小升初奥数几何图形综合训练题(平面图形部分)
小升初专项复习《平面图形》(一)练习及答案
小升初专项复习《平面图形》一、填空题1.若等腰三角形的两边长分别为2和6,则它的周长为。
2.一个等腰三角形的两边长分别是 米和 米,这个三角形的周长是米。
3.长方形的面积是24平方厘米,长和面积的比是1:4,则长方形的宽是厘米。
4.用一根10.28米长的铁丝围成一个半圆,这个半圆的面积是平方米。
5.如图,把圆分成若干等份,剪拼成一个近似的长方形,已知长方形的宽为5cm,则长是cm,长方形的面积是cm2。
6.同一个圆中圆的与的比值叫做圆周率。
7.圆的位置与有关系,圆大小的与有关系。
8.晶晶画了一个平行四边形,它的高是 dm,底是高的 。
这个平行四边形的面积是dm2。
9.如图,零件厂要加工一批环形铁片,每个铁片的面积是平方厘米。
10.一个平行四边形的底是8厘米,面积是48.8平方厘米,高是厘米,与它等底等高的三角形的面积是平方厘米。
11.等腰三角形的一个底角是40°,它的顶角是°,这是一个角三角形。
12.一个梯形的上底是5厘米,下底是10厘米,高是5厘米(如图)。
这个梯形的一个钝角是°,这个梯形的面积是平方厘米。
13.一个长方形的长:宽=7:5,长比宽多6厘米,这个长方形的周长是,面积是。
14.在一个长8cm,宽3cm的长方形中剪出一个最大的半圆,这个半圆的周长是cm,面积是cm2。
15.如图,平行四边形的面积是20平方厘米,图中甲乙丙三个三角形的面积比是。
二、单选题16.两个正方形的边长的比是5:3,它们的面积的比是()A.3:5B.1:3C.5:1D.25:917.在一个长1.25米,宽0.8米的长方形里,最多能剪()个半径为20厘米的圆。
A.5B.7C.6D.2418.自行车的前轮半径为30厘米,后轮半径为20厘米。
如下图,当前轮向前行驶了5圈回到E点的位置时,后轮F点的位置是下图中的()。
A.B.C.D.19.如图,把正方形桌子面的四边撑起,就成了一张圆面桌子,经过测量圆面桌子的面积为π平方米,那么这张桌子的正方形桌面的面积为()平方米。
最新小升初奥数几何图形综合训练题(平面图形部分)
小升初奥数几何图形综合训练题(平面图形部分)题1.已知平行四边形的面积是128平方米,E、F分别是两边上的中点,求阴影部分面积题2.一个正方形,如果它的边长增加5厘米,那么,所成的正方形比原来正方形的面积多95平方厘米,那么,原来正方形的面积是多少平方厘米?。
题3.图中三角形ABC的面积是180平方厘米,D是BC的中点,AD的长是AE长的3倍, EF的长是BF长的3倍.那么三角形AEF的面积是多少平方厘米?题4.如图,已知.AE=1/4AC,CD=1/4BC,BF=1/6AB,那么三角形DEF是三角形ABC的几分之几?题5.如图,在一个梯形内有两个三角形的面积分别为10与12,已知梯形的上底长是下底长的5/6.那么余下阴影部分的面积是多少?题6.图中ABCD是梯形,三角形ADE面积是1.8,三角形ABF的面积是9,三角形BCF的面积是27.那么阴影部分面积是多少?题7.如图,梯形ABCD的上底AD长为3厘米,下底BC长为9厘米,而三角形ABO的面积为12平方厘米.则梯形ABCD的面积为多少平方厘米?题8.如图,BD,CF将长方形ABCD分成4块,红色三角形面积是4平方厘米,黄色三角形面积是6平方厘米.问:绿色四边形面积是多少平方厘米?题9.如图,平行四边形ABCD周长为75厘米.以BC为底时高是14厘米;以CD为底时高是16厘米.求平行四边形ABCD 的面积.题10.如图,一个正方形被分成4个小长方形,它们的面积分别是平方米、平方米、平方米和平方米.已知图中的阴影部分是正方形,那么它的面积是多少平方米?题11.图中外侧的四边形是一边长为10厘米的正方形,求阴影部分的面积.题12.如图,长方形被其内的一些直线划分成了若干块,已知边上有3块面积分别是13,35,49.那么图中阴影部分的面积是多少?题13.如图,有8个半径为1厘米的小圆,用它们的圆周的一部分连成一个花瓣图形,图中的黑点是这些圆的圆心.如果圆周率取3.1416,那么花瓣图形的面积是多少平方厘米?题14.图为一卷紧绕成的牛皮纸,纸卷直径为20厘米,中间有一直径为6厘米的卷轴.已知纸的厚度为0.4毫米,问:这卷纸展开后大约有多长?题15.如图,大小两圆的相交部分(即阴影区域)的面积是大圆面积的,是小圆面积的.如果量得小圆的半径是5厘米,那么大圆半径是多少厘米?题16.如图,在18×8的方格纸上,画有1,9,9,8四个数字.那么,图中的阴影面积占整个方格纸面积的几分之几?题17.如图,用一块面积为36平方厘米的圆形铝板下料,从中裁出了7个同样大小的圆铝板.问:所余下的边角料的总面积是多少平方厘米?题18.如图,已知大正方形的面积是22平方厘米,那么小正方形的面积是多少平方厘米?题19、图是一个直径是3厘米的半圆,AB是直径.让A点不动,把整个半圆逆时针转,此时B点移动到C点,如图17-9所示.那么图中阴影部分的面积是多少平方厘米?( 取3.14.)题20、如图,四分之一大圆的半径为7,求阴影部分的面积,其中圆周率取近似值.题21、如图,等腰直角三角形的一腰的长是8厘米,以它的两腰为直径分别画了两个半圆,那么阴影部分的面积共有多少平方厘米?( 取3.14)题22、图中的4个圆的圆心是正方形的4个顶点,它们的公共点是该正方形的中心.如果每个圆的半径都是1厘米,那么阴影部分的总面积是多少平方厘米?题23、图17-14中阴影部分的面积是多少平方厘米?( 取3.14)题24、求图17-15中阴影部分的面积.( 取3.14)题25、平面上有7个大小相同的圆,位置如图17-16所示.如果每个圆的面积都是10,那么阴影部分的面积是多少?。
小升初数学几何图形专题训练含参考答案(5篇)
小升初数学几何图形专题知识训练含答案一、单选题1.甲数和乙数的比是4∶7,甲数是乙数的()A.47B.74C.342.甲数的14和乙数的34相等,那么甲数()乙数。
A.大于B.小于C.等于D.不能比较3.在一张长8厘米,宽6厘米的长方形纸上,剪下一个最大的正方形,这个正方形的面积是()。
A.36平方厘米B.48平方厘米C.64平方厘米4.下面图形都是由3个边长1厘米的小正方形组成的,其中周长最长的是()。
A.B.C.5.旋转能得到()A.圆柱B.圆锥C.一个空心的球6.如图,图中的物体从()看到的形状是相同的.A.正面和上面B.正面和右面C.上面和右面7.下面运用“转化”思想方法的是()。
A.①和②B.①和③C.②和③8.下列叙述正确的是()A.两个数的最小公倍数是它们最大公因数的倍数。
B.三角形的底和高扩大2倍,它的面积也扩大2倍。
C.相邻两个非0的自然数,其中一定有一个是合数。
9.两个完全相同的长方形(如图),将图①和图②阴影部分的面积相比,()A.图①大B.图②大C.图①和图②相等10.下列说法中正确的有()。
①2厘米长的线段向上平移10厘米,线段的长还是2厘米。
②8080008000这个数只读出一个“零”。
③万级包括亿万、千万、百万、十万、万五个数位。
④三位数乘两位数,积不可能是六位数。
A.2个B.3个C.4个二、填空题11.在一个宽为6厘米的长方形里恰好能画两个同样尽量大的圆(如图).圆的直径为厘米,半径为厘米;一个圆的周长为厘米,面积为平方厘米;长方形的面积是平方厘米,阴影部分的面积是平方厘米.12.一个梯形的上底是5.8厘米,下底是6.2厘米,高是2.5厘米,它的面积是平方厘米。
13.是由几个拼成的。
;;。
14.在横线上填上“平移”或“旋转”。
汽车行驶中车轮的运动是现象;推拉门被推开是现象。
15.把一个棱长为6 cm的正方体木块削成一个最大的圆柱,圆柱的体积是,再把这个圆柱削成一个最大的圆锥,这个圆锥的体积是。
小学奥数几何题100道及答案(完整版)
