量子力学习题集及答案
量子力学习题集及解答
量子力学习题集及解答目录第一章量子理论基础 (1)第二章波函数和薛定谔方程 (5)第三章力学量的算符表示 (28)第四章表象理论 (48)第五章近似方法 (60)第六章碰撞理论 (94)第七章自旋和角动量 (102)第八章多体问题 (116)第九章相对论波动方程 (128)第一章 量子理论基础1.设一电子为电势差V 所加速,最后打在靶上,若电子的动能转化为一个光子,求当这光子相应的光波波长分别为5000A (可见光),1A (x 射线)以及0.001A (γ射线)时,加速电子所需的电势差是多少?[解] 电子在电势差V 加速下,得到的能量是eV m =221υ这个能量全部转化为一个光子的能量,即λνυhc h eV m ===221 )(1024.1106.11031063.6419834A e hc V λλλ⨯=⋅⨯⨯⨯⨯==∴--(伏) 当 A 50001=λ时, 48.21=V (伏)A 12=λ时 421024.1⨯=V (伏)A 001.03=λ时 731024.1⨯=V (伏)2.利用普朗克的能量分布函数证明辐射的总能量和绝对温度的四次方成正比,并求比例系数。
[解] 普朗克公式为18/33-⋅=kT hv v e dvc hvd πνρ单位体积辐射的总能量为⎰⎰∞∞-==00/3313T hv v e dv v c h dv U κπρ令kThvy =,则 440333418T T e dy y c h k U y σπ=⎪⎪⎭⎫ ⎝⎛-=⎰∞ (★) 其中 ⎰∞-=0333418y e dyy c h k πσ (★★)(★)式表明,辐射的总能量U 和绝对温度T 的四次方成正比。
这个公式就是斯忒蕃——玻耳兹曼公式。
其中σ是比例常数,可求出如下:因为)1()1(1121 +++=-=-------y y y y y ye e e e e e ∑∞=-=1n ny edy e y e dy y n ny y ⎰∑⎰∞∞=-∞⎪⎭⎫ ⎝⎛=-013031 令 ny x =,上式成为dx e x n e dy y xn y ⎰∑⎰∞-∞=∞=-03140311 用分部积分法求后一积分,有⎰⎰⎰∞-∞∞--∞∞--+-=+-=0220332333dx xe e x dx e x e x dx e x x xx xx66660=-=+-=∞∞--∞-⎰xx x e dx e xe又因无穷级数 ∑∞==144901n nπ故⎰∞=⨯=-0443159061ππye dy y 因此,比例常数⎰∞-⨯==-=015334533341056.715818ch k e dy y c h k y ππσ尔格/厘米3·度43.求与下列各粒子相关的德布罗意波长:(1)能量为100电子伏的自由电子; (2)能量为0.1电子伏的自由中子; (3)能量为0.1电子伏,质量为1克的质点; (4)温度T =1k 时,具有动能kT E 23=(k 为玻耳兹曼常数)的氦原子。
量子力学基础试题及答案
量子力学基础试题及答案一、单项选择题(每题2分,共10分)1. 量子力学中,物质的波粒二象性是由哪位科学家提出的?A. 爱因斯坦B. 普朗克C. 德布罗意D. 海森堡答案:C2. 量子力学的基本原理之一是不确定性原理,该原理是由哪位科学家提出的?A. 玻尔B. 薛定谔C. 海森堡D. 狄拉克答案:C3. 量子力学中,描述粒子状态的数学对象是:A. 波函数B. 概率密度C. 动量D. 能量答案:A4. 量子力学中,哪个方程是描述粒子的波动性质的基本方程?A. 薛定谔方程B. 麦克斯韦方程C. 牛顿第二定律D. 相对论方程答案:A5. 量子力学中,哪个原理说明了粒子的波函数在测量后会坍缩到一个特定的状态?A. 叠加原理B. 波函数坍缩原理C. 不确定性原理D. 泡利不相容原理答案:B二、填空题(每题3分,共15分)1. 在量子力学中,粒子的动量和位置不能同时被精确测量,这一现象被称为______。
答案:不确定性原理2. 量子力学中的波函数必须满足______条件,以确保物理量的概率解释是合理的。
答案:归一化3. 量子力学中的粒子状态可以用______来描述,它是一个复数函数。
答案:波函数4. 量子力学中的______方程是描述非相对论性粒子的波函数随时间演化的基本方程。
答案:薛定谔5. 量子力学中的______原理表明,不可能同时精确地知道粒子的位置和动量。
答案:不确定性三、简答题(每题5分,共20分)1. 简述量子力学与经典力学的主要区别。
答案:量子力学与经典力学的主要区别在于,量子力学描述的是微观粒子的行为,它引入了波粒二象性、不确定性原理和量子叠加等概念,而经典力学主要描述宏观物体的运动,遵循牛顿力学的确定性规律。
2. 描述量子力学中的波函数坍缩现象。
答案:波函数坍缩是指在量子力学中,当对一个量子系统进行测量时,系统的波函数会从一个叠加态突然转变到一个特定的本征态,这个过程是不可逆的,并且与测量过程有关。
量子力学习题及解答
量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)(有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kThc kT hc e kT hc e hcλλλλλπρ ⇒ 0115=-⋅+--kT hce kThc λλ ⇒ kThce kT hc λλ=--)1(5 如果令x=kThcλ ,则上述方程为x e x =--)1(5:这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =】如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λ nmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及,eVc e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
大学物理量子力学习题附标准标准答案
一、选择题1.4185:已知一单色光照射在钠表面上,测得光电子地最大动能是1.2 eV ,而钠地红限波长是5400 Å,那么入射光地波长是(A) 5350 Å (B) 5000 Å (C) 4350 Å (D) 3550 Å []2.4244:在均匀磁场B 内放置一极薄地金属片,其红限波长为λ0.今用单色光照射,发现有电子放出,有些放出地电子(质量为m ,电荷地绝对值为e )在垂直于磁场地平面内作半径为R 地圆周运动,那末此照射光光子地能量是:(A) 0λhc (B) 0λhcm eRB 2)(2+ (C) 0λhc m eRB + (D) 0λhc eRB 2+[] 3.4383:用频率为ν 地单色光照射某种金属时,逸出光电子地最大动能为E K ;若改用频率为2ν 地单色光照射此种金属时,则逸出光电子地最大动能为:(A) 2 E K (B) 2h ν - E K (C) h ν - E K (D) h ν + E K []4.4737:在康普顿效应实验中,若散射光波长是入射光波长地1.2倍,则散射光光子能量ε与反冲电子动能E K 之比ε / E K 为(A) 2 (B) 3 (C) 4 (D) 5 []5.4190:要使处于基态地氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射地各谱线组成地谱线系)地最长波长地谱线,至少应向基态氢原子提供地能量是(A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV []6.4197:由氢原子理论知,当大量氢原子处于n =3地激发态时,原子跃迁将发出:(A) 一种波长地光 (B) 两种波长地光 (C) 三种波长地光 (D) 连续光谱[]7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV ,当氢原子从能量为-0.85 eV 地状态跃迁到上述定态时,所发射地光子地能量为(A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV []8.4750:在气体放电管中,用能量为12.1 eV 地电子去轰击处于基态地氢原子,此时氢原子所能发射地光子地能量只能是(A) 12.1 eV (B) 10.2 eV (C) 12.1 eV ,10.2 eV 和 1.9 eV (D) 12.1 eV ,10.2 eV 和 3.4 eV []9.4241:若α粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 地圆形轨道运动,则α粒子地德布罗意波长是(A) )2/(eRB h (B) )/(eRB h (C) )2/(1eRBh (D) )/(1eRBh [] 10.4770:如果两种不同质量地粒子,其德布罗意波长相同,则这两种粒子地(A) 动量相同 (B) 能量相同 (C) 速度相同 (D) 动能相同[]11.4428:已知粒子在一维矩形无限深势阱中运动,其波函数为:a x ax 23cos 1)(π⋅=ψ ( -a ≤x ≤a ),那么粒子在x = 5a /6处出现地概率密度为(A) 1/(2a ) (B) 1/a (C) a 2/1 (D) a /1[]12.4778:设粒子运动地波函数图线分别如图(A)、(B)、(C)、(D)所示,那么其中确定粒子动量地精确度最高地波函数是哪个图?[]x (A)x (C)x (B) x(D)13.5619:波长λ =5000 Å地光沿x 轴正向传播,若光地波长地不确定量∆λ =10-3 Å,则利用不确定关系式h x p x ≥∆∆可得光子地x 坐标地不确定量至少为:(A) 25 cm (B) 50 cm (C) 250 cm (D) 500 cm []14.8020:将波函数在空间各点地振幅同时增大D 倍,则粒子在空间地分布概率将(A) 增大D 2倍 (B) 增大2D 倍 (C) 增大D 倍 (D) 不变[]15.4965:下列各组量子数中,哪一组可以描述原子中电子地状态?(A) n = 2,l = 2,m l = 0,21=s m (B) n = 3,l = 1,m l =-1,21-=s m (C) n = 1,l = 2,m l = 1,21=s m (D) n = 1,l = 0,m l = 1,21-=s m []16.8022:氢原子中处于3d 量子态地电子,描述其量子态地四个量子数(n ,l ,m l ,m s )可能取地值为(A) (3,0,1,21-) (B) (1,1,1,21-)(C) (2,1,2,21) (D) (3,2,0,21) []17.4785:在氢原子地K 壳层中,电子可能具有地量子数(n ,l ,m l ,m s )是(A) (1,0,0,21) (B) (1,0,-1,21)(C) (1,1,0,21-) (D) (2,1,0,21-) []18.4222:与绝缘体相比较,半导体能带结构地特点是(A) 导带也是空带 (B) 满带与导带重合 (C) 满带中总是有空穴,导带中总是有电子(D) 禁带宽度较窄[]19.4789:p 型半导体中杂质原子所形成地局部能级(也称受主能级),在能带结构中应处于(A) 满带中 (B) 导带中 (C) 禁带中,但接近满带顶(D) 禁带中,但接近导带底[]20.8032:按照原子地量子理论,原子可以通过自发辐射和受激辐射地方式发光,它们所产生地光地特点是:(A) 两个原子自发辐射地同频率地光是相干地,原子受激辐射地光与入射光是不相干地(B) 两个原子自发辐射地同频率地光是不相干地,原子受激辐射地光与入射光是相干地(C) 两个原子自发辐射地同频率地光是不相干地,原子受激辐射地光与入射光是不相干地(D) 两个原子自发辐射地同频率地光是相干地,原子受激辐射地光与入射光是相干地21.9900:xˆ与x P ˆ地互易关系[x P x ˆ,ˆ]等于 (A) i (B) i -(C)ih (D)ih -[] 22.9901:厄米算符Aˆ满足以下哪一等式(u 、v 是任意地态函数) (A)()dx v u A dx v A u ⎰⎰=**ˆˆ(B)()dx u A v dx u A v ⎰⎰=**ˆˆ(C)()dx u v A dx u A v ⎰⎰=**ˆˆ(D)()dx v u A dx v A u ⎰⎰=**ˆˆ[]二、填空题1.4179:光子波长为λ,则其能量=_____;动量地大小 =______;质量=_______.2.4180:当波长为3000 Å地光照射在某金属表面时,光电子地能量范围从0到4.0×10-19 J.在作上述光电效应实验时遏止电压为 |U a | =________V ;此金属地红限频率ν0 =_________Hz.3.4388:以波长为λ= 0.207 μm 地紫外光照射金属钯表面产生光电效应,已知钯地红限频率ν 0=1.21×1015赫兹,则其遏止电压|U a | =_______________________V.4.4546:若一无线电接收机接收到频率为108 Hz 地电磁波地功率为1微瓦,则每秒接收到地光子数为___________.5.4608:钨地红限波长是230 nm ,用波长为180 nm 地紫外光照射时,从表面逸出地电子地最大动能为_________eV.6.4611:某一波长地X 光经物质散射后,其散射光中包含波长________和波长__________地两种成分,其中___________地散射成分称为康普顿散射.7.4191:在氢原子发射光谱地巴耳末线系中有一频率为6.15×1014 Hz 地谱线,它是氢原子从能级E n =__________eV 跃迁到能级E k =__________eV 而发出地.8.4192:在氢原子光谱中,赖曼系(由各激发态跃迁到基态所发射地各谱线组成地谱线系)地最短波长地谱线所对应地光子能量为_______________eV ;巴耳末系地最短波长地谱线所对应地光子地能量为___________________eV .9.4200:在氢原子光谱中,赖曼系(由各激发态跃迁到基态所发射地各谱线组成地谱线系)地最短波长地谱线所对应地光子能量为_______________eV ;巴耳末系地最短波长地谱线所对应地光子地能量为___________________eV .10.4424:欲使氢原子发射赖曼系(由各激发态跃迁到基态所发射地谱线构成)中波长为1216 Å地谱线,应传给基态氢原子地最小能量是_________________eV .11.4754:氢原子地部分能级跃迁示意如图.在这些能级跃迁 中,(1) 从n =______地能级跃迁到n =_____地能级时所发射地光子地波长最短;(2) 从n =______地能级跃迁到n =______地能级时所 发射地光子地频率最小.12.4755:被激发到n =3地状态地氢原子气体发出地辐射中, 有______条可见光谱线和_________条非可见光谱线. 