全国版2022高考数学一轮复习第3章导数及其应用第2讲导数的简单应用试题1理含解析
统考版2022届高考数学一轮复习第3章导数及其应用第1节导数的概念及运算课件理新人教版.ppt
数还是周期函数.
2.熟记以下结论:
(1)1x′=-x12;
(2)f
1x′=-[ff
′x x]2(f
(x)≠0);
(3)[af (x)±bg(x)]′=af ′(x)±bg′(x).
一、易错易误辨析(正确的打“√”,错误的打“×”)
(1)f ′(x0)是函数 y=f (x)在 x=x0 附近的平均变化率. ( )
2.导数的几何意义
函数 f (x)在点 x0 处的导数 f ′(x0)的几何意义是曲线 y=f (x)在点 _(_x_0,__f_(_x_0_))__处的切线斜率 .相应地,切线方程为_y_-__f_(_x_0)_=__f_′(_x_0_)__ _(_x_-__x_0_) __.
提醒:(1)瞬时速度是位移函数 S(t)对时间的导数. (2)曲线 y=f (x)在点 P(x0,y0)处的切线是指 P 为切点,斜率为 f ′(x0) 的切线,是唯一的一条切线. (3)曲线 y=f (x)过点 P(x0,y0)的切线,点 P 不一定是切点,切线 可能有多条.
A.xsin x
B.-xsin x
C.xcos x
D.-xcos x
B [y′ =x′cos x+x(cos x)′-(sin x)′=cos x-xsin x-cos x=-
xsin x.]
1234 5
2.曲线 y=x3+11 在点 P(1,12)处的切线与 y 轴交点的纵坐标是
() A.-9
B.-3 C.9
极值求参数的取值范围,函数的零点等问题.
第一节 导数的概念及运算
[考试要求] 1.了解导数概念的实际背景,理解导数的几何意义. 2.能根据导数定义求函数 y=C(C 为常数),y=x ,y=x2,y=x3, y=1x,y= x的导数. 3.能利用基本初等函数的导数公式和导数的四则运算法则求简 单函数的导数.
高考数学一轮复习 第三章 导数及其应用3
高考数学一轮复习 第三章 3.7 利用导数研究函数零点 题型一 数形结合法研究函数零点例1 (2020·全国Ⅰ)已知函数f (x )=e x -a (x +2). (1)当a =1时,讨论f (x )的单调性; (2)若f (x )有两个零点,求a 的取值范围. 解 (1)当a =1时,f (x )=e x -(x +2),f ′(x )=e x -1,令f ′(x )<0,解得x <0,令f ′(x )>0,解得x >0,所以f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增. (2)令f (x )=0,得e x =a (x +2),即1a =x +2ex ,所以函数y =1a 的图象与函数φ(x )=x +2e x 的图象有两个交点,φ′(x )=-x -1e x ,当x ∈(-∞,-1)时,φ′(x )>0; 当x ∈(-1,+∞)时,φ′(x )<0, 所以φ(x )在(-∞,-1)上单调递增, 在(-1,+∞)上单调递减,所以φ(x )max =φ(-1)=e ,且x →-∞时, φ(x )→-∞;x →+∞时,φ(x )→0, 所以0<1a <e ,解得a >1e .所以a 的取值范围是⎝⎛⎭⎫1e ,+∞. 教师备选已知函数f (x )=x e x +e x .(1)求函数f (x )的单调区间和极值;(2)讨论函数g (x )=f (x )-a (a ∈R )的零点的个数. 解 (1)函数f (x )的定义域为R , 且f ′(x )=(x +2)e x ,令f ′(x )=0得x =-2,则f ′(x ),f (x )的变化情况如表所示:x (-∞,-2)-2 (-2,+∞)f ′(x ) - 0 + f (x )单调递减-1e2 单调递增∴f (x )的单调递减区间是(-∞,-2),单调递增区间是(-2,+∞). 当x =-2时,f (x )有极小值为f (-2)=-1e 2,无极大值.(2)令f (x )=0,得x =-1, 当x <-1时,f (x )<0;当x >-1时,f (x )>0,且f (x )的图象经过点⎝⎛⎭⎫-2,-1e 2,(-1,0),(0,1). 当x →-∞时,与一次函数相比,指数函数y =e -x 增长更快,从而f (x )=x +1e -x →0;当x →+∞时,f (x )→+∞,f ′(x )→+∞,根据以上信息,画出f (x )大致图象如图所示.函数g (x )=f (x )-a (a ∈R )的零点的个数为y =f (x )的图象与直线y =a 的交点个数. 当x =-2时,f (x )有极小值f (-2)=-1e2.∴关于函数g (x )=f (x )-a (a ∈R )的零点个数有如下结论:当a <-1e 2时,零点的个数为0;当a =-1e 2或a ≥0时,零点的个数为1;当-1e2<a <0时,零点的个数为2.思维升华 含参数的函数零点个数,可转化为方程解的个数,若能分离参数,可将参数分离出来后,用x 表示参数的函数,作出该函数的图象,根据图象特征求参数的范围. 跟踪训练1 设函数f (x )=ln x +mx,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3零点的个数.解 (1)当m =e 时,f (x )=ln x +ex ,f (x )的定义域为(0,+∞), f ′(x )=1x -e x 2=x -e x 2.令f ′(x )=0,得x =e. 当x ∈(0,e)时,f ′(x )<0; 当x ∈(e ,+∞)时,f ′(x )>0,∴f (x )在(0,e)上单调递减,在(e ,+∞)上单调递增, ∴当x =e 时,f (x )取得极小值f (e)=2. (2)由题意知g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1).当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增; 当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减. ∴x =1是φ(x )的唯一极值点,且是极大值点, ∴x =1也是φ(x )的最大值点, ∴φ(x )的最大值为φ(1)=23.结合y =φ(x )的图象(如图)可知,①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.