[工学]模糊系统与模糊控制简介

合集下载

第四章 模糊控制系统

第四章 模糊控制系统

常规反馈控制系统结构
今天, 今天,常规的反馈控制方法在实际过程中已经得到广泛 应用,例如在阿波罗登月舱的姿态控制、宇宙飞船、 应用,例如在阿波罗登月舱的姿态控制、宇宙飞船、导弹制 导以及在工业生产过程控制等。但是, 导以及在工业生产过程控制等。但是,对于常规反馈控制系 统,控制器的设计无论是采用经典控制理论还是现代控制理 都需要事先知道被控制对象精确的数学模型。 论,都需要事先知道被控制对象精确的数学模型。也就是说 系统的分析与综合都是建立在数学模型的基础上。 系统的分析与综合都是建立在数学模型的基础上。 然而,在实际控制中被控对象的精确数学模型很难建立, 然而,在实际控制中被控对象的精确数学模型很难建立, 甚至无法建立。例如,交通系统、经济系统及生物发酵过程 甚至无法建立。例如,交通系统、 这样,基于数学模型的控制方法则陷入了困境。 等。这样,基于数学模型的控制方法则陷入了困境。值得注 意的是对于上述的复杂过程, 意的是对于上述的复杂过程,有经验的专家或操作人员用手 动控制的方式,却可以收到令人满意的效果。 动控制的方式,却可以收到令人满意的效果。面对这样的事 人们考虑能否让计算机模拟人的思维方式, 实,人们考虑能否让计算机模拟人的思维方式,对这些复杂 过程进行控制决策。 过程进行控制决策。
x = (ω ,θ ) ɺ x = f ( x, u )
u1 u= u 2
其中u为一个有约束的控制向量, 为前轮的角度, 其中 为一个有约束的控制向量,u1为前轮的角度, u2为车 为一个有约束的控制向量 速。
如果把邻近两辆车定义为 x(执行中的约束),用集合 (执行中的约束) 表示,而两辆停着的车之间的空隙定义为Г( 表示,而两辆停着的车之间的空隙定义为 (允许的终端状 态的集合) 那么, 停车问题就转化为寻找一个控制律u(t), 态的集合 ) 。 那么 , 停车问题就转化为寻找一个控制律 , 使其在满足各种约束的条件下把初始状态转移到终端状态Г 使其在满足各种约束的条件下把初始状态转移到终端状态 中去。对于这个问题若采用基于数学模型的精确方法来求解, 中去。对于这个问题若采用基于数学模型的精确方法来求解, 由于约束条件过多,求解过程将异常复杂。 由于约束条件过多,求解过程将异常复杂。 但在实际停车时,汽车司机并不考虑控制律u(t)的求解。 的求解。 但在实际停车时,汽车司机并不考虑控制律 的求解 而是凭借以往的经验,先让车向前运动, 而是凭借以往的经验,先让车向前运动,前轮先向右而后向 然后使车向后运动,前轮仍先向右而后向左, 左,然后使车向后运动,前轮仍先向右而后向左,经过多次 反复,车将横向移动一个所需要的距离, 反复,车将横向移动一个所需要的距离,最后向前开停在空 隙处。这样,汽车司机通过一些不精确的观察,执行一些不 隙处。 这样, 汽车司机通过一些不精确的观察, 精确的控制,却达到了准确停车的目的。 精确的控制,却达到了准确停车的目的。

模糊系统及其应用研究

模糊系统及其应用研究

模糊系统及其应用研究一、引言随着科学技术的快速发展和社会的不断进步,人类社会已经正式步入信息化社会。

信息与知识已经成为社会发展的新要素和新引擎。

模糊系统,也称模糊逻辑或模糊数学,是信息科学中的一种新兴学科,是处理模糊信息的一种有效方法。

本文将详细介绍模糊系统及其应用研究。

二、模糊系统概述模糊系统是以模糊集合和模糊逻辑为基础的一种数学理论和方法,其主要特点是对信息的模糊性进行了有效处理,解决了传统集合和逻辑的不足。

模糊集合是指具有模糊性的集合,模糊逻辑是指运用模糊语言来表达的逻辑。

模糊系统的主要应用领域包括控制、决策、识别、智能优化、模式识别、数据挖掘等。

三、模糊系统的应用研究1. 模糊控制模糊控制是以模糊理论为基础的一种新的控制方法,其目的是解决传统控制方法对于非线性、大惯性、时变等复杂系统无法提供有效控制的问题。

