第三章土中应力计算

合集下载

第三章 土体中的应力计算(1-3节)

第三章 土体中的应力计算(1-3节)
4
3.均质、等向问题 理想弹性体是均质且各向同性的。天然
地基是各向异性的。但当土层性质变化 不大时,这样假定对竖直应力分布引起 的误差通常在容许范围之内。
5
二、地基中的几种应力状态
1.三维应力状态(空间应力状态)
局部荷载作用下,地基中的应力状态属 三维应力状态。每一点的应力可写成矩 阵形式
24
25
在空间将z相同的点连 接成曲面即形成应力泡。
当地基表面作用有几个集中力时,根据弹 性体应力叠加原理求出附加应力的总和
26
(二)水平集中力作用-西罗提解
z

3Ph
2
xz 2 R5
(3- 9)
27
28
二、矩形面积上各种分布荷载作用下的附 加应力计算
(一)矩形面积竖直均布荷载 1.角点下的应力
x

K
s x
p
τ
xz
K
s xz
p
(3- 25) (3- 26)
剪Kx应s和力K分xzs布分系别数为(水表平3向-5应)力,m分布x ,系n 数z和。
BB
55
P
56
57
(三)条形面积竖直三角形分布荷载 条形面积上竖直三角形分布荷载在地基
内引起的应力也可利用应力叠加原理, 通过积分求得。
zM ' (KsI KsII KsIII KsIV ) p
(3 -13a)
37
第二种情况:计算矩形面积外任一点M’ 下深度为z的附加应力(图3-17b)。设法使 M’点为几个小矩形的公共角点,然后将 其应力进行代数迭加。
zM ' (KsI KsII KsIII KsIV ) p
29

土力学:第三章土中应力计算

土力学:第三章土中应力计算

附加应力的分布规律
平面分布规律
附加应力在平面上的分布呈扩散状,随着深度的 增加而减小。
深度分布规律
在一定深度范围内,附加应力随深度的增加而增 大,达到一定深度后基本保持稳定。
方向分布规律
附加应力在不同方向上的分布不同,与外部荷载 的方向和土体的性质有关。
附加应力的影响因素
01
外部荷载
外部荷载的大小、分布和作用方 式直接影响附加应力的分布和大 小。
在水平方向上,自重应力 表现为均匀分布。
侧向应力
在土体边缘,自重应力表 现为侧向应力,对土体的 稳定性产生影响。
自重应力的影响因素
土的密度
土的密度越大,自重应力越大。
重力加速度
重力加速度越大,自重应力越大。
土体的几何形状和尺寸
土体的几何形状和尺寸对自重应力的分布和大小有显著影响。
04 土中附加应力计算
02
03
土体的性质
边界条件
土体的容重、压缩性、内摩擦角、 粘聚力等性质对附加应力的影响 较大。
土体的边界条件,如固定边界、 自由边界等,对附加应力的分布 和大小也有影响。
05 土中有效应力计算
CHAPTER
有效应力的概念与计算方法
有效应力的概念
有效应力是指土壤颗粒之间的法向应 力,是土壤保持其结构稳定和防止剪 切破坏的主要因素。
土中应力计算的重要性
01
02
03
工程安全
准确的土中应力计算是确 保工程安全的前提,能够 预测可能出现的危险和制 定应对措施。
设计优化
通过土中应力计算,可以 优化设计方案,提高工程 结构的稳定性和经济性。
科学研究
土中应力计算有助于深入 研究土力学性质和规律, 推动土力学学科的发展。

土力学与地基基础-(第三章-土的自重应力计算)

土力学与地基基础-(第三章-土的自重应力计算)