题型二 利用函数性质研究函数零点例2 (12分)(2021·全国甲卷)设函数f (x )=a 2x 2+ax -3ln x +1,其中a >0. (1)讨论f (x )的单调性; [切入点:判断f ′(x )的正负](2)若y =f (x )的图象与x 轴没有公共点,求a 的取值范围. [关键点:f (x )>0且f (x )有最小值]教师备选已知函数f (x )=x sin x +cos x ,g (x )=x 2+4. (1)讨论f (x )在[-π,π]上的单调性;(2)令h (x )=g (x )-4f (x ),试证明h (x )在R 上有且仅有三个零点. (1)解 f ′(x )=sin x +x cos x -sin x =x cos x . 当x ∈⎝⎛⎭⎫-π,-π2∪⎝⎛⎭⎫0,π2时,f ′(x )>0; 当x ∈⎝⎛⎭⎫-π2,0∪⎝⎛⎭⎫π2,π时,f ′(x )<0, ∴f (x )在⎝⎛⎭⎫-π,-π2,⎝⎛⎭⎫0,π2上单调递增,在⎝⎛⎭⎫-π2,0,⎝⎛⎭⎫π2,π上单调递减. (2)证明 h (x )=x 2+4-4x sin x -4cos x , ∵h (-x )=x 2+4-4x sin x -4cos x =h (x ), ∴h (x )为偶函数. 又∵h (0)=0,∴x =0为函数h (x )的零点.下面讨论h (x )在(0,+∞)上的零点个数: h (x )=x 2+4-4x sin x -4cos x =x (x -4sin x )+4(1-cos x ). 当x ∈[4,+∞)时, x -4sin x >0,4(1-cos x )≥0, ∴h (x )>0, ∴h (x )无零点; 当x ∈(0,4)时,h ′(x )=2x -4x cos x =2x (1-2cos x ), 当x ∈⎝⎛⎭⎫0,π3时,h ′(x )<0; 当x ∈⎝⎛⎭⎫π3,4时,h ′(x )>0,∴h (x )在⎝⎛⎭⎫0,π3上单调递减,在⎝⎛⎭⎫π3,4上单调递增, ∴h (x )min =h ⎝⎛⎭⎫π3=π29+4-4π3sin π3-4cos π3=π29+2-23π3<0,又h (0)=0,且h (4)=20-16sin 4-4cos 4>0, ∴h (x )在⎝⎛⎭⎫0,π3上无零点,在⎝⎛⎭⎫π3,4上有唯一零点. 综上,h (x )在(0,+∞)上有唯一零点, 又h (0)=0且h (x )为偶函数, 故h (x )在R 上有且仅有三个零点.思维升华 利用函数性质研究函数的零点,主要是根据函数单调性、奇偶性、最值或极值的符号确定函数零点的个数,此类问题在求解过程中可以通过数形结合的方法确定函数存在零点的条件.跟踪训练2 已知函数f (x )=13x 3-a (x 2+x +1).(1)若a =3,求f (x )的单调区间;(2)证明:f (x )只有一个零点.(1)解 当a =3时,f (x )=13x 3-3x 2-3x -3,f ′(x )=x 2-6x -3.令f ′(x )=0,解得x =3-23或x =3+2 3. 当x ∈(-∞,3-23)∪(3+23,+∞)时, f ′(x )>0;当x ∈(3-23,3+23)时,f ′(x )<0.故f (x )的单调递增区间为(-∞,3-23),(3+23,+∞), 单调递减区间为(3-23,3+23). (2)证明 因为x 2+x +1>0在R 上恒成立, 所以f (x )=0等价于x 3x 2+x +1-3a =0.设g (x )=x 3x 2+x +1-3a ,则g ′(x )=x 2x 2+2x +3x 2+x +12≥0在R 上恒成立,当且仅当x =0时,g ′(x )=0, 所以g (x )在(-∞,+∞)上单调递增.故g (x )至多有一个零点,从而f (x )至多有一个零点. 又f (3a -1)=-6a 2+2a -13=-6⎝⎛⎭⎫a -162-16<0, f (3a +1)=13>0,故f (x )有一个零点.综上所述,f (x )只有一个零点.题型三 构造函数法研究函数的零点例3 (2021·全国甲卷)已知a >0且a ≠1,函数f (x )=x aa x (x >0).(1)当a =2时,求f (x )的单调区间;(2)若曲线y =f (x )与直线y =1有且仅有两个交点,求a 的取值范围. 解 (1)当a =2时,f (x )=x 22x (x >0),f ′(x )=x 2-x ln 22x(x >0),令f ′(x )>0,则0<x <2ln 2,此时函数f (x )单调递增,令f ′(x )<0, 则x >2ln 2,此时函数f (x )单调递减, 所以函数f (x )的单调递增区间为⎝⎛⎭⎫0,2ln 2,单调递减区间为⎝⎛⎭⎫2ln 2,+∞. (2)曲线y =f (x )与直线y =1有且仅有两个交点,可转化为方程x a a x =1(x >0)有两个不同的解,即方程ln x x =ln aa 有两个不同的解.设g (x )=ln xx (x >0),则g ′(x )=1-ln xx 2(x >0),令g ′(x )=1-ln xx 2=0,得x =e ,当0<x <e 时,g ′(x )>0,函数g (x )单调递增, 当x >e 时,g ′(x )<0,函数g (x )单调递减, 故g (x )max =g (e)=1e ,且当x >e 时,g (x )∈⎝⎛⎭⎫0,1e , 又g (1)=0,所以0<ln a a <1e ,所以a >1且a ≠e ,即a 的取值范围为(1,e)∪(e ,+∞). 教师备选(2022·南阳质检)已知f (x )=13x 3+32x 2+2x ,f ′(x )是f (x )的导函数.(1)求f (x )的极值;(2)令g (x )=f ′(x )+k e x -1,若y =g (x )的函数图象与x 轴有三个不同的交点,求实数k 的取值范围.解 (1)因为f ′(x )=x 2+3x +2=(x +1)(x +2), 令f ′(x )=0,得x 1=-1,x 2=-2, 当x 变化时,f ′(x ),f (x )的变化如表所示:x (-∞,-2)-2 (-2,-1)-1 (-1,+∞)f ′(x ) + 0 - 0 + f (x )↗极大值↘极小值↗由表可知,函数f (x )的极大值为f (-2)=-23,极小值为f (-1)=-56.(2)由(1)知g (x )=x 2+3x +2+k e x -1=x 2+3x +1+k e x , 由题知需x 2+3x +1+k e x =0有三个不同的解,即k =-x 2+3x +1e x有三个不同的解.设h (x )=-x 2+3x +1e x,则h ′(x )=x 2+x -2e x =x +2x -1e x ,当x ∈(-∞,-2)时,h ′(x )>0,h (x )单调递增, 当x ∈(-2,1)时,h ′(x )<0,h (x )单调递减, 当x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增,又当x →-∞时,h (x )→-∞, 当x →+∞时,h (x )→0且h (x )<0, 且h (-2)=e 2,h (1)=-5e .