模糊控制系统的最大特点是具有灵活性、自适应性、多功能性和鲁棒性等优势。

模糊控制在机械、航空、环保等领域都得到了广泛的应用。

2. 模糊决策模糊决策是以模糊数学为基础的一种决策分析方法,其主要特点是对决策过程中模糊性信息的处理能力较强。

模糊决策广泛应用于工程领域的高风险决策、金融投资决策、产品质量评估等方面。

3. 模糊识别模糊识别是一种针对未知模型的识别方法,主要特点是其对模型不确定性、非线性、时变等复杂模型的准确识别能力较强。

模糊识别广泛应用于质量控制、机械故障诊断、金融市场预测等领域。

4. 模糊优化模糊优化是以模糊集合理论为基础的一种优化方法,其主要特点是可以适应非线性、模糊或者不确定的优化问题。

模糊优化适用于生产计划、物流运输、供应链管理等复杂的管理决策问题。

5. 模糊数据挖掘模糊数据挖掘是一种基于模糊数学理论的数据分析方法,其主要特点是处理不完整数据,解决数据挖掘中的误导性和随机性问题。

模糊数据挖掘适用于企业管理、社会调查、市场预测等领域的数据处理。

四、总结模糊系统是人工智能、控制理论等领域的重要方法之一,其主要特点是处理模糊信息的能力强。

计算机控制系统第5章模糊控制课件

计算机控制系统第5章模糊控制课件

与其隶属
度 A(xi ) 之间的对应关系;“+”也不表示“求和”,而是表示
模糊集合在论域上的整体。
2024/8/6
5
2.几种典型的隶属函数 (1)高斯型隶属函数
( xc)2
f (x; ,c) e 2 2
2024/8/6
6
(2)S形隶属函数
f
(x;
a,
c)
1
1 ea(xc)
2024/8/6
7
(3)梯形隶属函数
第一节 模糊控制系统
一、模糊控制系统的组成
模糊控制系统的结构与一般计算机控制系统基本相似, 通常由模糊控制器、输入输出接口、广义被控对象和测量装 置四个部分组成。
基本模糊控制器
给定值 +
e
-
输 入 量


糊 化
e~



糊 u~


反 模 糊 化 处

输 出 量

u
D/A
A/D
传感器
被控对象
执行机构
所谓论域就是被考虑客体所有元素的集合。在模糊控制系
统中,把模糊控制器的输入变量偏差 e 及其变化率 ec 的实际范
围称为这些变量的基本论域。基本论域内的量为精确量,需要 对它们进行量化处理。
在实际控制系统中,需要通过所谓量化因子进行量化处理, 实现论域变换。量化因子的定义为:
ke
2n be ae
kec
a,
b)
1 2( 2(b
x b
x
a a
)2 )2
ba
0
xa
a a
x b
a x
2
b

《模糊控制系统》PPT课件

《模糊控制系统》PPT课件

是所期望的。这促使我们研究模糊系统作为万能
函数逼近器并拥有最小系统构成的必要条件,从
而使这些必要条件能用于指导模糊系统开发者设
计更紧凑的模糊控制器和模糊模型
• 必要条件设置了需要的输入模糊集、输出模糊集 和模糊规则,表明了模糊系统需要的输入模糊集
和模糊规则的数目依赖于被逼近函数的极值点的
数目和位置
精选ppt
“Fuzzy Sets”一文,首次提出了模糊集合的概念
• 1974年英国教授Mamdani首次将模糊集合理论应
用于加热器的控制,他将基于规则系统的想法与
模糊参数相结合来构造控制器,模仿人类操作者
的操作经验
• 1985年Takagi和Sugeno提出了另一类具有线性规
则后项的模糊控制器,称之为Takagi-Sugeno
(1988, Japan)
• Postsurgical patients
(1989, USA)
• Auto focus video camera
(1990, Japan)
• Washing machines
(1990, Japan)
• Air conditioners
(1990, Japan)
• Anti-shaking video camera
控制规律
• 各种类型的Mamdani和TS模糊系统在过去几年中
都被证明是万能逼近器,它们能一致逼近定义在
闭定义域D上的任意连续函数到任意高的逼近精
度。这些模糊系统有:加法模糊规则系统、模糊
输入—输出控制器、Sugeno模糊控制器的变型、
非独点模糊逻辑系统、一般Mamdani型模糊系统、
采用线性规则后项的TS型模糊系统、广义模糊系

模糊控制系统简介

模糊控制系统简介

模糊理论在模糊控制中的应用——模糊控制系统摘要:模糊控制技术对工业自动化的进程有着极大地推动作用。

本文简要的讲述了模糊控制理论的起源及基本原理,详细分析了模糊控制器的设计方法,最后就典型的模糊控制系统原理和新型模糊控制系统应用进行了分析正文:一:模糊理论1.1模糊理论概念:模糊理论(Fuzzy Theory)是指用到了模糊集合的基本概念或连续隶属度函数的理论。

它可分类为模糊数学,模糊系统,不确定性和信息,模糊决策这五个分支,它并不是完全独立的,它们之间有紧密的联系。

1.2模糊理论产生:1965年,模糊理论创始人,美国加州福尼亚大学伯克利分校的自动控制理论专家L.A.Zadeh教授发表了题为“Fuzzy Set”的论文,这标志着模糊理论的诞生。

这一理论为描述和处理事务的模糊性和系统中的不确定性,以及模拟人所特有的模糊逻辑思维功能,从定性到定量,提供了真正强有力的工具。

1966年,马里诺斯发表了模糊逻辑的研究报告,而Zadeh进一步提出了著名的模糊语言值逻辑,并于1974年进行了模糊逻辑推理的研究。

由于这一研究和观点反映了客观世界中普遍存在的事务,它一出现便显示出强大的生命力和广阔的发展前途,在自然科学,其他科学领域及工业中得到了迅速的广泛的应用。

二:模糊控制理论2.1模糊控制理论的产生:在控制技术的应用过程中,对于多变量、非线性、多因素影响的生产过程,即使不知道该过程的数学模型,有经验的操作人员也能够根据长期的实践观察和操作经验进行有效地控制,而采用传统的自动控制方法效果并不理想。