3.2 土的自重应力计算
在荷载作用之前,地基中存在初始应力场。初始应力场常与土体自重、 地基土地质历史以及地下水位有关。在工程应用上,计算初始应力场时常 假设天然地基为水平、均质、各向同性的半无限空间,土层界面为水平面。 于是在任意竖直面和水平面上均无剪应力存在。 假设前提: 假设土(岩)体为均匀连续介质,并为半无限空间弹性体。 地面
应力泡
一、竖向集中力下的地基附加应力
二、矩形和圆形荷载下的地基附加应力
z
F
d
z
3z3
2
p(x, y)dd F ((x )2 ( y )2 z 2 )5/ 2
二、均布矩形荷载下的地基附加应力
1、均布矩形荷载
二、矩形和圆形荷载下的地基附加应力
1、均布矩形荷载
p c ——均布矩形荷载角点下的竖向附加应力
/
2
p0
[1
(r02
z3 z
2
)3
/
2
p 0 [1
(
p0[1 (
1
1
z
] r p0
z3 R5
1
R (r 2 z2 )2 整理得:
z
3P
2 z2
1
1
r z
5
2 2
则:
z
P z2
z
tzyபைடு நூலகம்
tzx txz
tyz
y
tyx
txy
x
M点处的微单元体
令α为附加应力系数,计算时查表
3
2
1
1 r z
2
5
2
一、竖向集中力下的地基附加应力 2、多个竖向集中力下的地基附加应 力
一、竖向集中力下的地基附加应力

土力学课件 第3章 土中应力分布及计算.

土力学课件 第3章 土中应力分布及计算.

计算如图所示水下地基土中的自重应力分布
水面 a 8m
粗砂 r=19KN/m3 rsat=19.5KN/m3
黏土r=19.3KN/m3 4m rsat=19.4KN/m3 W=20%,WL=55%,WP=24%
b 76KPa 176KPa c 253.2KPa
解:水下的粗砂层受到 水的浮力作用, 其有效重度: r , rsat rw 19.5 10 9.5 KN / m 3 粘土层因为W WP , 所以I L 0, 故认为土层 不受到水的浮力作用, 土层面上还受到 上面的静水压力作用。 a点:Z 0, CZ 0 KPa; b点:Z 8m, 该点位于粗砂层中,
应力符号规定
法向应力以压为正,剪应力方向的符号规定则与材料力 学相反。材料力学中规定剪应力以顺时针方向为正,土力学 中则规定剪应力以逆时针方向为正。
压为正,拉为负,剪应力以逆时针为正
土中的自重应力计算
土中应力按其起因可分为自重应力和附加应力两种。
自重应力是土受到重力作用产生的应力,自重应力一般是自 土体形成之日起就产生于土中。
二.成层土自重应力计算 地基土通常为成层土。当地基为成层土体时,设各土层 的厚度为hi,重度为ri,则在深度z处土的自重应力计算公 式为:
cz i hi
i 1
n
z hi
i 1
n
n—从地面到深度z处的土层数; hi—第i层土的厚度,m。 成层土的自重应力沿深度呈折线分布,转折点位于r值 发生变化的土层界面上。
◇若0<IL<1,土处于塑性状态,土颗粒是否受到水的 浮力作用就较难肯定,在工程实践中一般均按土体受 到水浮力作用来考虑。
四.存在隔水层时土的自重应力计算
当地基中存在隔水层时,隔水层面以下土的自重应力应 考虑其上的静水压力作用。

土力学与地基基础(土中的应力计算)