小学奥数几何题100道及答案(完整版)题目1:一个正方形的边长是5 厘米,它的面积是多少平方厘米?解题方法:正方形面积= 边长×边长,即5×5 = 25(平方厘米)答案:25 平方厘米题目2:一个长方形的长是8 分米,宽是6 分米,它的周长是多少分米?解题方法:长方形周长= (长+ 宽)×2,即(8 + 6)×2 = 28(分米)答案:28 分米题目3:一个三角形的底是10 厘米,高是6 厘米,它的面积是多少平方厘米?解题方法:三角形面积= 底×高÷2,即10×6÷2 = 30(平方厘米)答案:30 平方厘米题目4:一个平行四边形的底是12 米,高是8 米,它的面积是多少平方米?解题方法:平行四边形面积= 底×高,即12×8 = 96(平方米)答案:96 平方米题目5:一个梯形的上底是 4 厘米,下底是6 厘米,高是5 厘米,它的面积是多少平方厘米?解题方法:梯形面积= (上底+ 下底)×高÷2,即(4 + 6)×5÷2 = 25(平方厘米)答案:25 平方厘米题目6:一个圆的半径是3 厘米,它的面积是多少平方厘米?解题方法:圆的面积= π×半径²,即3.14×3²= 28.26(平方厘米)答案:28.26 平方厘米题目7:一个半圆的半径是 4 分米,它的周长是多少分米?解题方法:半圆的周长= 圆周长的一半+ 直径,即3.14×4×2÷2 + 4×2 = 20.56(分米)答案:20.56 分米题目8:一个长方体的长、宽、高分别是5 厘米、4 厘米、3 厘米,它的表面积是多少平方厘米?解题方法:长方体表面积= (长×宽+ 长×高+ 宽×高)×2,即(5×4 + 5×3 + 4×3)×2 = 94(平方厘米)答案:94 平方厘米题目9:一个正方体的棱长是6 分米,它的体积是多少立方分米?解题方法:正方体体积= 棱长³,即6³= 216(立方分米)答案:216 立方分米题目10:一个圆柱的底面半径是2 厘米,高是5 厘米,它的侧面积是多少平方厘米?解题方法:圆柱侧面积= 底面周长×高,底面周长= 2×3.14×2,即2×3.14×2×5 = 62.8(平方厘米)答案:62.8 平方厘米题目11:一个圆锥的底面半径是3 厘米,高是4 厘米,它的体积是多少立方厘米?解题方法:圆锥体积= 1/3×底面积×高,底面积= 3.14×3²,即1/3×3.14×3²×4 = 37.68(立方厘米)答案:37.68 立方厘米题目12:两个边长为4 厘米的正方形拼成一个长方形,长方形的长和宽分别是多少?面积是多少?解题方法:长方形的长为8 厘米,宽为4 厘米,面积= 8×4 = 32(平方厘米)答案:长8 厘米,宽4 厘米,面积32 平方厘米题目13:一个三角形的面积是18 平方厘米,底是6 厘米,高是多少厘米?解题方法:高= 面积×2÷底,即18×2÷6 = 6(厘米)答案:6 厘米题目14:一个平行四边形的面积是24 平方米,底是 4 米,高是多少米?解题方法:高= 面积÷底,即24÷4 = 6(米)答案:6 米题目15:一个梯形的面积是30 平方分米,上底是5 分米,下底是7 分米,高是多少分米?解题方法:高= 面积×2÷(上底+ 下底),即30×2÷(5 + 7)= 5(分米)答案:5 分米题目16:一个圆环,外圆半径是5 厘米,内圆半径是 3 厘米,圆环的面积是多少平方厘米?解题方法:圆环面积= 外圆面积-内圆面积,即 3.14×(5²- 3²)= 50.24(平方厘米)答案:50.24 平方厘米题目17:一个长方体的棱长总和是48 厘米,长、宽、高的比是3:2:1,长方体的体积是多少立方厘米?解题方法:一条长、宽、高的和为48÷4 = 12 厘米,长为6 厘米,宽为4 厘米,高为2 厘米,体积= 6×4×2 = 48(立方厘米)答案:48 立方厘米题目18:一个正方体的表面积是54 平方分米,它的一个面的面积是多少平方分米?解题方法:一个面的面积= 表面积÷6,即54÷6 = 9(平方分米)答案:9 平方分米题目19:一个圆柱的底面直径是4 分米,高是3 分米,它的表面积是多少平方分米?解题方法:底面积= 3.14×(4÷2)²= 12.56 平方分米,侧面积= 3.14×4×3 = 37.68 平方分米,表面积= 2×12.56 + 37.68 = 62.8(平方分米)答案:62.8 平方分米题目20:一个圆锥的底面周长是18.84 分米,高是5 分米,它的体积是多少立方分米?解题方法:底面半径= 18.84÷3.14÷2 = 3 分米,体积= 1/3×3.14×3²×5 = 47.1(立方分米)答案:47.1 立方分米题目21:一个长方体的水箱,长 5 分米,宽4 分米,高 3 分米,里面装满水,把水倒入一个棱长为5 分米的正方体水箱,水深多少分米?解题方法:水的体积= 5×4×3 = 60 立方分米,正方体水箱底面积= 5×5 = 25 平方分米,水深= 60÷25 = 2.4 分米答案:2.4 分米题目22:一块长方形的铁皮,长8 分米,宽6 分米,从四个角各切掉一个边长为1 分米的正方形,然后做成一个无盖的盒子,这个盒子的容积是多少立方分米?解题方法:盒子长6 分米,宽4 分米,高1 分米,容积= 6×4×1 = 24(立方分米)答案:24 立方分米题目23:一个圆柱的体积是60 立方厘米,底面积是12 平方厘米,高是多少厘米?解题方法:高= 体积÷底面积,即60÷12 = 5(厘米)答案:5 厘米题目24:一个圆锥和一个圆柱等底等高,圆柱的体积是27 立方分米,圆锥的体积是多少立方分米?解题方法:等底等高的圆锥体积是圆柱体积的1/3,即27×1/3 = 9(立方分米)答案:9 立方分米题目25:把一个棱长为 6 厘米的正方体铁块熔铸成一个底面积为36 平方厘米的圆柱体,这个圆柱体的高是多少厘米?解题方法:正方体体积= 6³= 216 立方厘米,圆柱体的高= 体积÷底面积,即216÷36 = 6(厘米)答案:6 厘米题目26:一个直角三角形的两条直角边分别是3 厘米和4 厘米,斜边是5 厘米,这个三角形的面积是多少平方厘米?解题方法:直角三角形面积= 两条直角边乘积的一半,即3×4÷2 = 6(平方厘米)答案:6 平方厘米题目27:一个等腰三角形的周长是20 厘米,其中一条腰长8 厘米,底边长多少厘米?解题方法:等腰三角形两腰相等,所以底边长= 周长-腰长×2,即20 - 8×2 = 4(厘米)答案:4 厘米题目28:一个扇形的圆心角是90°,半径是6 厘米,这个扇形的面积是多少平方厘米?解题方法:扇形面积= 圆心角÷360°×圆的面积,即90÷360×3.14×6²= 28.26(平方厘米)答案:28.26 平方厘米题目29:一个长方体的底面是边长为5 厘米的正方形,高是8 厘米,这个长方体的体积是多少立方厘米?解题方法:长方体体积= 底面积×高,底面积= 5×5 = 25 平方厘米,体积= 25×8 = 200(立方厘米)答案:200 立方厘米题目30:一个圆柱的底面周长是18.84 厘米,高是10 厘米,它的体积是多少立方厘米?解题方法:底面半径= 18.84÷3.14÷2 = 3 厘米,体积= 3.14×3²×10 = 282.6(立方厘米)答案:282.6 立方厘米题目31:一个圆锥的底面直径是8 厘米,高是6 厘米,它的体积是多少立方厘米?解题方法:底面半径= 8÷2 = 4 厘米,体积= 1/3×3.14×4²×6 = 100.48(立方厘米)答案:100.48 立方厘米题目32:把一个棱长为8 厘米的正方体木块削成一个最大的圆柱,这个圆柱的体积是多少立方厘米?解题方法:圆柱的底面直径和高都是8 厘米,体积= 3.14×(8÷2)²×8 = 401.92(立方厘米)答案:401.92 立方厘米题目33:一个长方体玻璃缸,从里面量长4 分米,宽 3 分米,高5 分米,缸内水深2.5 分米。
六年级下册数学-小升初平面图形组合专项试题-s1-人教版
-小升初平面图形组合专项试题-人教版一、解答题(题型注释)(1)(2)2.仔细数一数,填一填。
(1)右图是由个小三角形拼成的。
(2)右图有个三角形。
(3)右图共有个正方形。
3.根据游戏的需要,幼儿园阿姨用两个长8米、宽4米的长方形地垫先后拼成一个长方形游戏垫和一个正方形游戏垫(如图所示),拼成的长方形游戏垫和正方形游戏垫的周长分别是多少?4.如图,长方形中,,,三角形的面积为平方厘米,求长方形的面积.5.如图在中,,求的值.6.请你画出已学过的4种图形,使它们的面积相等,并计算出它们的面积.7.为了迎接“六•一”儿童节,学校做了一幅长方形的宣传画,长7米,宽50分米.这幅宣传画的周长和面积各是多少?8.如下图,在三角形ABC中,DC=2BD,CE=3AE,阴影部分的面积是20平方厘米,求三角形ABC的面积。