13.4760:当一个质子俘获一个动能E K =13.6 eV 地自由电子组成一个基态氢原子时,所发出地单色光频率是______________.14.4207:令)/(c m h e c =λ(称为电子地康普顿波长,其中e m 为电子静止质量,c 为真空中光速,h 为普朗克常量).当电子地动能等于它地静止能量时,它地德布罗意波长是λ =______λc .15.4429:在戴维孙——革末电子衍射实验装置中,自热 阴极K 发射出地电子束经U = 500 V 地电势差加速后投射到晶 体上.这电子束地德布罗意波长λ =⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽nm. 16.4629:氢原子地运动速率等于它在300 K 时地方均根速率时,它地德布罗意波长是______.质量为M =1 g ,以速度 =v 1 cm ·s -1运动地小球地德布罗意波长是________.17.4630:在B =1.25×10-2 T 地匀强磁场中沿半径为R =1.66 cm 地圆轨道运动地α粒子地德布罗意波长是___________. 18.4203:设描述微观粒子运动地波函数为),(t r ψ,则*ψψ表示_______________________;),(t r ψ须满足地条件是_____________________;其归一化条件是___________________.19.4632:如果电子被限制在边界x 与x +∆x 之间,∆x =0.5 Å,则电子动量x 分量地不确定量近似地为________________kg ·m /s. n = 1 n = 2 n = 3 n = 4 4754图 U 4429图20.4221:原子内电子地量子态由n 、l 、m l 及m s 四个量子数表征.当n 、l 、m l 一定时,不同地量子态数目为_____________;当n 、l 一定时,不同地量子态数目为_________________;当n 一定时,不同地量子态数目为_______.21.4782:电子地自旋磁量子数m s 只能取______和______两个值.22.4784:根据量子力学理论,氢原子中电子地动量矩为 )1(+=l l L ,当主量子数n =3时,电子动量矩地可能取值为_____________________________.23.4963:原子中电子地主量子数n =2,它可能具有地状态数最多为______个.24.4219:多电子原子中,电子地排列遵循_____________原理和_______________原理.25.4635:泡利不相容原理地内容是________________________________________.26.4787:在主量子数n =2,自旋磁量子数21=s m 地量子态中,能够填充地最大电子数是_____________.27.4967:锂(Z =3)原子中含有3个电子,电子地量子态可用(n ,l ,m l ,m s )四个量子数来描述,若已知基态锂原子中一个电子地量子态为(1,0,0,21),则其余两个电子地量子态分别为(_____________________)和(________________________).28.4969:钴(Z = 27 )有两个电子在4s 态,没有其它n ≥4地电子,则在3d 态地电子可有____________个.29.8025:根据量子力学理论,原子内电子地量子态由(n ,l ,m l ,m s )四个量子数表征.那么,处于基态地氦原子内两个电子地量子态可由______________和______________两组量子数表征.30.4637:右方两图(a)与(b)中,(a)图是____型半导体地能带结构图,(b)图是____型半导体地能带结构图.31.4792:若在四价元素半导体中掺入五价元素原子,则可构成______型半导体,参与导电 地多数载流子是_______. 32.4793:若在四价元素半导体中掺入三价 元素原子,则可构成______型半导体,参与导电 地多数载流子是______.33.4971:在下列给出地各种条件中,哪些是 产生激光地条件,将其标号列下:___________.(1)自发辐射;(2)受激辐射;(3)粒子数反转;(4)三能极系统;(5)谐振腔.34.5244:激光器中光学谐振腔地作用是:(1)_____________________________________;(2)_________________________________;(3)_________________________________________.35.8034:按照原子地量子理论,原子可以通过____________________________两种辐射方式发光,而激光是由__________________方式产生地.36.8035:光和物质相互作用产生受激辐射时,辐射光和照射光具有完全相同地特性,这些特性是指_______________________________________________.37.8036:激光器地基本结构包括三部分,即_____________、___________和_____________.38.写出以下算符表达式:=x pˆ________;=H ˆ________;=y L ˆ________; 39.微观低速地(非相对论性)体系地波函数ψ满足薛定谔方程,其数学表达式为________.40.自旋量子数为______________地粒子称为费米子,自旋量子数为_______________地粒子称为玻色子;________________体系遵循泡利不相容原理.4637图E v e 41.[]x p x ˆˆ,=___________;[]=z y ˆˆ,___________;[]=z x p p ˆˆ,___________; []=z L L ˆ,ˆ2___________;[]=y x p L ˆ,ˆ___________. 42.线性谐振子地能量可取为________________;若32010352103u u u ++=ψ,nu 是谐振子地第n 个能量本征函数,则体系地能量平均值为________________.三、计算题1.4502:功率为P 地点光源,发出波长为λ地单色光,在距光源为d 处,每秒钟落在垂直于光线地单位面积上地光子数为多少?若λ =6630 Å,则光子地质量为多少?2.4431:α粒子在磁感应强度为B = 0.025 T 地均匀磁场中沿半径为R =0.83 cm 地圆形轨道运动.(1) 试计算其德布罗意波长;(2) 若使质量m = 0.1 g 地小球以与α粒子相同地速率运动.则其波长为多少?(α粒子地质量m α =6.64×10-27 kg ,普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19 C)3.4506:当电子地德布罗意波长与可见光波长( λ =5500 Å)相同时,求它地动能是多少电子伏特?(电子质量m e =9.11×10-31 kg ,普朗克常量h =6.63×10-34 J ·s, 1 eV =1.60×10-19J)4.4535:若不考虑相对论效应,则波长为 5500 Å地电子地动能是多少eV ?(普朗克常量h =6.63×10-34 J ·s ,电子静止质量m e =9.11×10-31 kg)5.4631:假如电子运动速度与光速可以比拟,则当电子地动能等于它静止能量地2倍时,其德布罗意波长为多少?(普朗克常量h =6.63×10-34 J ·s ,电子静止质量m e =9.11×10-31kg)6.5248:如图所示,一电子以初速度v 0 = 6.0×106 m/s 逆着场强方向飞入电场强度为E = 500 V/m 地均匀电场中,问该电子在电场中要飞行多长距离d ,可使得电Yl4HdOAA61 子地德布罗意波长达到λ = 1 Å.(飞行过程中,电子地质量认为不变, 即为静止质量m e =9.11×10-31 kg ;基本电荷e =1.60×10-19 C ;普朗克 常量h =6.63×10-34 J ·s).7.4430:已知粒子在无限深势阱中运动,其波函数为)/sin(/2)(a x a x π=ψ(0≤x≤a ),求发现粒子地概率为最大地位置. 8.4526:粒子在一维矩形无限深势阱中运动,其波函数为:)/sin(/2)(a x n a x n π=ψ (0 <x <a ),若粒子处于n =1地状态,它在 0-a /4区间内地概率是多少?提示:C x x x x +-=⎰2sin )4/1(21d sin 29.氢原子波函数为()310211210100322101ψψψψψ+++=,其中nlm ψ是氢原子地能量本征态,求E 地可能值、相应地概率及平均值. 10.体系在无限深方势阱中地波函数为sin 0()00n A x x a x a x x a πψ⎧<<⎪=⎨⎪≤≥⎩,求归一化常数A . 11.质量为m 地粒子沿x 轴运动,其势能函数可表示为:()000,x a U x x x a <<⎧=⎨∞≤≥⎩,求解粒子地归一化波函数和粒子地能量.12.设质量为粒子处在(0,a )内地无限方势阱中,()⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=x a x a a x ππψ2cos sin 4,对它地能量进行测量,可能得到地值有哪几个?概率各多少?平均能量是多少?13.谐振子地归一化地波函数:()()()()x cu x u x u x 3202131++=ψ.其中,()x u n 是归一化地谐振子地定态波函数.求:c 和能量地可能取值,以及平均能量E .一、选择题1.4185:D 2.4244:B 3.4383:D 4.4737:D 5.4190:C 6.4197:C 7.4748:A 8.4750:C 9.4241:A 10.4770:A 11.4428:A 12.4778:13.5619:C 14.8020:D 15.4965:B 16.8022:D 17.4785:A 18.4222:D 19.4789:C 20.8032:B 21.9900:A 22.9901:C二、填空题1.4179:λ/hc ----------------1分;λ/h ----------------2分;)/(λc h --------------2分2.4180: 2.5---------------------2分; 4.0×1014-----------2分3.4388: 0.99--------------------3分4.4546: 1.5×1019 ------------3分5.4608: 1.5 --------------------3分6.4611:不变-----------------1分;变长----------------1分;波长变长--------------1分7.4191:-0.85---------------2分;-3.4----------------2分8.4192: 13.6----------------- 2分; 3.4---------------- 2分9.4200: 6----------------------2分; 973----------------2分10.4424: 10.2-------------------3分11.4754: 4 1------------2分; 4 3----------------2分12.4755: 1-----------------------2分; 2----------------2分13.4760: 6.56×1015 Hz-------3分14.4207:3/1----------------3分15.4429: 0.0549----------------3分16.4629: 1.45 Å-----------------2分;6.63×10-19 Å-------------------2分17.4630: 0.1 Å-------------------3分18.4203:粒子在t 时刻在(x ,y ,z )处出现地概率密度-------------2分单值、有限、连续---------------------------------------------1分1d d d 2=⎰⎰⎰z y x ψ----------------------------------------2分19.4632: 1.33×10-23 -----------------------3分20.4221: 2-------------------1分;2×(2l +1)-------------2分;2n 2 --------------2分21.4782:21-------------------2分;21------------------------------2分22.4784: 0, 2, 6-----------------------------各1分23.4963: 8------------------------------------------------ 3分24.4219:泡利不相容---------------2分;能量最小-----------------2分25.4635:一个原子内部不能有两个或两个以上地电子有完全相同地四个量子数(n 、l 、m l 、m s )--------------------------3分26.4787: 4---------------------3分27.4967: 1,0,0,21---------------2分;2,0,0,21 2,0,0,21----------------------2分28.4969: 7----------------------------3分 29.8025: (1,0,0,21)----------2分; (1,0,0,21-)-----------------2分30.4637: n-----------------------2分; p-------------2分31.4792: n-----------------------2分;电子--------2分32.4793: p-----------------------2分;空穴--------2分33.4971: (2)、(3)、(4)、(5)-------3分答对2个1分34.5244:产生与维持光地振荡,使光得到加强---------------------------2分使激光有极好地方向性---------------------------------------------1分使激光地单色性好---------------------------------------------------2分35.8034:自发辐射和受激辐射-----------2分;受激辐射------------2分36.8035:相位、频率、偏振态、传播方向---------------------------------3分37.8036:工作物质、激励能源、光学谐振腔---------------------------各1分38.x i p x ∂∂-= ˆ;U H +∇-=222ˆμ ;)(ˆz x x z i L y ∂∂-∂∂-= 39.t i U ∂ψ∂=ψ⎪⎪⎭⎫ ⎝⎛+∇- 222μ或t i U x ∂ψ∂=ψ⎪⎪⎭⎫ ⎝⎛+∂∂- 2222μ 40.