土力学与地基基础(土中的应力计算)
此时基底平均压力按下式计算: 此时基底平均压力按下式计算:
矩形基础:A=b× 矩形基础:A=b×L
d1 + d2 Gk =A
Gk = γ G Ad
γG=20kN/m3
2、偏心荷载下的基底压力 单向偏心荷载下的矩形基础如图。 单向偏心荷载下的矩形基础如图。 设计时, 设计时,通常基底长边方向取与偏心 方向一致, 方向一致,最大压力值与最小压力值 按材料力学短柱偏心受压公式计算: 按材料力学短柱偏心受压公式计算:
p0 = pk − σ c
四、地基附加应力
地基附加应力是指建筑物荷载在土体中引起的附加于原有应力之上的应力。 地基附加应力是指建筑物荷载在土体中引起的附加于原有应力之上的应力。
(一)竖向集中应力作用下的地基附加应力
1、布辛奈斯克解 、
3p z3 3 1 p σz = = 2π ( r 2 + z 2 )5 / 2 2π ( r / z )2 + 1 5 / 2 z 2
第三章 地基土中的应力计算
一、概述 地基土中的应力: 地基土中的应力: 1、自重应力 2、附加应力
建筑物修建以前, 建筑物修建以前,地基中由于土 体本身的有效重量所产生的应力。 体本身的有效重量所产生的应力。 建筑物修建以后,建筑物重量等 建筑物修建以后, 外荷载在地基中引起的应力, 外荷载在地基中引起的应力,所 谓的“附加” 谓的“附加”是指在原来自重应 力基础上增加的压力。 力基础上增加的压力。
γ
γ′
均质地 基
γ1(γ
1
< γ2 )
γ2 γ′ 2
成层地基
(二)水平向自重应力
σ cx = σ cy = K 0σ cz
式中: 土的侧压力系数或静止土压力系数, 式中:K0——土的侧压力系数或静止土压力系数,经验值可查课本 土的侧压力系数或静止土压力系数 表3.1

土力学第三章

土力学第三章

向下渗流
z z u H w h
存在向下渗流,有效自重应力增大γw⊿h

A点的有效自重应力:
3.4 基底压力计算
上部结构
建筑物设计
基础 地基
上部结构的自重及各 种荷载都是通过基础 传到地基中的。
基础结构的外荷载 基底反力 基底压力 基底附加压力 地基附加应力 地基沉降变形 基底压力:基础底面传递 给地基表面的压力,也称 基底接触压力。 暂不考虑上部结构的影响, 使问题得以简化; 用荷载代替上部结构。
Aw 1 A
PSi
PaVi
有效应力σ′
'u
3.2 有效应力原理
2. 有效应力原理
'u
σ:作用在饱和土中任意面上的总应力 σ′:作用在同一平面土骨架上的有效应力 u:作用于同一平面上孔隙水压力 土的变形和强度变化只取 决于有效应力的变化
3.2 有效应力原理
①变形的原因 颗粒间克服摩擦相对滑移、滚动—与 σ’ 有关; 接触点处应力过大而破碎—与 σ’ 有关。
②强度的成因 凝聚力和摩擦—与σ’ 有关 ③孔隙水压力的作用 对土颗粒间摩擦、土粒的破碎没有贡献, 并且水不能承受剪应力,因而孔隙水压力 对土的强度没有直接的影响; 它在各个方向相等,只能使土颗粒本身 受到等向压力,由于颗粒本身压缩模量很 大,故土粒本身压缩变形极小。因而孔隙 水压力对变形也没有直接的影响,土体不 会因为受到水压力的作用而变得密实。
pmax
min
y
P 6e 1 A b
3.5.2 基础底面接触压力
2、偏心荷载作用——单向偏心荷载 P b e x y
p max
pmax
min

土力学-第三章-土中应力计算详解

土力学-第三章-土中应力计算详解

基本假定
地基土是各向同性、均质、半无限空间弹性体 地基土在深度和水平方向都是无限的
地 表 临 空
地基:均质各向同性线性变形半空间体
应用弹性力学关于弹性半空间的理论解答
1.均质土竖向自重应力
若将地基视为均质半无限空间弹性体,土体在自重作用下只能产 生竖向变形,而无侧向位移及剪切变形存在,因此在深度z处平面上, 土体因自身重力产生的竖向应力等于单位面积上土柱体的重力。
3.水平向自重应力
天然地面
地基土在重力作用下,除承受 作用于水平面上的竖向自重应力外, 在竖直面上还作用有水平向自重应 力。由于土柱体在重力作用下无侧 向变形和剪切变形,因此可以证明 侧向自重应力与竖向自重应力成正 比,剪应力均为零。
cz z
cx cy K0 cz
cz
z
cx
cy
侧压力系数或静止 土压力系数
4 地下水位升降对自重应力的影响
自重应力分布曲线的变化规律
土的自重应力分布曲线是一条折线,拐点在土 层交界处和地下水位处。
同一层土的自重应力按直线变化。
自重应力随深度的增加而增大。
【例题3-1 】计算自重应力,并绘分布图。
4. 例题分析 【例】一地基由多层土组成,地质剖面如下图所示,试计算并绘制 自重应力σcz沿深度的分布图。
57.0kPa
80.1kPa
103.1kPa 150.1kPa 194.1kPa
cz 1h1 2 h2 n hn i hi
i 1
n


