聚合物的结晶态

合集下载

第九章 结晶态聚合物

第九章 结晶态聚合物
体中分子链平行于晶面方向,晶片厚度基本与伸展的分子链长 度相当。这种晶体主要形成于极高压力下。
9.1 .3 结晶聚合物的结构模型
缨状微束模型:认为结晶聚 合物中晶区与非晶区互相穿 插,同时存在。在晶区分子 链相互平行排列成规整的结 构,而在非晶区分子链的堆 砌完全无序。该模型也称两 相结构模型。
可解释结晶性聚合物中晶 区和非晶区的共存,但不能 解释单晶和球晶的结构模型。
缨状微束模型
折叠链模型:聚合物晶体中,高分 子链以折叠的形式堆砌起来的。
伸展的分子倾向于相互聚集在一起 形成链束,分子链规整排列的有序链 束构成聚合物结晶的基本单元。这些 规整的有序链束表面能大自发地折叠 成带状结构,进一步堆砌成晶片。
特点:聚合物中晶区与非晶区同时存 在,同一条高分子链可以是一部分结 晶,一部分不结晶;并且同一高分子 链可以穿透不同的晶区和非晶区。但 分子链的折叠方式存在争议。
(1)对力学性能的影响; (2)对密度的影响; (3)对光 学性能的影响;(4) 对塑料使用温度的影响;(5)耐溶 剂性能
结晶使高分子链规整排列,堆砌紧密,因而增强了分子链 间的作用力,使聚合物的密度、强度、硬度、耐热性、耐溶 剂性、耐化学腐蚀性等性能得以提高,从而改善塑料的使用 性能。
但结晶使高弹性、断裂伸长率、抗冲击强度等性能下降, 对以弹性、韧性为主要使用性能的材料是不利的。如结晶会 使橡胶失去弹性,发生爆裂。
9.3 聚合物的结晶过程
9.3.1 聚合物结晶速度及其测定方法 结晶过程:成核 + 晶体生长 成核方式:均相成核,异相成核 1、膨胀计法 2、解偏振光强度法 3、差示扫描量热法
9.3.2 Avrami方程应用于聚合物等温结晶动力学 P281-282
9.3.3 影响结晶速度的因素

高分子物理聚合物的结晶态

高分子物理聚合物的结晶态
在应力作用下,晶体结构容易发生畸变,降低稳定性。
化学因素对稳定性的影响
某些化学物质可以与聚合物分子发生相互作用,影响晶体结构的稳 定性。
03 聚合物结晶态的结构与性质
晶体结构与形态
晶体结构
聚合物结晶态中分子链以有序的 方式排列,形成晶体结构。晶体 结构决定了聚合物的物理性质, 如硬度、韧性、热稳定性等。
04 聚合物结晶态的转变与动力学
聚合物结晶态的转变
熔融结晶
当温度升高到熔点以上时,聚合物从晶体态转变为液态。
退火结晶
将聚合物加热至高于熔点,然后缓慢冷却,使其重新结晶。
应力结晶
在拉伸或压缩应力的作用下,聚合物发生结晶。
聚合物结晶的动力学
1 2
结晶速率
描述聚合物结晶过程的快慢,通常用结晶速率常 数表示。
晶体缺陷与性质
晶体缺陷
聚合物结晶中存在各种缺陷,如位错、空穴、界面等。这些 缺陷影响聚合物的物理性质,如降低机械性能、耐热性和光 学性能。
性质与应用
聚合物结晶态的性质决定了其在不同领域的应用。例如,在 塑料加工中,通过控制结晶形态和尺寸可以提高产品的机械 性能和热稳定性;在纤维制造中,结晶结构影响纤维的强度 和弹性。
分离与提纯
利用聚合物结晶态的差异,可以实现 混合物中不同组分的分离和提纯,如 利用聚合物吸附剂进行吸附分离和色 谱分离等。
化学反应控制
通过控制聚合物的结晶形态,可以影 响化学反应的速率和选择性,从而实 现化学反应的高效控制。
聚合物结晶态的研究展望
新型聚合物材料的开发
01
随着对聚合物结晶态的深入了解,有望开发出具有优异性能的
无定形态
聚合物分子无序排列,没 有明显的晶体结构。如聚 甲基丙烯酸甲酯、聚碳酸 酯等。