9.如下图,是一块长方形草地,长方形的长是14米,宽是12米。
中间有三条宽为2米的道路,两条是长方形,一条是平行四边形。
则草地的面积有多大?10.如图(1)(2)(3)(4)都是由9个边长为1厘米的正方形组成的3×3平方厘米的正方形,其中的阴影四边形的面积分别记为,,和,则,,ABCD:2:3BE EC=:1:2DF FC=DFG2ABCDAB CDEFGABC△12DC EA FBDB EC FA===GHIABC△的面积△的面积IHGFED CBA和中最小的与最大的和是多少平方厘米?参数答案1.(1)解:(2)解:【解析】1.根据题干的要求画图相应图形。
2.(1)4(2)3(3)5【解析】2.3.解:拼成长方形的周长是:(8+8+4)×2=20×2=40(米)答:拼成的长方形游戏垫的周长是40米.拼成后正方形的周长是:8×4=32(米)答:拼成的正方形游戏垫的周长是32米【解析】3.用两个长8米,宽4米的长方形,拼成一个大长方形,这个大长方形的长是(8+8)米,宽是4米;拼成正方形的边长是8米,然后根据长方形的周长公式:C=(a+b)×2,正方形的周长公式:C=4a,代入数据解答即可.4.72【解析】4.连接,.因为,,所以.因为,,所以平方厘米,所以平方厘米.因为,所以长方形的面积是平方厘米.5.17【解析】5.连接BG,设1份,根据燕尾定理,,得(份),(份),则(份),因此,同理连接AI、CH得,,所以如果任意一个三角形各边被分成的比是相同的,那么在同样的位置上的图形,虽然形状千变万化,但面积是相等的,这在这讲里面很多题目都是用“同理得到”的,即再重复一次解题思路,因此我们有对称法作辅助线.6.16平方厘米AE FEAB CDEFG:2:3BE EC=:1:2DF FC=3111()53210DEF ABCD ABCDS S S=⨯⨯=V长方形长方形12AED ABCDS S=V长方形11::5:1210AG GF==510AGD GDFS S==V V12AFDS=V16AFD ABCDS S=V长方形ABCD 72IHGFED CBABGCS△=::2:1AGC BGCS S AF FB==△△::2:1ABG AGCS S BD DC==△△2AGCS=△4ABGS=△7ABCS=△27AGCABCSS=△△27ABHABCSS=△△27BICABCSS=△△7222177GHIABCSS---==△△【解析】6.试题分析:此题没有具体数据,答案不唯一:把每个方格的长度看作1厘米,这里可以指定画面积为16平方厘米的正方形与长方形,则正方形的边长是4厘米,长方形的长可以是8厘米,则宽就是2厘米,梯形的上底是4厘米,下底是12厘米,高是2厘米,三角形的底是8厘米,高是4厘米,由此即可画图解:根据题干分析画图如下:答:它们的面积都是16平方厘米.7.24米,35平方米【解析】7.试题分析:根据长方形的周长=(长+宽)×2,长方形的面积=长×宽,代入数据即可解答.解:50分米=5米,(7+5)×2=24(米),7×5=35(平方米),答:这幅画的周长是24米,面积是35平方米.8.120平方厘米【解析】8.本题考查三角形面积和比的相关知识。
人教版六年级下册数学小升初专题训练:平面图形(含答案)
人教版六年级下册数学小升初专题训练:平面图形一、单选题1.用一块长12米、宽8米的长方形铁皮剪成半径是1.5米的小圆(不能剪拼),至多能做( )个。
A.11B.8C.10D.132.如果要搭成一个从正面、左面、上面看到的图形都是如图的几何体,需要( )个小正方体。
A.3B.4C.5D.63.下图是由一个圆分成若干等分后,拼成的一个近似长方形,这个圆的周长与长方形的周长相差约4厘米,这个圆的周长约是( )厘米。
A.6.28B.9.42C.12.56D.无法计算4.从12时到13时,钟的时针与分针可成直角的机会有( )A.1次B.2次C.3次D.4次5.下列时刻中,钟表中时针与分针不成直角的是( )。
A.3:00B.21:00C.9:00D.12:206.一个半径是5cm的半圆,它的周长是( )cm。
A.31.4B.15.7C.25.7D.20.7二、填空题7.已知一个等腰三角形的两条边分别是5厘米、10厘米,那么它的周长是 厘米。
8.一个花坛的直径是6m,花坛周围有一条宽1m的环形小路,小路的面积是 m2。
9.一个挂钟的时针长5厘米,一昼夜这根时针的尖端走了 厘米,针尖扫的面积是 平方厘米。
10.把一个长、宽分别是15厘米和10厘米的长方形,拉成一个一条高为12厘米的平行四边形,它的面积是 平方厘米。
11.李大伯用5π米长的篱笆靠墙围了一个半圆形养鸡场,养鸡场的面积是 平方米。
12.如图。
∠1=30°,∠2= ,∠3= ,∠4= 。
13.从9:00到9:15,分针旋转了 度,若分针长6厘米,这根分针针尖走过的长度是 厘米,扫过的面积是 平方厘米。
14.一个三角形内角度数的比是2:3:5,其中最大的内角是 度,这是个 角三角形。
15.如图中正方形的面积是40cm2,那么涂色部分的面积是 cm2。
16.一辆自行车车轮直径是0.5米,脚踏板齿轮有48个齿,后齿轮有16个齿,脚踏一圈,自行车前进 米.17.把两个正方形拼成一个长方形,拼成的长方形周长是30厘米,这个长方形的面积是 平方厘米。
小升初奥数课课练-平面几何-通用版
平面几何(一)名师点拨例1:如图,是一块长方形草地,长方形的长为16米,宽为10米,中间有两个道路,一条是长方形,一条是平行四边形,那么有草部分(阴影部分)的面积有多大?例2:正方形ABCD的面积是16米2,如图,E、F分别是AB和BC的中点,求阴影部分梯形AEFC的面积。
例3:求下列各图中阴影部分的面积。
(单位:厘米)例4:如图所示,已知AB=5厘米,CE=15厘米,CD=12厘米,AF=10厘米,求阴影部分的面积。
例5:如图,一条水渠的横截面是一个梯形,已知横截面面积为0.63米2,一底长为0.5米,高为0.7米,另一底的长是多少米?例6:如图,两个阴影部分的面积和是多少?(单位:厘米)名校真题1. 在面积相等的下列平面图形中,周长最小的是( ) A. 正方形 B. 等边三角形 C. 长方形 D. 圆形2. 一个三角形的三个角的度数都是质数,这个三角形是( )A. 钝角三角形B. 直角三角形C. 等腰三角形D. 不能确定3. 三角形中最大的一个角一定( )A. 不小于600B. 大于900C. 小于900D. 大于600而小于9004. 一个半圆形零件的周长是17.99厘米,这个半圆的直径是___________厘米。
5. 如图,图形的半径为20厘米,它的周长是___________厘米。
6. 把7个长4厘米、宽3厘米的小长方形,不重叠地拼成一个大长方形,这样拼成的大长方形中最小周长是____________厘米。
名校集训 A 级1. 5127.155123.83.22+⨯+⨯ 2. ⎪⎭⎫ ⎝⎛+⨯⨯913193B 级1. 如图所示,正方形的边长是20厘米,阴影部分的面积是多少平方厘米?2. 如图,四边形ABCD是正方形,ABHE是梯形,ACHE是平行四边形,ECGF是长方形,已知AE=7厘米,BH=12厘米,求阴影部分的面积。
3. 三角形ABC是直角三角形,EG垂直于AC,EG等于3厘米,AB、BC、AC的长度分别是30厘米、40厘米、50厘米,求正方形BDEF的面积。
小升初数学“图形与几何“综合测试(AB卷)