均质地基
1 (
1
2)
2 2
成层地基
3.2 基底压力与基底附加应力
上部结构

第3章土体中的应力计算

第3章土体中的应力计算

▪应力条件
z
x y; z xy , yz , zx 0
x y; z xy , yz , zx 0
zx
▪独立变量:x y , z ; x y , z
xy
x
y yz
ij =
x 0xy 0xz 0yx y 0yz 0zx 0 zy z
ij=
第8页/共68页
x 0xy 0xz 0yx yy 0yz
x
y yz
y z

ij=
x xy xz yx y yz
zx zy z
应力张量矩阵形式
第5页/共68页
一. 土力学中应力符号的规定
摩尔圆应力分析
材料力学 土力学
- zx
z
+
xz
x
正应力
拉为正 压为负
z
- zx +
xz
x
压为正 拉为负
第6页/共68页
剪应力 顺时针为正 逆时针为负
逆时针为正 顺时针为负
cy
K0 cz
K0
iHi
H2
思考题:水位骤降后,原水位到现水位之间
的饱和土层用什么容重?
H3
第16页/共68页
2. 分布规律
▪自重应力分布线的斜率是容重; ▪自重应力在等容重地基中随深度呈直线分布; ▪自重应力在成层地基中呈折线分布; ▪在土层分界面处和地下水位处发生转折。
1 (1 2)
2
2
第3页/共68页
第3章 土体中的应力计算
3.1 概述 3.2 自重应力 3.3 基底压力计算 3.4 地基附加应力 3.5 有效应力原理
o
x
y x
z
y
σz

土力学与地基基础-第三章.土中应力分布及计算解析

土力学与地基基础-第三章.土中应力分布及计算解析

从上式可知,自重应力随深度z线性增
加,呈三角形分布图形。
2019/8/25
土中自重应力的计算
8
3.2 土中自重应力的计算
2. 成层土的压力计算
地基土通常为成层土。当地基为成层土体时,设各土层
的厚度为hi,重度为 ,则在i 深度z处土的自重应力计算公式 为:
n
cz ihi i 1


剪应力
xy
yx

3Q xyz
2

R5
1 2 3
xy(2R z)
R3
(
R

z)2

yz
zy

3Q 2
yz 2 R5
ZX
XZ
3Q 2
xz 2 R5
3.4 集中力作用下土中应力计算
X、Y、Z轴方向的位移
分别为:
刚性基础在中心载荷作用下,地基反力呈马鞍形,随着外 力的增大,其形状相应改变。如下图
2019/8/25
基础底面压力的分布和计算
15
3.3 基础底面压力的分布和计算
2019/8/25
基础底面压力的分布和计算
16
3.3 基础底面压力的分布和计算
2. 地基反力的简化计算方法
根据弹性理论的圣维南原理及土中实测结果,当作用在 基础上的总载荷为定值时,地基反力分布的形状对土中 应力分布的影响,只在一定深度范围内,当基底的深度 超过基础宽度的1.5-2.0倍时,它的影响已不显著。因此, 在实用上采用材料力学方法,即将地基反力分布认为是 线性分布的简化计算方法。
因此,基底附加压力p0是上部结构和基础传到基底的地基反力 与基底处原先存在于土中的自重应力之差(新增加的应力)(如图)