高分子物理——第五章 聚合物的结晶态说课材料

高分子物理——第五章 聚合物的结晶态说课材料
a=b=c
三方晶系 正交晶系
单斜晶系 三斜晶系
α = β = γ = 90°α = β = γ = 90° α = γ = 90° α = β = γ = 90°
a=b=c
a=b=c
a=b=c
a=b=c
其中,
高分子结晶中正交晶系和单斜晶系占了60%左右。
高聚物有各向异性,合成高聚物的晶格中无立方晶系。
球晶的形成
球晶对性能的影响:
其大小直接影响聚合物的力学强度,球晶越大, 材料的冲击强度↓,越容易破裂。
对透明性有很大影响:使聚合物呈现乳白色而不 透明,球晶尺寸越大,透明性越差;如果晶相和非晶 相密度非常接近,则仍然透明;如果球晶尺寸或晶粒 尺寸<可见光波长,材料也是透明的。
(三)、伸直链晶体 [如图2-29(a).(b)所示]
每个几何点代表的具体内容称为晶体的结构单元
晶格:组成晶体的 质点在空间呈有规 则的排列,并每隔 一定距离重复出现, 有明显的周期性, 这种排列情况称为 晶格,晶格是由晶 胞构成的。
(3)试验证明,在晶体中可以找到一个个大小 和形状一样的平行六面体,以代表晶体结构的基本
重复单元,这种在空间中具有周期排列的最小单元
Flory认为,分子链做近邻折叠的可能很小。 此模型实质为一种非折叠模型 此模型得到了许多中子散射实验的支持。
第二节 聚合物结晶形态和结构
一、 聚合物的结晶形态
晶型:结晶的微观结构,由晶体中高分 子链的构象及其排布所决定。
高聚物结晶的形态学
• 研究对象:单个晶粒的大小,形状以及他们的 聚集方式。
• 主要研究工具:光学显微镜,电子显微镜等 • 高聚物的主要结晶形态:单晶、球晶、树枝状
在高压高温下结晶 由完全伸展的分子链平行规整排列而成 其晶体Tm最高 被认为是高分子热力学最稳定的一种聚集态结构。

聚合物结晶态与非晶态

聚合物结晶态与非晶态

(1)中子散射技术观测拉伸聚合物相同伸长、 不 同松弛时间的结构变化。
(2)同步辐射SAXS /WAXS和介电谱技术可以用 来研究结晶高分子非晶区的结构及其动力学松弛行 为。
(3)结晶高分子中柔性非晶相和刚性非晶相的比 例可以根据示差扫描量热( DSC ) 结果进行估算。
完 毕! 谢 谢!
聚合物
非结晶性 聚合物
结晶性聚 合物
结条 晶件
非晶 态
晶态
结晶能力是内因,条件外 因。具有结晶能力的聚合 物,即可是晶形的,也可 是非晶形的。
分子链的对称 性与规整性
温度、时间
(1)缨束状模型
Hale Waihona Puke (2)折叠链模型实际高聚物结晶大 多 是晶相与非晶相 共存的, 而各种结 晶模型都有其片 面 性,R.Hosemann 综合了各种结晶模 型,提出了一种折 衷的模型,称为隧 道-折叠链模型。 这个模型综合了在 高聚物晶态结 构中
聚合物
玻璃化转变温度85℃,
熔点285℃,长期使用
温度为200℃-220℃。
6. 结晶度与材料性能
提 非晶区高弹态 高 结 晶 度 非晶区玻璃态
弹性模量 硬度 拉伸强度 断裂伸长率 冲击强度
~ 弹性模量
变脆 拉伸强度 断裂伸长率 冲击强度
相同结晶度时,晶体尺寸越大,脆性越大,力学性能越差。
6. 结晶度与材料性能
6. 结晶度与材料性能
例如:聚醚醚酮(poly
ether ether ketone, PEEK)
Tm
树脂结晶度间于
结晶性聚 合物
15%~35%,玻璃化转变 温度143℃,熔点334℃, 可在250℃下长期使用;
Tg
聚苯硫醚 (polyphenylene sulfide,

聚合物的结晶态

聚合物的结晶态

而在测定单晶取向旳劳厄法中所用单晶样品
保持固定不变动(即θ不变),以辐射束旳波长作为变 量来确保晶体中一切晶面都满足布拉格方程旳条 件,故选用连续X射线束。假如利用构造已知旳晶 体,则在测定出衍射线旳方向θ后,便可计算X射线 旳波长,从而鉴定产生特征X射线旳元素。这便 是X射线谱术,可用于分析金属和合金旳成份。
那么,一般情况下旳聚合物结晶都是 一种亚稳态。
6.3 高分子晶态构造模型来自X-射线衍射试验成果(1)晶区和非晶区共存 (2)晶区尺寸大约为100A
无规聚丙烯
等规聚丙烯
铝箔
缨状胶束模型 (Two-phase) fringed micelle model
模型旳特点
一种分子链能够同步穿越若干个晶区和非晶 区,在晶区中分子链相互平行排列,在非晶 区中分子链相互缠结呈卷曲无规排列。
PE
PET
平面锯齿构象
(a)31; (b) 72; (c) 41; (d) 41
等规聚合物-(CH2-CHR-)n-旳多种螺旋构象
螺 旋 构 象 用 Pn 描 述 , 其 中 P 表 达分子轴向(C方向)上每反 复周期内包括旳构造单元数, n表达每一反复周期中分子链 旋转几圈。
例如:31(全同立构聚丙烯旳晶型 之一)表达分子轴向上每一反复周 期内包括3个构造单元,旋转1圈。
当X射线以掠角θ(入射角旳余角)入射到某一点阵晶格间距为d旳 晶面上时,在符合上式旳条件下,将在反射方向上得到因叠加而加强 旳衍射线。
布拉格方程简洁直观地体现了衍射所必须满足旳条
件。当 X射线波长λ已知时(选用固定波长旳特征X射 线),采用细粉末或细粒多晶体旳线状样品,可从一堆任 意取向旳晶体中,从每一θ角符合布拉格方程条件旳反 射面得到反射,测出θ后,利用布拉格方程即可拟定点 阵晶面间距、晶胞大小和类型;根据衍射线旳强度,还可 进一步拟定晶胞内原子旳排布。这便是X射线构造分析 中旳粉末法或德拜-谢乐(Debye-Scherrer)法旳理论基 础。