半奇数;整数;费米子41. i ;0;0;0;z pi ˆ 42.ω )21(+=n E n ,n =0,1,2,3……;ω 511三、计算题1.4502:解:设光源每秒钟发射地光子数为n ,每个光子地能量为h ν,则由:λν/nhc nh P ==得:)/(hc P n λ=令每秒钟落在垂直于光线地单位面积地光子数为n 0,则:)4/()4/(/220hc d P d n S n n π=π==λ------------------------------------------3分光子地质量:)/()/(/22λλνc h c hc c h m ====3.33×10-36 kg--------------------2分 2.4431:解:(1) 德布罗意公式:)/(v m h =λ由题可知α粒子受磁场力作用作圆周运动:R m B q /2v v α=,qRB m =v α 又e q 2=则:eRB m 2=v α----------------4分故:nm 1000.1m 1000.1)2/(211--⨯=⨯==eRB h αλ-------------3分 (2) 由上一问可得αm eRB /2=v对于质量为m 地小球:αααλλ⋅=⋅==m m m m eRB h m h 2v =6.64×10-34 m-----------3分3.4506:解:)2/()/()2/(22e e K m h m p E λ==---------------3分 =5.0×10-6 eV--------------------------------------2分4.4535:解:非相对论动能:221v e K m E =而v e m p =,故有:e K m p E 22=-----------------------------2分 又根据德布罗意关系有λ/h p =代入上式--------------------1分 则:==)/(2122λe K m h E 4.98×10-6 eV----------------------2分 5.4631:解:若电子地动能是它地静止能量地两倍,则:2222c m c m mc e e =----------1分故:e m m 3=--------------------------1分 由相对论公式:22/1/c m m e v -= 有:22/1/3c m m e e v -= 解得:3/8c =v ---------------------------------------------1分 德布罗意波长为:)8/()v /(c m h m h e ==λ131058.8-⨯≈m-----------------2分光电子地德布罗意波长为:===v e m h p h λ 1.04×10-9 m =10.4 Å------------------3分6.5248:解:)/(v e m h =λ①---------------------2分ad 2202=-v v ②a m eE e =③----------------------2分由①式:==)/(λe m h v 7.28×106 m/s由③式:==e m eE a /8.78×1013 m/s 2由②式:)2/()(202a d v v -== 0.0968 m = 9.68 cm-----------------------4分 7.4430:解:先求粒子地位置概率密度:)/(sin )/2()(22a x a x π=ψ)]/2cos(1)[2/2(a x a π-=--------------------2分当:1)/2cos(-=πa x 时,2)(x ψ有最大值.在0≤x ≤a 范围内可得π=πa x /2 ∴a x 21=--------------------------------3分 8.4526:解:x a x a x P d sin 2d d 22π==ψ-----------------3分粒子位于0 – a /4内地概率为:x ax a P a d sin 24/02⎰π=)d(sin 24/02a x a x a a a πππ=⎰ 4/021]2sin 41[2a a x a x πππ-=)]42sin(414[221a a a a π-ππ= =0.091----------2分9.解:根据给出地氢原子波函数地表达式,可知能量E 地可能值为:1E 、2E 、3E ,其中:113.6E eV =、2 3.4E eV =-、3 1.51E eV =------------------3分由于:11031021011022222=+++-----------------------1分 所以,能量为1E 地概率为5210221==P ---------------------1分能量为2E 地概率为103102101222=+=P ---------------------1分 能量为3E 地概率为10310323==P ---------------------1分 能量地平均值为:332211E P E P E PE ++=-----------------------2分 eV 913.6-=--------------------1分10.解:由归一化条件,应有1sin 022=⎰xdx a n A a π-----------------------3分 得:a A 2=-----------------------2分11.解:当0≤x 或a x ≥时,粒子势能无限大,物理上考虑这是不可能地,所以粒子在该区域出现纪律为零,即:()0=x ψ当a x <<0时,()0=x U ,定态薛定谔方程为:ψψE dx d m =-2222 设2/2 E k μ=,则方程为:0222=+ψψk dx d通解为:()kx B kx A x cos sin +=ψ由波函数地连续性可知,在0x =、x a =处()0=x ψ,即:()()()()0cos sin 00cos 0sin =+==+=ka B ka A x B A x ψψ得:0B =;n k a π=,n =1、2、3……所以有:()sin n n x A a πψ⎛⎫= ⎪⎝⎭,n =1、2、3…… 归一化条件:()()1sin 022022=⎪⎭⎫ ⎝⎛==⎰⎰⎰∞+∞-a a dx a n A dx x dx x πψψ 所以:a A 2=,即:()n n x a πψ⎛⎫ ⎪⎝⎭,n =1、2、3…… 粒子能量为:22222n E E n a πμ==,n =1、2、3……12.解:()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=a x a x a x a a x a x a x πππππψ2cos sin sin 2cos sin 22⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=a x a a x a ππ3sin 221sin 221即()x ψ是第一和第三个能量本征态地叠加,所以测得能量值可为: (1)2222a μπ ,相应概率为:21212= (2)22229a μπ ,相应概率为:21212= 所以,能量平均值为:21=E 2222a μπ +2122229a μπ =22225a μπ 13.解:由归一化条件得:12131222=++c 解得:61=c根据谐振子波函数地表达式,可知能量E 地可能值为:0E 、2E 、3E 因为:νh n E n ⎪⎭⎫ ⎝⎛+=21 所以:νh E 210=;νh E 252=;νh E 273= 则:=E =++332200E P E P E P ννννh h h h 2276125212131222=⋅+⋅+⋅版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.ViLRaIt6sk用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.9eK0GsX7H1个人收集整理仅供参考学习Users may use the contents or services of this article for personal study, research or appreciation, and othernon-commercial or non-profit purposes, but at the same time, they shall abide by the provisions of copyright law and other relevant laws, and shall not infringe upon the legitimate rights of this website and its relevant obligees. In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevant obligee.naK8ccr8VI转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.B6JgIVV9aoReproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.P2IpeFpap511 / 11。
量子力学习题集(NJU)
h ¯ k2
Note:
∫
∞
−∞
[ ( )] dx exp − α2 x2 + iβx + iγx2 =
(
π α2 + iγ
)1/2
−β 2 (α2 − iγ ) exp 4 (α4 + γ 2 )
[
]
4. 设粒子处于二维无限深势井中, 0, 0 ≤ x ≤ a, 0 ≤ y ≤ b; V (x) = ∞, 其它情况. 求粒子的能量本征值和本征函数,并讨论简并性。 参考答案:由于势阱无限深,在势阱外找到粒子的概率应该为零,因此势阱外的波函数为 ψ (x, y ) = 0. 在势井内部,定态薛定谔方程为 h ¯2 2 h ¯2 ∂2 ∂2 − ∇ ψ (x, y ) = − ( 2 + 2 )ψ (x, y ) = Eψ (x, y ). 2µ 2µ ∂x ∂y 这里,µ为粒子质量。做变量分离 ψ (x, y ) = f (x)g (y ), 我们有 其中,c > 0。 求解上面两个方程,我们有 f (x) = α eikx x + α e−ikx x , 1 2 g (y ) = β1 eiky y + β2 e−iky y ,
b
3
和
f (x) = A sin(k x), x g (y ) = B sin(ky y ). 进行归一化后,有 2 nπx mπx ψn,m (x, y ) = √ sin( ) sin( ). a b ab
而本征能量为 En,m = 当a = b时,则本征能量为 En,m =
2 2
4
h ¯ 2 π 2 n2 . 2ma2
于是, 1 ψ (x, 0) = √ [ψ1 (x) + eiϕ ψ2 (x)]. 2 (2) 1 h h ψ (x, t) = √ [ψ1 (x)e−iE1 t/¯ + eiϕ ψ2 (x)e−iE2 t/¯ ]. 2 |ψ (x, t)|2 = ψ ∗ (x, t)ψ (x, t) E1 − E2 1 2 2 (x) + ψ2 (x) + 2ψ1 (x)ψ2 (x) cos(ϕ + t)]. = [ψ1 2 h ¯ (3) ∫ ⟨x ˆ⟩ = 利用, ∫
量子力学试题及答案
量子力学试题及答案一、选择题(每题2分,共20分)1. 量子力学的基本原理之一是:A. 牛顿运动定律B. 薛定谔方程C. 麦克斯韦方程组D. 热力学第二定律2. 波函数的绝对值平方代表:A. 粒子的动量B. 粒子的能量C. 粒子在某一位置的概率密度D. 粒子的波长3. 以下哪个不是量子力学中的守恒定律?A. 能量守恒B. 动量守恒C. 角动量守恒D. 电荷守恒4. 量子力学中的不确定性原理是由哪位物理学家提出的?A. 爱因斯坦B. 波尔C. 海森堡D. 薛定谔5. 在量子力学中,一个粒子的波函数可以表示为:B. 一个复数C. 一个向量D. 一个矩阵二、简答题(每题10分,共30分)1. 简述海森堡不确定性原理,并解释其在量子力学中的意义。
2. 解释什么是量子纠缠,并给出一个量子纠缠的例子。
3. 描述量子隧道效应,并解释它在实际应用中的重要性。
三、计算题(每题25分,共50分)1. 假设一个粒子在一维无限深势阱中,其波函数为ψ(x) = A *sin(kx),其中A是归一化常数。
求该粒子的能量E。
2. 考虑一个二维电子在x-y平面上的波函数ψ(x, y) = A * e^(-αx) * cos(βy),其中A是归一化常数。
求该电子的动量分布。
答案一、选择题1. B. 薛定谔方程2. C. 粒子在某一位置的概率密度3. D. 电荷守恒4. C. 海森堡二、简答题1. 海森堡不确定性原理指出,粒子的位置和动量不能同时被精确测量,其不确定性关系为Δx * Δp ≥ ħ/2,其中ħ是约化普朗克常数。
这一原理揭示了量子世界的基本特性,即粒子的行为具有概率性而非确定性。
2. 量子纠缠是指两个或多个量子系统的状态不能独立于彼此存在,即使它们相隔很远。
例如,两个纠缠的电子,无论它们相隔多远,测量其中一个电子的自旋状态会即刻影响到另一个电子的自旋状态。
3. 量子隧道效应是指粒子在经典物理中无法穿越的势垒,在量子物理中却有一定概率能够穿越。
量子力学习题及答案
(7)代入(6)
csin2kk22a?dcos2k2a??kccos2k2a?
k21
kdsin2k2a
1
利用(4)、(5),得
k1k2kasin2k2a?acos2k2a??acos2k2a?2kdsin2k2a
1
a[(
k1k2k?2k)sin2k2a?2cos2k2a]?0
1?a?0
?
2
2?
??4
??0?e?4(b?x)对于区域Ⅰ,u(x)??,粒子不可能到达此区域,故?1(x)?0
而. ????2? (u0?e)
2
0?
2
?2?①
??2? (u1?e)
3
???
2
?3?0 ②
??2?e4
???
2
?
4
?0
对于束缚态来说,有?u?e?0
∴ ????k21?2?0 k22? (u0?e)
因此k1x
??1?ae ?
3
?fe
?k
1x
由波函数的连续性,有
?1(0)??2(0),?a?d(4)
?1?(0)???2
(0),?k1a?k2c (5)??(2a)??1a
3?(2a),?k2ccos2k2a?k2dsin2k2a??k?2k2
1fe(6)
?1a
2(2a)??3(2a),?csin2k2a?dcos2k2a?fe
1???k1?1?1?2?(u0?e)?????2??k22?2?0 (2) k22?2?e?2
束缚态0<e<u0 ??
