高中数学《棱锥的概念和性质》说课稿模板.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学《棱锥的概念和性质》说课稿模板
2019-01-01
作为的数学老师的你还在为撰写教学反思而坐不住吗?下面YJBYS小编为您整理了一篇的范文,希望对您有帮助,
。
各位评委,老师们:大家好!
今天我说课的内容是高二立体几何(人教版)第九章第二章节第八小节《棱锥》的第一课时:《棱锥的概念和性质》。下面我就从教材分析、教法、学法和教学程序四个方面对本课的教学设计进行说明。
一、说教材
1、本节在教材中的地位和作用:
本节是棱柱的后续内容,又是学习球的必要基础。第一课时的教学目的是让学生掌握棱锥的一些必要的基础知识,同时培养学生猜想、类比、比较、转化的能力。著名的生物学家达尔文说:“最有价值的知识是关于方法和能力的知识”,因此,应该利用这节课培养学生学习方法、提高学习能力。
2. 教学目标确定:
(1)能力训练要求
①使学生了解棱锥及其底面、侧面、侧棱、顶点、高的概念。
②使学生掌握截面的性质定理,正棱锥的性质及各元素间的关系式。
(2)德育渗透目标
①培养学生善于通过观察分析实物形状到归纳其性质的能力。
②提高学生对事物的感性认识到理性认识的能力。
③培养学生“理论源于实践,用于实践”的观点。
3. 教学重点、难点确定:
重点:1.棱锥的截面性质定理 2.正棱锥的性质。
难点:培养学生善于比较,从比较中发现事物与事物的区别。
二、说教学方法和手段
1、教法:
“以学生参与为标志,以启迪学生思维,培养学生创新能力为核心”。
在教学中根据高中生心理特点和教学进度需要,设置一些启发性题目,采用启发式诱导法,讲练结合,发挥教师主导作用,体现学生主体地位。
2、教学手段:
根据《教学大纲》中“坚持启发式,反对注入式”的教学要求,针对本节课概念性强,思维量大,整节课以启发学生观察思考、分析讨论为主,采用“多媒体引导点拨”的教学方法以多媒体演示为载体,以“引导思考”为核心,设计课件展示,并引导学生沿着积极的思维方向,逐步达到即定的教学目标,发展学生的逻辑思维能力;学生在教师营造的“可探索”的环境里,积极参与,生动活泼地获取知识,掌握规律、主动发现、积极探索。
三、说学法:
这节课的核心是棱锥的截面性质定理,.正棱锥的性质。教学的指导思想是:遵循由已知(棱柱)探究未知(棱锥)、由一般(棱锥)到特殊(正棱锥)的认识规律,启发学生反复思考,不断内化成为自己的认知结构。
四、学程序:
[复习引入新课]
1.棱柱的性质:(1)侧棱都相等,侧面是平行四边形
(2)两个底面与平行于底面的截面是全等的多边形
(3)过不相邻的两条侧棱的截面是平行四边形
2.几个重要的四棱柱:平行六面体、直平行六面体、长方体、正方体
思考:如果将棱柱的上底面给缩小成一个点,那么我们得到的将会是什么样的体呢?
[讲授新课]
1、棱锥的基本概念
(1).棱锥及其底面、侧面、侧棱、顶点、高、对角面的概念
(2).棱锥的表示方法、分类
2、棱锥的性质
(1). 截面性质定理:如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们面积的比等于截得的棱锥的高与已知棱锥的高的平方比
已知:如图(略),在棱锥S-AC中,SH是高,截面A’B’C’D’E’平行于底面,并与SH交于H’,
《》()。
:(略)
引申:如果棱锥被平行于底面的平面所截,则截得的小棱锥与已知棱锥
的侧面积比也等于它们对应高的平方比、等于它们的底面积之比。
(2).正棱锥的定义及基本性质:
正棱锥的定义:①底面是正多边形
②顶点在底面的`射影是底面的中心
①各侧棱相等,各侧面是全等的等腰三角形;各等腰三角形底边上的高相等,它们叫做正棱锥的斜高;
②棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形;
棱锥的高、侧棱和侧棱在底面内的射影也组成一个直角三角形
引申:①正棱锥的侧棱与底面所成的角都相等;
②正棱锥的侧面与底面所成的二面角相等;
(3)正棱锥的各元素间的关系
下面我们结合图形,进一步探讨正棱锥中各元素间的关系,为研究方便将课本图9-74(略)正棱锥中的棱锥S-OBM从整个图中拿出来研究。
引申:
①观察图中三棱锥S-OBM的侧面三角形状有何特点?
(可证得∠SOM =∠SOB =∠SMB =∠OMB =900,所以侧面全是直角三角形。)
②若分别假设正棱锥的高SO= h,斜高SM= h’,底面边长的一半BM=
a/2,底面正多边形外接圆半径OB=R,内切圆半径OM= r,侧棱SB=L,侧面与底面的二面角∠SMO= α ,侧棱与底面组成的角∠SBO= β,∠BOM=1800/n (n 为底面正多边形的边数)请试通过三角形得出以上各元素间的关系式。
(课后思考题)
[例题分析]
例1.若一个正棱锥每一个侧面的顶角都是600,则这个棱锥一定不是( )
A.三棱锥
B.四棱锥
C.五棱锥
D.六棱锥
(答案:D)
例2.如图已知正三棱锥S-ABC的高SO=h,斜高SM=L,求经过SO的中点且平行于底面的截面△A’B’C’的面积。
�v解析及图略�w
例3.已知正四棱锥的棱长和底面边长均为a,求:
(1)侧面与底面所成角α的余弦(2)相邻两个侧面所成角β的余弦
�v解析及图略�w
课堂练习]
1、知一个正六棱锥的高为h,侧棱为L,求它的底面边长和斜高。
�v解析及图略�w
2、锥被平行与底面的平面所截,若截面面积与底面面积之比为1∶2,求此棱锥的高被分成的两段(从顶点到截面和从截面到底面)之比。
�v解析及图略�w
[课堂小结]
一:棱锥的基本概念及表示、分类
二:棱锥的性质
1. 截面性质定理:如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们面积的比等于截得的棱锥的高与已知棱锥的高的平方比