第3章土中应力计算

第3章土中应力计算

n z/b
角点法求矩形面积均布荷载下竖向应力 一般计算步骤 (1)将待求点水平投影在荷载作用面上; (2)过投影点将荷载作用面划分为若干矩形 面积,且投影点必须是各矩形的公共角点; (3)计算单个矩形作用下某深度处的附加应 力并求代数和。 (4)p55,见例3.3,3.4。
计算点在基础内部
p
III IV
3F
2
yz 2 R5
zx
3F
2
xz 2 R5
单个竖向集中力作用 集中力作用下的地基竖向
应力系数
oF
xq r
R
x y
M(x,y,0)
z
z
F z2
y M(x,y,z)
z
对竖向应力进行推导可得
3
1
2
1
(
r z
)
2
5
/
2F
2 z 2
1
1
(
r z
)
2
5
/
2
F
z2
(P52,例3.2)
(5)竖向集中力作用引起的附加应力向深部向四 周无限传播,在传播过程中,应力强度不断降低 (应力扩散)
力的叠加原理
由几个外力共同作用时所引起的某一参数(内力、 应力或位移),等于每个外力单独作用时所引起的该参 数值的代数和
F1
F2
两个集中力
作用下σz的
z
叠加
1
2
多个集中力及不规则分布荷载作用
等代荷载法
(3)侧限应力状态:侧向应变为0的状态。地基在
自重作用下的应力状态。对于半无限弹性体,同深度处的 土单元受力相同,仅能发生竖向变形,不能发生侧向变形; 任何竖直面均为对称面,故任何竖直面和水平面均不会有 剪应力存在。

第3章 土体中的应力计算

第3章 土体中的应力计算
Chapter
3
土体中的应力计算


研究土中的应力和分布规律是研究地基和土工建筑物变形
和稳定问题的依据
自重应力 附加应力 惯性力 渗透力
: 由土体自身重量所产生的应力 :由外荷载引起的土中应力
1 地基中的几种应力状态 a、三维(空间)应力状态
xy xy xz ij yz yy yz zx zy zz
zz (OXAY ) zz (OYBZ) zz (OZCT) zz (OTDX )
A
Y O
B
Z
Point of interest
zo ( KsI KsII KsIII KsIV ) p
(b)O 在荷载面外部
O D C X D Z O
(q)
C
(q)
影响因素 (1) 分布荷载p(x,y)的分布规律及其大小 (2) 分布荷载作用面积 A 的几何形状及大小
(3) 应力计算点的坐标值
z p0
3.3.2.1 空间问题的附加应力计算 (一) 矩形面积竖直均布荷载 1. 角点下应力
B
dP dA
x
p
x L y x
R z
R
z
集中荷载 dP = dxdyp0, M点处 dz 为
基压缩变形的主要原因。因为一般基础都埋臵于地面下一定深度,因此在计
算由建筑物造成的基底附加压力时,应扣除基底标高处土中原有的自重应力
p0 p cd p 0 d
cd
cd
p
cd
p0
3.3 地基中的附加应力
附加应力:指建筑物荷重在土体中引起的附加于原有应力之上 的应力。

第三章-土体中的应力计算

第三章-土体中的应力计算

3P z 3 z 5 2 R
式中
P z K 2 z
为竖向集中力作用竖向附加应力系 数(查表)。
§3 土体中的应力计算
P z K 2 z
特点
§3.3 地基中附加应力的计算
一. 竖直集中力作用下的附加应力计算-布辛内斯克课题
3 1 K 2 [1 (r / z )2 ]5 / 2
3.P作用线上,r=0, K=3/(2π),z=0, σz→∞,z→∞,σz=0 4.在某一水平面上z=const,r=0, K最大,r↑,K减小,σz减小 5.在某一圆柱面上r=const,z=0, σz=0,z↑,σz先增加后减小
6.σz 等值线-应力泡
P
P
球根 应力 球根
0.1P
0.05P
0.02P 0.01P
cy