??3??k2
1?3?0 (3)?1x
1?ae
?k?be
?k1x
基本习题及答案_量子力学
量子力学习题(一) 单项选择题1.能量为100ev的自由电子的De Broglie 波长是A. 1.2. B. 1.5. C. 2.1. D. 2.5.2. 能量为0.1ev的自由中子的De Broglie 波长是A.1.3. B. 0.9. C. 0.5. D. 1.8.3. 能量为0.1ev,质量为1g的质点的De Broglie 波长是A.1.4. B.1.9.C.1.17. D. 2.0.4.温度T=1k时,具有动能(为Boltzeman常数)的氦原子的De Broglie 波长是A.8. B. 5.6. C. 10. D. 12.6.5.用Bohr-Sommerfeld的量子化条件得到的一维谐振子的能量为()A.. B..C.. D..6.在0k附近,钠的价电子的能量为3ev,其De Broglie波长是A.5.2. B. 7.1. C. 8.4. D. 9.4.7.钾的脱出功是2ev,当波长为3500的紫外线照射到钾金属表面时,光电子的最大能量为A. 0.25J. B. 1.25J.C. 0.25J. D. 1.25J.8.当氢原子放出一个具有频率的光子,反冲时由于它把能量传递给原子而产生的频率改变为A.. B.. C.. D..pton 效应证实了A.电子具有波动性.B. 光具有波动性.C.光具有粒子性.D. 电子具有粒子性.10.Davisson 和Germer 的实验证实了A. 电子具有波动性.B. 光具有波动性.C. 光具有粒子性.D. 电子具有粒子性.11.粒子在一维无限深势阱中运动,设粒子的状态由描写,其归一化常数C为A.. B.. C.. D..12. 设,在范围内找到粒子的几率为A.. B.. C.. D..13. 设粒子的波函数为,在范围内找到粒子的几率为A.. B..C.. D..14.设和分别表示粒子的两个可能运动状态,则它们线性迭加的态的几率分布为A..B.+.C.+.D.+.15.波函数应满足的标准条件是A.单值、正交、连续.B.归一、正交、完全性.C.连续、有限、完全性.D.单值、连续、有限.16.有关微观实物粒子的波粒二象性的正确表述是A.波动性是由于大量的微粒分布于空间而形成的疏密波.B.微粒被看成在三维空间连续分布的某种波包.C.单个微观粒子具有波动性和粒子性.D. A, B, C.17.已知波函数,,,.其中定态波函数是A.. B.和. C.. D.和.18.若波函数归一化,则A.和都是归一化的波函数.B.是归一化的波函数,而不是归一化的波函数.C.不是归一化的波函数,而是归一化的波函数.D.和都不是归一化的波函数.(其中为任意实数)19.波函数、(为任意常数),A.与描写粒子的状态不同.B.与所描写的粒子在空间各点出现的几率的比是1:.C.与所描写的粒子在空间各点出现的几率的比是.D.与描写粒子的状态相同.20.波函数的傅里叶变换式是A..B..C..D..21.量子力学运动方程的建立,需满足一定的条件:(1)方程中仅含有波函数关于时间的一阶导数. (2)方程中仅含有波函数关于时间的二阶以下的导数.(3)方程中关于波函数对空间坐标的导数应为线性的. (4) 方程中关于波函数对时间坐标的导数应为线性的.(5) 方程中不能含有决定体系状态的具体参量. (6) 方程中可以含有决定体系状态的能量. 则方程应满足的条件是A. (1)、(3)和(6).B. (2)、(3)、(4)和(5).C. (1)、(3)、(4)和(5).D.(2)、(3)、(4)、(5)和(6).22.两个粒子的薛定谔方程是A.B.C.D.23.几率流密度矢量的表达式为A..B..C..D..24.质量流密度矢量的表达式为A...C..D..25. 电流密度矢量的表达式为A..B..C..D..26.下列哪种论述不是定态的特点A.几率密度和几率流密度矢量都不随时间变化.B.几率流密度矢量不随时间变化.C.任何力学量的平均值都不随时间变化.D.定态波函数描述的体系一定具有确定的能量.27.在一维无限深势阱中运动的质量为的粒子的能级为A.,B., D..28. 在一维无限深势阱中运动的质量为的粒子的能级为A., B., C., D..29. 在一维无限深势阱中运动的质量为的粒子的能级为A.,B., C., D..30. 在一维无限深势阱中运动的质量为的粒子处于基态,其位置几率分布最大处是A., B., C., D..31. 在一维无限深势阱中运动的质量为的粒子处于第一激发态,其位置几率分布最大处是 A., B., C., D..32.在一维无限深势阱中运动的粒子,其体系的A.能量是量子化的,而动量是连续变化的.B.能量和动量都是量子化的.C.能量和动量都是连续变化的.D.能量连续变化而动量是量子化的.33.线性谐振子的能级为A..B..C..D..34.线性谐振子的第一激发态的波函数为,其位置几率分布最大处为A.. B.. C.. D..35.线性谐振子的A.能量是量子化的,而动量是连续变化的.B.能量和动量都是量子化的.C.能量和动量都是连续变化的.D.能量连续变化而动量是量子化的.36.线性谐振子的能量本征方程是A..B..C..D..37.氢原子的能级为A..B..C.. D..38.在极坐标系下,氢原子体系在不同球壳内找到电子的几率为A.. B..C.. D..39. 在极坐标系下,氢原子体系在不同方向上找到电子的几率为A.. B..C.. D..40.波函数和是平方可积函数,则力学量算符为厄密算符的定义是A..B..C..D..41.和是厄密算符,则A.必为厄密算符. B.必为厄密算符.C.必为厄密算符.D.必为厄密算符.42.已知算符和,则A.和都是厄密算符. B.必是厄密算符.C.必是厄密算符.D.必是厄密算符.43.自由粒子的运动用平面波描写,则其能量的简并度为A.1.B. 2.C. 3.D. 4.44.二维自由粒子波函数的归一化常数为(归到函数)A.. B..C.. D.45.角动量Z分量的归一化本征函数为A.. B..C.. D..46.波函数A. 是的本征函数,不是的本征函数.B. 不是的本征函数,是的本征函数.C. 是、的共同本征函数.D. 即不是的本征函数,也不是的本征函数.47.若不考虑电子的自旋,氢原子能级n=3的简并度为A. 3.B. 6.C. 9.D. 12.48.氢原子能级的特点是A.相邻两能级间距随量子数的增大而增大.B.能级的绝对值随量子数的增大而增大.C.能级随量子数的增大而减小.D.相邻两能级间距随量子数的增大而减小.49一粒子在中心力场中运动,其能级的简并度为,这种性质是A. 库仑场特有的.B.中心力场特有的.C.奏力场特有的.D.普遍具有的.50.对于氢原子体系,其径向几率分布函数为,则其几率分布最大处对应于Bohr原子模型中的圆轨道半径是 A.. B.. C.. D..51.设体系处于状态,则该体系的能量取值及取值几率分别为A.. B..C.. D..52.接51题,该体系的角动量的取值及相应几率分别为A.. B.. C.. D..53. 接51题,该体系的角动量Z分量的取值及相应几率分别为A.. B..C.. D..54. 接51题,该体系的角动量Z分量的平均值为A.. B.. C.. D..55. 接51题,该体系的能量的平均值为A..B..C.. D..56.体系处于状态,则体系的动量取值为A.. B.. C.. D..57.接上题,体系的动量取值几率分别为A. 1,0.B. 1/2,1/2.C. 1/4,3/4/ .D. 1/3,2/3.58.接56题, 体系的动量平均值为A.. B.. C.. D..59.一振子处于态中,则该振子能量取值分别为A.. B..C.. D..60.接上题,该振子的能量取值的几率分别为A.. B.,.C.,. D..61.接59题,该振子的能量平均值为A. .B..C.. D..62.对易关系等于(为的任意函数) A..B..C.. D..63. 对易关系等于A.. B..C.. D..64.对易关系等于A.. B.. C.. D..65. 对易关系等于A.. B.. C.. D..66. 对易关系等于A.. B.. C.. D..67. 对易关系等于A.. B.. C.. D..68. 对易关系等于A.. B.. C.. D..69. 对易关系等于A.. B.. C.. D..70. 对易关系等于A.. B.. C.. D..71. 对易关系等于A.. B.. C.. D..72. 对易关系等于A.. B.. C.. D..73. 对易关系等于A.. B.. C.. D..74. 对易关系等于A.. B.. C.. D..75. 对易关系等于A.. B.. C.. D..76. 对易关系等于A.. B.. C.. D..77.对易式等于A.. B.. C.. D..78. 对易式等于(m,n为任意正整数) A.. B.. C.. D..79.对易式等于A.. B.. C.. D..80. .对易式等于(c为任意常数) A.. B.. C.. D..81.算符和的对易关系为,则、的测不准关系是A.. B..C.. D..82.已知,则和的测不准关系是 A.. B..C.. D..83. 算符和的对易关系为,则、的测不准关系是A..B..C..D..84.电子在库仑场中运动的能量本征方程是A..B..C..D..85.类氢原子体系的能量是量子化的,其能量表达式为A.. B..C.. D..86. 在一维无限深势阱中运动的质量为的粒子,其状态为,则在此态中体系能量的可测值为A., B.,C., D..87.接上题,能量可测值、出现的几率分别为A.1/4,3/4.B. 3/4,1/4.C.1/2, 1/2.D. 0,1.88.接86题,能量的平均值为A., B., C., D..89.若一算符的逆算符存在,则等于A. 1.B. 0.C. -1.D. 2.90.如果力学量算符和满足对易关系, 则A.和一定存在共同本征函数,且在任何态中它们所代表的力学量可同时具有确定值.B.和一定存在共同本征函数,且在它们的本征态中它们所代表的力学量可同时具有确定值.C.和不一定存在共同本征函数,且在任何态中它们所代表的力学量不可能同时具有确定值.D.和不一定存在共同本征函数,但总有那样态存在使得它们所代表的力学量可同时具有确定值.91.一维自由粒子的能量本征值A. 可取一切实数值.B.只能取不为负的一切实数.C.可取一切实数,但不能等于零.D.只能取不为正的实数.92.对易关系式等于A.. B..C.. D..93.定义算符, 则等于A.. B.. C.. D..94.接上题, 则等于A.. B.. C.. D..95. 接93题, 则等于A.. B.. C.. D..96.氢原子的能量本征函数A.只是体系能量算符、角动量平方算符的本征函数,不是角动量Z分量算符的本征函数.B.只是体系能量算符、角动量Z分量算符的本征函数,不是角动量平方算符的本征函数.C.只是体系能量算符的本征函数,不是角动量平方算符、角动量Z分量算符的本征函数.D.是体系能量算符、角动量平方算符、角动量Z分量算符的共同本征函数.97.体系处于态中,则A.是体系角动量平方算符、角动量Z分量算符的共同本征函数.B.是体系角动量平方算符的本征函数,不是角动量Z分量算符的本征函数.C.不是体系角动量平方算符的本征函数,是角动量Z分量算符的本征函数.D.即不是体系角动量平方算符的本征函数,也不是角动量Z分量算符的本征函数.98.对易关系式等于A.. B.C.. D..99.动量为的自由粒子的波函数在坐标表象中的表示是,它在动量表象中的表示是A.. B.. C.. D..100.力学量算符对应于本征值为的本征函数在坐标表象中的表示是A.. B.. C.. D..101.一粒子在一维无限深势阱中运动的状态为,其中、是其能量本征函数,则在能量表象中的表示是A..B..C..D..102.线性谐振子的能量本征函数在能量表象中的表示是A.. B.. C.. D..103. 线性谐振子的能量本征函数在能量表象中的表示是A.. B..C.. D..104.在()的共同表象中,波函数,在该态中的平均值为A.. B.. C.. D. 0.105.算符只有分立的本征值,对应的本征函数是,则算符在表象中的矩阵元的表示是A..B..C..D..106.力学量算符在自身表象中的矩阵表示是A. 以本征值为对角元素的对角方阵.B. 一个上三角方阵.C.一个下三角方阵.D.一个主对角线上的元素等于零的方阵.107.力学量算符在动量表象中的微分形式是A.. B.. C.. D..108.线性谐振子的哈密顿算符在动量表象中的微分形式是 A.. B..C.. D..109.在表象中,其本征值是A.. B. 0. C.. D..110.接上题,的归一化本征态分别为 A.. B..C.. D..111.幺正矩阵的定义式为 A.. B.. C.. D..112.幺正变换A.