作出函数h (x )的简图如图,数形结合可知,-5e<k <0.思维升华 涉及函数的零点(方程的根)问题,主要利用导数确定函数的单调区间和极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求得参数的取值范围.跟踪训练3 设函数f (x )=12x 2-m ln x ,g (x )=x 2-(m +1)x ,m >0.(1)求函数f (x )的单调区间;(2)当m ≥1时,讨论f (x )与g (x )图象的交点个数. 解 (1)函数f (x )的定义域为(0,+∞), f ′(x )=x +mx -mx .当0<x <m 时,f ′(x )<0,函数f (x )单调递减; 当x >m 时,f ′(x )>0,函数f (x )单调递增.综上,函数f (x )的单调递增区间是(m ,+∞),单调递减区间是(0,m ). (2)令F (x )=f (x )-g (x )=-12x 2+(m +1)x -m ln x ,x >0,题中问题等价于求函数F (x )的零点个数.F ′(x )=-x -1x -m x ,当m =1时,F ′(x )≤0,函数F (x )为减函数,因为F (1)=32>0,F (4)=-ln 4<0, 所以F (x )有唯一零点;当m >1时,0<x <1或x >m 时,F ′(x )<0;1<x <m 时,F ′(x )>0,所以函数F (x )在(0,1)和(m ,+∞)上单调递减,在(1,m )上单调递增,因为F (1)=m +12>0, F (2m +2)=-m ln(2m +2)<0,所以F (x )有唯一零点.综上,函数F (x )有唯一零点,即函数f (x )与g (x )的图象总有一个交点.课时精练1.(2022·贵阳模拟)已知函数f (x )=13x 3-12ax 2(a ≠0). (1)讨论f (x )的单调性;(2)当a =1时,g (x )=f (x )-2x +b ,讨论g (x )的零点个数.解 (1)f (x )的定义域为R ,f ′(x )=x 2-ax =x (x -a ),若a >0,当x ∈(-∞,0)∪(a ,+∞)时,f ′(x )>0,当x ∈(0,a )时,f ′(x )<0,若a <0,当x ∈(-∞,a )∪(0,+∞)时,f ′(x )>0,当x ∈(a,0)时,f ′(x )<0,综上,当a >0时,f (x )在(-∞,0),(a ,+∞)上单调递增,在(0,a )上单调递减, 当a <0时,f (x )在(-∞,a ),(0,+∞)上单调递增,在(a,0)上单调递减.(2)g (x )=13x 3-12x 2-2x +b , 令g (x )=0,所以b =-13x 3+12x 2+2x , 令h (x )=-13x 3+12x 2+2x , 则h ′(x )=-x 2+x +2=-(x -2)(x +1),所以h ′(2)=0,h ′(-1)=0,且当x <-1时,h ′(x )<0;当-1<x <2时,h ′(x )>0;当x >2时,h ′(x )<0,所以h (x )极小值=h (-1)=13+12-2=-76, h (x )极大值=h (2)=-13×8+12×4+4=103, 如图,当b <-76或b >103时,函数g (x )有1个零点; 当b =-76或b =103时,函数g (x )有2个零点; 当-76<b <103时,函数g (x )有3个零点.2.已知函数f (x )=e x (ax +1),曲线y =f (x )在x =1处的切线方程为y =bx -e.(1)求a ,b 的值;(2)若函数g (x )=f (x )-3e x -m 有两个零点,求实数m 的取值范围.解 (1)f (x )=e x (ax +1),则f ′(x )=e x (ax +1)+e x ·a =e x (ax +1+a ),由题意知⎩⎪⎨⎪⎧ f ′1=e 2a +1=b ,f 1=e a +1=b -e ,解得⎩⎪⎨⎪⎧a =1,b =3e , ∴a =1,b =3e.(2)g (x )=f (x )-3e x -m =e x (x -2)-m ,函数g (x )=e x (x -2)-m 有两个零点,相当于函数u (x )=e x ·(x -2)的图象与直线y =m 有两个交点,u ′(x )=e x ·(x -2)+e x =e x (x -1),当x ∈(-∞,1)时,u ′(x )<0,∴u (x )在(-∞,1)上单调递减;当x ∈(1,+∞)时,u ′(x )>0,∴u (x )在(1,+∞)上单调递增,∴当x =1时,u (x )取得极小值u (1)=-e.又当x →+∞时,u (x )→+∞,当x <2时,u (x )<0,∴-e<m <0,∴实数m 的取值范围为(-e,0).3.已知函数f (x )=e x +ax -a (a ∈R 且a ≠0).(1)若函数f (x )在x =0处取得极值,求实数a 的值,并求此时f (x )在[-2,1]上的最大值;(2)若函数f (x )不存在零点,求实数a 的取值范围.解 (1)由f (x )=e x +ax -a ,得f ′(x )=e x +a .∵函数f (x )在x =0处取得极值,∴f ′(0)=e 0+a =0,∴a =-1,∴f (x )=e x -x +1,f ′(x )=e x -1.∴当x ∈(-∞,0)时,f ′(x )<0,f (x )单调递减;当x ∈(0,+∞)时,f ′(x )>0,f (x )单调递增.易知f (x )在[-2,0)上单调递减,在(0,1]上单调递增,且f (-2)=1e 2+3,f (1)=e ,f (-2)>f (1), ∴f (x )在[-2,1]上的最大值是1e 2+3. (2)f ′(x )=e x +a .①当a >0时,f ′(x )>0,f (x )在R 上单调递增,且当x >1时,f (x )=e x +a (x -1)>0,当x <0时,取x =-1a, 则f ⎝⎛⎭⎫-1a <1+a ⎝⎛⎭⎫-1a -1=-a <0, ∴函数f (x )存在零点,不满足题意.②当a <0时,令f ′(x )=e x +a =0,则x =ln(-a ).当x ∈(-∞,ln(-a ))时,f ′(x )<0,f (x )单调递减;当x ∈(ln(-a ),+∞)时,f ′(x )>0,f (x )单调递增.∴当x =ln(-a )时,f (x )取得极小值,也是最小值.当x →-∞时,f (x )→+∞,当x →+∞时,f (x )→+∞,函数f (x )不存在零点,等价于f (ln(-a ))=e ln(-a )+a ln(-a )-a =-2a +a ln(-a )>0,解得-e 2<a <0.