假设土体为均匀连续介质,并为半无限空 间体,在距地表深度z处,土体的自重应力 为:

cz = z
自重产生的水平应力将在土压力计算部分 介绍。


若地基由多层土所组成
c 1h1 2 h2 ...... n hn h
i 1
n
i i
c 1h1 2 h2 ...... n hn h
七. 条形面积竖直均布荷载作用下的附加应力计算
任意点下的附加应力—F氏解的应用
p
z K s zp x K s xp xz K s xz p
y
B
x
z
x
z
M
x z s s Ks , K , K F ( B , x , z ) F ( , ) F( m , n ) z x xz B B

第3章 土中应力计算

第3章 土中应力计算

表3-1 z=3m处水平面上竖应力计算
r(m)
0
1
2
3
4
5
r/z
0
0.33
0.67
1
1.33
1.67
K
0.478 0.369
0.189
0.084
0.038
0.017
z(kPa)
10.6
8.2
4.2
1.9
0.8
0.4
表3-2 r=1m处竖直面上竖应力z的计算
z(m)
0
1
2
3
4
5
6
r/z
1
0.5
0.33
M(x,y,0)
z
附加应力系数
z
K
P z2
M(x,y,z) z
1885年法国学者 布辛内斯克解
z
3Pz 3
2R5
3P
2R2
cos3 q
图 直角坐标表示
❖ 讨论6个应力分量和3个位移分量:
法向应力:
z
3Fz3
2 R5
x
3F
2
zx2
R5
1 2
3
R2 Rz z2 R3(R z)
x2 (2R z)
(a) 马鞍形分布 (b) 抛物线分布 (c) 钟形分布
▪上述演化只是一典型的情形,实际情况十分复杂 ▪大多数情况处于上述两种极端情况之间。
(3)情况3 弹塑性地基上有限刚性的基础
3.2.2 基底压力的简化计算
❖ 基底压力分布十分复杂;
❖ 但是,根据弹性理论中圣维南原理,在基底一定深度 处引起的地基附加应力与基底荷载分布形状无关,只与 其合力的大小和位置有关。

土力学与地基基础——第3章 地基土中的应力计算

土力学与地基基础——第3章 地基土中的应力计算
编辑ppt
三、水平向自重应力 土的水平向自重应力cx和cy可按下式计算:
cxcyK0cz
天然地面
土的侧压力系数/ 静止土压力系数
cz cx
广义虎克定律推导出
理论关系为
K0
1

值K可0 以在实验室测定。
cy
编辑ppt
z
四、例题分析
【例】一地基由多层土组成,地质剖面如下图所示,试计
算并绘制自重应力σcz沿深度的分布图
土中应力
自重应力
附加应力
编辑ppt
建筑物修建以前,地 基中由土体本身重量 所产生的应力
建筑物重量等外荷载 在地基中引起的应力 增量
土中应力计算的目的:
第一节 概述
土中应力过大时,会使土体因强度不够发生破坏, 甚至使土体发生滑动失去稳定。
土中应力的增加会引起土体变形,使建筑物发生沉 降,倾斜以及水平位移。
布。根据平衡条件求得重分布后的基底最大压应力。
pmax
pmin pmax
pmin=0
e<l/6
e=l/6
pmax
e>l/6
pmin<0 基底压力重分编布辑pppt max
2(F G) pmax 3( l e)b pmin=0
基底压力重分布
l
l/2-e e>l/6
偏心荷载作用线
应与基底压力的
b
编辑ppt
法国数学家布辛内斯克(J. Boussinesq)1885年推出了该
问题的理论解,包括六个应力分量和三个方向位移的表达

教材P48页
其中,竖向应力z:
z3 2 PR z3 52 3 [1(r1 /z)2]5/2zP 2z P 2

第三章 土中应力的计算

第三章 土中应力的计算

z 2 z 2( aeoh) z 2(ebfo) q( t 1 t 2 )
(3)三角形荷载FEC(最大值为p-q)
作用范围3,4块,对M点引起的竖向应力σz3
z 3 z 3(ofcg) z 3( hogd ) ( p q)( t 3 t 4 )
第三章
土中应力的计算
3.1 概述
土中的应力—指土体在自重、构筑物荷载以及 其它因素(如水渗流、地震等)作用下,土体中 所产生的应力,包括自重应力和附加应力。