不改变算符的本征值,但可改变其本征矢.B.不改变算符的本征值,也不改变其本征矢.C.改变算符的本征值,但不改变其本征矢.D.即改变算符的本征值,也改变其本征矢. 113.算符,则对易关系式等于A.. B..C.. D..114.非简并定态微扰理论中第个能级的表达式是(考虑二级近似)A..B..C..D..115. 非简并定态微扰理论中第个能级的一级修正项为A.. B.. C.. D..116. 非简并定态微扰理论中第个能级的二级修正项为A.. B..C.. D..117. 非简并定态微扰理论中第个波函数一级修正项为A..B..C..D..118.沿方向加一均匀外电场,带电为且质量为的线性谐振子的哈密顿为A..B..C..D..119.非简并定态微扰理论的适用条件是 A.. B..C.. D..120.转动惯量为I,电偶极矩为的空间转子处于均匀电场中,则该体系的哈密顿为A.. B..C.. D..121.非简并定态微扰理论中,波函数的一级近似公式为A..B..C..D..122.氢原子的一级斯塔克效应中,对于的能级由原来的一个能级分裂为A. 五个子能级.B. 四个子能级.C. 三个子能级.D. 两个子能级.123.一体系在微扰作用下,由初态跃迁到终态的几率为A..B..C..D..124.用变分法求量子体系的基态能量的关键是A. 写出体系的哈密顿.B. 选取合理的尝试波函数.C. 计算体系的哈密顿的平均值.D. 体系哈密顿的平均值对变分参数求变分. 125.Stern-Gerlach实验证实了A. 电子具有波动性.B.光具有波动性.C. 原子的能级是分立的.D. 电子具有自旋. 126.为自旋角动量算符,则等于A.. B.. C..D..127.为Pauli算符,则等于A.. B.. C.. D..128.单电子的自旋角动量平方算符的本征值为A.. B.. C.. D..129.单电子的Pauli算符平方的本征值为 A. 0. B. 1. C. 2. D. 3.130.Pauli算符的三个分量之积等于A. 0.B. 1.C.. D..131.电子自旋角动量的分量算符在表象中矩阵表示为A.. B..C.. D..132. 电子自旋角动量的y分量算符在表象中矩阵表示为A.. B..C.. D..133. 电子自旋角动量的z分量算符在表象中矩阵表示为A.. B..C.. D..134.是角动量算符,,则等于A.. B.. C. 1 . D. 0 .135.接上题,等于A.. B.. C.. D. 0.136.接134题,等于A.. B.. C.. D. 0.137.一电子处于自旋态中,则的可测值分别为A.. B..C.. D..138.接上题,测得为的几率分别是A.. B.. C..D..139.接137题,的平均值为A. 0.B..C.. D..140.在表象中,,则在该态中的可测值分别为A.. B.. C.. D..141.接上题,测量。
量子力学作业及参考答案
15-1 将星球看做绝对黑体,利用维恩位移定律测量m λ便可求得T .这是测量星球表面温度的方法之一.设测得:太阳的m 55.0m μλ=,北极星的m 35.0m μλ=,天狼星的m 29.0m μλ=,试求这些星球的表面温度.解:将这些星球看成绝对黑体,则按维恩位移定律:K m 10897.2,3⋅⨯==-b b T m λ对太阳: K 103.51055.010897.236311⨯=⨯⨯==--mbT λ对北极星:K 103.81035.010897.236322⨯=⨯⨯==--mbT λ对天狼星:K 100.11029.010897.246333⨯=⨯⨯==--mbT λ15-3 从铝中移出一个电子需要4.2 eV 的能量,今有波长为2000οA 的光投射到铝表面.试问:(1)由此发射出来的光电子的最大动能是多少?(2)遏止电势差为多大?(3)铝的截止(红限)波长有多大?解:(1)已知逸出功eV 2.4=A 据光电效应公式221m mv hv =A +则光电子最大动能:A hcA h mv E m -=-==λυ2max k 21eV0.2J 1023.3106.12.41020001031063.6191910834=⨯=⨯⨯-⨯⨯⨯⨯=----m2max k 21)2(mvE eUa==∴遏止电势差 V 0.2106.11023.31919=⨯⨯=--a U(3)红限频率0υ,∴000,λυυcA h ==又∴截止波长 1983401060.12.41031063.6--⨯⨯⨯⨯⨯==Ahc λm 0.296m 1096.27μ=⨯=-15-4 在一定条件下,人眼视网膜能够对5个蓝绿光光子(m 105.0-7⨯=λ)产生光的感觉.此时视网膜上接收到光的能量为多少?如果每秒钟都能吸收5个这样的光子,则到 达眼睛的功率为多大? 解:5个兰绿光子的能量J1099.1100.51031063.65187834---⨯=⨯⨯⨯⨯⨯===λυhcn nh E功率 W 1099.118-⨯==tE15-5 设太阳照射到地球上光的强度为8 J ·s -1·m -2,如果平均波长为5000οA ,则每秒钟落到地面上1m 2的光子数量是多少?若人眼瞳孔直径为3mm ,每秒钟进入人眼的光子数是多少? 解:一个光子能量 λυhch E ==1秒钟落到2m 1地面上的光子数为21198347ms1001.21031063.6105888----⋅⨯=⨯⨯⨯⨯⨯===hcEn λ每秒进入人眼的光子数为11462192s1042.14/10314.31001.24--⨯=⨯⨯⨯⨯==dnN π15-6若一个光子的能量等于一个电子的静能,试求该光子的频率、波长、动量.解:电子的静止质量S J 1063.6,kg 1011.934310⋅⨯=⨯=--h m 当 20c m h =υ时,则Hz10236.11063.6)103(1011.92034283120⨯=⨯⨯⨯⨯==--hc m υο12A 02.0m 104271.2=⨯==-υλc122831020122sm kg 1073.21031011.9sm kg 1073.2-----⋅⋅⨯=⨯⨯⨯=====⋅⋅⨯==c m cc m c E p cpE hp 或λ15-7 光电效应和康普顿效应都包含了电子和光子的相互作用,试问这两个过程有什么不同? 答:光电效应是指金属中的电子吸收了光子的全部能量而逸出金属表面,是电子处于原子中束缚态时所发生的现象.遵守能量守恒定律.而康普顿效应则是光子与自由电子(或准自由电子)的弹性碰撞,同时遵守能量与动量守恒定律.15-8 在康普顿效应的实验中,若散射光波长是入射光波长的1.2倍,则散射光子的能量ε与反冲电子的动能k E 之比k E /ε等于多少? 解:由 2200mc h c m hv +=+υ)(00202υυυυ-=-=-=h h h cm mcE kυεh =∴5)(00=-=-=υυυυυυεh h E k已知2.10=λλ由2.10=∴=υυλυc2.11=υυ则52.0112.110==-=-υυυ15-10 已知X 光光子的能量为0.60 MeV ,在康普顿散射之后波长变化了20%,求反冲电子的能量.解:已知X 射线的初能量,MeV 6.00=ε又有00,ελλεhchc =∴=经散射后 000020.1020.0λλλλ∆λλ=+=+= 此时能量为 002.112.1ελλε===hc hc反冲电子能量 MeV 10.060.0)2.111(0=⨯-=-=εεE15-11 在康普顿散射中,入射光子的波长为0.030 οA ,反冲电子的速度为0.60c ,求散射光子的波长及散射角. 解:反冲电子的能量增量为202022020225.06.01c m cm cm cm mcE =--=-=∆由能量守恒定律,电子增加的能量等于光子损失的能量, 故有 20025.0c m hchc=-λλ散射光子波长ο121083134103400A043.0m 103.410030.0103101.925.01063.610030.01063.625.0=⨯=⨯⨯⨯⨯⨯⨯-⨯⨯⨯⨯=-=------λλλc m h h由康普顿散射公式2sin0243.022sin22200ϕϕλλλ∆⨯==-=cm h可得 2675.00243.02030.0043.02sin2=⨯-=ϕ散射角为 7162'=οϕ15-12 实验发现基态氢原子可吸收能量为12.75eV 的光子. (1)试问氢原子吸收光子后将被激发到哪个能级?(2)受激发的氢原子向低能级跃迁时,可发出哪几条谱线?请将这些跃迁画在能级图上. 解:(1)2eV 6.13eV 85.0eV 75.12eV 6.13n -=-=+-解得 4=n 或者 )111(22n Rhc E -=∆75.12)11.(1362=-=n解出 4=n题15-12图 题15-13图(2)可发出谱线赖曼系3条,巴尔末系2条,帕邢系1条,共计6条.15-13 以动能12.5eV 的电子通过碰撞使氢原子激发时,最高能激发到哪一能级?当回到基态时能产生哪些谱线?解:设氢原子全部吸收eV 5.12能量后,最高能激发到第n 个能级,则]11[6.135.12,eV 6.13],111[2221nRhc nRhc E E n -==-=-即得5.3=n ,只能取整数,∴ 最高激发到3=n ,当然也能激发到2=n 的能级.于是ο322ο222ο771221A 6563536,3653121~:23A 121634,432111~:12A1026m 10026.110097.18989,983111~:13===⎥⎦⎤⎢⎣⎡-=→===⎥⎦⎤⎢⎣⎡-=→=⨯=⨯⨯===⎥⎦⎤⎢⎣⎡-=→-R R R n R R R n RR R n λυλυλυ从从从可以发出以上三条谱线.题15-14图15-14 处于基态的氢原子被外来单色光激发后发出巴尔末线系中只有两条谱线,试求这两 条谱线的波长及外来光的频率.解:巴尔末系是由2>n 的高能级跃迁到2=n 的能级发出的谱线.只有二条谱线说明激发后最高能级是4=n 的激发态.ο1983424ο101983423222324A4872106.1)85.04.3(1031063.6A6573m 1065731060.1)51.14.3(10331063.6e 4.326.13e 51.136.13e 85.046.13=⨯⨯-⨯⨯⨯=-==⨯=⨯⨯-⨯⨯⨯⨯=-=∴-=∴-==-=-=-=-=-=-=-----E E hc E E hcE E hc E E hch VE V E V E a mn mn βλλλλυ基态氢原子吸收一个光子υh 被激发到4=n 的能态 ∴ λυhcE E h =-=14Hz 1008.310626.6106.1)85.06.13(15341914⨯=⨯⨯⨯-=-=--hE E υ15-15 当基态氢原子被12.09eV 的光子激发后,其电子的轨道半径将增加多少倍? 解: eV 09.12]11[6.1321=-=-nE E n 26.1309.126.13n =-51.16.1309.12.1366.132=-=n , 3=n12r n r n =,92=n,19r r n =轨道半径增加到9倍.15-16德布罗意波的波函数与经典波的波函数的本质区别是什么?答:德布罗意波是概率波,波函数不表示实在的物理量在空间的波动,其振幅无实在的物理意义,2φ仅表示粒子某时刻在空间的概率密度.15-17 为使电子的德布罗意波长为1οA ,需要多大的加速电压? 解: ooA 1A 25.12==uλ 25.12=U∴ 加速电压 150=U 伏15-18 具有能量15eV 的光子,被氢原子中处于第一玻尔轨道的电子所吸收,形成一个 光电子.问此光电子远离质子时的速度为多大?它的德布罗意波长是多少?解:使处于基态的电子电离所需能量为eV 6.13,因此,该电子远离质子时的动能为eV 4.16.13152112=-=+==E E mvE k φ它的速度为31191011.9106.14.122--⨯⨯⨯⨯==mE v k -15s m 100.7⋅⨯=其德布罗意波长为:o953134A 10.4m 1004.1100.71011.91063.6=⨯=⨯⨯⨯⨯==---mvh λ15-19 光子与电子的波长都是2.0οA ,它们的动量和总能量各为多少? 解:由德布罗意关系:2mc E =,λhmv p ==波长相同它们的动量相等.1-241034s m kg 103.3100.21063.6⋅⋅⨯=⨯⨯==---λhp光子的能量eV 102.6J 109.9103103.3316824⨯=⨯=⨯⨯⨯====--pc hch λυε电子的总能量 2202)()(c m cp E +=,eV 102.63⨯=cp而 eV 100.51MeV 51.0620⨯==c m∴ cp c m >>2∴ MeV 51.0)()(202202==+=c m c m cp E15-20 已知中子的质量kg 1067.127n -⨯=m ,当中子的动能等于温度300K 的热平衡中子气体的平均动能时,其德布罗意波长为多少? 解:kg 1067.127n -⨯=m ,S J 1063.634⋅⨯=-h ,-123K J 1038.1⋅⨯=-k中子的平均动能 mpKT E k 2232==德布罗意波长 oA 456.13===mkTh phλ15-21 一个质量为m 的粒子,约束在长度为L 的一维线段上.试根据测不准关系估算这个粒子所具有的最小能量的值.解:按测不准关系,h p x x ≥∆∆,x x v m p ∆=∆,则h v x m x ≥∆∆,xm h v x ∆≥∆这粒子最小动能应满足222222min 22)(21)(21mLhxm hxm h m v m E x =∆=∆≥∆=15-22 从某激发能级向基态跃迁而产生的谱线波长为4000οA ,测得谱线宽度为10-4οA ,求该激发能级的平均寿命. 解:光子的能量 λυhch E ==由于激发能级有一定的宽度E ∆,造成谱线也有一定宽度λ∆,两者之间的关系为: λλ∆=∆2hcE由测不准关系,h t E ≥∆⋅∆,平均寿命t ∆=τ,则λλτ∆=∆=∆=c Eh t 2s 103.51010103)104000(81048210----⨯=⨯⨯⨯⨯=15-23 一波长为3000οA 的光子,假定其波长的测量精度为百万分之一,求该光子位置的测不准量.解: 光子λhp =,λλλλ∆=∆-=∆22hhp由测不准关系,光子位置的不准确量为cm 30A 103103000o962=⨯=====-λλ∆λλ∆λ∆∆p h x。