综上所述,所求实数a 的取值范围是(-e 2,0).4.(2022·潍坊模拟)已知函数f (x )=x 2-a sin x -2(a ∈R ). (1)若曲线y =f (x )在点⎝⎛⎭⎫π2,f ⎝⎛⎭⎫π2处的切线经过坐标原点,求实数a ; (2)当a >0时,判断函数f (x )在x ∈(0,π)上的零点个数,并说明理由.解 (1)f ′(x )=2x sin x -x 2-a cos x sin 2x, f ′⎝⎛⎭⎫π2=π,所以f (x )在点⎝⎛⎭⎫π2,f ⎝⎛⎭⎫π2处的切线方程为y =πx ,所以f ⎝⎛⎭⎫π2=π22, 即π24-a -2=π22,a =-π24-2. (2)因为x ∈(0,π),所以sin x >0,所以x 2-a sin x -2=0可转化为x 2-a -2sin x =0, 设g (x )=x 2-a -2sin x ,则g ′(x )=2x -2cos x ,当x ∈⎣⎡⎭⎫π2,π时,g ′(x )>0,所以g (x )在区间⎣⎡⎭⎫π2,π上单调递增.当x ∈⎝⎛⎭⎫0,π2时, 设h (x )=g ′(x )=2x -2cos x ,此时h ′(x )=2+2sin x >0,所以g ′(x )在x ∈⎝⎛⎭⎫0,π2上单调递增, 又 g ′(0)=-2<0,g ′⎝⎛⎭⎫π2=π>0,所以存在x 0∈⎝⎛⎭⎫0,π2使得g ′(x )=0且x ∈(0,x 0)时g (x )单调递减, x ∈⎣⎡⎭⎫x 0,π2时g (x )单调递增. 综上,对于连续函数g (x ),当x ∈(0,x 0)时,g (x )单调递减, 当x ∈(x 0,π)时,g (x )单调递增.又因为g (0)=-a <0,所以当g (π)=π2-a >0,即a <π2时,函数g (x )在区间(x 0,π)上有唯一零点,当g (π)=π2-a ≤0,即a ≥π2时,函数g (x )在区间(0,π)上无零点, 综上可知,当0<a <π2时,函数f (x )在(0,π)上有1个零点; 当a ≥π2时,函数f (x )在(0,π)上没有零点.。
创新设计(全国通用)2022版高考数学一轮复习第三章导数及其应用
创新设计(全国通用)2022版高考数学一轮复习第三章导数及其应用第三章导数及其应用第2讲导数的应用第3课时导数与函数的综合问题练习理新人教A版基础巩固题组(建议用时:40分钟)一、选择题1.方程某3-6某2+9某-10=0的实根个数是()A.3B.2C.1D.0解析设f(某)=某3-6某2+9某-10,f′(某)=3某2-12某+9=3(某-1)(某-3),由此可知函数的极大值为f(1)=-6<0,极小值为f(3)=-10<0,所以方程某3-6某2+9某-10=0的实根个数为1.答案C2.若存在正数某使2某(某-a)<1成立,则实数a的取值范围是()A.(-∞,+∞)B.(-2,+∞)C.(0,+∞)D.(-1,+∞)解析∵2某(某-a)<1,∴a>某-12某.令f(某)=某-12某,∴f′(某)=1+2-某ln2>0.∴f(某)在(0,+∞)上单调递增,∴f(某)>f(0)=0-1=-1,∴实数a的取值范围为(-1,+∞).答案D3.(2022·山东省实验中学诊断)若函数f(某)在R上可导,且满足f(某)-某f′(某)>0,则()A.3f(1)<f(3)B.3f(1)>f(3)C.3f(1)=f(3)D.f(1)=f(3)解析由于f(某)>某f′(某),则f(某)某′=某f′(某)-f(某)某2<0恒成立,因此f(某)某在R上是单调递减函数,∴f(3)3<f(1)1,即3f(1)>f(3).答案B4.(2022·德阳模拟)方程f(某)=f′(某)的实数根某0叫作函数f(某)的“新驻点”,如果函数g(某)=ln 某的“新驻点”为a,那么a满足()A.a=1B.0<a<12C.2<a<3D.1<a<2解析∵g′(某)=1某,∴ln某=1某.设h(某)=ln某-1某,则h(某)在(0,+∞)上为增函数.又∵h(1)=-1<0,h(2)=ln2-12=ln2-lne>0,∴h(某)在(1,2)上有零点,∴1<a<2.答案D5.(2022·贵阳联考)已知函数f(某)的定义域为[-1,4],部分对应值如下表:f(某)的导函数y=ff(某)-a的零点的个数为()A.1B.2C.3D.4解析根据导函数图象,知2是函数的极小值点,函数y=f(某)的大致图象如图所示.由于f(0)=f(3)=2,1<a<2,所以y=f(某)-a的零点个数为4.答案D二、填空题6.已知函数y=某3-3某+c的图象与某轴恰有两个公共点,则c=________.解析设f(某)=某3-3某+c,对f(某)求导可得,f′(某)=3某2-3,令f′(某)=0,可得某=±1,易知f(某)在(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减,若f(1)=1-3+c=0,可得c =2;若f(-1)=-1+3+c=0,可得c=-2.答案-2或237.若函数f(某)=a某-ln某在12,+∞上单调递增,则实数a的取值范围为________.解析由已知得f′(某)=a-1某≥0对某∈12,+∞恒成立,∴a≥1某对某∈12,+∞恒成立,∵1某<112=2,∴a≥2.答案[2,+∞)8.(2022·安徽江南名校联考)已知某∈(0,2),若关于某的不等式某e某<1k+2某-某2恒成立,则实数k的取值范围为________.解析依题意,知k+2某-某2>0.即k>某2-2某对任意某∈(0,2)恒成立,从而k≥0,因此由原不等式,得k<e某某+某2-2某恒成立.令f(某)=e某某+某2-2某,则f′(某)=(某-1)e某某2+2.令f′(某)=0,得某=1,当某∈(1,2)时,f′(某)>0,函数f(某)在(1,2)上单调递增,当某∈(0,1)时,f′(某)<0,函数f(某)在(0,1)上单调递减,所以k<f(某)min=f(1)=e-1,故实数k的取值范围是[0,e-1).答案[0,e-1)三、解答题9.设函数f(某)=(某+1)ln(某+1),若对所有的某≥0,都有f(某)≥a某成立,求实数a的取值范围.解令g(某)=(某+1)ln(某+1)-a某,则g′(某)=ln(某+1)+1-a.(1)当a≤1时,1-a≥0,∵某≥0,∴ln(某+1)≥0,∴g′(某)≥0,∴g(某)在[0,+∞)上是增函数,∴g(某)≥g(0)=0,∴当a≤1时,(某+1)ln(某+1)≥a某对某≥0都成立.(2)当a>1时,令g′(某)=0解得某=ea-1-1.当0<某<ea-1-1时,g′(某)<0;当某>ea-1-1时,g′(某)>0,∴g(某)在(0,ea-1-1)上递减,在(ea-1-1,+∞)上递增,∴g(ea-1-1)<g(0)=0,∴当a>1时,不是对所有的某≥0,都有f(某)≥a某成立.