“图形与几何”综合测试(A卷)第一部分图形计算1、计算右图中阴影部分的面积。(单位:厘米)2. 计算右图的面积。 (单位:厘米)2、计算右图中长方体纸盒的表面积。 (单位:分米)4·计算右图中图形的体积。(单位:厘米)5.如图,∠AOC = 135°,∠BOD= 125°,求∠DOC6.计算右图中阴影部分的面积。 (单位:厘米)7·右图中三角形ABC的面积是36平方厘米,求阴影部分的面积。8·计算右图中阴影部分的面积。(单位:厘米)9·右图中,正方形ABCD的边长是10厘米,BF=8厘米,求正方形EFGH的面积。10、右图中三角形ABC的面积为48平方厘米,AD=DB,DE=BE,BC=12厘米。求图中阴影部分的面积。第二部分图形应用1、一块梯形铁皮(厚度不计),上底与下底的和是14 6分米,高1米。如果把它浸没在防锈液中,涂防锈液的面积是多少平方分米2、一块三角形菜地,高是40米,是底的一半如果每平方米菜地能出产5·4千克蔬菜,这一块菜地共能出产蔬菜多少千克.3、有一堆钢管,最上层有12根,最下层有25根每相邻的上、下两层之间相差一根,这堆钢 . 管共有多少根 ' 、4、一张长方形纸片面积是720平方厘米,小红将它折叠如下图,求图中阴影部分的面积。5、学校新建了一个沙坑,宽米,是长的一半,用卡车运来一些黄倒人坑中,使坑内黄沙的平均厚度为米,运来多少立方米黄沙6、用一根长90厘米的铁丝,正好做成一个长9厘米,宽6厘米的长方体框架,求这个长方体的体积。7、一个无盖的玻璃鱼缸长8分米,宽5分米,高4分米,里面水深分米,冬冬放入一块假山石,水溢出80升。求这块假山石的体积。8、一个长方体,如果长增加2厘米,则体积增加15立方厘米;如果宽增加3厘米,则体积增加30厘米;如果高减少4厘米,则体积减少48厘米。原来长方体的表面积是多少9. 一个底面是正方形的无盖长方体纸盒,底面周长6厘米,将它的侧面展开是一个正方形,,求这个纸盒的容积(纸板厚度忽略不计)。做10个这样的纸盒至少需要多少硬纸板10.作图题(1)过E点作梯形的高。.(2)把梯形ABCD分成一个三角形和一个平行四边形。第三部分图形概念-、填空题1.一个平角分成两个角,可以是( . )角和( )角,也可以是( )角和( )角。2. 一个梯形,中位线是25厘米,如果上底增加6 厘米,面积就增加96平方厘米。原来梯形的面积是( )平方厘米。3.右图中梯形面积是49平方分米,ΔADE的面积是10平方分米,△ABE的面积是25平方分米,ΔDEC的面积是 ( )平方分米。4.丁丁往水深5厘米的玻璃杯中放人8粒大小相等的玻璃球后,水面上升3厘米,玻璃杯的底面积是48平方厘米,每粒玻璃球的体积是( )立方厘米。5.将一块棱长10厘米的正方体石料的长、宽、高各凿去2厘米,石料的体积减少( )立方厘米。6. 一个长方体表面积是420平方分米,正好可以锯成三个小正方体,每个小正方体的表面积是( )平方分米。二、选择题1.下列图形中,最容易改变形状的是( )。A.三角形B.平形四边形C.梯形 .D.圆2. 如果一个太正方体的棱长是小正方体棱长的3倍;那么大正方体的表面积是小正方体的( )倍;大正方体的体积是小正方体的( )倍。D543.观察右图,盖住的是( )点。.A1 · B44 如图,在棱长4分米正方体的前面,挖出一个棱长1 分米的正方体后,剩下物体与原来正方体相比,,( ) 。A.体积减少,表面积减少;B. 体积减少,表面积不变;C.体积减少,表面积增加;D. 体积不变,表面积也不变。“图形与几何”综合测试(B卷)第一部分图形计算1、计算右图中 BD的长度。(单位:厘米)2·右图中,四边形 ABCF和CDBG都是正方形,求阴影部分的面积。 (单位:厘米)3·计算右图中阴影部分的面积。 (单位:厘米)4·右图中平行四边形的面积是24平方厘米,求阴影部分的面积。5·右图是一个长方体的展开图,求它的体积。 (单位:分米)6·右图中∠3比∠1大多少7·计算右图的表面积。(单位:厘米)8·右图中 AC= 15厘米,BD=20厘米,求四边形ABCD的面积9.右图由两个完全相同的三角形叠放而成,求阴影部分的面积。 (单位:厘米)10.右图由边长分别是 10厘米和6厘米的两个正方形组成,求 CG 的长度。第二部分图形应用1 .一个量杯中盛有400mL 的水,放入4个相同的立方体铁块后,杯中的水升至560mL 处,每个铁块的体积是全少立方厘米2.在如图的直角梯形中,△ABE的面积比△C DE小54平方厘米,求直角梯形的面积。3. 如图,一个长方体木块从左、右两边分别截去2. 5.厘米和2厘米后,变成一个正方体, 表面积减少180平方厘米。求长方体的体积。4·小王用66厘米长的铁丝围成了一个平行四边形,求它的面积。5·张叔叔用30来长的篱笆靠墙围了块梯形花园,这块花园的面积是多少平方米6、一个长方体的长为12厘米,高8厘来,下底面和左侧面的面积之和为200平方厘米。这个长方体的体积是多少7、老师买来10副扑克牌,从外面量,长9厘米,宽6厘米,高1 5厘米,如果要请售货员包装一下,至少需要用多少包装纸8 在内侧棱长为20厘米的正方体的容器内装满水,将容器如图倾斜放置,流出来的水正好装满一个内侧棱长为8厘米的正方体容器,求图中线段AB 的长度。9、如图是一个密封的长方体塑料拿,盒中装有 6厘米深的水,水上浮着一艘高 4厘米的小船 ,如果将这个盒子侧过来平放,小船还能垂直浮于水面上吗10、王伯伯家住在 A点,他要从家出发去河边钓鱼,然后再把鱼拿到集市(B点)去卖,请帮助王伯伯设计最佳钩鱼地点。第三部分图形概念一、填空题1、下图共有( )个平行四边形。2、母亲节那天,小明给妈妈买了一份礼物,装在一个长10厘米、宽8厘米,高厘米的盒子里,小明想自己买一些包装纸和鍛带来按上图包装,他至少要买 ( )平方厘米包装纸和( )厘米鍛带。(打一个蝴蝶结需要18厘米长的鍛带。)3.上图中阴影部分的面积是( )平方厘米。4 张大妈用20米长的篱色一边靠墙围一块长方形菜地,如果菜地的长和宽都是整米数,菜地的面积最大是( )平方米。5、一长方体砖,长20cm,宽12cm,厚6cm,至少要用( )块这样的砖才能搭成一个正方体。6.右图是由一个棱长为1厘米的小正方体堆砌而成的,它的体积是( )立方厘米,表面积是( )平方厘米。二、选择题1 一个等腰三角形,顶角的度数是底角的3倍,按角分这是一个( )三角形。A.锐角B.直角_C.钝角 D无法判断2 下面每个字母的高度、宽度和笔画組细都相同。如果用小彩灯围这些字母的四周,需要彩灯最长的是( )。2、把一个棱长为 a的正方体截成3个长方体,3个长方体的表面积之和是( )2C a10、2A、26a9aB、2、D a124.如图,平行四边形底是15cm,高是8cm,四边形EFGH的面积是9平方厘米,阴影部分面积是( )平方厘米A、51 B、60 C、69 D、78。
小升初数学《平面图形》综合试题及答案
小升初数学《平面图形》综合试题一、填空题1.同一平面内的两条直线的位置关系有两种情况:________和________.2.下面各组直线中,哪两条直线互相垂直?在下面的括号里画“√”。
( ) ( ) ( )3.在两点之间的所有连线中,(____)最短.4.用一个能放大3倍的放大镜看一个15°的角,这个角的度数是(____)。
按度数从小到大,可以把角分为(____)、(____)、(____)、(____)和(____)。
5.一个平行四边形的面积是32m2,与它等底等高的三角形的面积是(____)m2。
6.一个三角形最小的角是60°,那么这个三角形按边分是(_____)三角形。
7.一个等腰梯形的上底是6cm,下底是8cm,一条腰长是7cm,围成这个等腰梯形至少需要(____)cm长的铁丝.8.两个完全一样的三角形可以拼成一个(_____)形。
如果拼成的图形的面积是126cm2,那么一个三角形的面积是(____)cm2。
如果每个三角形的面积是15dm2,那么拼成的图形的面积是(____)dm29.照图操作画出的圆的周长是(____)cm,圆的面积是(____)cm2.10.画圆时,圆规两脚间的距离是2.5cm,则半径是(____)cm,直径是(____)cm。
11.一个边长是20cm的正方形,里面有一个最大的圆,这个圆的半径是(____)cm,面积是(____)cm2。
12.如图,一个平行四边形被分成了甲、乙、丙三部分,已知甲的面积比丙的面积大6cm2,那么丙的面积是(____)cm2。
13.如图,已知大正方形的边长是5cm,小正方形的边长是3cm,那么阴影部分的面积是(____)cm2。
14.一个三角形,其中两个角分别是35°和45°,那么另一个角是(____)°。
按角来分,这是一个(____)三角形。
15.一个直角三角形三条边的长度分别是6cm、8cm、10cm,斜边上的高是(____)cm。
小升初数学平面图形与立体图形综合练习