从这一点引申开来,是否可将人的操作经验总结为若干条控制规则以避开复杂的模型建造过程?模糊控制理论与技术由此应运而生。

20世纪70年代模糊理论应用于控制领域的研究开始盛行,并取得成效。

其代表是英国伦敦大学玛丽皇后分校的E.H.Mamdani教授将IF-THEN型模糊规则用于模糊推理,并把这种规则型模糊推理用于蒸汽机的自动运转中。

模糊系统与智能控制技术

模糊系统与智能控制技术

模糊系统与智能控制技术随着人工智能技术的不断发展,智能控制技术作为重要的一部分也得到了快速的发展。

其中,模糊系统作为智能控制的重要手段之一,逐渐在工程技术中得到了广泛应用。

一、模糊系统概述模糊系统指的是一类基于模糊数学理论为基础的人工智能系统,用于处理不确定、模糊、复杂的信息和控制问题。

模糊系统一般由模糊集合、模糊逻辑、模糊推理和模糊控制等组成。

模糊集合是模糊系统中的基本概念,通过模糊集合的模糊度来描述信息的不确定性和模糊性。

二、模糊系统在智能控制中的应用在智能控制中,模糊系统应用广泛,主要表现在以下方面:1.模糊控制模糊控制是模糊系统在控制领域中的一种应用,其核心是建立模糊控制器,通过输入变量经过模糊化、规则匹配和解模糊等过程,输出模糊控制量,控制被控对象达到某种期望状态或优化目标。

2.模糊识别模糊识别是指将输出与输入之间的模糊关系进行建模,并通过一定的方法求解识别问题。

常用的模糊识别方法包括模糊C均值聚类、模糊决策树等。

3.模糊优化模糊优化是将模糊规划和优化算法相结合,通过求解模糊集合上的优化问题,确定最优决策方案。

三、模糊系统的优势和不足模糊系统作为一种智能控制技术,在实际应用中有其独特的优势,包括:1.建模简单对于一些复杂、模糊、不易准确建模的问题,采用模糊系统可以使建模过程更加容易,而且表现出的精度和可靠性也比较高。

2.适应性强模糊系统具有一定的自适应性和鲁棒性,在面对变化和不确定性的环境中,能够更好地适应环境变化。

但是,模糊系统也有一定的不足之处,主要包括:1.复杂性高由于模糊系统需要考虑许多未知且不可测的因素,因此其模型结构比较复杂,不易于实现。

2.性能不稳定模糊系统的性能受到多种因素的影响,因此在一些极端情况下,很难保证控制效果的稳定性。

四、结语综上所述,模糊系统作为一种智能控制技术,在实际应用中能够解决许多不确定、模糊、复杂的信息和控制问题,并具有一些独特的优势。

随着人工智能技术的不断发展,相信模糊系统在未来的应用中也会发挥更大的作用。

第2章模糊控制系统教学内容

第2章模糊控制系统教学内容
步骤1:输入变量的模糊化; 步骤2:对规则的前提部分应用模糊运算(AND、
OR、NOT); 步骤3:从前提到结论的推理; 步骤4:所有规则作用结果的聚集; 步骤5:解模糊。
9
餐馆小费模糊推理系统
其中“食物”和“服务”是输入模糊变量(变量 范围(或论域)是[0,10]);
“小费”是输出模糊变量(变量范围是[0, 0.25])。
当输入为X=-3和Y=1.5时, 规则1的开放度(DOF)为 DOF1=μNS(X)∧μZE(Y)=0.8∧
0.6=0.6 输出为截去顶部的MF(PS’) 对于规则2和规则3,有
DOF2=μZE(X)∧μZE(Y)=0.4∧0.6=0.4 DOF3=μZE(X)∧μPS(Y)=0.4∧1.0=0.4
第2章模糊控制系统
第二章 模糊控制系统
模糊控制系统是一种自动控制系统。 它是以模糊数学、模糊语言形式的知识表示和模
糊逻辑推理为理论基础,采用计算机控制技术构 成的一种具有闭环结构的数字控制系统。 它的组成核心是具有智能性的模糊控制器。 在控制原理上它应用模糊集合论、模糊语言变量 和模糊逻辑推理的知识,模拟人的模糊思维方法, 对复杂过程进行控制。
15
步骤5:解模 糊。
最后,模糊 输出(面积) 转化为精确 输出(小费为 16.7%) , 即 一个单纯的 数字.
典 型 的 解 模 糊 方 法 有 重 心 法 (COA)。
16
2.1.3推理方法 1、Mamdani方法
考虑一个模糊系统中的三条规则,其一般表述形式如下: 规则1:如果X是负小(NS)且Y是零(Zቤተ መጻሕፍቲ ባይዱ),那么Z是正小
采用三角型MF的 模糊集合A和B之 间的或、与、非 逻辑运算如图 (左边),并与右 边相应的布尔逻 辑运算相比较。

模糊控简介及模糊控制器的设计要点

模糊控简介及模糊控制器的设计要点

目录摘要........................................................................ (1)1模糊控制简介................................................................................ .. (1)模糊控制方法的研究现状 (2)模糊控制的特色...........................................................................2模糊控制的研究对象 (3)模糊控制的展望............................................................................32模糊控制器的结构与工作原理 (4)根本结构与构成............................................................................4一般模糊控制器各主要环节的功能 (4)隶属函数的确定原那么和根本确立方法 (5)模糊条件语句与模糊控制规那么 (6)模糊量的裁决方法 (6)模糊控制规那么的设计和模糊化方法 (8)解模糊化.......................................................................... (8)3模糊控制器的设计................................................................................94对于模糊(及智能)控制理论与技术展开的思虑 (11)参照文件.................................................................................. (12)摘要纲要:本文主要介绍了模糊控制系统的研究现状、特色,以及模糊控制器的结构与工作原理。