量子力学试题及答案
量子力学试题及答案一、选择题1. 下列哪个不是量子力学的基本假设?A. 薛定谔方程描述了微观粒子的运动B. 波粒二象性存在C. 粒子的能量只能取离散值D. 电子具有自旋答案:A2. 量子力学中,波函数ψ的物理意义是什么?A. 粒子的位置分布概率幅B. 粒子的动量C. 粒子的自旋D. 粒子的能量答案:A3. 下列哪个是测量厄米算符A的本征值所对应的本征态?A. |A⟩= A|ψ⟩B. A|ψ⟩= λ|ψ⟩C. A|ψ⟩= |ψ⟩D. A|ψ⟩ = 0答案:B4. 对于厄米算符A和B,若它们对易(即[A, B] = 0),则可以同时拥有共同的一组本征态。
A. 正确B. 错误答案:A5. 量子力学中,双缝干涉实验的实验结果说明了下列哪个基本原理?A. 波粒二象性B. 运动不确定性原理C. 量子纠缠D. 全同粒子统计答案:A二、填空题1. 薛定谔方程的一般形式为___________。
答案:iℏ∂ψ/∂t = Hψ2. 微观粒子的自旋可取的两个可能取值是_________。
答案:±1/23. 薛定谔方程描述的是粒子的_________。
答案:波函数4. 在量子力学中,观测算符A的平均值表示为_________。
答案:⟨A⟩ = ⟨ψ|A|ψ⟩5. 测量量子系统时,波函数会坍缩到观测算符A的_________上。
答案:本征态三、简答题1. 请简要解释波粒二象性的概念及其在量子力学中的意义。
答:波粒二象性是指微观粒子既具有粒子性质又具有波动性质。
在量子力学中,波函数描述了粒子的波动性质,可以通过波函数的模的平方得到粒子在不同位置出现的概率分布。
波粒二象性的意义在于解释了微观世界中一些奇特的现象,例如双缝干涉实验和量子隧穿现象。
2. 请简要说明量子力学中的不确定性原理。
答:量子力学中的不确定性原理由海森堡提出,它表明在同时测量一粒子的位置和动量时,粒子的位置和动量不能同时具有确定的值,其精度存在一定的限制。
量子力学习题以及课堂练习答案
一.微观粒子的波粒二象性1、在温度下T=0k 附近,钠的价电子能量约为3电子伏特,求其德布罗意波长。
2、求与下列各粒子相关的德布罗意波长。
(1)能量为100电子伏特的自由电子;(2)能量为0.1电子伏特的自由中子;(3)能量为0.1电子伏特,质量为1克的自由粒子; (4)温度T=1k 时,具有动能kTE 23=的氦原子,其中k 为玻尔兹曼常数。
3、若电子和中子的德布罗意波长等于oA 1,试求它们的速度、动量和动能。
4、两个光子在一定条件下可以转化为正负电子对,如果两电子的能量相等,问要实现这种转化,光子的波长最大是多少?5、设一电子为电势差U 所加速,最后打在靶上,若电子的动能转化为一光子,求当这光子相应的光波波长分别为5000oA (可见光)o A 1(x 射线),oA001.0(γ射线)时,加速电子所需的电势差各是多少?二.波函数与薛定谔方程1、设粒子的归一化波函数为 ),,(z y x ϕ,求 (1)在),(dx xx +范围内找到粒子的几率;(2)在),(21y y 范围内找到粒子的几率; (3)在),(21x x 及),(21z z 范围内找到粒子的几率。
2、设粒子的归一化波函数为 ),,(ϕθψr ,求:(1)在球壳),(dr rr +内找到粒子的几率;(2)在),(ϕθ方向的立体角Ωd 内找到粒子的几率; 3、下列波函数所描述的状态是否为定态?为什么?(1)Eti ix Eti ix ex ex t x---+=ψ)()(),(211ψψ[])()(21x x ψψ≠(2)tE i t E i ex ex t x 21)()(),(2--+=ψψψ)(21E E ≠(3)EtiEti ex ex t x)()(),(3ψψ+=ψ-4、对于一维粒子,设 xp i o e xπψ21)0,(=,求 ),(t x ψ。
5、证明在定态中,几率密度和几率流密度均与时间无关。
6、由下列两个定态波函数计算几率流密度。
量子力学习题集及答案
量子力学习题集及答案09光信息量子力研究题集一、填空题1.__________2.设电子能量为4电子伏,其德布罗意波长为6.125A。
XXX的量子化条件为∫pdq=nh,应用这量子化条件求得一维谐振子的能级En=(nωℏ)。
3.XXX假说的正确性,在1927年为XXX和革末所做的电子衍射实验所证实,德布罗意关系为E=ωℏ和p=ℏk。
4.ψ(r)=(三维空间自由粒子的归一化波函数为e^(ip·r/ℏ)),其中p为动量算符的归一化本征态。
5.∫ψ*(r)ψ(r)dτ=(δ(p'-p)),其中δ为狄拉克函数。
6.t=0时体系的状态为ψ(x,0)=ψ_n(x)+2ψ_2(x),其中ψ_n(x)为一维线性谐振子的定态波函数,则ψ(x,t)=(ψ(x)e^(-iωt/2)+2ψ_2(x)e^(-5iωt/2))。
7.按照量子力学理论,微观粒子的几率密度w=(|Ψ|^2),几率流密度j=(iℏ/2μ)(Ψ*∇Ψ-Ψ∇Ψ*)。
其中Ψ(r)描写粒子的状态,Ψ(r)是粒子的几率密度,在Ψ(r)中F(x)的平均值为F=(∫Ψ*F(x)Ψdx)/(∫Ψ*Ψdx)。
8.波函数Ψ和cΨ是描写同一状态,Ψe^(iδ)中的e^(iδ)称为相因子,e^(iδ)不影响波函数Ψ的归一化,因为e^(iδ)=1.9.定态是指能量具有确定值的状态,束缚态是指无穷远处波函数为零的状态。
10.E1=E2时,Ψ(x,t)=Ψ_1(x)exp(-iE1t)+Ψ_2(x)exp(-iE2t)是定态的条件。
11.这时几率密度和几率流密度都与时间无关。
12.粒子在能量小于势垒高度时仍能贯穿势垒的现象称为隧道效应。
13.无穷远处波函数为零的状态称为束缚态,其能量一般为分立谱。
14.ψ(x,t)=(ψ(x)e^(-iωt/2)+ψ_3(x)e^(-7iωt/2))。
2.15.在一维无限深势阱中,粒子处于位置区间x a,第一激发态的能量为1/13(22222/2ma2),第一激发态的波函数为sin(n x/a)(n=2)/a。
量子力学试题含答案
量子力学试题含答案1. 选择题a) 以下哪个说法正确?A. 量子力学只适用于微观领域B. 量子力学只适用于宏观领域C. 量子力学适用于微观和宏观领域D. 量子力学不适用于任何领域答案:A. 量子力学只适用于微观领域b) 以下哪个量不是量子力学的基本量?A. 质量B. 电荷C. 动量D. 能量答案:D. 能量c) 下面哪个原理是量子力学的基础?A. 相对论B. Newton力学定律C. 不确定性原理D. 统计力学答案:C. 不确定性原理2. 填空题a) 波粒二象性指的是在特定条件下,微观粒子既可表现出波动性,又可以表现出粒子性。
这种相互转化的现象称为________。
答案:波粒二象性的相互转化b) ____________________是描述微观粒子运动的方程。
答案:薛定谔方程c) Ψ(x, t)代表粒子的波函数,那么|Ψ(x, t)|^2表示__________________。
答案:粒子在坐标x处被测量到的概率密度3. 简答题a) 请简要说明波粒二象性的原理和实验观察。
答案:波粒二象性原理指出,微观粒子既可表现出波动性,又可以表现出粒子性。
这意味着微观粒子的行为既可以用波动的方式来描述(例如干涉和衍射现象),也可以用粒子的方式来描述(例如在特定的位置进行观测)。
实验观察可以通过使用干涉仪和双缝实验等经典实验来验证波动性质。
当光或电子通过干涉仪或双缝实验时,会出现干涉和衍射现象,这表明了粒子具有波动性。
同时,通过探测器对光或电子的位置进行测量,可以观察到粒子的粒子性。
b) 请解释量子力学中的不确定性原理及其意义。
答案:不确定性原理是由德国物理学家海森伯提出的,它指出在测量某个粒子的某个物理量的同时,不可避免地会对另一个物理量的测量结果带来不确定性。
不确定性原理的意义在于限制了我们对微观世界的认知。
它告诉我们,粒子的位置和动量无法同时被精确地确定。
这是由于测量过程中的不可避免的干扰和相互关联性导致的。
量子力学试题及答案
量子力学试题及答案一、选择题(每题4分,共40分)1. 在量子力学中,一个粒子的状态用波函数表示。
波函数的物理意义是:A. 粒子的位置概率分布B. 粒子的运动速度C. 粒子的自旋状态D. 粒子的能量2. 量子力学的基本假设之一是:A. 粒子的能量是离散的B. 粒子在空间中的轨道是连续的C. 粒子的位置可以同时确定D. 粒子的自旋是固定的3. 哪个原理用于解释原子光谱的发射和吸收现象?A. 波粒二象性原理B. 测不准原理C. 泡利不相容原理D. 量子力学随机性原理4. 薛定谔方程描述了:A. 粒子的位置和动量之间的关系B. 粒子在空间中的运动轨迹C. 粒子的能量和自旋状态D. 粒子波函数随时间的演化5. 量子力学波函数的归一化条件是:A. Ψ(x, t)在全空间上的模长平方的积分等于1B. Ψ(x, t)在全空间上的模长平方的积分等于0C. Ψ(x, t)在无限远处趋于零D. Ψ(x, t)的真实部分等于虚部的共轭6. 两个可观测量的对易关系表示为:[A, B] = AB - BA = 0其中[A, B]表示两个算符的对易子。
这意味着:A. A和B的本征态可以同时存在B. A和B的本征值可以同时测量得到C. A和B的测量结果彼此独立D. A和B的测量结果存在不确定性7. 量子力学中的不确定性原理指出,以下哪一对物理量不能同时精确确定:A. 位置和动量B. 能量和时间C. 自旋在X方向和自旋在Y方向D. 角动量在X方向和角动量在Y方向8. 箱中有一自由粒子,其波函数为:Ψ(x) = A sin(kx)其中A和k为常数,该波函数代表:A. 粒子在箱中处于能量本征态B. 粒子在箱中处于动量本征态C. 粒子在箱中处于位置本征态D. 粒子在箱中处于叠加态9. 双缝干涉实验中,当缝宽减小时,干涉图案的特征是:A. 条纹的间距增大B. 条纹的间距减小C. 条纹的亮度增强D. 条纹的亮度减弱10. 量子隧穿现象解释了:A. 电子在金属中的传导现象B. 光子在光学纤维中的传播现象C. 电子在势垒中的穿透现象D. 光子在介质中的反射现象二、填空题(每题6分,共30分)1. 德布罗意波假设将粒子的运动与________联系起来。
量子力学习题集及答案
(1) 能量有两种可能值,, ,相应几率分别为; 有两种可能值,, ,相应几率分别为; 有两种可能值,, ,相应几率分别为; (2) =
3. 德布罗意假说的正确性,在1927年为戴维孙和革末所做 的( 电 )子衍射实验所证实,德布罗意关系(公式) 为( )和( )。
4. 三维空间自由粒子的归一化波函数为=( ), ( )。 5. 动量算符的归一化本征态( ),( )。 6. t=0时体系的状态为,其中为一维线性谐振子的定态波函
数,则( )。 7. 按照量子力学理论,微观粒子的几率密度=( ),几率
流密度=( )。 8. 设描写粒子的状态,是( 粒子的几率密度 ),在中的
平均值为=( )。 9. 波函数和是描写( 同一 )状态,中的称为( 相因子
),不影响波函数的归一化,因为( )。 10. 定态是指( 能量具有确定值 )的状态,束缚态是指
(无穷远处波函数为零)的状态。 11. 是定态的条件是( ),这时几率密度和( 几率密度 )
二、计算、证明题
1.粒子在一维势场中运动,试从薛定谔方程出发求出粒子的定态能 级和归一化波函数.