综上,由(1)(2)可知,实数a的取值范围是(-∞,1].410.(2022·武汉调研)已知函数f(某)=ln某-a(某-1)某(a∈R).(1)求函数f(某)的单调区间;(2)求证:不等式(某+1)ln某>2(某-1)对某∈(1,2)恒成立.(1)解定义域为(0,+∞),f′(某)=某-a某2.①a≤0时,f′(某)>0,f(某)在(0,+∞)上为增函数;②a>0时,f(某)在(a,+∞)上为增函数,在(0,a)上为减函数.(2)证明法一∵某∈(1,2),∴某+1>0,∴要证原不等式成立,即证ln某>2(某-1)某+1对某∈(1,2)恒成立,令g(某)=ln某-2(某-1)某+1,g′(某)=(某-1)2(某+1)2≥0,∴g(某)在(0,+∞)上为增函数,∴当某∈(1,2)时,g(某)>g(1)=ln1-2(1-1)1+1=0,∴ln某>2(某-1)某+1对某∈(1,2)恒成立,∴(某+1)ln某>2(某-1)对某∈(1,2)恒成立.法二令F(某)=(某+1)ln某-2(某-1),F′(某)=ln某+某+1某-2,=ln某-某-1某.令φ(某)=ln某-某-1某,由(1)知a=1时,φ(某)在(0,1)上为减函数,在(1,+∞)上为增函数.∵某∈(1,2),则φ(某)在(1,2)为增函数,φ(某)>φ(1)=0,即某∈(1,2),F′(某)>0,∴F(某)在(1,2)上为增函数,∴F(某)>F(1)=0,∴(某+1)ln某>2(某-1)对某∈(1,2)恒成立.能力提升题组(建议用时:25分钟)11.函数f(某)=3某2+ln某-2某的极值点的个数是()A.0B.1C.2D.无数个解析函数定义域为(0,+∞),5且f′(某)=6某+1某-2=6某2-2某+1某,由于某>0,g(某)=6某2-2某+1中Δ=-20<0,所以g(某)>0恒成立,故f′(某)>0恒成立,即f(某)在定义域上单调递增,无极值点.答案A12.(2022·全国Ⅰ卷)已知函数f(某)=a某3-3某2+1,若f(某)存在唯一的零点某0,且某0>0,则实数a的取值范围是()A.(2,+∞)B.(-∞,-2)C.(1,+∞)D.(-∞,-1)解析法一由题意a≠0,由f′(某)=3a某2-6某=0得某=0或某=2a.当a>0时,f(某)在(-∞,0)和2a,+∞上单调递增,在0,2a上单调递减.且f(0)=1>0,故f(某)有小于0的零点,不符合题意,排除A,C.当a<0时,要使某0>0且唯一,只需f2a>0,即a2>4,∴a<-2,故选B.法二f(某)有唯一正零点某0,等价于方程a某3-3某2+1=0有唯一正根某0,即a=3某-1某3有唯一正根某0.令g(某)=3某-1某3,g′(某)=3(1-某)(1+某)某4,∴g(某)在(-∞,-1)上递减,(-1,0)上递增,(0,1)上递增,(1,+∞)上递减.又g(-1)=-2,g(1)=2,且当某<-1时,g(某)<0,当某>1时,g(某)>0,∴g(某)的大致图象如图:∴直线y=a与y=g(某)有唯一交点,且横坐标某0>0,只需a<g(-1)=-2.答案B13.(2022·西安模拟)定义域为R的可导函数y=f(某)的导函数f′(某),满足f(某)<f′(某),且f(0)=2,则不等式f(某)<2e某的解集为()A.(-∞,0)B.(-∞,2)C.(0,+∞)D.(2,+∞)6解析设g(某)=f(某)e某,则g′(某)=f′(某)-f(某)e某,∵f(某)<f′(某),∴g′(某)<0,∴g(某)在R上为减函数,∵f(0)=2,∴g(0)=f(0)=2,∵f(某)<2e某,∴f(某)e某<2,即g(某)<g(0),∴某>0,∴不等式的解集为(0,+∞).答案C14.(2022·广州调研)已知函数f(某)=e某-m-某,其中m为常数.(1)若对任意某∈R有f(某)≥0恒成立,求m的取值范围;(2)当m>1时,判断f(某)在[0,2m]上零点的个数,并说明理由.解(1)依题意,可知f′(某)=e某-m-1,令f′(某)=0,得某=m.故当某∈(-∞,m)时,e某-m<1,f′(某)<0,f(某)单调递减;当某∈(m,+∞)时,e某-m>1,f′(某)>0,f(某)单调递增.故当某=m时,f(m)为极小值也是最小值.令f(m)=1-m≥0,得m≤1,即对任意某∈R,f(某)≥0恒成立时,m的取值范围是(-∞,1].(2)f(某)在[0,2m]上有两个零点,理由如下:当m>1时,f(m)=1-m<0.∵f(0)=e-m>0,f(0)·f(m)<0,且f(某)在(0,m)上单调递减.∴f(某)在(0,m)上有一个零点.又f(2m)=em-2m,令g(m)=em-2m,则g′(m)=em-2,∵当m>1时,g′(m)=em-2>0,∴g(m)在(1,+∞)上单调递增.∴g(m)>g(1)=e-2>0,即f(2m)>0.∴f(m)·f(2m)<0,∴f(某)在(m,2m)上有一个零点.故f(某)在[0,2m]上有两个零点.。
核按钮(新课标)高考数学一轮复习第三章导数及其应用3.2导数的应用(一)课件理
解:(1)f(x)的定义域为(0,+∞),f′(x)=1x-a.若 a≤0,则 f′(x)
>0,f(x)在(0,+∞)单调递增;若 a>0,则当 x∈0,1a时,f′(x) >0,当 x∈1a,+∞时,f′(x)<0,所以 f(x)在0,1a单调递增, 在1a,+∞单调递减.
(2)由(1)知,当 a≤0 时,f(x)在(0,+∞)单调递增,合要求;
②将 f(x)的各极值与端点处的函数值______,______进行比较,其
中最大的一个是________,最小的一个是________.
第四页,共31页。
自查自纠
1.单调递增 单调递减 常数函数 2.(1)②f′(x)<0 f′(x)>0 (2)②f′(x)=0 ③极大值 极小值 3.(2)f(a) f(b) f(a) f(b) (3)②f(a) f(b) 最大值 最小值
第三章
导数(dǎo shù)及其应用
§3.2 导数(dǎo shù)的 应用(一)
第一页,共31页。
1.函数的单调性与导数 在某个区间(a,b)内,如果 f′(x)>0,那么函数 y=f(x)在 这个区间内____________;如果 f′(x)<0,那么函数 y=f(x)在 这个区间内____________;如果在某个区间内恒有 f′(x)=0, 那么函数 f(x)在这个区间上是________.
第六页,共31页。
(2015·北京海淀区模拟)函数 f(x)=x2-2lnx 的单调
递减区间是( )
A.(0,1)
B.(1,+∞)
C.(-∞,1)
D.(-1,1)
解:∵f′(x)=2x-2x=2(x+1)x(x-1)(x>0). ∴当 x∈(0,1)时 f′(x)<0,f(x)为减函数; 当 x∈(1,+∞)时,f′(x)>0,f(x)为增函数.故选 A.