第三章、模糊控制系统

第三章、模糊控制系统
0.1 0.6 0.7 0.2 V= 例: % 3 + 4 + 5 + 6
精确量(V0)
∴V0 = 5
当论域V中,其最大隶属度函数对应的输出值多于一个时, 简单取最大隶属度输出的平均即可:
即:当有(v1) µ 2)= L =µc (vJ ) 最大时 µ = (v
1 J 取v0 = ∑ v j J j =1
U 1 , U 2 , L ,U n :输出论域上模糊子集
总的模糊关系: R( 其中:
e , de , u ) = U Ri
n
当ki 取µv (vi )时
重心法
模糊化计算的其它方法:左取大、右取大等。
第二节:模糊控制系统的设计 一、模糊控制器的结构设计 模糊控制器的结构设计包括:输入输出变量选择、模糊化 算法、模糊推理规则和精确化计算方法。 一维模糊控制器 被控对象 输入输出 (按模糊控制器输入变量个数) 变量 多输入多输出 单输入单输出 二维模糊控制器 多维模糊控制器
例:x分成三档(NB、ZE、PB); y y分成两档(NB、PB); 模糊分区形式:
PB NB 0 NB ZE
R1
R2 R4
R3
PB 24
问:在此分档情况下,最大规则数为多少?
x
2 规则库 用一系列模糊条件描述的模糊控制规则就构成模糊控制规则库。 建立 规则库 选择输入变量和输出变量 建立规则(完备性、交叉性、一致性)
完备性:对于任意给定的输入均有相应的控制规则起作用。 交叉性:控制器的输出值总由数条规则来决定。 一致性:规则中不存在相互矛盾的规则。
模糊控制规则建立方法 1)专家经验法: 通过对专家控制经验的咨询形成控制规则库。 实质:通过语言条件语句来模拟人类的控制行为。

模糊控制系统:探讨模糊控制在控制系统中的应用和实践

模糊控制系统:探讨模糊控制在控制系统中的应用和实践

模糊控制系统:探讨模糊控制在控制系统中的应用和实践引言在现代控制系统领域,有许多不同的方法和技术可以用来解决复杂的控制问题。

其中之一就是模糊控制系统。

模糊控制是一种基于模糊逻辑的控制方法,可以有效地处理具有不确定性和模糊性的系统。

本文将探讨模糊控制在控制系统中的应用和实践。

什么是模糊控制系统?模糊控制系统是一种基于模糊逻辑的控制系统,它模拟人类的智能判断过程。

传统的控制系统通常是基于精确的数学模型和逻辑规则,而模糊控制系统则是通过对输入和输出之间的关系进行模糊化和模糊推理来实现控制。

在模糊控制系统中,输入和输出被表示为模糊集合,而不是精确的数值。

模糊集合是一种描述不确定性和模糊性的概念,它将每个元素的隶属度表示为0到1之间的值。

通过应用一组模糊规则,模糊控制系统可以将模糊输入转换为模糊输出,然后通过反模糊化过程将模糊输出转换为精确的控制信号。

模糊控制系统的应用模糊控制系统广泛应用于各种工业和非工业领域,包括自动化、机器人技术、交通系统、电力系统等。

下面我们将分别探讨几个常见的应用领域。

自动化控制在自动化控制领域,模糊控制系统被广泛应用于解决具有模糊性和不确定性的问题。

例如,在温度控制系统中,传统的PID控制器往往无法有效地应对复杂的非线性和模糊的温度曲线。

而模糊控制系统可以通过模糊化温度输入和模糊规则的推理来实现更精确的温度控制。

机器人技术在机器人技术领域,模糊控制系统可以用于实现机器人的自主导航和动作控制。

例如,在行为模糊化和模糊规则的推理过程中,机器人可以根据环境的模糊输入和模糊规则来做出相应的决策,从而实现自主的导航和动作。

交通系统在交通系统中,模糊控制系统可以用于交通信号灯的优化控制。

传统的交通信号灯控制方法通常是基于固定的时序规则,而无法充分考虑交通流量的实际情况。

而模糊控制系统可以通过模糊化交通流量输入和模糊规则的推理来实现动态的信号灯控制,从而提高交通系统的效率和流量。

电力系统在电力系统中,模糊控制系统可以用于电力调度和负荷预测。

模糊控制简介介绍

模糊控制简介介绍
模糊控制简介介绍
汇报人: 日期:
contents
目录
• 模糊控制概述 • 模糊控制的基本原理 • 模糊控制器的设计 • 模糊控制的应用案例 • 模糊控制的优缺点及展望
01
模糊控制概述
模糊控制的基本思想
基于模糊数学理论,将输入变量和输出变量的模糊集合、模糊关系以及模糊逻辑 运算等概念应用于控制系统。
04
模糊控制的应用案例
空调控制系统
总结词:高效节能
详细描述:模糊控制在空调控制系统中的应用主要体 现在对温度的精确控制上。它能够根据室内温度和设 定温度之间的差异,以及外界环境因素,如室内外温 度差、空气湿度等,对空调制冷或制热输出进行精确 调整,以达到高效节能的目的。
洗衣机控制系统
总结词:智能洗涤
总结词
设计推理过程
详细描述
推理机是模糊控制器的另一个核心组成部分 ,它根据知识库中的模糊规则和输入变量的 测量值,推断出输出变量的值。推理过程通 常采用最大值或平均值等聚合操作进行处理 。设计推理机需要考虑控制系统的实时性和
性能要求。
设计解模糊化方法
总结词
选择合适的解模糊化方法
详细描述
解模糊化是将模糊集合的输出转化为具体数值的过程 。在模糊控制器中,解模糊化方法的选择对于控制信 号的精度和稳定性具有重要影响。常见的解模糊化方 法包括最大值法、最小值法、中心平均法和面积平均 法等。选择合适的解模糊化方法需要考虑控制系统的 要求和实际应用场景的特点。
规则库
包含一系列控制规则,用 于指导模糊推理过程,如 “如果温度低且湿度高, 则加热且加湿”。
推理机
推理方法
采用模糊推理方法,如Mamdani推理、T-S推理等,根据规则库中的控制规则 ,推导出输出量的隶属度。

