”的概念,是最微妙且难以捉摸,但却又是常見最重要的,但在近代数学中却有了很清晰的定义。

但是所为“模糊”有两种含义,一是佛似关系、一是恍似关系。

模糊理论的观念在强调以模糊逻辑来描述现实生活中事物的等級,以弥补古典逻辑(二值逻辑)无法对不明确定义边界事物描述的缺点。

人类的自然語言在表达上具有很重的模糊性,难以“对或不对”、“好或不好”的二分法来完全描述真实的世界问题。

故模糊理论将模糊概念,以模糊集合的定义,将事件(event)属于这集合程度的归属函数(Membership grade),加以模糊定量化得到一归属度(Membership grade),来处理各种问题。

随着科学的发展,研究对象越加复杂,而复杂的东西难以精确化,这是一个突出的矛盾,也就是说复杂性越高,有意义的精确化能力越低,有意义性和精确性就变成两个互相排斥的特性。

而复杂性却意味着因素众多,以致使我们无法全部认真地去进行考察,而只抓住其中重要的部分,略去次要部分,但这有时会使本身明确的概念也会变得模糊起来,从而不得不采用“模糊的描述”。

1 模糊理论的产生
1.1 模糊数学的背景
精确数学是建立在经典集合论的基础之上,一个研究的对象对于某个给定的经典集合的关系要么是属于(记为“”),要么是不属于(记为“”),二者必居其一。

19世纪,由于英国数学家布尔(Bool)等人的研究,这种基于二值逻辑的绝对思维方法抽象后成为布尔代数,它的出现促使数理逻辑成为一门很有适用价值的学科,同时也成为计算机科学的基础。

但是,二值逻辑无法解决一些逻辑悖论,如著名的罗素(Russell)“理发师悖论”、“秃头悖论”、“克利特岛人说谎悖论”等等悖论问题。

传统数学所赖以存在的基石是普通集合论,是二值逻辑,而它是抛弃了事物的模糊性而抽象出来的,将人脑思维过程绝对化了,数学中普通集合描述的是“非此即彼”的清晰对象,而人脑还要识别那些“亦此亦彼”的模糊现象。

日常生活中各种“模糊性”现象比比皆是,逻辑悖论的发现以及海森堡(Heisenberg)测不准原理的提出导致了多值逻辑在20世纪二三十年代的诞生。

罗素在说到“所有的二值都习惯上假定使用精确符号,因此它仅适用于虚幻的存在,而不适用于现实生活,逻辑比其他学科使我们更接近于天堂”时就认识到了二值逻辑的不足。

波兰逻辑学家卢卡塞维克兹(Lukasiewicz)首次正式提出了三值逻辑体系,把逻辑真值的值域由{0,1}二值扩展到{0,1/2,1}三值,其中1/2表示不确定,后来他又把真值范围从{0,1/2,1}进一步扩展到[0,1]之间的有理数,并最终扩展为[0,1]区间。

1.2模糊数学的发展
1965年,美国加州大学伯克利分校扎德教授发表了关于模糊理论的第一篇论文,从集合论的角度首次提出表述模糊性事值的模糊集合概念,以模糊逻辑推理仿似人类的思考模式,描述日常生活中之事物,以弥补明确的值来描述事物的缺点。

