高中数学全套知识点思维导图集合

合集下载

高中数学思维导图:集合

高中数学思维导图:集合

集合中元素的数目称为集合的基数
元素
基数为有限大时,称为有限集
基数为无限大时,称为无限集
列举法
{1,2,3,4}
表示方法
Hale Waihona Puke 描述法特征图示法 确定性 互异性 无序性
12 345
给定一个集合,任给一个无素,该元素或者属于 或者不属于该集合,二者必居其一
一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次
子集个数 非空子集个数 真子集个数 非空真子集个数

交集
由属于A且属于B的相同元素组成的集合
并集

由所有属于A或属于B的元素所组成的集合
补集
相对补集 绝对补集
若A和B是集合,则A在B中的相对补集是这样一个集合:某素 属于B但不属于A
若 给定全集 ,有
则在
中的相对补集
称为 的绝对补集
高中所说补集一般就是指绝对补集
运算
含义 性质
并集

交集

补集

交换律
结合律
分配率
运算律
德.摩根定律
N (自然数集) N*或N+(正整数集)
Z (整数集) Q (有理数集)
R (实数集)
(空集)
常用数集
集合
概念
具有某种特定性质的具体或抽象的对象汇总而成 的集体,构成集合的这些对象称为该集合的元素
集合用大写英文字母表示,如:A 元素用小写英文字母表示,如:a
一个集合中,每个元素的地位是相同的,元素之间是无序的
集合类型
空集:不包含任何元素的集合
空集是任意一个非空集合的真子集 空集是任意一个集合的子集
设S,T是两个集合,如果S的所有元素都属 于T则称S是T的子集称S是T的子集

高中数学必修全思维导图

高中数学必修全思维导图

调性不同,则 y f [g(x)] 是减函数。
4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。 5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作 函数图象。 六、函数奇偶性的常用结论:
1、如果一个奇函数在 x 0 处有定义,则 f (0) 0 ,如果一个函数 y f (x) 既是
高一数学必修 1 知识网络
集合

( 1)元素与集合的关系:属于()和不属于()
集合与元素
( 2)集合中元素的特性:确定性、互异性、无序性 ( 3)集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集 ( 4)集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法

C.
4、空集是任何集合的(真)子集。
集合


真子集:若A

B且A

B(即至少存在x0

B但x0

A),则A是B的真子集。
集合与集合
运算集并交合集集Ca相r定定性性d等(义义质质A:::::ABAAAA)BBBC且AAaArdAAxx,(,A//BxAxA) CAAa或且rAdxx(AB,B,)BB-AACarBdB(ABBBA)A,,AABBAA,, AABB
定义
按照某个对应关系f , y都有唯一确定的值和它对应。那么y就是x的函数。记作y f ( x ).
近代定义:函数是从一个数集到另一个数集的映射。
定义域 函数及其表示 函数的三要素 值域 对应法则
解析法
函数的表示方法 列表法
函数
几类不同的增长函数模型 函数模型及其应用 用已知函数模型解决问题 建立实际问题的函数模型

高中数学知识点思维导图--21张图梳理高中数学知识结构

高中数学知识点思维导图--21张图梳理高中数学知识结构

高中数学知识点思维导图
----21张图理清高中数学知识结构
目录
一、集合与简易逻辑 (1)
二、函数与基本初等函数 (2)
三、导数及其应用 (3)
四、三角函数 (4)
五、解三角形与平面向量 (5)
六、数列 (6)
七、不等式 (7)
八、三视图与空间位置关系 (8)
九、立体几何 (9)
十、空间向量与立体几何 (10)
十一、直线的方程 (11)
十二、圆的方程 (12)
十三、直线系、圆系、直线与圆锥曲线关系 (13)
十四、圆锥曲线 (14)
十五、椭圆的定义与几何性质 (15)
十六、双曲线的定义与几何性质 (16)
十七、抛物线的定义与几何性质 (17)
十八、计数原理、二项式定理、推理与证明 (18)
十九、概率与统计 (20)
二十、复数 (21)
二十一、算法 (22)
一、集合与简易逻辑
二、函数与基本初等函数
三、导数及其应用
四、三角函数
五、解三角形与平面向量
六、数列
七、不等式
八、三视图与空间位置关系
九、立体几何
十、空间向量与立体几何
十一、直线的方程
十二、圆的方程
十三、直线系、圆系、直线与圆锥曲线关系
十四、圆锥曲线
十五、椭圆的定义与几何性质
十八、计数原理、二项式定理、推理与证明
十九、概率与统计
二十、复数
二十一、算法。

高中数学思维导图

高中数学思维导图

高中数学思维导图高中数学思维导图一、基础数学思维1. 数学思想的基础:公理与定义2. 数学的证明方法:归纳法、反证法、直接证明法等3. 数学符号的运用:数学符号的含义、符号的运算法则等4. 数学运算:四则运算、幂运算、根号运算等5. 基础数学工具:比例、百分数、坐标系、三角函数等二、代数思维1. 代数基础:代数式、方程、函数等2. 函数的性质:奇偶性、周期性、单调性等3. 多项式函数:求极限、图像、导数、零点等4. 三角函数:定义、性质、公式、图像等5. 指数与对数:定义、性质、公式、应用等三、几何思维1. 几何基础:点、线、面、角等基本概念2. 几何证明:直线、三角形、四边形等几何图形的证明方法3. 圆与圆周角:圆的性质、圆心角、圆周角等4. 圆锥曲线:椭圆、双曲线、抛物线等5. 空间几何:立体图形、体积、表面积等四、数据思维1. 统计学基础:数据的收集、整理、描述等2. 统计学方法:中心极限定理、样本误差、置信区间等3. 概率学基础:试验、随机事件、概率等4. 概率学应用:概率分布、期望、方差等5. 统计学计算:统计量、协方差、相关系数等五、应用思维1. 数学建模:基础模型、优化模型、决策模型等2. 实际应用:金融、物流、航空、生物等实际问题的数学分析3. 数学思维应用:思维方法的应用于科学、技术、文化、艺术等领域4. 跨学科思维:数学与其他学科的融合,如数理化、数理生等交叉学科5. 数学思维与未来:数学思维在新时代的重要性和应用前景六、总结与展望1. 数学思维的学习方法2. 数学思维的培养和提升3. 数学思维在求学与职场中的应用4. 数学思维的发展趋势和未来展望5. 数学思维对人类文明进步的贡献。