第6节 模糊控制系统

第6节 模糊控制系统

AB( x, y) (A ( x) B ( y)) (1 A ( x))
模糊规则和模糊推理
2) Mamdani 推理法。 Mamdani 则把( A B )定义成
( A B ) ( A B)

AB( x, y) A ( x) B ( y)

模糊规则和模糊推理
• (A→B)蕴涵关系, 也可写成 ,其隶属度函数记为 AB( x, y) 。 B A ( A B) 的隶属度函数由下式计 • AB( x, y) 确定之后, 算: B( y) A( x)∧ AB( x, y) • 下面给出两种常用的蕴含运算关系计算方法 1. Zadeh模糊假言推理法 2. Mamdani推理法
解:由 Zadeh 模糊假言推理法得 AB ( x, y) 1 (1 A ( x) B ( y)) 0.9 。 再用 (5.2.1)便得 B ( y) A ( x) AB ( x, y) 0.88 。
模糊控制原理
• 英国工程师Mamdani(1975)首先把模糊集 合用于锅炉蒸汽机的控制,并发表了模糊 控制论方面的第一篇论文,这标志着模糊 控制的诞生。 此后,许多国家都开展了这 方面的工作,取得了可喜成果。可以说, 模糊控制是模糊理论应用最为成功的领域 之一。
• 重心法。例如在上面的例子中,解模糊判 决为
( 2) * 0.1 ( 1) * 0.2 0 * 0.5 1* 0.4 2 * 0.3 u 0.4(舵) 0.1 0.2 0.5 0.4 0.3
• 也可以只计算若干离散值的重心来减少计 算量,例如
( 2) * 0.1 0 * 0.5 2 * 0.3 u 0.44(舵) 0.1 0.5 0.3

模糊理论及控制

模糊理论及控制
举例:X={上海 北京 天津 西安}为城市的集合。 模糊集合 C = “对城市的爱好”可以表示为:
C = {(上海,0.8),(北京,0.9), (天津,0.7),(西安,0.6)}
模糊集合 C = “合适的可拥有的自行车数目” C = {(0,0.1),(1,0.3),(2,0.7), (3,1.0),(4,0.7),(5,0.3),(6,0.1)}
-2
-1
0
1
2
3
x
图 三角形隶属函数曲线
例: 设计评价一个学生成绩的隶属函数,在[0,100]之 内按A、B、C、D、E分为五个等级,即{不及格,及格, 中,良,优}。分别采用五个高斯型隶属函数来表示, 建立一个模糊系统,仿真结果如图所示。
Degree of membership
E
D
C
B
A
1
0.8
“学习好”的隶属度为(张三)=0.95,(李四)=0.90,(王五)=0.85。 用“学习好”这一模糊子集A可表示为:
A {0.95,0.90,0.85}
其含义为张三、李四、王五属于“学习好”的程度 分别是0.95,0.90,0.85。
例3.3 以年龄为论域,取 X 0,100
“年轻”的模糊集Y,其隶属函数为:
B 0.3 0.1 0.4 0.6 u1 u2 u3 u4
求A∪B,A∩B
则 A B 0.9 0.2 0.8 0.6 u1 u2 u3 u4
A B 0.3 0.1 0.4 0.5 u1 u2 u3 u4
第三节 隶属函数
一、几种典型的隶属函数
在Matlab中已经开发出了11种隶属函数:
0
Y
(x)
1
x
25 5

模糊控制介绍

模糊控制介绍

模糊控制介绍附件:一、模糊控制概况模糊逻辑控制(Fuzzy Logic Control)简称模糊控制(Fuzzy Control),是以模糊集合论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制技术。

1965年,美国的L.A.Zadeh创立了模糊集合论;1973年他给出了模糊逻辑控制的定义和相关的定理。

1974年,英国的E.H.Mamdani 首先用模糊控制语句组成模糊控制器,并把它应用于锅炉和蒸汽机的控制,在实验室获得成功。

这一开拓性的工作标志着模糊控制论的诞生。

模糊控制实质上是一种非线性控制,从属于智能控制的范畴。

模糊控制的一大特点是既具有系统化的理论,又有着大量实际应用背景。

模糊控制的发展最初在西方遇到了较大的阻力;然而在东方尤其是在日本,却得到了迅速而广泛的推广应用。

近20多年来,模糊控制不论从理论上还是技术上都有了长足的进步,成为自动控制领域中一个非常活跃而又硕果累累的分支。

其典型应用的例子涉及生产和生活的许多方面,例如在家用电器设备中有模糊洗衣机、空调、微波炉、吸尘器、照相机和摄录机等;在工业控制领域中有水净化处理、发酵过程、化学反应釜、水泥窑炉等的模糊控制;在专用系统和其它方面有地铁靠站停车、汽车驾驶、电梯、自动扶梯、蒸汽引擎以及机器人的模糊控制等。

二、模糊控制基础模糊控制的基本思想是利用计算机来实现人的控制经验,而这些经验多是用语言表达的具有相当模糊性的控制规则。

模糊控制器(Fuzzy Controller,即FC)获得巨大成功的主要原因在于它具有如下一些突出特点:模糊控制是一种基于规则的控制。

它直接采用语言型控制规则,出发点是现场操作人员的控制经验或相关专家的知识,在设计中不需要建立被控对象的精确数学模型,因而使得控制机理和策略易于接受与理解,设计简单,便于应用。