小升初数学平面图形与立体图形综合练习1、时针和分针一昼夜的路程分别为360°和720°,因为圆的周长为2πr,所以时针和分针一昼夜的路程分别为2π×0.3×360/360°=1.884π厘米和2π×0.4×720/360°=3.768π厘米。
2、根据半圆周长公式C=πr,可得半圆的半径为2.46米,面积为πr²/2=3.783平方米。
3、根据半圆弧长公式L=πr,可得这个半圆的半径为15.7厘米,与之半径相等的圆的面积为πr²=776.7平方厘米。
4、根据半圆周长公式C=πr,可得这个半圆的半径为8.2厘米,与之半径相等的圆的面积为πr²=211.1平方厘米。
5、正方形的面积为31.4²=985.96平方厘米,每个圆的面积为π×5²=78.54平方厘米,所以可以容纳985.96/78.54=12个圆。
6、正方形的面积为12²=144平方厘米,4个圆的总面积为4×π×(12/4)²=36π平方厘米,每个圆的面积为9π平方厘米。
7、前轮每分钟滚动的路程为2×π×7.5×5=235.62厘米,每分钟前进的距离为235.62×2=471.24厘米,每分钟压路面积为2×1×471.24=942.48平方厘米。
8、养鱼池的周长为100.48米,减去圆形小岛的周长2πr=12π米,得到养鱼池的周长为88.48米,根据周长公式C=2πr,可得养鱼池的半径为14.06米,面积为πr²=623.16平方米。
9、大圆的周长是小圆周长的2倍,面积比是4:1.10、围成正方形的绳长为31.4米,所以每条边长为7.85米,正方形的面积为7.85²=61.5225平方米,围成圆形的周长为31.4米,所以半径为5厘米,圆形的面积为π×5²=78.54平方厘米,两者面积相差17.0175平方米。
最新小升初奥数几何图形综合训练题(平面图形部分)
小升初奥数几何图形综合训练题(平面图形部分)题1.已知平行四边形的面积是128平方米,E、F分别是两边上的中点,求阴影部分面积题2.一个正方形,如果它的边长增加5厘米,那么,所成的正方形比原来正方形的面积多95平方厘米,那么,原来正方形的面积是多少平方厘米?。
题3.图中三角形ABC的面积是180平方厘米,D是BC的中点,AD的长是AE长的3倍, EF的长是BF长的3倍.那么三角形AEF的面积是多少平方厘米?题4.如图,已知.AE=1/4AC,CD=1/4BC,BF=1/6AB,那么三角形DEF是三角形ABC的几分之几?题5.如图,在一个梯形内有两个三角形的面积分别为10与12,已知梯形的上底长是下底长的5/6.那么余下阴影部分的面积是多少?题6.图中ABCD是梯形,三角形ADE面积是1.8,三角形ABF的面积是9,三角形BCF的面积是27.那么阴影部分面积是多少?题7.如图,梯形ABCD的上底AD长为3厘米,下底BC长为9厘米,而三角形ABO的面积为12平方厘米.则梯形ABCD的面积为多少平方厘米?题8.如图,BD,CF将长方形ABCD分成4块,红色三角形面积是4平方厘米,黄色三角形面积是6平方厘米.问:绿色四边形面积是多少平方厘米?题9.如图,平行四边形ABCD周长为75厘米.以BC为底时高是14厘米;以CD为底时高是16厘米.求平行四边形ABCD 的面积.题10.如图,一个正方形被分成4个小长方形,它们的面积分别是平方米、平方米、平方米和平方米.已知图中的阴影部分是正方形,那么它的面积是多少平方米?题11.图中外侧的四边形是一边长为10厘米的正方形,求阴影部分的面积.题12.如图,长方形被其内的一些直线划分成了若干块,已知边上有3块面积分别是13,35,49.那么图中阴影部分的面积是多少?题13.如图,有8个半径为1厘米的小圆,用它们的圆周的一部分连成一个花瓣图形,图中的黑点是这些圆的圆心.如果圆周率取3.1416,那么花瓣图形的面积是多少平方厘米?题14.图为一卷紧绕成的牛皮纸,纸卷直径为20厘米,中间有一直径为6厘米的卷轴.已知纸的厚度为0.4毫米,问:这卷纸展开后大约有多长?题15.如图,大小两圆的相交部分(即阴影区域)的面积是大圆面积的,是小圆面积的.如果量得小圆的半径是5厘米,那么大圆半径是多少厘米?题16.如图,在18×8的方格纸上,画有1,9,9,8四个数字.那么,图中的阴影面积占整个方格纸面积的几分之几?题17.如图,用一块面积为36平方厘米的圆形铝板下料,从中裁出了7个同样大小的圆铝板.问:所余下的边角料的总面积是多少平方厘米?题18.如图,已知大正方形的面积是22平方厘米,那么小正方形的面积是多少平方厘米?题19、图是一个直径是3厘米的半圆,AB是直径.让A点不动,把整个半圆逆时针转,此时B点移动到C点,如图17-9所示.那么图中阴影部分的面积是多少平方厘米?( 取3.14.)题20、如图,四分之一大圆的半径为7,求阴影部分的面积,其中圆周率取近似值.题21、如图,等腰直角三角形的一腰的长是8厘米,以它的两腰为直径分别画了两个半圆,那么阴影部分的面积共有多少平方厘米?( 取3.14)题22、图中的4个圆的圆心是正方形的4个顶点,它们的公共点是该正方形的中心.如果每个圆的半径都是1厘米,那么阴影部分的总面积是多少平方厘米?题23、图17-14中阴影部分的面积是多少平方厘米?( 取3.14)题24、求图17-15中阴影部分的面积.( 取3.14)题25、平面上有7个大小相同的圆,位置如图17-16所示.如果每个圆的面积都是10,那么阴影部分的面积是多少?。
小升初六年级的奥数——几何(平面图形).doc
一、分数百分数问题,比和比例这是六年级的重点内容,在历年各个学校测试中所占比例非常高,重点应该掌握好以下内容:对单位1的正确理解,知道甲比乙多百分之几和乙比甲少百分之几的区别;求单位1的正确方法,用具体的量去除以对应的分率,找到对应关系是重点;分数比和整数比的转化,了解正比和反比关系;通过对“份数”的理解结合比例解决和倍(按比例分配)和差倍问题;二、行程问题应用题里最重要的内容,因为综合考察了学生比例,方程的运用以及分析复杂问题的能力,所以常常作为压轴题出现,重点应该掌握以下内容:路程速度时间三个量之间的比例关系,即当路程一定时,速度与时间成反比;速度一定时,路程与时间成正比;时间一定时,速度与路程成正比。
特别需要强调的是在很多题目中一定要先去找到这个“一定”的量;当三个量均不相等时,学会通过其中两个量的比例关系求第三个量的比;学会用比例的方法分析解决一般的行程问题;有了以上基础,进一步加强多次相遇追及问题及火车过桥流水行船等特殊行程问题的理解,重点是学会如何去分析一个复杂的题目,而不是一味的做题;三、几何问题几何问题是各个学校考察的重点内容,分为平面几何和立体几何两大块,具体的平面几何里分为直线形问题和圆与扇形;立体几何里分为表面积和体积两大部分内容。
学生应重点掌握以下内容:等积变换及面积中比例的应用;与圆和扇形的周长面积相关的几何问题,处理不规则图形问题的相关方法;立体图形面积:染色问题、切面问题、投影法、切挖问题;立体图形体积:简单体积求解、体积变换、浸泡问题;四、数论问题常考内容,而且可以应用于策略问题,数字谜问题,计算问题等其他专题中,相当重要,应重点掌握以下内容:掌握被特殊整数整除的性质,如数字和能被9整除的整数一定是9的倍数等;最好了解其中的道理,因为这个方法可以用在许多题目中,包括一些数字谜问题;掌握约数倍数的性质,会用分解质因数法,短除法,辗转相除法求两个数的最大公因数和最小公倍数;学会求约数个数的方法,为了提高灵活运用的能力,需了解这个方法的原理;了解同余的概念,学会把余数问题转化成整除问题,下面的这个性质是非常有用的:两个数被第三个数去除,如果所得的余数相同,那么这两个数的差就能被这个数整除;能够解决求一个多位数除以一个较小的自然数所得的余数问题,例如求1011121314 (9)899除以11的余数,以及求20082008除以13的余数这类问题;五、计算问题计算问题通常在前几个题目中出现概率较高,主要考察两个方面,一个是基本的四则运算能力,同时,一些速算巧算及裂项换元等技巧也经常成为考察的重点。
小升初六年级奥数——几何(平面图形)