何曼君《高分子物理》(第3版)配套题库【章节题库】第6章 聚合物的结晶态 【圣才出品】

何曼君《高分子物理》(第3版)配套题库【章节题库】第6章 聚合物的结晶态 【圣才出品】

第6章聚合物的结晶态一、选择题1.PE,PVC,PVDC结晶能力的强弱顺序是()。

A.PE>PVC>PVDCB.PVDC>PE>PVCC.PE>PVDC>PVC【答案】C【解析】PE的主链全部由碳原子组成,对称性非常好,因此它的结晶能力非常强;PVDC 是对称取代的,主链对称性高,因此有较好的结晶能力;PVC的柔性比PVDC小,因此结晶能力比PVDC弱。

2.已知含有成核剂的聚丙烯在等温结晶时生成球晶,则其Avrami指数n为()。

A.2B.3C.4【答案】B【解析】加入成核剂后,聚丙烯结晶过程属于异相成核,同时生成球晶(三维生长),所以n=3。

3.下列聚合物中,熔点最高的是()。

A.聚乙烯B.聚对二甲苯撑C.聚苯撑【答案】C【解析】在高分子主链上引入苯环,共轭双键等极性基团,将大大增加分子链的刚性,从而减少了聚合物熔体中分子链的构象数,使△S m减少,导致熔点升高。

所以聚苯撑的熔点最高。

4.(多选)下面哪些聚合物不能结晶()。

A.聚乙烯B.无规聚苯乙烯C.无规聚甲基丙烯酸甲酯D.聚二甲基硅氧烷【答案】BCD【解析】聚乙烯对称性很好,具有很强的结晶能力;无规聚苯乙烯和无规聚甲基丙烯酸甲酯链结构不规整,是典型的非晶聚合物;聚二甲基硅氧烷由于链的柔顺性太好而不能结晶。

二、填空题1.取向可使聚合物在取向方向上的σt______、σi______、E______、断裂伸长率______,可使聚合物的结晶度______、高分子液晶相的流体在取向方向上的黏度______、流动性______。

【答案】增加;增加;增加;增加;增加;减少;减少2.高分子液晶根据生成方式的不同,可分为______液晶与______液晶。

【答案】溶致性;热致性3.结晶度提高,聚合物的σt______、σi______、硬度______、断裂伸长率______、密度______、耐热性能______、透光性______。

【答案】增加;减少;增加;减少;增加;增加;减少4.聚合物稀溶液冷却结晶易生成______,熔体冷却结晶通常生成______。

高分子物理 聚合物的结晶态

高分子物理 聚合物的结晶态
? 1、高分子晶区结构特点: ? (1)链构象处于能量最低态; ? (2)链与链之间平行排列而且紧密堆集。 ? 2、晶胞结构的参数
? 晶胞结构参数——描述晶胞结构的参数 有 6个: 平行六面体的三边的长度:a、b、c 平行六面体的三边的夹角: ? , ? ,?
? 3、晶系(七个)
立方:
a ? b ? c,? ? ? ? ? ? 900
? 聚酰胺的链构象受到分子间氢键的强烈影 响,结果成平面锯齿形的分子链靠分子间 氢键联系平行排列成片状结构。
6.2 结晶性聚合物的球晶和单晶
? 不同的结晶条件下形成不同的晶形,其中主要有: ? 单晶、 ? 球晶、 ? 树枝状晶、 ? 孪晶、 ? 伸直链片晶、 ? 纤维状晶 ? 串晶。
1. 球晶
? (1)生长条件:聚合物从浓溶液中析出, 或从熔体冷却结晶时,倾向于生成结晶。
? ? ? ? 90 o ? ? 99.2 o
属于单斜晶系 不同的结晶条件可以得到不同的晶形:α,β,
γ,δ4种变态,性能各异。
? 4. 聚对苯二甲酸乙二酯(PET)
? 三斜晶系,每个晶胞有一条链。a=0.466nm, b=0.594,c=1.075nm。
O
O
C
COCCO
H2 H2
PET
? 5.尼龙系列
现的构象来得高,因而这类聚合物的分子 链在晶体中通常采取包含交替出现的反式 旁式构象序列的螺旋形构象。
? 每个平面有4个结 构单元(中间二个 为该晶胞独有的; 在线上的为二个晶 胞共有,以1/2个 计。
全同聚丙烯的H3l螺旋
IPP的晶胞及参数: 用X射线衍射法研究结果为: a=0.665nm b=2.096nm c=0.65nm
? 逐渐向外张开生长 (图b, c ,),