2022届高考数学统考一轮复习第3章导数及其应用第2节利用导数解决函数的单调性问题教师用书教案理新
学习资料2022届高考数学统考一轮复习第3章导数及其应用第2节利用导数解决函数的单调性问题教师用书教案理新人教版班级:科目:利用导数解决函数的单调性问题[考试要求] 1.了解函数的单调性和导数的关系。
2。
能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不会超过三次).函数的单调性与导数的关系条件结论函数y=f(x)在区间(a,b)上可导f′(x)>0f(x)在(a,b)内单调递增f′(x)<0f(x)在(a,b)内单调递减f′(x)=0f(x)在(a,b)内是常数函数义域优先"原则.错误!1.在某区间内f′(x)>0(f′(x)<0)是函数f(x)在此区间上为增(减)函数的充分不必要条件.2.可导函数f(x)在(a,b)上是增(减)函数的充要条件是对∀x∈(a,b),都有f′(x)≥0(f′(x)≤0)且f′(x)在(a,b)上的任何子区间内都不恒为零.一、易错易误辨析(正确的打“√”,错误的打“×”)(1)在(a,b)内f′(x)≤0,且f′(x)=0的根有有限个,则f(x)在(a,b)内是减函数.()(2)若函数f(x)在定义域上都有f′(x)<0,则函数f(x)在定义域上一定单调递减.()(3)已知函数f(x)在区间[a,b]上单调递增,则f′(x)>0恒成立.()[答案](1)√(2)×(3)×二、教材习题衍生1.如图是函数y=f(x)的导函数y=f′(x)的图象,则下面判断正确的是()A.在区间(-3,1)上f(x)是增函数B.在区间(1,3)上f(x)是减函数C.在区间(4,5)上f(x)是增函数D.在区间(3,5)上f(x)是增函数C[由图象可知,当x∈(4,5)时,f′(x)>0,故f(x)在(4,5)上是增函数.]2.函数f(x)=cos x-x在(0,π)上的单调性是()A.先增后减B.先减后增C.增函数D.减函数D[因为f′(x)=-sin x-1<0在(0,π)上恒成立,所以f(x)在(0,π)上是减函数,故选D.]3.函数f(x)=x-ln x的单调递减区间为________.(0,1] [函数f(x)的定义域为{x|x>0},由f′(x)=1-错误!≤0,得0<x≤1,所以函数f(x)的单调递减区间为(0,1].]4.已知f(x)=x3-ax在[1,+∞)上是增函数,则实数a的最大值是________.3[f′(x)=3x2-a≥0,即a≤3x2,又因为x∈[1,+∞ ),所以a≤3,即a的最大值是3。
2022届高考数学一轮复习第3章导数及其应用第2讲导数的简单应用作业试题2含解析新人教版
第二讲 导数的简单应用1.[2021贵阳市四校第二次联考]图3-2-1已知y=x ·f'(x)的图象如图3-2-1所示,则f(x)的图象可能是 ( )A BCD2.[原创题]函数f(x)=(12x-1)e x +12x 的极值点的个数为 ( )3.[2021安徽省示范高中联考]若函数f(x)=(x-1)e x -ax(e 为自然对数的底数)有两个极值点,则实数a 的取值范围是( )A.(-1e ,0) B.(-∞,0) C.(-1e ,+∞)D.(0,+∞)4.[2021蓉城名校联考]已知函数f(x)=e |x|-1),b=f(2),c=f(log 20.2),则 ( )A.c<b<aB.c<a<bC.b<a<cD.b<c<a5.[2021湖南六校联考]设函数f(x)的定义域为R,f'(x)是其导函数,若f(x)+f'(x)<0,f(0)=1,则不等式f(x)>e -x 的解集是( )A.(0,+∞)B.(1,+∞)C.(-∞,0)D.(0,1)6.[2021四省八校联考]函数f(x)=x 3-bx 2+c,若f(1-x)+f(1+x)=2,则下列正确的是 ( )A.f(ln 2)+f(ln 4)<2B.f(-2)+f(5)<2C.f(ln 2)+f(ln 3)<2D.f(-1)+f(2)>27.[2020皖中名校联考]已知函数f(x)=(x 2-mx-m)e x +2m(m>-2,e 是自然对数的底数)有极小值0,则其极大值是( )-2或(4+ln 2)e -2+2ln 2-2或(4+ln 2)e 2+2ln 2-2或(4+ln 2)e -2-2ln 2-2或(4+ln 2)e 2-2ln 28.[2021河南省名校第一次联考]若函数f(x)={alnx -x 2-2(x >0),x +1x +a(x <0)的最大值为f(-1),则实数a 的取值范围为 . 9.[2021广州市高三阶段模拟]已知函数f(x)=1+lnx x -1-k x .(1)当k=0时,求函数f(x)的单调区间;(2)若f(x)>0对任意的x ∈(1,+∞)恒成立,求整数k 的最大值.10.[2021大同市调研测试]设函数f(x)=ln x-12ax 2-bx.(1)当a=b=12时,求函数f(x)的最大值;(2)当a=0,b=-1时,方程2mf(x)=x2有唯一实数解,求正数m的值.11.[2021江苏省部分学校调考]定义在R上的偶函数f(x)的导函数为f '(x),若对任意x∈R,都有2f(x)+xf '(x)<2,则使x2f(x)-f(1)<x2-1成立的实数x的取值范围是( )A.{x|x≠±1}B.(-1,0)∪(0,1)C.(-1,1)D.(-∞,-1)∪(1,+∞)图3-2-212.[2021济南名校联考]如图3-2-2,在P地正西方向8 km的A处和正东方向1 km的B处各有一条正北方向的公路AC和BD,现计划在AC和BD路边各修建一个物流中心E和F,为缓解交通压力,决定修建两条互相垂直的公路PE和PF,设∠EPA=α(0<α<π2),为了节省建设成本,要使得PE+PF的值最小,此时AE=( )A.4 kmB.6 kmC.8 kmD.10 km13.[多选题]已知f(x)=e x-2x2有且仅有两个极值点,分别为x1,x2(x1<x2),则下列不等式中正确的有(参考数据:ln 2≈0.693 1,ln 3≈1.098 6) ( )1+x2<1141+x2>114C.f(x 1)+f(x 2)<0D.f(x 1)+f(x 2)>014.[多选题]已知函数y=f(x)在R 上可导且f(0)=1,其导函数 f'(x)满足f'(x)-f(x)x -1>0,对于函数g(x)=f(x)e x,下列结论正确的是( )A.函数g(x)在(1,+∞)上为单调递增函数B.x=1是函数g(x)的极小值点C.函数g(x)至多有两个零点D.x ≤0时,不等式f(x)≤e x 恒成立15.[2021洛阳市统考]已知函数f(x)=ln 1x-ax 2+x(a>0).(1)讨论f(x)的单调性﹔(2)若f(x)有两个极值点x 1,x 2,证明:f(x 1)+f(x 2)>3-2ln 2.16.[2019全国卷Ⅰ,12分]已知函数f(x)=sin x-ln(1+x),f '(x)为f(x)的导数,证明:(1)f '(x)在区间(-1,π2)上存在唯一极大值点; (2)f(x)有且仅有2个零点.17.[新角度题]直线x=a(a>0)分别与直线y=2x+1,曲线y=x+ln x 相交于A,B 两点,则|AB|的最小值为( )C.√2D.√318.[2020惠州市二调][交汇题]设函数f(x)=√3sin πxm,若存在f(x)的极值点x 0满足x 02+[f(x 0)]2<m 2,则m 的取值范围是( )A.(-∞,-6)∪(6,+∞)B.(-∞,-4)∪(4,+∞)C.(-∞,-2)∪(2,+∞)D.(-∞,-1)∪(1,+∞)19.[角度创新]已知函数f(x)=ax-e x +2,其中a ≠0.