⼩升初六年级奥数——⼏何(平⾯图形)⼀、分数百分数问题,⽐和⽐例这是六年级的重点内容,在历年各个学校测试中所占⽐例⾮常⾼,重点应该掌握好以下内容:对单位1的正确理解,知道甲⽐⼄多百分之⼏和⼄⽐甲少百分之⼏的区别;求单位1的正确⽅法,⽤具体的量去除以对应的分率,找到对应关系是重点;分数⽐和整数⽐的转化,了解正⽐和反⽐关系;通过对“份数”的理解结合⽐例解决和倍(按⽐例分配)和差倍问题;⼆、⾏程问题应⽤题⾥最重要的内容,因为综合考察了学⽣⽐例,⽅程的运⽤以及分析复杂问题的能⼒,所以常常作为压轴题出现,重点应该掌握以下内容:路程速度时间三个量之间的⽐例关系,即当路程⼀定时,速度与时间成反⽐;速度⼀定时,路程与时间成正⽐;时间⼀定时,速度与路程成正⽐。
特别需要强调的是在很多题⽬中⼀定要先去找到这个“⼀定”的量;当三个量均不相等时,学会通过其中两个量的⽐例关系求第三个量的⽐;学会⽤⽐例的⽅法分析解决⼀般的⾏程问题;有了以上基础,进⼀步加强多次相遇追及问题及⽕车过桥流⽔⾏船等特殊⾏程问题的理解,重点是学会如何去分析⼀个复杂的题⽬,⽽不是⼀味的做题;三、⼏何问题⼏何问题是各个学校考察的重点内容,分为平⾯⼏何和⽴体⼏何两⼤块,具体的平⾯⼏何⾥分为直线形问题和圆与扇形;⽴体⼏何⾥分为表⾯积和体积两⼤部分内容。
学⽣应重点掌握以下内容:等积变换及⾯积中⽐例的应⽤;与圆和扇形的周长⾯积相关的⼏何问题,处理不规则图形问题的相关⽅法;⽴体图形⾯积:染⾊问题、切⾯问题、投影法、切挖问题;⽴体图形体积:简单体积求解、体积变换、浸泡问题;四、数论问题常考内容,⽽且可以应⽤于策略问题,数字谜问题,计算问题等其他专题中,相当重要,应重点掌握以下内容:掌握被特殊整数整除的性质,如数字和能被9整除的整数⼀定是9的倍数等;最好了解其中的道理,因为这个⽅法可以⽤在许多题⽬中,包括⼀些数字谜问题;掌握约数倍数的性质,会⽤分解质因数法,短除法,辗转相除法求两个数的最⼤公因数和最⼩公倍数;学会求约数个数的⽅法,为了提⾼灵活运⽤的能⼒,需了解这个⽅法的原理;了解同余的概念,学会把余数问题转化成整除问题,下⾯的这个性质是⾮常有⽤的:两个数被第三个数去除,如果所得的余数相同,那么这两个数的差就能被这个数整除;能够解决求⼀个多位数除以⼀个较⼩的⾃然数所得的余数问题,例如求1011121314 (9)899除以11的余数,以及求20082008除以13的余数这类问题;五、计算问题计算问题通常在前⼏个题⽬中出现概率较⾼,主要考察两个⽅⾯,⼀个是基本的四则运算能⼒,同时,⼀些速算巧算及裂项换元等技巧也经常成为考察的重点。
2024年人教版六年级下册数学小升初专题训练:平面图形(含答案)
2024年人教版六年级下册数学小升初专题训练:平面图形一、单选题1.一个圆形草坪,按1:100缩小后画在图纸上,周长是18cm。
花坛实际占地面积是( )m2。
(π取近似值3)A.3B.6C.9D.272.已知一个三角形两边的长度分别是9厘米、12厘米,那么,这个三角形的周长可能是( )厘米。
A.24B.30C.42D.453.用三根同样长的铁丝分别围成平行四边形、正方形、长方形三个不同的图形,三个图形的面积相比,( )A.平行四边形面积最大B.正方形面积最大C.长方形面积最大D.三个图形的面积相等4.时针围绕钟面中心顺时针方向旋转()才能从1:00走到4:00。
A.30°B.60°C.90°D.120°5.用三根小棒围成三角形(小棒长度取整厘米数),其中两根小棒分别长5cm和7cm。
要使围成的三角形周长最长,第三根小棒应该为( )cm。
A.10B.11C.12D.13二、填空题6.已知等腰三角形的一个内角是95°,它的另外两个内角分别是 度。
7.一个直角三角形,三条边分别为3cm、4cm、5cm,这个三角形的面积为 cm2。
8.从9:00到9:15,分针旋转了 度,若分针长6厘米,这根分针针尖走过的长度是 厘米,扫过的面积是 平方厘米。
9.一个三角形内角度数的比是2:3:5,其中最大的内角是 度,这是个 角三角形。
10.如图中正方形的面积是40cm2,那么涂色部分的面积是 cm2。
11.一辆自行车车轮直径是0.5米,脚踏板齿轮有48个齿,后齿轮有16个齿,脚踏一圈,自行车前进 米.12.一个等腰三角形的顶角是60度,它的一个底角是 度,这样的三角形有 条对称轴。
13.如图,直角三角形的面积是4平方厘米,圆的面积是 平方厘米。
14.找规律,如图(单位:cm),30个等腰梯形拼出的图形是 ,周长是 厘米。
15.小明用圆规在纸上画一个周长是12.56厘米的圆。
(word完整版)小升初奥数—平面图形计算练习试题
小升初奥数—平面图形计算(一)一、 填空题1. 如下图,把三角形ABC 的一条边AB 延长1倍到D ,把它的另一边AC 延长2倍到E ,得到一个较大的三角形ADE ,三角形ADE 的面积是三角形ABC 面积的______倍.2. 如下图,在三角形ABC 中, BC =8厘米, AD =6厘米,E 、F 分别为AB 和AC 的中点.那么三角形EBF 的面积是______平方厘米.3. 如下图,,41,31AC CD BC BE ==那么,三角形AED 的面积是三角形ABC 面积的______.4. 下图中,三角形ABC 的面积是30平方厘米,D 是BC 的中点,AE 的长是ED 的长的2倍,那么三角形CDE 的面积是______平方厘米.5. 现有一个5×5的方格表(如下图)每个小方格的边长都是1,那么图中阴影部分的面积总和等于______.6. 下图正方形ABCD 边长是10厘米,长方形EFGH 的长为8厘米,宽为5厘米.阴影部分甲与阴影部分乙的面积差是______平方厘米.7. 如图所示,一个矩形被分成A 、B 、C 、D 四个矩形.现知A 的面积是2cm 2,B 的面积是4cm 2,C 的面积是6cm 2.那么原矩形的面积是______平方厘米.8.有一个等腰梯形,底角为450,上底为8厘米,下底为12厘米,这个梯形的面积应是______平方厘米.9.已知三角形ABC的面积为56平方厘米、是平行四边形DEFC的2倍,那么阴影部分的面积是______平方厘米.10.下图中,在长方形内画了一些直线,已知边上有三块面积分别是13,35,49.那么图中阴影部分的面积是______.二、解答题11.已知正方形的面积是50平方厘米,三角形ABC两条直角边中,长边是短边的2.5倍,求三角形ABC的面积.12.如图,长方形ABCD中, AB=24cm,BC=26cm,E是BC的中点,F、G分别是AB、CD的四等分点, H为AD上任意一点,求阴影部分面积.13.有两张正方形纸,它们的边长都是整厘米数,大的一张的面积比小的一张多44平方厘米.大、小正方形纸的边长分别是多少?14.用面积为1,2,3,4的四张长方形纸片拼成如图所示的一个长方形.问:图中阴影部分面积是多少?平面图形计算(一)习题答案1. 6.如下图,连接BE ,因为AC CE 2=,所以,ABC BCE S S ∆∆=2,即ABC ABE S S ∆∆=3.又因为BD AB =,所以,BDE ABE S S ∆∆=,这样以来,ABC ADE S S ∆∆=6.2. 6.已知E 、F 分别是AB 和AC 的中点,因此ABF ∆的面积是ABC ∆的面积 的21,EBF ∆的面积又是ABF ∆的面积的21.又因为24682121=⨯⨯=⨯=∆AD BC S ABC (平方厘米), 所以6242121=⨯⨯=∆EBF S (平方厘米). 3. 21.由,41,31AC CD BC BE ==可知AC AD BC EC 4,332==.因为ABC ∆与AEC ∆是同一个顶点,底边在同一条线段,所以这两个三角形等高,则三角形面积与底边成正比例关系,因此ABCAEC SS ∆∆=32.同理可知AEC AED S S ∆∆=43.这样以来,AED ∆的面积是ABC ∆的32的43,即是ABC ∆的面积的21. 所以,AED ∆的面积是ABC ∆的21. 4. 5.因为D 是BC 的中点,所以三角形ADC 和三角形ABD 面积相等(等底、等高的三角形等积),从而三角形ADC 的面积等于三角形ABC 面积的一半,即30÷2=15(平方厘米).在CDE ∆与ADC ∆中,DA DE 31=,高相等,所以CDE ∆的面积是ADC ∆面积的31.即CDE ∆的面积是51531=⨯(平方厘米)5. 10三个阴影三角形的高分别为3,2,2,底依次为2,4,3,所以阴影部分面积总和等于10322142212321=⨯⨯+⨯⨯+⨯⨯. 