由工业过程的定性认识出发,比较容易建立语言控制规则,因而模糊控制对那些数学模型难以获取、动态特性不易掌握或变化非常显著的对象非常适用。

模糊控制及其在工业中的应用

模糊控制及其在工业中的应用

模糊控制及其在工业中的应用模糊控制作为一种新兴的控制方法,已经在工业控制领域中得到了广泛的应用。

相比于传统的控制方法,模糊控制具有更强的适应性和容错性,特别适合于复杂变化的工业环境。

本文将简单介绍模糊控制的基本概念和操作原理,并重点探讨其在工业应用中的优点和实际效果。

一、模糊控制概述模糊控制是一种针对模糊系统(即输入与输出之间不存在确定关系的系统)的控制方法。

这种方法其实是将模糊逻辑与控制理论相结合,形成了一套具有自适应性和容错性的控制方案。

模糊控制有广泛的应用领域,例如温度控制、气压控制、流量控制等等。

二、模糊控制原理模糊控制的基本原理是将控制系统中的输入(例如传感器采集的数据)转化为一个或多个模糊集合,然后对其进行处理并得出相应的输出(例如对某一机器的控制指令)。

简单来说,就是将现实世界中的模糊输入映射到模糊输出上。

具体实现方式有很多种,常见的操作包括模糊化、推理、去模糊化等。

模糊化是将模糊输入值映射到一个或多个模糊集合中。

假设我们要控制一台机器的转速,输入值是机器转速仪器采集到的数据。

我们可以将这些数据映射到“低速”、“中速”和“高速”三个模糊集合上,并根据具体情况划分每个集合的范围。

推理是将模糊输入值与事先设置的控制规则相匹配,从而得到相应的控制输出。

例如,当机器转速处于“低速”状态时,我们可能会规定控制指令为“加速”;当机器转速处于“高速”状态时,我们可能会规定控制指令为“减速”。

去模糊化是将模糊输出映射到具体的数值控制指令上。

例如,当我们得到了一个模糊输出“加速”时,需要将其转化为具体的机器转速指令,例如“增加20%的转速”。

三、模糊控制在工业中的优点和实际效果模糊控制在工业中的应用有很多优点。

首先,由于模糊控制具有适应性和容错性,可以在复杂多变的工业环境下进行控制。

其次,模糊控制的控制算法相对简单,不需要过多的数学计算和模型推导,降低了系统开发的难度和时间。

最后,模糊控制的参数调整也比较容易,不像传统控制方法需要通过复杂的数学模型和计算获得最优参数值。

模糊控制系统

模糊控制系统

实现自动化管理。
03
工业过程控制
在化工、冶金等工业生产过程中,利用模糊逻辑控制器对温度、压力、
流量等工艺参数进行实时监测和控制,确保生产过程的稳定性和安全性。
THANKS
感谢观看
模糊推理过程
根据输入的模糊集合和模糊规则库,通过模糊推理算法(如最大值、最小值、平均值等)得出输出模 糊集合。
推理过程基于模糊逻辑,如AND、OR、NOT等运算。
去模糊化过程
将输出模糊集合转换为实际的控制量。
去模糊化方法包括最大值、最小值、中心平均值等,根据实际需求选择合适的方法。
03
模糊控制系统的应用
智能照明系统
根据室内光线和人的活动情况,利用 模糊逻辑控制,自动调节照明亮度、 色温和方向,提供舒适的视觉环境。
模糊控制在机器人导航中的应用案例
1 2 3
移动机器人路径规划
利用模糊逻辑控制器,根据机器人当前位置和目 标位置,规划出安全、有效的路径,实现自主导 航。
避障控制
通过传感器采集周围环境信息,利用模糊逻辑控 制器判断障碍物的距离和方向,控制机器人灵活 避障。
跟随控制
通过模糊逻辑控制器,使机器人能够跟随目标物 体或人进行移动,保持适当的距离和方向。
模糊控制在工业自动化生产线等信息,利用模糊逻辑控制器进行分类和
分拣,提高生产效率和准确性。
02
智能仓储管理系统
通过模糊逻辑控制器,对仓库内的货物进行高效、准确的定位和调度,
应用领域的拓展
随着科技的发展和应用的拓展,如何将模糊控制系统应用于更广泛 的领域,满足更多的实际需求,仍是一个机遇和挑战。
05
案例分析
模糊控制在智能家居中的应用案例
智能空调系统

模糊控制基本介绍

模糊控制基本介绍

模糊控制介绍模糊控制,是采用由模糊数学语言描述的控制律(控制规则)来操纵系统工作的控制方式。

按照模糊控制律组成的控制装置称为模糊控制器。

“模糊”是人类感知万物,获取知识,思维推理,决策实施的重要特征。

“模糊”比“清晰”所拥有的信息容量更大,内涵更丰富,更符合客观世界。

模糊控制以现代控制理论为基础,同时与自适应控制技术、人工智能技术、神经网络技术的相结合,在控制领域得到了空前的应用。

Fuzzy-PID复合控制将模糊技术与常规PID控制算法相结合,达到较高的控制精度。

当温度偏差较大时采用Fuzzy控制,响应速度快,动态性能好;当温度偏差较小时采用PID控制,静态性能好,满足系统控制精度。

因此它比单个的模糊控制器和单个的PID调节器都有更好的控制性能。

这种控制方法具有自适应自学习的能力,能自动地对自适应模糊控制规则进行修改和完善,提高了控制系统的性能。

对于那些具有非线性、大时滞、高阶次的复杂系统有着更好的控制性能。

也称为比例因子自整定模糊控制。

这种控制方法对环境变化有较强的适应能力,在随机环境中能对控制器进行自动校正,使得控制系统在被控对象特性变化或扰动的情况下仍能保持较好的性能。

模糊控制与专家系统技术相结合,进一步提高了模糊控制器智能水平。

这种控制方法既保持了基于规则方法的价值和用模糊集处理带来的灵活性,同时把专家系统技术的表达与利用知识的长处结合起来,能够处理更广泛的控制问题。

这种控制适用于多变量控制系统。

一个多变量模糊控制器有多个输入变量和输出变量。

(1)模糊化。

主要作用是选定模糊控制器的输入量,并将其转换为系统可识别的模糊量,具体包含以下三步:第一,对输入量进行满足模糊控制需求的处理;第二,对输入量进行尺度变换;第三,确定各输入量的模糊语言取值和相应的隶属度函数。