解:当 当 令得
,
2.一粒子在一维势场中运动,试求粒子的能级和归一化定态波函数 (准确解)。 解: 令则
3.一粒子在硬壁球形空腔中运动,势能为
试从薛定谔方程出发求粒子在态中的能级和定态波函数(不必归一 化)。 { 提示:在态中 } 解: 当 当 令得
立。
23. 力学量算符的本征值必为( 实数 ),力学量算符的属
于两个不同本征值的本征态必( 相互正交 )。
量子力学考试题库及答案
量子力学考试题库及答案一、选择题1. 量子力学中,波函数的平方代表粒子在空间某点出现的概率密度。
下列关于波函数的描述中,哪一项是正确的?A. 波函数的绝对值平方代表粒子在空间某点出现的概率密度B. 波函数的绝对值代表粒子在空间某点出现的概率密度C. 波函数的平方代表粒子在空间某点出现的概率D. 波函数的绝对值平方代表粒子在空间某点出现的概率答案:A2. 海森堡不确定性原理表明,粒子的位置和动量不能同时被精确测量。
以下哪项是海森堡不确定性原理的数学表达式?A. ΔxΔp ≥ ħ/2B. ΔxΔp ≤ ħ/2C. ΔxΔp = ħ/2D. ΔxΔp = ħ答案:A二、填空题3. 在量子力学中,粒子的波函数ψ(x,t)满足________方程,该方程由薛定谔提出,是量子力学的基本方程之一。
答案:薛定谔方程4. 根据泡利不相容原理,一个原子中的两个电子不能具有相同的一组量子数,即不能同时具有相同的________、________、________和________。
答案:主量子数、角量子数、磁量子数、自旋量子数三、简答题5. 简述量子力学中的隧道效应,并给出一个实际应用的例子。
答案:量子隧道效应是指粒子通过一个势垒的概率不为零,即使其能量低于势垒的高度。
这一现象在经典物理学中是不可能发生的。
一个实际应用的例子是扫描隧道显微镜(STM),它利用量子隧道效应来探测物质表面的原子结构。
6. 描述量子力学中的波粒二象性,并解释为什么这一概念是重要的。
答案:波粒二象性是指微观粒子如电子和光子等,既表现出波动性也表现出粒子性。
这一概念重要,因为它揭示了物质在微观尺度上的基本行为,是量子力学的核心概念之一,对理解原子和分子结构、化学反应以及材料的电子性质等方面都有深远的影响。
四、计算题7. 假设一个粒子被限制在一个宽度为L的一维无限深势阱中,求该粒子的基态能量。
答案:基态能量E1 = (π²ħ²)/(2mL²),其中ħ是约化普朗克常数,m是粒子的质量,L是势阱的宽度。
量子力学试题及答案
量子力学试题及答案一、选择题1. 量子力学中,描述一个量子态最基本的方法是()。
A. 波函数B. 哈密顿算符C. 薛定谔方程D. 路径积分答案:A2. 海森堡不确定性原理表明,粒子的()和()不能同时被精确测量。
A. 位置,速度B. 能量,时间C. 动量,位置D. 时间,动量答案:C3. 波函数的绝对值平方代表的是()。
A. 粒子的速度B. 粒子的能量C. 粒子在某一位置出现的概率密度D. 粒子的动量答案:C4. 薛定谔方程是一个()。
A. 线性偏微分方程B. 非线性偏微分方程C. 线性常微分方程D. 非线性常微分方程答案:A5. 在量子力学中,泡利不相容原理指的是()。
A. 两个费米子不能处于同一个量子态B. 两个玻色子不能处于同一个量子态C. 所有粒子都不能处于同一个量子态D. 所有粒子都必须处于同一个量子态答案:A二、填空题1. 在量子力学中,一个粒子的波函数必须满足__________方程,才能保证波函数的归一化条件。
答案:连续性2. 量子力学的基本原理之一是观测者效应,即观测过程会影响被观测的__________。
答案:系统3. 量子纠缠是量子力学中的一种现象,其中两个或多个粒子的量子态以某种方式相互关联,以至于一个粒子的状态立即影响另一个粒子的状态,这种现象被称为__________。
答案:非局域性三、简答题1. 请简述德布罗意假说的内容及其对量子力学的贡献。
德布罗意假说提出了物质波的概念,即所有物质都具有波粒二象性。
这一假说不仅解释了电子衍射实验的现象,而且为量子力学的发展奠定了基础,使得物理学家开始将波动性质引入到粒子的描述中,从而推动了波函数理论的发展。
2. 什么是量子隧穿效应?请给出一个实际应用的例子。
量子隧穿效应是指粒子在遇到一个能量势垒时,即使其能量低于势垒高度,也有可能穿透势垒出现在另一侧的现象。
这一效应是量子力学中特有的,与经典物理学预测的结果不同。
一个实际应用的例子是半导体器件中的隧道二极管,它利用量子隧穿效应来实现电流的传导,具有非常快的开关速度和低功耗的特性。
2023高考物理量子力学练习题及答案
2023高考物理量子力学练习题及答案一、单项选择题1. 根据量子力学的原理,下列哪个量是离散的?A. 电子的动量B. 电子的位置C. 粒子的质量D. 粒子的速度答案:B2. 在量子力学中,波粒二象性指的是什么?A. 粒子存在着波动性B. 粒子的波动速度与光速相等C. 粒子的波动性与粒子性同时存在D. 粒子的波动性只存在于空间中答案:C3. 下列哪个现象不能用经典物理学解释?A. 光的干涉与衍射现象B. 光电效应C. 康普顿效应D. 高速电子的波动性答案:D4. 以下哪项不是量子力学的基本假设之一?A. 波函数包含了粒子的全部信息B. 波函数的平方描述了粒子在不同位置出现的概率C. 粒子的位置和速度可以同时确定D. 波函数的演化遵循薛定谔方程答案:C5. 根据薛定谔方程,粒子波函数的时间演化是:A. 线性的B. 非线性的C. 随机的D. 不可逆的答案:A二、计算题1. 一束入射光照射到金属表面,发生了光电效应。
入射光的波长为550 nm,逸出功为2 eV,求最大能量的光电子的动能。
答案:入射光的能量E = hc/λ = (6.63 × 10^-34 J·s × 3.00 × 10^8 m/s) / (550 ×10^-9 m) = 1.20 × 10^-19 J最大动能K = E - φ = 1.20 × 10^-19 J - (2 × 1.60 × 10^-19 J) = -0.40 ×10^-19 J2. 一束入射电子的波长为1 nm,通过一个宽度为1 μm的狭缝后,到达屏幕上的交叉区域。
求交叉区域的宽度。
答案:交叉区域的宽度Δx = λL / d,其中L为屏幕到狭缝的距离,d为狭缝的宽度。
根据德布罗意关系,电子的波长λ = h / mv,其中h为普朗克常量,m为电子质量,v为电子速度。
将已知值代入计算,可得Δx ≈ (6.63 × 10^-34 J·s) / (9.1 × 10^-31 kg × 1 × 10^6 m/s) × (1 × 10^-9 m) / (1 × 10^-6 m) ≈ 7.3 × 10^-6 m三、解答题1. 请简要阐述波粒二象性的概念,并说明量子力学中的波函数是如何描述粒子的。
30道量子力学知识选择题和答案
30道量子力学知识选择题和答案1. 关于量子态,以下说法正确的是()A. 量子态是可连续变化的B. 量子态是离散的答案:B2. 量子叠加原理是指()A. 多个量子态可以同时存在B. 量子态只能有一个答案:A3. 量子纠缠现象说明了()A. 量子之间存在相互作用B. 量子之间存在非定域性关联答案:B4. 在量子力学中,测量会导致()A. 量子态的改变B. 量子态的保持不变答案:A5. 关于波函数,以下说法正确的是()A. 描述了量子系统的状态B. 是一个实数函数答案:A6. 海森堡不确定性原理涉及到哪两个物理量的不确定性()A. 位置和动量B. 能量和时间答案:A7. 量子力学中的算符表示()A. 物理量B. 对量子态的操作答案:B8. 泡利不相容原理适用于()A. 电子B. 所有费米子答案:B9. 以下哪种现象与量子力学有关()A. 黑体辐射B. 光电效应答案:B10. 在量子力学中,能量的量子化表现为()A. 能量只能取特定的值B. 能量可以连续变化答案:A11. 关于量子隧道效应,以下说法正确的是()A. 粒子可以穿过势垒B. 粒子不能穿过势垒答案:A12. 量子力学中的可观测量对应的是()A. 厄米算符B. 非厄米算符答案:A13. 狄拉克方程描述的是()A. 电子的运动B. 所有粒子的运动答案:B14. 关于量子力学的诠释,以下说法正确的是()A. 只有一种诠释是正确的B. 有多种诠释,且都有实验支持答案:B15. 量子力学中的全同粒子()A. 是完全相同的B. 可以区分答案:A16. 关于量子力学的基本假设,以下说法错误的是()A. 物理量都可以用实数来描述B. 量子态的演化是确定性的答案:AB17. 量子力学中的概率幅表示()A. 概率的大小B. 概率的相位答案:B18. 以下哪种实验验证了量子力学的基本原理()A. 双缝干涉实验B. 迈克尔逊-莫雷实验答案:A19. 量子力学中的守恒量对应的是()A. 不变的物理量B. 随时间变化的物理量答案:A20. 关于量子力学中的对称性,以下说法正确的是()A. 存在多种对称性B. 对称性与物理规律无关答案:A21. 量子力学中的密度算符描述的是()A. 量子系统的概率分布B. 量子系统的能量分布答案:A22. 以下哪种量子系统具有简并性()A. 氢原子B. 自由粒子答案:A23. 量子力学中的散射理论主要研究()A. 粒子的碰撞过程B. 粒子的传播过程答案:A24. 关于量子力学中的表象,以下说法正确的是()A. 有多种表象可以选择B. 表象是唯一确定的答案:A25. 量子力学中的时间演化算符描述的是()A. 量子态随时间的变化B. 物理量随时间的变化答案:A26. 以下哪种量子系统的能级是分立的()A. 谐振子B. 自由电子答案:A27. 量子力学中的角动量算符具有()A. 分立的本征值B. 连续的本征值答案:A28. 关于量子力学中的路径积分表述,以下说法正确的是()A. 是一种量子力学的表述方式B. 与薛定谔方程等价答案:AB29. 量子力学中的对称性破缺会导致()A. 新的物理现象B. 物理规律的改变答案:A30. 以下哪种量子系统的波函数可以用球谐函数来描述()A. 氢原子B. 原子核答案:A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
09光信息量子力学习题集一、填空题1. 设电子能量为4电子伏,其德布罗意波长为( 6.125A )。
2.索末菲的量子化条件为=nh pdq ),应用这量子化条件求得一维谐振子的能级=n E ( ωn )。