6. 60设正方形ABCD 的面积为a ,长方形EFGH 的面积为b ,重叠部分EFNM 的面积为c ,则阴影部分的面积差是:b a c b c a -=---)()(.即阴影部分的面积差与重叠部分的面积大小无关,应等于正方形ABCD 的面积与长方形EFGH 的面积之差.所求答案:10×10-8×5=60(平方厘米).7. 24图中的四个矩形是大矩形被两条直线分割后得到的,矩形的面积等于一组邻边的乘积.从横的方向看,两个相邻矩形的倍比关系是一致的,B 是A 的2倍,那么D 也应是C 的2倍,所以D 的面积是2×6=122cm ,从而原矩形的面积是2+4+6+12=242cm .8. 20如下图,从上底的两个端点分别作底边的垂线,则BCFE 是矩形, 22)812(=÷-==CD AB (厘米).因为045=∠A ,所以ABE ∆是等腰直角三角形,则2==AB BE (厘米).根据梯形的 求积公式得:()2022128=⨯+=梯形S (平方厘米).9. 14由已知条件,平行四边形DEFC 的面积是:56÷2=28(平方厘米)如下图,连接EC ,EC 为平行四行形DEFC 的对角线,由平行四边形的性质如,S S DEC 21=∆DEFC281⨯=14=(平方厘米).在AED ∆与CED ∆中,ED 为公共底边,DE 平行于AC ,从而ED 边上的高相等,所以,CED AEDS S∆∆=14=(平方厘米).10. 97因为长方形的面积等于ABC ∆与ECD ∆的面积和,所以ABC ∆与ECD ∆ 重叠部分的面积等于长方形未被这两个三角形盖住部分的面积和,即97133549=++=影阴S.11. 画两条辅助线如下图,根据条件可知,正方形面积是长方形ABCD 面积的2.5倍.从而 ABCD 的面积是50÷2.5=20(平方厘米).所以ABC ∆的面积是20÷2=10(平方厘米).12. 连结BH ,BEH ∆的面积为)(21624)236(212cm =⨯÷⨯.把BHF ∆和DHG ∆结合起来考虑,这两个三角形的底BF 、DG 相等,且都等于长方形宽的41,它们的高AH 与DH 之和正好是长方形的长,所以这两个三角形的面积之和是:)(212112DH AH BF DH DG AH BF +⨯⨯=⨯⨯+⨯⨯ )(10836244121212cm AD BF =⨯⨯⨯=⨯⨯=.于是,图中阴影部分的面积为216+108=324)(2cm . 13. 把两张正方形纸重叠在一起,且把右边多出的一块拼到上面,成为一个长方形,如图: 这个长方形的面积是44平方厘米,它的长正好是两个正方形的边长的和,它的宽正好是两个正方形的边长的差.因为两个整数的和与它们的差是同奇或同偶,而44又只能分解成下面的三种形式: 44=1×44=2×22=4×11.所以,两个正方形的边长的厘米数的和与差只能是22与2.于是,两个正方形的边长是(22+2)÷2=12(厘米),12-2=10(厘米).14. 如图大长方形面积为1+2+3+4=10.延长RA 交底边于Q ,延长SB 交底边于P .矩形ABPR 面 积是上部阴影三角形面积的2倍.矩形ABSQ 是下部阴影三角形面积的2倍.所以矩形RQSP 的面积是阴影部分面积的两倍.知CD CA 31=, CD CB 73=CD CD CD CA CB AB 2123173=-=-=∴因此矩形RQSP 的面积是大矩形面积的212,阴影部分面积是大矩形面积的211.阴影部分面积=211×10=2110.小升初奥数—平面图形计算(二)一、填空题1. 下图是由16个同样大小的正方形组成的,如果这个图形的面积是400平方厘米,那么它的周长是______厘米.2. 第一届保良局亚洲区城市小学数学邀请赛在7月21日开幕,下面的图形中,每一小方格的面积是1.那么7,2,1三个数字所占的面积之和是______.3. 下图中每一小方格的面积都是1平方厘米,那么用粗线围成的图形面积是______平方厘米.4. 下图的两个正方形,边长分别为8厘米和4厘米,那么阴影部分的面积是______平方厘米.5. 在ABC ∆中,DC BD 2=,BE AE =,已知ABC ∆的面积是18平方厘米,则四边形AEDC 的面积等于______平方厘米.6. 下图是边长为4厘米的正方形,AE =5厘米、OB 是______厘米.7. 如图正方形ABCD 的边长是4厘米,CG 是3厘米,长方形DEFG 的长DG 是5厘米,那么它的宽DE 是______厘米.8.如图,一个矩形被分成10个小矩形,其中有6个小矩形的面积如图所示,那么这个大矩形的面积是______.9.如下图,正方形ABCD的边长为12, P是边AB上的任意一点,M、N、I、H分别是边BC、AD 上的三等分点,E、F、G是边CD上的四等分点,图中阴影部分的面积是______.10.下图中的长方形的长和宽分别是6厘米和4厘米,阴影部分的总面积是10平方厘米,四边形ABCD的面积是______平方厘米.二、解答题11.图中正六边形ABCDEF的面积是54.PFAP2=,BQCQ2=,求阴影四边形CEPQ的面积.12.如图,涂阴影部分的小正六角星形面积是16平方厘米.问:大正六角星形面积是多少平方厘米.13.一个周长是56厘米的大长方形,按下图中(1)与(2)所示意那样,划分为四个小长方形.在(1)中小长方形面积的比是: 2:1:=BA,2:1:=CB.而在(2)中相应的比例是3:1:=''BA,3:1:=''CB.又知,长方形D'的宽减去D的宽所得到的差,与D'的长减去在D的长所得到的差之比为1:3.求大长方形的面积.25 20 3036 16 12A CA'C'B DB'D'14. 如图,已知5=CD ,7=DE ,15=EF ,6=FG .直线AB 将图形分成两部分,左边部分面积是38,右边部分面积是65.那么三角形ADG 面积是______.平面图形计算(二)习题答案1. 170.每个小正方形的面积为400÷16=25平方厘米,所以每个小正方形的边长为5cm,因此它的周长是34×5=170厘米.2. 25. 7,2,1所占面积分别为7.5,10和7.5 .3. 6.5.直接计算粗线围成的面积是困难的,我们通过扣除周围的正方形和直角三角形来计算.周围有正方形3个,面积为1的三角形5个,面积为1.5的三角形一个,因此围成面积是4×4-3-5-1.5=6.5(平方厘米).4. 24仿上题,大、小两个正方形面积之和减去两只空白三角形的面积和,所得的差就是阴影部分的面积.]2)84(4288[8422+⨯+⨯-+=16+64-(32+24)=80-56=24(平方厘米)5. 12如下图,连接AD ,因为DC BD 2=,所以ADC ABD S S ∆∆=2;又18==+∆∆∆ABC ADC ABD S S S ,所以12=∆ABD S .因为BE AE =,所以621===∆∆∆ABD ADE BDE S S S ;因此12618=-=-=∆∆BDEABCAEDCSSS(平方厘米).6. 3.2如下图,连接BE ,则8442121=⨯⨯==∆正方形S S ABE (平方厘米).从另一角度看,OB S ABE ⨯⨯=∆521,于是8521=⨯⨯OB .528÷⨯=∴OB =3.2(厘米) 7. 3.2如下图,连接AG ,则AGD ∆的面积是正方形ABCD 面积的21,也是长方形DEFG 的面积的21,于是长方形DEFG 的面积等于正方形ABCD 的面积4×4=16(平方厘米).2.3516=÷=∴DE (厘米).8. 243我们用A ,长是相同的.A25 20 30D36B 16C12因此它们的面积之比,就是宽之比,反之,宽之比,就是面积之比.这样就有:20:16=A :36,45163620=⨯=A ;20:16=25:B ,20202516=⨯=B ;20:16=30:C ,24203016=⨯=C ; 20:16=D :12, 15161220=⨯=D .因此,大矩形的面积是:45+36+25+20+20+16+30+24+15+12=2439. 