(1)讨论f(x)的单调性.(2)是否存在a ∈R,对任意x 1∈[0,1],总存在x 2∈[0,1],使得f(x 1)+f(x 2)=4成立?若存在,求出实数a 的值;若不存在,请说明理由.答 案第二讲 导数的简单应用1.D 由题图可知,当x<0时,f'(x)<0,函数f(x)单调递减;当0<x<b 时,f'(x)>0,函数f(x)单调递增;当x>b 时,f'(x)<0,函数f(x)单调递减.又f'(b)=0,所以当x=b 时,f(x)取得极大值,综上,满足题意的f(x)的图象可能是D.2.A 由题意知f '(x)=12e x +(12x-1)e x +12=12[e x (x-1)+1].令g(x)=e x (x-1)+1,则g'(x)=e x (x-1)+e x =xe x ,令g'(x)=0,得x=0,则函数g(x)在区间(-∞,0)上单调递减,在区间(0,+∞)上单调递增,所以g(x)≥g(0)=0,由此可知f '(x)≥0,所以函数f(x)不存在极值点,故选A.3.A 由题意得f'(x)=xe x -a,因为函数f(x)=e x (x-1)-ax 有两个极值点,所以f'(x)=0有两个不等的实根,即a=xe x 有两个不等的实根,所以直线y=a 与y=xe x 的图象有两个不同的交点.令g(x)=xe x ,则g'(x)=e x (x+1).当x<-1时,g'(x)<0,当x>-1时,g'(x)>0,所以函数g(x)在(-∞,-1)上单调递减,在(-1,+∞)上单调递增,所以当x=-1时,g(x)取得最小值,且最小值为-1e.易知当x<0时,g(x)<0,当x>0时,g(x)>0,则可得函数g(x)的大致图象,如图D 3-2-1所示,则-1e<a<0,故选A.图D 3-2-14.D 当x ≥0时,f(x)=e x +cos x,则f '(x)=e x -sin x ≥e 0-sin x ≥0,所以f(x)在[0,+∞)上单调递增.又f(-x)=e |-x|+cos(-x)=e |x|-1)=f(103),b=f(2)<f(20)=f(1),c=f(log 20.2)=f(log 215)=f(-log 25)=f(log 25),又1=log 22<log 25<log 28=3<103,所以f(2)<f(log 25)< f(103),即b<c<a.故选D.5.C 令g(x)=e x f(x),则g'(x)=e x f(x)+e x f'(x),因为f(x)+f'(x)<0,所以g'(x)<0,所以g(x)在R 上单调递减.因为g(0)=e 0f(0)=f(0)=1,所以不等式f(x)>e -x 可转化为e x f(x)>1,即g(x)>1=g(0),又g(x)在R 上单调递减,所以x<0,故不等式f(x)>e -x 的解集为(-∞,0),故选C.6.A 解法一 f(1-x)+f(1+x)=2,分别令x=0,x=1(题眼),得{f(1)=1,f(0)+f(2)=2,即{1−b +c =1,c +8−4b +c =2,解得b=c=3,所以f(x)=x 3-3x 2+3,f '(x)=3x 2-6x=3x(x-2),令f '(x)=0,得x=0或x=2,所以当x<0或x>2时f '(x)>0,当0<x<2时f '(x)<0,所以函数f(x)在(0,2)上单调递减,在(-∞,0)和(2,+∞)上单调递增(题眼).由f(1-x)+f(1+x)=2,得f(x)+f(2-x)=2.对于A,2=f(ln 2)+f(2-ln 2)=f(ln 2)+f(ln e 22)>f(ln 2)+f(ln 4),故A 正确;对于B,2=f(-2)+f(4)<f(-2)+f(5),故B 不正确;对于C,2=f(ln 2)+f(2-ln 2)=f(ln 2)+f(ln e 22)<f(ln 2)+f(ln 3),故C 不正确;对于D,2=f(-1)+f(3)>f(-1)+f(2),故D 不正确.故选A.解法二 由f(1-x)+f(1+x)=2知函数f(x)图象的对称中心为(1,1)(题眼),又三次函数g(x)=ax 3+dx 2+ex+f(a ≠0)图象的对称中心为(-d3a,g(-d3a)),所以b3=1,解得b=3,所以f(b3)=f(1)=1,即1-3+c=1,得 c=3,所以f(x)=x 3-3x 2+3.以下同解法一.7.A 由题意知, f '(x)=[x 2+(2-m)x-2m]e x =(x+2)(x-m)e x .由f '(x)=0得x=-2或x=m.因为m>-2,所以函数f(x)在区间(-∞,-2)和(m,+∞)内单调递增,在区间(-2,m)内单调递减. 于是函数f(x)的极小值为f(m)=0,即(m 2-m 2-m)e m +2m=0,(2-e m )m=0,解得m=0或m=ln 2.当m=0时,f(x)的极大值为f(-2)=4e -2;当m=ln 2时,f(x)的极大值为f(-2)=(4+ln 2)·e -2+2ln 2.故选A.8.[0,2e 3] x<0时,f(x)≤f(-1)=a-2,x>0时,aln x-x 2-2≤a-2,即x 2-aln x+a ≥0恒成立.令t(x)=x 2-aln x+a,则t'(x)=2x 2-a x,a<0时,t'(x)>0,x →0时,t(x)→-∞,不合题意.a=0时,t(x)=x 2≥0恒成立.a>0时,t(x)在(0,√a2)上单调递减,在(√a2,+∞)上单调递增,所以t(x)min =a2-a ·ln √a2+a ≥0,解得0<a ≤2e 3.综上,a ∈[0,2e 3]. 9.(1)f(x)的定义域为(0,1)∪(1,+∞).当k=0时,f '(x)=-1x-lnx(x -1)2.令g(x)=-1x -ln x,则g'(x)=1−xx 2. 当x ∈(0,1)时,g'(x)>0,g(x)单调递增;当x ∈(1,+∞)时,g'(x)<0,g(x)单调递减.∴g(x)max =g(1)=-1<0,∴g(x)<0,∴f '(x)<0,∴f(x)的单调递减区间为(0,1),(1,+∞),无单调递增区间.(2)由f(x)>0对任意的x ∈(1,+∞)恒成立,得1+lnx x -1-k x >0(x>1),即k<[x(1+lnx)x -1]min (x>1).令h(x)=x(1+lnx)x -1,x>1,则h'(x)=x -2-lnx (x -1)2,令φ(x)=x-2-ln x,x>1,则φ'(x)=x -1x>0,∴φ(x)在(1,+∞)上单调递增,又φ(3)=1-ln 3<0,φ(4)=2-2ln 2>0,∴存在唯一x 0∈(3,4),使得φ(x 0)=0,即x 0-2-ln x 0=0,x 0-1=1+ln x 0,当x 变化时,h'(x),h(x)的变化情况如下表所示:x (1,x 0) x 0 (x 0,+∞)h'(x) - 0 +h(x)单调递减 极小值 单调递增∴h(x)min =h(x 0)=x 0(1+lnx 0)x 0-1=x 0∈(3,4),∴整数k 的最大值为3.10.(1)依题意,知f(x)的定义域为(0,+∞),当a=b=12时,f(x)=ln x-14x 2-12x,则f'(x)=1x -12x-12=-(x+2)(x -1)2x,令f '(x)=0,解得x=1或x=-2(舍去).当0<x<1时,f '(x)>0,此时f(x)单调递增;当x>1时,f '(x)<0,此时f(x)单调递减.所以f(x)的极大值为f(1)=-34,此即函数f(x)的最大值.图D 3-2-2(2)由题意可知,2mf(x)=x 2⇔2m(lnx+x)=x 2⇔12m =lnx+x x 2.设g(x)=lnx+x x 2,则g'(x)=1−2lnx -xx 3,令h(x)=1-2ln x-x,则h'(x)=-2x-1.