(2)规则库。

根据人类专家的经验建立模糊规则库。

模糊规则库包含众多控制规则,是从实际控制经验过渡到模糊控制器的关键步骤。

(3)模糊推理。

模糊系统与模糊控制简介

模糊系统与模糊控制简介

模糊控制在汽车控制中的应用
01
发动机控制
模糊逻辑控制用于汽车发动机控制中,可以根据发动机的工况和驾驶员
的意图自动调整发动机的输出功率和转速,提高汽车的燃油经济性和动
力性能。
02
自动变速器控制
通过模糊逻辑控制,汽车自动变速器可以根据车速、发动机转速和驾驶
员的油门开度等因素自动调整变速器的档位和传动比,提高汽车的驾驶
模糊推理
基于模糊逻辑规则对输入 输出变量的模糊集合进行 推理,得出控制变量的模 糊集合。
去模糊化
将控制变量的模糊集合转 换为精确值,用于实际控 制。
模糊化与去模糊化
模糊化
将输入输出变量的精确值转换为模糊集合的过程,通常采用高斯隶属度函数实现。
去模糊化
将控制变量的模糊集合转换为精确值的过程,常用的去模糊化方法有最大值、最小值、中心平 均值等。
02 动作控制
在机器人的动作控制中,模糊逻辑系统可以处理 各种传感器输入,根据环境变化调整机器人的动 作和姿态,提高机器人的灵活性和适应性。
03 任务规划
模糊逻辑系统可以帮助机器人进行任务规划,根 据模糊规则和专家经验,机器人可以自主决策如 何完成任务,提高任务执行效率和成功率。
模糊控制在智能家居中的应用
神经网络
神经网络模拟人脑神经 元的结构和工作原理, 通过训练和学习,能够 识别模式并进行预测。
遗传算法
遗传算法借鉴生物进化 原理,通过选择、交叉 和变异等操作,寻找问
题的最优解。
比较
模糊逻辑擅长处理不确 定性和不完全的信息, 而神经网络和遗传算法 则擅长处理大规模数据 和复杂模式识别。结合 三者优点,可以更好地
研究方向
深入研究混合智能系统的理论框架、设计方法和应用领域,加强与其他领域的交叉融合,拓展其在不 同领域的应用价值。同时,关注混合智能系统在实际应用中遇到的问题和挑战,提出有效的解决方案 。

模糊系统与模糊控制简介相关分析

模糊系统与模糊控制简介相关分析
优点何在
比较依据:逼近精度与复杂性的平衡; 学习算法的收敛速度; 结果的可解释性; 充分利用各种不同形式的信息。
21:12
11
模糊系统概述
模糊控制的机理
模糊系统与模糊控制器已得到比较充分 的研究,特别是证明了它的万能逼近性, 这为模糊控制系统的分析与设计奠定了 一个坚实的理论基础。但它们是万能的 吗?它们还有哪些能力?又不具有哪些 能力?是否应将新的思想注入到模糊控 制器中?
的因素 高标准的性能要求
21:12
6
模糊系统概述
模糊控制的特征: 不需要对象的精确数学模型,而要求有
关的控制经验和知识 鲁棒性强 适用于非线性、时变、大滞后系统的控

21:12
7
模糊系统概述
参考输入
模糊化
知识库 模糊推理
解模糊化
输出 被控对象
模糊控制器的结构图
21:12
8
模糊系统概述
常规方法需要系统的模型,这有时是很 难做到的,智能控制在此背景下发展起 来,模糊控制、神经网络控制、专家系 统被视为三种典型的智能控制方法。
E1, E2
E1
,
E2
Fuzzification
Rule Base R( )
RulesRulei
n
i1
Reasoning Premise
A( )
Compositional Operation
Reasoning Consequence
B( )
u Defuzzification
Inference Method
21:12
9
模糊系统概述
模糊理论经常被问及的问题 能否举一个例子,只能用模糊控制来解

模糊系统与模糊控制简介共61页文档

模糊系统与模糊控制简介共61页文档

31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
模糊系统与模糊控制简 介
6、纪律是自由的第一条件。——黑格 尔 7、纪律是集体的面貌,集体的声音, 集体的 动作, 集体的 表情, 集体的 信念。 ——马 卡连柯
8、我们现在必须完全保持党的纪律, 否则一 切都会 陷入污 泥中。 ——马 克思 9、学校没有纪律便如磨坊没有水。— —夸美 纽斯
10、一个人应该:活泼而守纪律,天 真而不 幼稚, 勇敢而 鲁莽, 倔强而 有原则 ,热情 而不冲 动,乐 观而不 盲目。 —
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
01:03 12
模糊系统概述
模糊控制的局限性 模糊控制在处理面向任务的问题时比传 统的控制更为有效,例如自动驾驶和停 靠、交通控制与运动控制等方面,利用 基于模糊规则控制策略要比传统的基于 微分方程的控制策略更为方便和有效。 但是,另一方面,模糊理论又表现出了 许多先天的不严谨性,不确定性和其它 局限性,导致模糊控制理论的不成熟。
01:03
16
模糊推理方法
自从Zadeh的开创性工作以来,已经提出 了许多种推理方法,其中包括CRI方法, 证据推理方法,区间推理方法,三I方法, 基于相似度的近似类比推理方法等,但 是模糊推理的基本原理与逻辑基础似乎 均应重新考虑。
01:03
17
模糊推理方法
Rule Base R( ) RulesRule i i 1
X 的子集 K称为 紧致集:设 X 是拓扑空间, 紧致的当且仅当K 的每个开覆盖 有有限个子覆盖。 有界且闭的有限维空间是紧致的。
01:03 20
模糊系统的通用逼近能力
主要内容: 模糊系统通用逼近的研究路线 模糊系统通用逼近的充分条件 模糊系统通用逼近的必要条件 模糊系统通用逼近的其它问题
模糊系统与模糊控制简介
--博士生论坛系列报告
主要内容