第五章 聚合物的结晶态

第五章 聚合物的结晶态

(一)单晶(体)(折迭链片晶) 1957年,Ander Keller ,英国高分子物理学 家,从0.01%浓度的极稀溶液的聚乙烯-二甲苯 溶中,用极缓慢的冷却方法培养了PE单晶。
凸空心棱锥型聚乙烯单晶
凹空心棱锥型聚乙烯单晶
单晶的形成条件--极稀溶液中缓慢结晶 单晶的形成过程
单晶的特点 1)具有规则的几何外形
下面就四个区域的结晶情况予以说明
1/t1/2
Ⅰ区:Tm以下10 ~30℃,T高,成 核速度极小,结晶总速度为0。
Ⅱ区 Ⅳ区 Ⅲ区 Ⅰ区
0 Tg
Tmax
Tm T
Ⅱ区:T在Ⅰ区以下30 ~60℃ 晶核少,链段扩散容易,晶粒 大,完善而稳定,Tm高,熔限 窄。成核速度较低,结晶速度 由成核作用控制。
Ⅲ区:最大结晶速度区,结晶的主要区域。 Ⅳ区:T>Tg,晶核多,晶粒小,完善性差,不稳定, Tm低,熔限宽。 链活动能力↓,晶粒生长慢,然后 是晶核生成受限,结晶作用由晶粒生长步骤控制。
1/t1/2
结晶最 大速度
晶核生成
晶体生长
产生上述现象的原因: 晶核生成速度和晶体生 长速度存在不同的温度 依赖性
0 Tg
Tmax
Tm T
结晶需要分子链有足 够的动能→发生迁移 →适当堆砌→要求有 足够高的温度。
低温有利于晶核的形成和稳定
高温有利于晶体的生长
Tmax=(0.8~0.85)Tm (k) 最大结晶速率的温度 Tmax=0.63Tm+0.37Tg-18.5 (k)
q—每个等同周期中螺旋的数目
PTFE 晶体中分子链构象呈螺旋型构象 H136 因为PTFE的螺旋构象,使碳原子被F所包围,F原 子相互排斥,有自润滑性,因此具有冷流性。又由于它 的螺旋硬棒状结构,因此熔点高,可耐三酸两碱。