3.德布罗意假说的正确性,在1927年为戴维孙和革末所做的( 电 )子衍射实验所证实,德布罗意关系(公式)为( ω=E )和( k p= )。
4.三维空间自由粒子的归一化波函数为()r pψ=( r p i e⋅2/3)2(1π ), ()()=⎰+∞∞-*'τψψd r r p p ( )(p p-'δ )。
5.动量算符的归一化本征态=)(r pψ(r p i e⋅2/3)2(1π ),='∞⎰τψψd r r p p )()(* ( )(p p-'δ )。
6.t=0时体系的状态为()()()x x x 2020,ψψψ+=,其中()x n ψ为一维线性谐振子的定态波函数,则()=t x ,ψ( t i t i ex ex ωωψψ25220)(2)(--+ )。
7.按照量子力学理论,微观粒子的几率密度w =2),几率流密度j =(()**2ψ∇ψ-ψ∇ψμi )。
8.设)(r ψ描写粒子的状态,2)(r ψ是( 粒子的几率密度 ),在)(r ψ中Fˆ的平均值为F =( ⎰⎰dx dx Fψψψψ**ˆ )。
9.波函数ψ和ψc 是描写( 同一 )状态,δψi e 中的δi e 称为( 相因子 ),δi e 不影响波函数ψ1=δi )。
10. 定态是指( 能量具有确定值 )的状态,束缚态是指(无穷远处波函数为零)的状态。
11.)i exp()()i exp()(),(2211t Ex t E x t x-+-=ψψψ是定态的条件是( 21E E = ),这时几率密度和( 几率密度 )都与时间无关。
12. ( 粒子在能量小于势垒高度时仍能贯穿势垒的现象 )称为隧道效应。
13. ( 无穷远处波函数为零 )的状态称为束缚态,其能量一般为( 分立 )谱。
14.3.t=0时体系的状态为()()()x x x 300,ψψψ+=,其中()x n ψ为一维线性谐振子的定态波函数,则()=t x ,ψ( t i t i ex ex ωωψψ27320)()(--+ )。
15. 粒子处在a x ≤≤0的一维无限深势阱中,第一激发态的能量为( 2222aμπ )x a π2 )。
16. 基态是指( 能量最低 )的状态,写出一维线性谐振子的基态波函数:( 2/022x e N α- )。
17.一维线性谐振子的第一激发态的能量为( ω23)、第一激发态的波函数为( 2/1222x xe N αα- )。
18. ( 对应于同一本征值的本征函数的数目 )称为简并度,不考虑电子自旋时,氢原子的第n 个能级的简并度为( n 2 )。
19. 一维无限深势阱第n 个能级的简并度为( 1 ),不考虑电子自旋时,氢原子的第n 个能级的简并度为( n 2)。
20. 一维线性谐振子第n 个能级的简并度为( 1 ),考虑电子自旋以后,氢原子的第n 个能级的简并度为( 2n 2)。
21. 氢原子的状态为),()(1223ϕθY r R ,角动量平方是 26 )、角动量z 分量是( )。
22.厄密算符Fˆ的定义是:对于两任意函数ψ和φ, 等式( ⎰⎰=dx F dx F φψφψ**)ˆ(ˆ )成立。
23. 力学量算符的本征值必为( 实数 ),力学量算符的属于两个不同本征值的本征态必( 相互正交 )。
24.力学量算符的属于( 不同本征值 )的本征函数必相互( 正交 )。
25. 量子力学中,力学量算符都是( 厄米 )算符,力学量算符的本征函数组成( 完全 )系。
26.算符在其自身表象中的矩阵为( 对角 )矩阵,例如在z σ表象中z σˆ=( ⎪⎪⎭⎫ ⎝⎛-1001 )。
27. 如果[G F ˆˆ,]=0,则G F ˆˆ,存在组成( 完全 )系的共同本征态,ZL L ˆˆ2,的共同本征态是( ),(ϕθm l Y )。
28.如果G F ˆˆ,存在有组成( 完全 )系的共同本征态,则[G F ˆˆ,]=( 0 ), ZL L ˆˆ2,的共同本征态是( ),(ϕθm l Y )。
29. 对易子=],[xe dxd ( xe ),=]ˆ,ˆ[xy L L ( z L i ˆ - )。
30. =]ˆ,[y p x ( 0 ),=]ˆ,[x p x ( i ),=]ˆ,ˆ[y x L L ( z L i ˆ )。
31. =-],[xe dxd ( xe -- )。
=]ˆ,[y p y ( i ),=]ˆ,[x p y ( 0 )。
32.能量与时间的测不准关系是( ~t E ∆∆ ),x 和x p 的测不准关系是( 42____2____2≥∆⋅∆xpx )。
33.在一维情况下,若粒子处于状态),(t x ψ中,则在动量表象中的波函数为=),(t p C ( dx et x px i ⎰+∞∞--ψ),( )。
34.一维线性谐振子处在H ˆ的本征态)(x n ψ的迭加态)(54)(53)(42x x x ψψψ-=中,则在Hˆ表象中一维线性谐振子的波函数为+ψ=( (0,0,3/5,0,-4/5,0,…) )。
35.斯特恩—革拉赫证实电子具有( 自旋 )角动量,它在任何方向上投影只能取两个值( 2 )和( 2- )。
36. x y y x σσσσˆˆˆˆ-=( z i σˆ2 ),S S ˆˆ ⨯=( S i ˆ )。
37. x y y x σσσσˆˆˆˆ+=( 0 ),[zL L ˆ,ˆ2]=( 0 )。
38. 在z s 表象中,粒子处在自旋态⎪⎪⎭⎫ ⎝⎛=ααχsin cos 中,z s =( α2cos 2)。
39. 在z σ表象中,粒子处在自旋态⎪⎪⎭⎫⎝⎛=ααχsin cos 中,x σ=( α2sin )。
40.在z s 表象中,⎪⎪⎭⎫ ⎝⎛=01102 x s ,则在状态⎪⎪⎭⎫⎝⎛=1122χ中,x s =( 2 )。
41. 全同性原理的内容是:( 在全同粒子组成的体系中,两全同粒子相互代换不引起物理状态的改变 )。
42. 泡里原理的内容是:( 不能有两个或两个以上的费密子处于同一状态 )。
43. 描写电子体系的波函数只能是( 反对称 )波函数,而电子体系的自旋波函数则可以是( 对称 )或者(反对称)的。
44. 电子是( 费密 )子,服从( 费密-狄拉克 )统计,描写电子体系的波函数只能是( 反对称 )波函数。
45. 描写玻色子体系的波函数只能是( 对称 )波函数,而玻色子体系的自旋波函数则可以是( 对称 )或者( 反对称 )的。
46. 描写费密子体系的波函数只能是( 反对称 )波函数,而费密子体系的自旋波函数则可以是( 对称 )或者( 反对称 )的。
47. 光子是( 玻色 )子,服从( 玻色-爱因斯坦 )统计,描写光子体系的波函数只能是( 对称 )波函数。
――――――――――――――――――――――――――――――二、计算、证明题1.粒子在一维势场⎩⎨⎧<>∞+≤≤=0,,0,0)(x a x ax x U 中运动,试从薛定谔方程出发求出粒子的定态能级和归一化波函数.解:当0)0(,,,0=∞→><ψU a x x当.2ˆ,0222ψψμψψE dxd E H a x =-⇒=<<令22 E k μ= 得 0222=+ψψk dxd kx c kx c x cos sin )(21+=ψ0)0(=ψ ,,02=∴c kx c r sin )(1=ψ ),3,2,1(,,0sin ,0)( ===∴=n n ak ax a πψ,22222an E n μπ =),2,1(,sin )(1 ==n x a n c x πψac d an 2112=⇒=⎰τψ 2.一粒子在一为势场()bx x x U -=2221μω中运动,试求粒子的能级和归一化定态波函数(准确解)。
解:bx x dx d H -+-=22222212ˆμωμ 222222222)(212μωμωμωμb b x dx d --+-= 令2μωbx x -=' 则 2222x d d dx d '= 22222222212μωμωμb x dx d H -'+-=' ψψμωμωψμE b x dx d =-'+-)221(22222222 22222222,212μωψψμωψμb E E E x dx d +=''='+- ),21(+='n E nω),2,1,0(),()(222 ='=''-n x H e N x n x n n αψα,2)21(22μωωb n E n -+=' ),2,1,0(),(2exp )(222 =-'⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=n bx H b x N x n n n μωααμωαψ 3.一粒子在硬壁球形空腔中运动,势能为()⎩⎨⎧≥∞+<=.,;,000r r r r r U试从薛定谔方程出发求粒子在s 态中的能级和定态波函数(不必归一化)。
{ 提示:在s 态中)(1222f r rd d r f =∇ } 解:当0)(,,0=∞→≥r U r r ψ当().22ˆ,222220ψψμψψμψψE r drd r E E H r r =-⇒=∇-⇒=<令22 E k μ= 得 0)()(222=+ψψr k r drd r kr c kr c r )sin cos ()(21+=ψ)0(ψ 有限,,01=∴c kr rcr sin )(2=ψ),3,2,1(,,0sin ,0)(000 ===∴=n n k r k r r πψ,22222r n E n μπ =),2,1(,sin )(02 ==n r r n r c r n πψ4.粒子在一维势场()()⎩⎨⎧><∞+≤≤>-=a x x a x U U x U ,00000当当中运动,试从薛定谔方程出发求出粒子的定态能级和归一化波函数。
解:1.当0)0(,,,0=∞→><ψU a x x当.2ˆ,00222ψψψμψψE U dx d E Ha x =--⇒=<< 令20)(2 U E k +=μ 得 0222=+ψψk dxd kx c kx c x cos sin )(21+=ψ0)0(=ψ ,,02=∴c kx c r sin )(1=ψ ),3,2,1(,,0sin ,0)( ===∴=n n ak ax a πψ,202222U an E n -=μπ ),2,1(,sin )(1 ==n x a n c x πψa c d an 2112=⇒=⎰τψ 5.利用力学量算符Fˆ本征函数)(x n φ的正交归一完全性,证明 2*)(ˆ)(∑⎰=n nn c dx x Fx λψψ式中,n λ为F ˆ本征值。