高中数学知识框架思维导图(整理版)

高中数学知识框架思维导图(整理版)

柯西不等式
第四部分
位置关系
截距
解析几何
斜率公式、倾斜角的变化与斜率的变化: = tan , =
倾斜角和斜率
重合
A1B2-A2B1=0,C1B2-C2B1=0
平行
A1B2-A2B1=0,C1B2-C2B1≠0
相交
A1B2-A2B1≠0
垂直
直线的方程
z 的几何意义:
过可行域内一点(, )
向直线 = , = 作
复合函数
函数与方程
2
二次函数、基本不等式、双勾函数、三角函
数有界性、数形结合、单调性、导数.
基本初等函数
分段函数
, )
零点
求根法、二分法、图象法、二次及三次方程根的分布
建立函数模型
平移变换: = () → = ( ± ), = () → = () ± ,, > 0
对称性
y=Asin(x+)+b
化简、求值、
证明(恒等变形)

值域
图象
对称轴(正切函数除外)经过函数图象
的最高(或低)点且垂直 x 轴的直线,
对称中心是正余弦函数图象的零点,正

切函数的对称中心为( ,0)(k∈Z).
最值
2
①图象可由正弦曲线经过平移、伸缩得到,但要注意先平移后伸缩与先伸缩后平移不同;
2.
3.
分组求和法
2
=
1

−1)(2+1 −1)
2 −1
+1
1 1
1
= (
2 (+2)2
(−1) ∙4
4 2
(2−1)(2+1)
1
2+1 −1

高中数学思维导图(新课标)

高中数学思维导图(新课标)
c 0 c 为常数
'
f x 与 f x 0 的区别
vt S , at vt
'
0 0
第 二 部 分 映 射 、 函 数 、 导 数 、 定 积 分 与 微 积 分
导 数
导数概念
运动的平均速度 曲线的割线的斜率
'
0
k f
'
'
x
0
' '
; x
n
nx 1 x


A中元素在B中都有唯一的象;可一对一 (一一映射),也可多对一,但不可一对多 定义 函数的概念 表示 定义域
列表法 解析法 图象法 使解析式有意义及实际意义
第 二 部 分 映 射 、 函 数 、 导 数 、 定 积 分 与 微 积 分

三要素
区间 单调性 奇偶性 周期性 对称性
对应关系 值域
常用换元法求解析式 观察法、判别式法、分离常数法、单调性法、最值法、 重要不等式、三角法、图象法、线性规划等
函数的 基本性质
函 数
函数常见的
最值
几种变换
基本初等函数 分段函数 复合函数 抽象函数 函数与方程 函数的应用
平移变换、对称变换 翻折变换、伸缩变换
三角函数 单调性:同增异减 赋值法,典型的函数 零点 建立函数模型 求根法、二分法、图象法;一元二次方程根的分布 退出 上一页
函数的平均变化率
函数的瞬时变化率 运动的瞬时速度 曲线的切线的斜率
第一部分 第二部分 第三部分 第四部分 第五部分 第六部分
集合与简易逻辑 映射、函数、导数、定积分与微积分 三角函数与平面向量 数列 不等式 立体几何与空间向量

人教版高中数学知识框架思维导图(04)-按章节整理(含目录高清版)

人教版高中数学知识框架思维导图(04)-按章节整理(含目录高清版)

几何意义
归纳
合情推理
猜想
类比
推理
演绎推理
推理与证明
三段论
大前提、小前提、结论
综合法
由因导果
分析法
执果索因
直接证明
证明
间接证明
1.验证 = 0 (初始值)命题成立;
2.若 = ( ≥ 0 )时命题成立,证明 = + 1时命题也成立.
数学归纳法
两个原理
反设、归谬、结论
反证法
分类加法计算原理和分步乘法计算原理
1.f (a+x)=f (b-x),对称轴为 =
对称性
2.f (a+x)+f (b-x)=c,对称中心为(
2
+
2
, )
2
二次函数、基本不等式、双勾函数、三角函
数有界性、数形结合、单调性、导数.
最值
一次、二次函数、反比例函数、双勾函数
基本初等函数
指数函数、对数函数、幂函数、三角函数
分段函数
利用对称性求函数
对称变换: = () → = −(), = () → = (−), = () → = −(−)
函数图象
及其变换
翻折变换: = () → = |()|, = () → = (||)
伸缩变换: = () → = (), = () → = ()
②减法:( + i)-( + i)=(-c)+(b-d)i;
③乘法:( + i)·( + i)=(c-bd)+(d+bc)i;
运算
④除法:
+i
+i
=
(+i)(−i)
(+i)(−i)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档