聚合物常见四种状态

聚合物常见四种状态

聚合物常见四种状态在化学领域中,聚合物是由重复单元结构组成的大分子化合物,具有多种形态和性质。

根据聚合物内部结构的排列方式和相互作用,聚合物可以存在不同的状态。

在本文中,我们将介绍聚合物的常见四种状态:无序状态、结晶状态、玻璃态和溶液状态。

1. 无序状态无序状态指的是聚合物分子内部结构的排列没有明显的规律性。

在这种状态下,聚合物分子呈现出随机排列的特征,没有明显的长程有序性。

无序状态的聚合物通常具有均匀的外观和物理性质,如塑料材料中的大部分非晶态聚合物。

2. 结晶状态结晶状态是指聚合物分子内部呈现出有序的晶体结构。

在结晶状态下,聚合物分子以规则的晶格排列,形成结晶性材料。

这种状态下的聚合物通常具有良好的机械性能和热稳定性,如聚乙烯、聚丙烯等。

3. 玻璃态玻璃态是一种特殊的非晶态状态,聚合物在此状态下呈现出类似玻璃的特性。

玻璃态的聚合物分子没有明显的晶格结构,但又不像无序态那样具有完全的随机性。

玻璃态的聚合物通常表现出高度的刚性和脆性,如聚甲基丙烯酸甲酯等。

4. 溶液状态溶液状态是指聚合物在溶剂中形成的一种状态。

在此状态下,聚合物分子被溶剂包围并分散在其中,形成均匀的溶液体系。

溶液状态的聚合物通常表现出高度的流动性和可加工性,如聚合物溶液用于涂料、胶黏剂等领域。

总的来说,聚合物存在多种状态,每种状态都具有独特的结构和性质。

通过调控聚合物的状态,可以实现对其性能的调整和优化,为不同领域的应用提供了丰富的选择。

随着对聚合物状态理解的不断深入,人们将能够更好地利用聚合物材料的潜力,推动材料科学和工程领域的发展。

1。

11级高分子物理6 聚合物的结晶态

11级高分子物理6 聚合物的结晶态

2020/4/6
17
3. 松散折叠链模型
2020/4/6
18
4. 隧道折叠链模型
大多数聚合物结晶是晶相与非晶相共存,而各 种模型都有片面性,R.Hosemann综合了各种结 晶模型,提出了隧道折叠链模型。
2020/4/6
19
5. 插线板模型
2020/4/6
Flory
20
6.4 聚合物的结晶过程
39
6.5 结晶聚合物的熔融和熔点
2020/4/6
40
2020/4/6
41
6.5.1 结晶温度对熔点的影响
结晶聚合物的熔点和熔限与结晶形成的温度 有关。
结晶温度越低,熔点越低,熔限越宽;在较 高温度下结晶,则熔点较高,熔限越窄。
2020/4/6
42
6.5.2 片晶厚度
结晶聚合物在成型过程中,往往要作退火或淬火处理, 以控制制品的结晶度。 晶体表面普遍存在堆砌较不规整的区域,结晶表面上的 链将不对熔融热作完全贡献。 晶片厚度越小,单位体积内的结晶物质比完善的单晶将 具有较高的表面能。 晶片厚度较小的和较不完善的晶体,比其较大的和较完 善的晶体熔点低。 通常,退火处理可以提高结晶度,晶粒进一步完善,片 晶厚度增加,熔点高。
I I0
2020/4/6
24
3. 偏光显微镜法
2020/4/6
25
6.4.2 Avrami方程用于聚合物的结晶过程
结晶包括晶核的形成和晶粒的生长。
晶核形成:分为均相成核和异相成核两类。
均相成核:高分子链段依靠热运动形成有序 排列的链束(晶核),有时间依赖性。
异相成核:以外来杂质、未完全熔融的残余 结晶聚合物、分散的小颗粒固体或容器的器 壁为中心,吸附熔体中的高分子链有序排列 而形成晶核,故常为瞬时成核,与时间无关。

聚合物的结晶态

聚合物的结晶态

球晶的形成机理
球晶中的晶片
1. 薄片(片晶) 2. 残留链端区 3. 无定形区
单晶
Polyethylene (聚乙烯)
Tc ~ 70 °C Tc ~ 80 °C
形成条件:一般是在极稀 得溶液中(0.01%~0.1%)缓 慢结晶是生产的。
形状:具有规则几何形状的薄 片状晶体,平面状单层片晶是 单晶中最简单的形式。通常片 晶厚度通常在10nm左右,大 小可以从几微米到几十微米甚
c1*
c2*
η
c1*~M-2
c2*~M-1
C
向列型高分子液晶的流动特性:在较小剪切力作用下,黏度降 低的程度要大于一般的高分子溶液。在高剪切力作用下,就几 乎没有差别了。
为什么?
液晶的应用: Ultra-high-strength fibers: Kevlar®, Xydar®, Vectra®, Ultrax® membrane, Electro-optic (low molecular weight thermotropic LCs)……
61常见结晶性聚合物中晶体的晶胞62结晶性聚合物的球晶和单晶63结晶性聚合物的结构模型64聚合物的结晶过程65聚合物的熔融和熔点66结晶度对聚合物物理和机械性能的影响67聚合物的液晶态第六章聚合物的结晶态共聚支化和交联共聚copolymer无规共聚randomcopolymer嵌段共聚blockcopolymerisotacticb间规syndiotacticc无规atactic对称性越高越容易结晶61常见结晶性聚合物中晶体的晶胞高分子形成结晶需要两个条件
第六章 聚合物的结晶态
6.1 常见结晶性聚合物中晶体的晶胞 6.2 结晶性聚合物的球晶和单晶 6.3 结晶性聚合物的结构模型 6.4 聚合物的结晶过程 6.5 聚合物的熔融和熔点 6.6 结晶度对聚合物物理和机械性能的影响 6.7 聚合物的液晶态

聚合物的结晶态

聚合物的结晶态

图1 串晶电镜照片及示意图
二、 高分子在晶体中的构象和晶胞
(一)、晶体结构的几个术语 (1)、晶 体:物质内部质点在三维空间呈周期排列
分子量增加
CO2的分子晶体
小分子在晶体中的排列
大分子在晶体中的排列
(2)、空间点阵:组成晶体的质点抽象成几何点,由
这些等同的几何点的集合所形成的格子。点阵结构中,
图1聚乙烯单晶的电镜照片
图2 聚乙烯单晶的电子衍射照片
图3 不同形态 PEO的电镜照片
多层晶体的形 成
多层晶体的形成 过程中,螺旋位 错起着十分重要
的作用
(二)、 球晶
浓溶液冷却 熔体冷却(不存在 应力或流动)
球晶 直径 0.5至100微米
球晶是聚合物 结晶的一种最 常见的特征形 式
图1 捆束状球晶的电镜照片及示意图
对于某些聚合物, Avrami方程计算得到 的n值不是整数。 说明,高聚物的结晶过程比方程的模型要 复杂的多。
根据结晶速度的定义:
vt v 1 ekt1n/ 2 v0 v 2
t1/ 2