自重应力—土体受自重作用而产生的应力。
附加应力—土体受建筑物等外荷载作用而产生 的应力。
1、土中应力计算目的 为了对建筑物地基基础进行沉降(变形)、 承载力与稳定性分析,必须掌握建筑前后土中应 力的分布和变化情况。
2、偏心荷载作用时,基底压力按偏心受压公式计算:
Pmax
min
F G M F G 6e (1 ) A W A l
式中: F+G、M-作用在基础底面中 心的竖直荷载及弯矩, M=(F+G)e; e-荷载偏心距; W-基础底面的抵抗矩(抗弯截 面系数),对矩形基础 W=bl2/6; b、l-基础底面的宽度与长度。
IL w wP 50 25 1.09 1 w L w P 48 25
故受浮力作用,其浮重度为:
'
( s w ) ( 26.8 9.81) 16.8 7.1 kN/m3 s (1 w ) 26.8 (1 0.50)
a 点:z = 0 m,σcz=γz=0; b 点:z = 2 m,σcz=γz=19 ×2=38 kPa c 点:z = 5 m , σcz =∑γihi=19 ×2+10 ×3=68 kPa, d 点:z = 9 m,σcz =∑γihi=19 ×2+10 ×3+7.1 ×4=96.4 kPa 土层中的自重应力cz分布,如图所示。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17
4m
【例】计算右图 所示水下地基 土中的自重应 力分布。
5m
10m
3m
水面 a
粗砂 sat 19.5 kN/m3
b
19.3k N/ m3
s=27.0k N/ m3
粘土
w 20% , wp 24%
wL 55% , e 0.68
c
18
【解】水下粗砂层受到水的浮力作用,其浮重度为:
a
2m
3m
细砂
1 19k N/ m3 b s=25.9k N/ m3
w 18%
c
2 16.8k N/ m3
粘土
s=26.8k N/ m3
w 50% , wp 25%
wL 48%
d
14
4m
【解】第一层土为细砂,地下水位以下的细 砂受到水的浮力作用,其浮重度为
( s w ) (25.9 10) 19 9.9kN / m3 s (1 w) 25.9 (1 0.18)
6
土中应力主要包括: (1)自重应力:由土体本身重量产生的应力; (2)附加应力:由外荷载作用在土体中引起
的应力。 注意,这里研究的土中应力均为有效应力,
即土颗粒间的应力
7
一、基本计算公➢式自重应力 cz z
为土的天然重度,
kN/m3
8
二、土体成层时的计算 公式
cz 1 h1 2 h2 ...... n hn
若该点位于粘土层中:
cz = z + w hw = 95.0+1013 = 225.0kPa;
c点:z = 15m,cz = 225.0+19.35 = 321.5kPa。
土中自重应力cz分布如图所示。
19
【例】
5m
10m
3m
水面
cz a
粗砂 sat 19.5kN/m3
b
2 19.3k N/ m3
s=27.0k N/ m3 粘土
w 20% , wp 24%
wL 55% , e 0.68
c
95.0kPa 225.0kPa
321.5kP2a0
1地. 原下自水重位应下力降对土中自重应力的影响
2. 地下水位下 降后的自重 应力
21
一、基础底面压➢力分基布底的压概念力
➢ 柔性基础下的压力分布
24
p F G A
式中 F——作用在基础底面中心的竖直荷载;
G——基础及其上回填土的总重;G = G A d, 其 中 G 为 基 础 及 回 填 土 平 均 重 度 , 一 般 取 G
4 土的压缩性与地基沉降计算
4.1 土中应力
➢为什么要研究土中应力? ➢研究土中应力的方法——弹性力学方法 ➢理想弹性体的假设:连续、完全弹性、均匀、