01:03
模糊系统概述 模糊推理方法 模糊系统的通用逼近能力 模糊控制器的结构分析 模糊控制器的稳定性 模糊控制器的系统化设计 模糊PID
2
模糊系统概述
模糊系统发展的历程 1965 年,美国系统论专家 Zadeh 教授创立了模 糊集合理论,提供了处理模糊信息的工具 1974年,英国学者Mamdani首次将模糊理论应 用于工业控制(蒸气机的压力和速度控制) 近30年来,模糊控制在理论、方法和应用都取 得了巨大的进展
模糊系统概述
模糊理论发展方向 将模糊控制与非模糊控制相结合,互相 借鉴 深入分析模糊系统的结构特性及逼近精 度,建立一套完整的理论,使人们应用 模糊系统时做到心中有数
01:03
15
模糊系统概述



适用于模糊系统的学习算法的提出,算 法收敛性分析,及学习完成后模糊系统 的性能分析 多变量模糊系统的方法 构造能利用除“if then ”知识形式以外的 其它知识和信息表达方式的模糊系统
01:03
6
模糊系统概述
模糊控制的特征: 不需要对象的精确数学模型,而要求有 关的控制经验和知识 鲁棒性强 适用于非线性、时变、大滞后系统的控 制
01:03
7
模糊系统概述
知识库 参考输入 模糊化 模糊推理 解模糊化 被控对象 输出
模糊控制器的结构图
01:03
8
模糊系统概述

常规方法需要系统的模型,这有时是很 难做到的,智能控制在此背景下发展起 来,模糊控制、神经网络控制、专家系 统被视为三种典型的智能控制方法。
01:03
18
模糊推理方法
目前最常用的模糊推理方法是CRI方法, 但是在 δ– 等式的定义下讨论得出其鲁棒 性并不理想的结论,这里的鲁棒性是指 模糊前件的微小变化对模糊后件的影响。 最优模糊推理的鲁棒性是否有所改进也 是我们需要研究的一个问题。
01:03
19
模糊系统的通用逼近能力

模糊系统的通用逼近性:以任意精度逼 近紧致集上的任意连续实函数
01:03
21
模糊系统的通用逼近能力
研究路线: 基于神经网络与模糊系统的等效性 如RBF神经网络等价于采用高斯隶属度函 数,sum-product推理和COG解模糊化的 简化模糊系统 ,很难得出神经网络与模 糊系统等价的一般结论。
01:03
22
模糊系统的通用逼近能力
研究路线: 基于一致连续的概念 如汪培庄证明了采用全交叠三角形隶属 度函数的MISO简化模糊系统是通用逼近 器,很难研究非全交叠的情况及T-S模型。
比较依据:逼近精度与复杂性的平衡; 学习算法的收敛速度; 结果的可解释性; 充分利用各种不同形式的信息。
01:03
11
模糊系统概述
模糊控制的机理 模糊系统与模糊控制器已得到比较充分 的研究,特别是证明了它的万能逼近性, 这为模糊控制系统的分析与设计奠定了 一个坚实的理论基础。但它们是万能的 吗?它们还有哪些能力?又不具有哪些 能力?是否应将新的思想注入到模糊论的地位已经和六七十年代有了根本性 的不同:模糊逻辑的数学基础已经比较好地建 立起来;最基本的理论已经到位;模糊逻辑在 基础学科――特别是在数学、物理和化学―― 的影响日益显著;基于模糊理论的应用向家用 消费品、工业系统、生物工程、决策分析和认
识技术等各个方向发展
01:03 13
模糊系统概述
模糊理论的先天不足就在于它是传统逻 辑的一种扩展,整个过程是“定义”出 来的。当然每一种“定义”都有其优势 或者特点,但我们无法用某个指标来评 价它。而且这些“定义” 含有很大的随 意性,不同的“定义”会带来不同的结 果,使得一般性的理论分析很难进展下 去。
01:03 14
n
E1 , E2 E1 , E2
Fuzzification
Reasoning Premise A ( )
Compositional Operation Inference Method
Reasoning Consequence B ( )
u
Defuzzification
现有模糊推理方法框图
01:03
4
模糊系统概述
模糊控制理论出现的必然性 自动控制理论发展的两个主要阶段: 经典控制理论――主要解决单变量系统的 反馈控制 现代控制理论――主要解决多变量系统的 优化控制
01:03
5
模糊系统概述
现代工业具有以下特征: 复杂性:系统结构和参数的高维、时变、 高度非线性 不确定性:系统内外部的未知和不确定 的因素 高标准的性能要求
01:03
9
模糊系统概述
模糊理论经常被问及的问题 能否举一个例子,只能用模糊控制来解 决,而其它方法无法解决。 我们是否需要模糊理论,因为模糊理论 能解决的问题用概率论同样可以解决。
01:03
10
模糊系统概述
模糊理论经常被问及的问题 模糊系统方法中没有模糊的地方 模糊系统与其它非线性建模方法相比, 优点何在
相关文档
最新文档