ln 2 k
1/ n
k ln 2 tn
1/ 2
k越大,t1/2越小,结晶速度快;相反亦反。 Avrami方程所处理的是结晶总速度。
vt v0
v v


lg
k

n
lg
t
v0 v
结晶后期—偏离方

程的直线部分—次
期结晶
斜率:n
截距:lg k
结晶前期—符 合方程的直线 部分—主期结 晶
由图可得,k, n。知道了n,就可知道聚合物 结晶的成核机理和生长方式。

聚合物的结晶形态

聚合物的结晶形态

聚合物的结晶形态包括以下几种:
1. 单晶:分子链垂直于片晶平面排列,晶片厚度一般只有10nm左右。

2. 树枝晶:许多单晶片在特定方向上的择优生长与堆积形成树枝状。

3. 球晶:呈圆球状,在正交偏光显微镜下呈现特有的黑十字消光,有些出现同心环。

4. 纤维状晶:晶体呈纤维状,长度大大超过高分子链的长度。

5. 串晶:在电子显微镜下,串晶形如串珠。

6. 柱晶:中心贯穿有伸直链晶体的扁球晶,呈柱状。

7. 伸直链晶体:高分子链伸展排列晶片厚度与分子链长度相当。

这些结晶形态在聚合物的结构中起着重要的作用,并影响了聚合物的物理和化学性质。

高分子物理——第五章 聚合物的结晶态

高分子物理——第五章 聚合物的结晶态
a=b=c
三方晶系 正交晶系
单斜晶系 三斜晶系
α = β = γ = 90°α = β = γ = 90° α = γ = 90° α = β = γ = 90°
a=b=c
a=b=c
a=b=c
a=b=c
其中,
高分子结晶中正交晶系和单斜晶系占了60%左右。
高聚物有各向异性,合成高聚物的晶格中无立方晶系。
2、中心论点 晶体中高分子链可以有规则的进行折叠
3、发展
随着对高聚物结晶形态研究的逐步深入,近年 来还发现某些特定条件下,进行结晶可以得到部分 伸直完全伸直链结构的晶体。
此外还发现高分子链不仅可以在一个晶片中进 行折叠,还可以在一个晶片中折叠一部分又伸出晶 面到另一个晶片中去参加折叠。
三、插线板模型
3)膨胀计法—体积变化
(1)Polarized-light microscopy 偏光显微镜
0s
30s
60s
90s
120s
Polarized-light microscopy in our University
(2)DSC-结晶放热峰
Calculation
(3)膨胀计法
起始高度h0 ht
最终高度h∞
结晶能力 高分子的结构对 结晶速度
结晶度
的影响有相似之处
什么样的聚合物结构有利于结晶?
(一)、大分子结构简单、对称易结晶
1、结构简单、对称性非常好的聚合物—PE、PTFE, 结晶能力最强。
2、对称取代的聚合物—PVDC、PIB等,有较好的 结晶能力。
3、主链上含有杂链原子的聚合物,分子链有一定 的对称性—POM、聚酯、聚醚、PA、PC等是结晶 性聚合物。
球晶的形成

第六章+聚合物的结晶态

第六章+聚合物的结晶态

vt v v0 v

1 2

t1 2 (
ln 2 K
成核: • 均相成核:由熔体中高分子链靠热运动形成有序排 列的链束为晶核; • 异相成核:以外来杂质、固体颗粒、未完全熔融的 高分子或容器壁为中心,吸附熔体中高分子链作有 序排列形成的晶核。
结晶生长:
• 成核速度 用偏光显微镜、电镜直接观察单位时间内形 成晶核的数目。 • 结晶生长速度 用偏光显微镜法、小角激光散射法测定 球晶半径随时间的增大速度,即球晶的径向生长速度。 • 结晶总速度 用膨胀计法、光学解偏振法等测定结晶过 程进行到一半所需的时间t1/2的倒数作为结晶总速度。 几种主要的实验方法 1.膨胀计法….
天然橡胶 全同聚丙烯(IPP) 尼龙6 聚对苯二甲酸乙二酯(PET) 等规聚苯乙烯(IPS) 5×103 1.25 5.0 42.0 185 无规PS不结晶
_________________________________________________________
结晶总速度 = 成核速度 + 结晶生长速度
黑十字消光:是高聚物球晶双折 射性质和对称性的反映。一束 自然光通过起偏镜后,变成平 面偏振光,其振动(电矢量) 方向都在单一方向上。一束偏 振光通过高聚物球晶时,发生 双折射,分成二束电矢量相互 垂直的偏振光,它们的电矢量 分别平行和垂直于球晶的半径 方向,由于这两个方向的折射 率不同,这两束光通过样品的 速度是不相等的,必然产生相 位差而发生干涉现象,结果使 通过球晶的一部分区域的光可 以通过与起偏镜处在正交位臵 的检偏镜(产生亮区),而另 一部分则不能通过(产生暗 区)。 球晶的双折射Δn分为径向折射 率(nr)与切向折射率(nt)之差, 当 nr 〉nt, △n〉0 正球晶;nr 〈 nt, △n〈 0 负球晶。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