60 如下图,连接PD ,则阴影部分就是由四个三角形: PDH ∆,PGD ∆,PEF ∆和PMN ∆组成.PGD ∆和PEF ∆的底都有3,高为12,所以1812321=⨯⨯==∆∆PEF PGD S S .PDH ∆和PMN ∆的底都是4,两条高分别为PA 和PB 则:PB PA S S PMN PDH ⨯⨯+⨯⨯=+∆∆421421=2(PA +PB )=2×12=24所以,阴影部分的面积是: ++∆∆PEF PGD S S PMN PDH S S ∆∆+=18+18+24=6010. 4长方形EFGH 的面积是6×4=24(平方厘米)1221==+∴∆∆EFGH AHG AEF S S S (平方厘米)阴影总面积S S S S S AHG AEF ADH EBA -+=+∴∆∆∆∆=12-10=2(平方厘米)又6244141=⨯==∆EFGH ECH S S (平方厘米)所以,四边形ABCD 的面积等于: )(ADHEBA ECH SS S ∆∆∆+-=6-2=4(平方厘米)11. 如图,将正六边形ABCDEF 等分为54个小正三角形.根据平行四边形对角线平分平行四边形面积.采用数小三角形的办法来计算面积.PEF ∆面积=3;CDE ∆面积=9;四边形ABQP 面积=11.上述三块面积之和为3+9+11=23,因此,阴影四边形CEPQ 面积为54-23=31.12. 如图,涂阴影部分小正六角星形可分成12个与三角形OPN 全等(能完全重叠地放在一起)的小三角形.三形OPN 的面积是341216=平方厘米.正三角形OPM 面积是由三个与三角形OPN 全等的三角形组成.所以正三角形OPM 的面积等于4334=⨯(平方厘米). 由于大正方六角星形由12个与正三角形OPM 全等的三角形组成,所以大正六角星形的面积是4×12=48(平方厘米)13. 设大长方形的宽为x ,则长为28-x .因为,x D 32=宽,x D 43='宽, 所以,12x D D =-'宽宽. ()x D -=2854长,()x D -='28109长,()x D D -=-'28101长长.由题设可知, 12x :11028=-x:3 或41028x x =-,于是2071028x=, 8=x .大长方形的长=28-8=20,从而大长方形的面积为8×20=160平方厘米.14. 三角形AEG 面积是三角形AED 面积的(15+6)÷7=3(倍),三角形BEF 面积是三角形BEC 面积的 15÷(5+7)=45(倍).所以65-38×45等于三角形AEG 面积与三角形AED 面积的45之差,因此三角形AED 的面积是(65-38×45)÷(3-45)=10.三角形ADG 面积是10×(3+1)=40.。
苏教版数学小升初总复习平面图形专项训练含答案
苏教版数学小升初总复习平面图形专项训练一、认真填空。
(每空3 分,共36 分)1.下面图形中有( )条线段,( )条射线。
2.从一个边长为8 厘米的正方形硬纸板中剪一个最大的圆,这个圆的半径是( )厘米,周长是( )厘米,面积是( )平方厘米。
3.用6 个面积是1 平方厘米的小正方形拼成一个长方形,这个长方形的周长可能是( )厘米,也可能是( )厘米。
4.德老师有一本数学教师用书,书的后面有一个配套光盘,形状是一个圆环,德老师测量出它的内圆直径是2厘米,外圆直径是12 厘米,光盘的面积是( )平方厘米。
5.甲圆的半径等于乙圆的直径。
甲、乙两圆周长的最简整数比是( ),面积的最简整数比是( )。
6.把一张直径为4 分米的圆形纸片平均分成若干份,拼成一个近似的长方形。
这个长方形的周长是( )分米,面积是( )平方分米。
二、慎重选择。
(每小题3 分,共18 分)1.【无锡市新吴区】在正六边形的内部画两条对角线,可以得到不同的图形。
下列图形中,有2 条对称轴的图形是( )。
2.一个三角形的底比高长5 厘米,如果将这个三角形的底减少2 厘米,高增加2厘米,那么这个三角形的面积会( )。
A.减少B.增加C.不变D.无法判断3.下面各图形的空白部分与阴影部分相比较,周长和面积都相等的是( );周长相等,面积不相等的是( );周长不相等,面积相等的是( )。
4.典典运用三角形的内角和的知识研究六边形的内角和,他画出了如图的思考图。
根据图示,下面( )算式能正确计算出六边形的内角和。
A.180°×6 B.180°×6-360°C.180°×6-180°D.180°×6-720°5.【新考法】我国古代数学家刘徽利用出入相补原理来计算平面图形的面积。
出入相补原理就是把一个图形分割、移补,而面积保持不变。
把图中的三角形先沿虚线剪开,再将两部分重新拼成一个新图形(两部分不重叠),不可能拼成的图形是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初奥数几何图形综合训练题(平面图形部分)
题1.已知平行四边形的面积是128平方米,E、F分别是两边上的中点,求阴影部分面积
题2.一个正方形,如果它的边长增加5厘米,那么,所成的正方形比原来正方形的面积多95平方厘米,那么,原来正方形的面积是多少平方厘米?。
题3.图中三角形ABC的面积是180平方厘米,D是BC的中点,AD的长是AE长的3倍, EF的长是BF长的3倍.那么三角形AEF的面积是多少平方厘米?
题4.如图,已知.AE=1/4AC,CD=1/4BC,BF=1/6AB,那么三角形DEF是三角形ABC的几分之几?
题5.如图,在一个梯形内有两个三角形的面积分别为10与12,已知梯形的上底长是下底长的5/6.那么余下阴影部分的面积是多少?
题6.图中ABCD是梯形,三角形ADE面积是1.8,三角形ABF的面积是9,三角形BCF的面积是27.那么阴影部分面积是
多少?
题7.如图,梯形ABCD的上底AD长为3厘米,下底BC长为9厘米,而三角形ABO的面积为12平方厘米.则梯形ABCD的面积为多少平方厘米?
题8.如图,BD,CF将长方形ABCD分成4块,红色三角形面积是4平方厘米,黄色三角形面积是6平方厘米.问:绿色四边形面积是多少平方厘米?
题9.如图,平行四边形ABCD周长为75厘米.以BC为底时高是14厘米;以CD为底时高是16厘米.求平行四边形ABCD 的面积.
题10.如图,一个正方形被分成4个小长方形,它们的面积分别是平方米、平方米、平方米和平方米.已知图中的阴影部分是正方形,那么它的面积是多少平方米?
题11.图中外侧的四边形是一边长为10厘米的正方形,求阴影部分的面积.
题12.如图,长方形被其内的一些直线划分成了若干块,已知边上有3块面积分别是13,35,49.那么图中阴影部分的面积是多少?
题13.如图,有8个半径为1厘米的小圆,用它们的圆周的一部分连成一个花瓣图形,图中的黑点是这些圆的圆心.如果圆周率取3.1416,那么花瓣图形的面积是多少平方厘米?
题14.图为一卷紧绕成的牛皮纸,纸卷直径为20厘米,中间有一直径为6厘米的卷轴.已知纸的厚度为0.4毫米,问:这卷纸展开后大约有多长?
题15.如图,大小两圆的相交部分(即阴影区域)的面积是大圆面积的,是小圆面积的.如果量得小圆的半径是5厘米,那么大圆半径是多少厘米?
题16.如图,在18×8的方格纸上,画有1,9,9,8四个数字.那么,图中的阴影面积占整个方格纸面积的几分之几?
题17.如图,用一块面积为36平方厘米的圆形铝板下料,从中裁出了7个同样大小的圆铝板.问:所余下的边角料的总面积是多少平方厘米?
题18.如图,已知大正方形的面积是22平方厘米,那么小正方形的面积是多少平方厘米?
题19、图是一个直径是3厘米的半圆,AB是直径.让A点不动,把整个半圆逆时针转,此时B点移动到C点,如图17-9所示.那么图中阴影部分的面积是多少平方厘米?( 取3.14.)
题20、如图,四分之一大圆的半径为7,求阴影部分的面积,其中圆周率取近似值.
题21、如图,等腰直角三角形的一腰的长是8厘米,以它的两腰为直径分别画了两个半圆,那么阴影部分的面积共有多
少平方厘米?( 取3.14)
题22、图中的4个圆的圆心是正方形的4个顶点,它们的公共点是该正方形的中心.如果每个圆的半径都是1厘米,那么阴影部分的总面积是多少平方厘米?
题23、图17-14中阴影部分的面积是多少平方厘米?( 取3.14)
题24、求图17-15中阴影部分的面积.( 取3.14)
题25、平面上有7个大小相同的圆,位置如图17-16所示.如果每个圆的面积都是10,那么阴影部分的面积是多少?。