各向同性 ➢微观上,土体不满足理想弹性体的假设:非
连续、不均匀、非完全弹性、常表现为各向 异性 ➢宏观上,工程上用弹性理论仍常能满足要求 2
采用弹性理论研究土中应力的依据:
(a)理想柔性基础;(b)路堤下的压力分布 22
刚性基础下的压力分布
(a)马鞍形分布;(b)抛物线形分布;(c)钟形分布 观看刚性基础基底压力分布变化过程
23
二、基底压力的简化计算
(一)中心荷载矩形基础 中心荷载下的基础,其所受荷载的合力通过基底形 心。基底压力假定为均匀分布(下图),此时基底 平均压力按下式计算:
= sat - w =19.5 - 10 = 9.5kN/m3。
粘土层:因为w < wP,IL< 0,故认为该粘土层为不透 水层,不受水的浮力作用,且该层面以下的应力应 按上覆土层的水土总重计算。则土中各点的应力:
a点:z = 0,cz = 0;
b点:z = 10m,若该点位于粗砂层中:
cz = z = 9.510=95.0kPa;
10
有地下水时土中应力分布
11
有地下水时成层土土中应力分布
12
三、水平自重应力计算
由广义虎克定律及侧限条件
x
x
E
E
(
y
z)
cx
E
E
( cy
cz)
0
解得
cxΒιβλιοθήκη cy1 cz
K 0 cz
其中
K0 1
为土的侧压力系数,也称为静止土压力系数
13
【例】某土层及其物理性质指标如图所示,计 算土中自重应力。
n
i hi i 1
9
土层中有地下水时:
计算地下水位以下土的自重应力时,应根 据土的性质确定是否需要考虑水的浮力作 用。
➢砂土——考虑水的浮力作用,土的重度采
用浮重度, ; ➢粘性土——当IL 1时, ;
当 IL 0时,不考虑水的浮力作用; 当0 < IL < 1时,按不利状态考虑。 ➢不透水层层面及以下按上覆土水合重计算
95.7kPa。
土层中的自重应力分布如下图所示。
16
【例】
a
cz
2m
3m
细砂
1 19k N/ m3 b s=25.9k N/ m3
w 18%
c
粘土
2 16.8kN / m3 s=26.8kN / m3
w 50% , wp 25% ,
wL 48%
d
38.0kPa
67.7kPa
95.7kPa
(b) 土力学中的正应力
4
土中一点的应力状态(续)
(c) 土力学中的正应力
5
土中应力正负号的规定:
在土力学中法向应力以压应力为正,拉应力为负, 这是因为土力学所研究的对象绝大多数都是压应力。 对于剪应力的方向,(在材料力学中规定使截面顺 时针旋转为正,而土力学中规定,)若剪应力作用 面上的外法线方向与坐标轴正向一致时,则剪应力 的方向与坐标轴正向相反时为正,否则为负;反之 则相反(若剪应力作用面上的外法线方向与坐标轴 正向相反时,则剪应力的方向与坐标轴正方向一致 时为正,否则为负)。或者简单定义为:使单元体 正象限角度增大的剪应力为正。
第二层粘土层,其液性指数
IL
w wP wL wP
50 25 48 25
1.09 1
应考虑浮力的影响,浮重度为
(26.8 10) 16.8 7.0kN / m3
26.8 (1 0.50) 15
a点:z = 0,cz = 0; b点:z = 2m,cz = 192 =38.0kPa; c点:z = 5m,cz = 38.0+9.93 = 67.7kPa; d 点 : z = 9m , cz = 67.7 + 7.04 =
➢从宏观角度研究土体,用连续体描述土 体满足工程要求
➢在实际工程中,土中应力水平较低,土 的应力-应变关系接近于线性关系,可 以应用弹性理论方法
➢将土看作各向同性有一定的误差
➢土体具有成层性,当各层土的性质相差 不大时,将土作为均匀介质所引起的误 差并不大;层内为均匀介质
3
土中一点的应力状态
(a) 材料力学中的正应力
相关文档
最新文档