聚丙烯PP
等规(isotactic)
单斜(Monoclinic) a=0.665nm b=2.096nm c=0.65nm 重复单元
CHCH 3 CH 2
H31 Hnm,螺旋构象的表示:一个等同周期中含有n个重复单元转了m圈
间规(syndiotactic)
尼龙系列 尼龙-66,三斜晶系(triclinic)
最常用的和最简单的方法是比容法(密度法)
υ =υc f cw + υa (1 − f cw )
f cw =
υa − υ = υ a − υc
(1 ρa ) − (1 ρ ) (1 ρa ) − (1 ρc )
密度梯度管来测定
ρ =ρc f cv + ρ a (1 − f cv ) ρ −ρ f cv = a ρa − ρc
其它因素对结晶速度的影响:
1.分子结构 链的柔顺性,对称性,规整度,分子量的大小等等
2.杂质
不同的杂质对结晶速度有不同的影响
6.5 结晶聚合物的熔融和熔点
其它因素对熔点的影响:
1.结晶温度
结晶温度愈低,熔点愈低而且熔限愈宽;而在较高的温度下结 晶,则熔点较高,熔限较窄。
2.晶片厚度
结晶的熔点随着晶片厚度的增加而升高
2 n// − n⊥ n// > n⊥ positive spherulite 2 2 2 δ δ I = QM − QN =E 0 sin 2θ sin n// < n⊥ negative spherulite λ 2
球晶中同心消光圆环现象
消光图像的规则性表明邻 近晶片以相同的周期和相 位,并向相同的方向扭转
c1*
c2*
η
c1*~M-2
c2*~M-1
C
向列型高分子液晶的流动特性:在较小剪切力作用下,黏度降 低的程度要大于一般的高分子溶液。在高剪切力作用下,就几 乎没有差别了。
为什么?
液晶的应用: Ultra-high-strength fibers: Kevlar®, Xydar®, Vectra®, Ultrax® membrane, Electro-optic (low molecular weight thermotropic LCs)……
球晶的形成机理
球晶中的晶片
1. 薄片(片晶) 2. 残留链端区 3. 无定形区
单晶
Polyethylene (聚乙烯)
Tc ~ 70 °C Tc ~ 80 °C
形成条件:一般是在极稀 得溶液中(0.01%~0.1%)缓 慢结晶是生产的。
形状:具有规则几何形状的薄 片状晶体,平面状单层片晶是 单晶中最简单的形式。通常片 晶厚度通常在10nm左右,大 小可以从几微米到几十微米甚
聚合物的球晶 (spherulites)
球晶界面示意图
聚乙烯球晶
形成黑十字(Maltese cross)消光图像的机理
OP:起偏镜 OA:检偏镜 QE: 偏振光
OP
QR
投影到OA
I0
QE
QM QN
QT
2 QM − QN = I
6.1 常见结晶性聚合物中晶体的晶胞
高分子形成结晶需要两个条件: (1)、高分子链的构象要处于能量最低的状态。 (2)、链与链之间要平行排列而且能紧密堆积。
聚乙烯PE
正交晶系(orthorhombic)
晶胞参数: a=0.742nm, b=0.495nm, c=0.255nm
锯齿形平面构象
(zig-zag conformations)
B、高分子液晶
Common architectures for liquid crystalline polymers (LCPs): some examples
聚肽
main-chain rigid-rod: lyotropic main-chain with flexible spacers:
Hydrogen bonding
H21
正交(orthorhombic) a=1.45nm b=0.56nm c=0.74nm 晶胞参数: a=0.49nm b=0.54nm c=1.72nm
6.2 结晶性聚合物的球晶和单晶
聚合物的球晶 (spherulites)
从熔体生长的等规聚苯乙烯球晶 Under Polarized optical microscopy
Smectic A: focal-conic fan (焦锥扇形) texture
Cholesteric (fingerprint) texture
2、根据液晶形成的条件分类: A、热致型液晶( Thermotropic liquid crystals): B、溶致型液晶( Lyotropic liquid crystals): 3、根据分子量分类: A、小分子液晶
Layers
Layers
Molecules Molecules
Smectic A