1978年L.Zadeh提出了可能性理论,阐述了随机性和可能性的差别,这被认为是模糊数学发展的第二个里程碑。

可能性理论的出现为模糊数学更为广泛地应用于模式识别和其他领域提供了强有力的理论基础和有效工具。

1986年贝尔实验室研制出第一块基于模糊逻辑的晶片。

1988年由日本京都MYCOM株式会社发表世界最高速推论晶片(每秒六千万次),解決了模糊推理速度不快的限制,使其应用的范畴更加宽广。

量子哲学家马克思·布莱克(Max Black)利用连续逻辑为集合中的成员赋值,在历史上第一个构造了模糊集的隶属函数。

布莱克称结构的不确定性为“模糊性(Vagueness)”。

理论研究主要是经典数学概念的模糊化。

由于模糊集自身的层次结构,使得这种理论研究更加复杂,当然也因而更具吸引力。

目前已形成了模糊拓扑、模糊代数、模糊分析、模糊测度及模糊计算机等模糊数学分支。

应用研究主要是对模糊性之内在规律的探讨,对模糊逻辑及模糊信息处理技术的研究。

模糊数学的应用范围已遍及自然科学与社会科学的几乎所有的领域。

特别是在模糊控制、模式识别、聚类分析、系统评价、数据库、系统决策、人工智能及信息处理等方面取得了显著的成就。

1965年算起,模糊集与系统理论(或简单地说成模糊理论)已走过了40多年的风雨路程,如今已发展成一门独立的学科。

参与这个学科研究的专家遍布全球,研究人员与日俱增,模糊新产品不断问世,模糊技术不断应用到高精尖领域。

因此,可以毫不夸张地说,全球性的“模糊热”已经形成。

模糊数学目前正沿着理论研究和应用研究两个方向迅速发展着。

中国虽然在70年代才开始研究模糊理论,但进步神速。

我国对模糊数学最感兴趣,其研究水平已处于国际领先地位,如刘应明及王国俊在模糊拓扑学方面的研究,汪培庄及王光远在模糊集论应用方面的研究,吴丛忻在模糊线性拓扑空间方面的研究,张广权在模糊测度方面的研究等,都居于世界领先水平。

2 模糊理论基本概念
2.1 模糊数学
以数学手段分析与处理模糊性事物的学科。

模糊数学是研究和处理模糊性现象的数额学。

所谓模糊性,意指客观事物的差异在中介过度时所呈现的“亦此亦彼”的特性。

模糊数学中,归属度是建立模糊集合的基础,归属函数是描述模糊性的关键。

2.2模糊集合(Fuzzy Set)
表示界限或边界不明确的特定集合,以特征函数来表示元素与集合间之归属程度,一般特征函数又称为归属函数(membership-function),其值界于﹝0,1﹞区间。

在自然和社会现象中,绝对性、两极化的突变是不存在的,两极化间的差异往往要经由一个“中介过度形式”來表征,即具“亦此亦彼”性。

需要定义集合与集合之间的基本运算和关系,以便日后将模糊集合应用于各种领域之中,所不同的只是因為,绝大多数的事物是无法以明确的二分逻辑法加以切割的。

2.2模糊关系
在人们的实际生活与工作中,模糊性是无法避免的,现实世界存在元素间的关系,并非是简单的“是与否”或“有与无”的关系,而是有着不同程度的关系存在。

例如某家庭子女与父母外貌得相似关系,就很难以绝对地“像”与“不像”来表明或定义,只能评论他们“相像”的程度。

3 模糊理论的应用
模糊理论一产生就在数学领域本身及其他领域得到了广泛的应用到世纪年代,已经形成了具有完整体系和鲜明特点的“模糊拓扑学”,框架日趋成熟的“模糊随机数学”,“模糊分析学”,“模糊逻辑理论”以及专著虽少但相关论
文却非常丰富的“ 模糊代数理论”等。

这些理论的形成与发展极大地丰富和完善了模糊数学的内容。

模糊逻辑是模糊理论中的重要研究方向,它的最大成功是其在控制论中的应用。

但是,模糊逻辑在理论上的研究还远远不够深人,也没有形成自身独有的理论体系,其研究的思路基本上还是沿着二值逻辑的体系来展开的,所以难免要受到一些学者的怀疑或疑惑。

展开这类讨论无论是对模糊逻辑还是对模糊数学本身的发展都是非常有益的,这是模糊逻辑强大生命力的表现,同时也进一步促进这一领域学者从理论上更深人系统地研究相关的论题。

模糊技术已渗透到自然科学、社会科学及工程技术的几乎全部领域,像电力、电子、核物理、石油、化工、机械、冶金、能源、材料、交通、医疗、卫生、林业、农业、地质、地理、地震、建筑、水文、气象、环保、管理、法律、教育、心理、体育、军事和历史等领域,都有其成功应用的范例。

模糊技术将成为21世纪的核心技术。

5 总结与展望
自提出模糊理论以来,模糊理论己经成为一种重要的智能信息处理方法。

其应用已经遍及自然科学、社会科学和工程技术的各个领域,各种模糊技术成果和模糊产品也逐渐从实验室走向社会并取得显著的社会效益在当今社会,模糊技术对于人类社会的进步必将发挥其更加巨大的作用。

相关文档
最新文档