Smectic C
胆甾相( Cholesteric phase) (chiral (手性) nematic phase)
Cholesterol nonanoate molecule:
Nematic: schlieren (纹影) texture
3.拉伸
拉伸能提高结晶度,熔点也随之升高
4.杂质
各种低分子的稀释剂所造成熔点降低
5.高分子链结构
6.6 结晶度对聚合物物理和机械性能的影响
结晶度的概念及其测定方法
结晶度:结晶部分含量的量度,通常以重量百分数或体积百分数来表示。
W V f cw = c ×100%或 f cv =c ×100% Wc + Wa Vc + Va
sin 2θ iωt QM − QN E0 sin θ = cos θ eiωt ( e ± iδ − 1) E0 e ( cos δ ± i sin δ − 1) = 2 sin 2θ iωt δ δ δ δ δ δ E0 e −2sin 2 ± i 2sin cos = = − E0 sin 2θ eiωt sin sin i cos 2 2 2 2 2 2 2
成核过程
异相成核
偏光显微镜、电镜
晶粒的生长过程 生长过程
高分子链束(链)以晶核为中心快速紧密堆积。
偏光显微镜、小角激光散射法测定球晶的径向生长速度
Avrami方程用于聚合物的结晶过程
υt − υ ∞ = exp(−kt n ) υ0 − υ∞ ν : 聚合物的比容 υt − υ ∞ n ln = −kt κ: 结晶速率常数 υ0 − υ∞ n: Avrami指数 υ − υ∞ − ln t = kt n υ0 − υ∞ υ − υ∞ lg(− ln t ) =+ n lg t lg k υ0 − υ∞
= υt 1/ ρt ∝ ht
h0 ht
ht − h∞ lg − ln − h h 0 ∞
1/2
ht’ h∞
ln 2 k= n t1/ 2
t1/2 t
lgt
温度对结晶速度的影响:
为什么?
成核速度
+
生长速度
温度对结晶速度的影响分成四个区:
Tmax=0.63Tm+0.37Tg-18.5 Tmax≈0.85Tm
关于k值: υ − υ∞ 1 = 当 t υ0 − υ∞ 2
− ln
υt − υ ∞ = kt n υ0 − υ∞
1n
kt n = ln 2
ln 2 ln 2 = = 或 t k 12 n=1+0 t1n 2 k
t1 2 称为半结晶期
t
膨胀计法 (dilatometric)测定结晶速度
扇形化作用
Fischer近邻松散折叠链模型
3 Flory 插 线 板 模 型
4 隧 道 折 叠 模 型
6.4 聚合物的结晶过程
聚合物结晶过程包含两个步骤:
1、成核过程(nucleation process):晶核的形成
2、晶粒的生长过程(growth process)
时间维度为 1
成核过程
均相成核 时间维度为 0 外来的杂质、未完成熔融的残余结 晶聚合物、分散的小颗粒或容器壁 为中心,吸附熔体中的高分子链作 有序排列而形成晶核 熔体中高分子链段靠热运动形成有 序排列的链束,这种链束成为晶核
δ 光程差
QE = E0 eiωt
i ω t ±δ QR = E0 sin θ e ( ) QT = E0 cos θ eiω t
QM = E0 sin θ cos θ ei(ω t ±δ )
投影到OA
QN = E0 cos θ sin θ eiω t
片晶的厚度约5-50 nm, 宽度达 到微米级.
1、 缨状微束模型(两相模型)
要点:晶区与非晶区互相 穿插,同时存在。在晶区 中,分子链互相平行排列 形成规整的结构,但晶区 尺寸很小,一根分子链可 以同时穿插几个晶区和非 晶区,晶区在通常情况下 是无规取向的。在非晶区 中,分子链的堆积是完全 无序的

Ⅰ区:熔点以下10-30℃范围内,是熔体由高温冷却时的过冷温度区。成核速 度极小,结晶速度实际上等于零。 Ⅱ区:从Ⅰ区下限开始,向下30-60℃范围内,随着温度降低,结晶速度迅速 增大,温度变化即使只有几度,结晶速度相差可以很大,不易控制。 在这个区域中,成核过程控制结晶速度。 Ⅲ区:最大结晶速度出现在这个区域。是熔体结晶生成的主要区域。 Ⅳ区:结晶速度随温度降低迅速下降。结晶速度主要由晶粒生长过程控制。
第六章 聚合物的结晶态
6.1 常见结晶性聚合物中晶体的晶胞 6.2 结晶性聚合物的球晶和单晶 6.3 结晶性聚合物的结构模型 6.4 聚合物的结晶过程 6.5 聚合物的熔融和熔点 6.6 结晶度对聚合物物理和机械性能的影响 6.7 聚合物的液晶态
相关文档
最新文档