因为x>0,所以h'(x)<0,h(x)在(0,+∞)上单调递减.因为h(1)=0,所以当x ∈(0,1)时,h(x)>0,当x ∈(1,+∞)时,h(x)<0,所以函数g(x)在(0,1)上单调递增,在(1,+∞)上单调递减,所以g(x)max =g(1)=1.又g(e -1)=-1+e -1e -2<0,且当x →+∞时,g(x)→0,所以可画出g(x)的大致图象,如图D 3-2-2所示,方程2mf(x)=x 2有唯一实数解就等价于直线y=12m与g(x)=lnx+x x 2的图象只有一个交点,由图象可知12m =1,即m=12.11.D 令g(x)=x 2f(x)-x 2,则g'(x)=2xf(x)+x 22f(x)-f(1)<x 2-1可化为x 2f(x)-x 2<f(1)-1,即g(x)<g(1),所以|x|>1,解得x>1或x<-1,故选D.12.A 因为PE ⊥PF,∠EPA=α,所以∠PFB=α,在Rt △PAE 中,PE=APcosα=8cosα,在Rt △PBF 中,PF=PBsinα=1sinα,则PE+PF=8cosα+1sinα .设f(α)=8cosα+1sinα,α∈(0,π2),则f '(α)=8sinαcos 2α-cosαsin 2α=8sin 3α-cos 3αcos 2αsin 2α,令f '(α)=8sin 3α-cos 3αcos 2αsin 2α=0,则tan α=12,当0<tan α<12时,f '(α)<0,当tan α>12时,f '(α)>0,所以当tan α=12时,f(α)取得最小值,此时AE=AP ·tan α=8×12=4,故选A.13.AD 由题意得f '(x)=e x -4x,则f '(14)=e 14-1>0,f '(12)=e 12-2<0,f '(2)=e 2-8<0.由ln 3≈1.098 6,得98>ln 3,所以f '(94)>0,从而14<x 1<12,2<x 2<94,所以x 1+x 2<114.因为f(0)=1,所以易得f(x 1)>1.因为f '(2ln 3)=9-8ln 3>0,所以x 2<2ln 3,因为f '(x 2)=0,所以f(x 2)=4x 2-2x 22.设g(x)=4x-2x 2,得g(x 2)>g(2ln 3)>g(2.2)=-0.88>-1,所以f(x 1)+f(x 2)>0. 14.ABC 因为f'(x)-f(x)x -1>0,所以当x>1时,f'(x)-f(x)>0;当x<1时,f'(x)-f(x)<0.因为g(x)=f(x)e x,所以g'(x)=f'(x)-f(x)e x,则当x>1时,g'(x)>0;当x<1时,g'(x)<0.所以函数g(x)在(1,+∞)上为单调递增函数,在(-∞,1)上为单调递减函数,则x=1是函数g(x)的极小值点,则选项A,B 均正确.当g(1)<0时,函数g(x)至多有两个零点,当g(1)=0时,函数g(x)有一个零点,当g(1)>0时,函数g(x)无零点,所以选项C 正确.g(0)=f(0)e 0=1,又g(x)在区间(-∞,1)上单调递减,所以当x ≤0时,g(x)=f(x)e x≥g(0)=1,又e x >0,所以f(x)≥e x ,故选项D 错误.故选ABC.15.(1)∵f(x)=ln 1x -ax 2+x =-ln x-ax 2+x(a>0,x>0), ∴f '(x)=-1x -2ax+1=-2ax 2-x+1x(a>0).令2ax 2-x+1=0,则其判别式Δ=1-8a.①当Δ≤0,即a ≥18时,f '(x)≤0,f(x)在(0,+∞)上单调递减.②当Δ>0,即0<a<18时,方程2ax 2-x+1=0有两个不相等的正根x 3= 1−√1−8a4a,x 4=1+√1−8a4a,则当0<x<x 3或x>x 4时,f '(x)<0,当x 3<x<x 4时,f '(x)>0,∴ f(x)在(0,1−√1−8a4a)上单调递减,在(1−√1−8a 4a,1+√1−8a4a)上单调递增,在(1+√1−8a4a,+∞)上单调递减.综上,当a ∈[18,+∞)时,f(x)在(0,+∞)上单调递减,无增区间; 当a ∈(0,18)时,f(x)在(0,1−√1−8a4a),(1+√1−8a4a,+∞)上单调递减,在(1−√1−8a 4a,1+√1−8a4a)上单调递增.(2)不妨设x 1<x 2.由(1)知,当且仅当a ∈(0,18)时,f(x)有极小值点x 1和极大值点x 2,∴x 1+x 2=12a,x 1x 2=12a.f(x 1)+f(x 2)=-lnx 1-a x 12+x 1-ln x 2-a x 22+x 2=-(ln x 1+ln x 2)-12(x 1-1)-12(x 2-1)+(x 1+x 2)=-ln(x 1x 2)+12(x 1+x 2)+1=ln(2a)+14a +1.令g(a)=ln(2a)+14a+1,a ∈(0,18),则g'(a)=1a-14a 2=4a -14a 2<0,∴g(a)在(0,18)上单调递减,∴g(a)>g(18)=ln(2×18)+14×18+1=3-2ln 2,即f(x 1)+f(x 2)>3-2ln 2.16.(1)设g(x)=f '(x),则g(x)=cos x-11+x,g'(x)=-sin x+1(1+x)2.当x ∈(-1,π2)时,g'(x)单调递减,而g'(0)>0,g'(π2)<0,可得g'(x)在(-1,π2)上有唯一零点,设为α.则当x ∈(-1,α)时,g'(x)>0;当x ∈(α,π2)时,g'(x)<0.所以g(x)在(-1,α)上单调递增,在(α,π2)上单调递减,故g(x)在(-1,π2)上存在唯一极大值点,即f '(x)在(-1,π2)上存在唯一极大值点.(2)f(x)的定义域为(-1,+∞).(i)当x ∈(-1,0]时,由(1)知,f '(x)在(-1,0)上单调递增,而f '(0)=0,所以当x ∈(-1,0)时,f '(x)<0,故f(x)在(-1,0)上单调递减.又f(0)=0,从而x=0是f(x)在(-1,0]上的唯一零点.(ii)当x ∈(0,π2]时,由(1)知,f '(x)在(0,α)上单调递增,在(α,π2)上单调递减,而f '(0)=0,f '(π2)<0,所以存在β∈(α,π2),使得f'(β)=0,且当x ∈(0,β)时,f '(x)>0;当x ∈(β,π2)时,f '(x)<0.故f(x)在(0,β)上单调递增,在(β,π2)上单调递减. 又f(0)=0,f(π2)=1-ln(1+π2)>0,所以当x ∈(0,π2]时,f(x)>0.从而f(x)在(0,π2]上没有零点.(iii)当x ∈(π2,π]时,f '(x)<0,所以f(x)在(π2,π)上单调递减.而f(π2)>0,f(π)<0,所以f(x)在(π2,π]上有唯一零点. (iv)当x ∈(π,+∞)时,ln(x+1)>1,所以f(x)<0,从而f(x)在(π,+∞)上没有零点.综上,f(x)有且仅有2个零点.17.B 根据题意,设f(x)=2x+1-x-ln x=x+1-ln x,则f'(x)=1-1x =x -1x (x>0),所以函数f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,所以 f(x)min =f(1)=2-ln 1=2,所以|AB|min =2.故选B.18.C 由题意得,当πx m =k π+π2(k ∈Z),即x=(2k+1)m 2(k ∈Z)时,f(x)取得极值±√3.若存在f(x)的极值点x 0满足x 02+[f(x 0)]2<m 2,则存在k ∈Z,使[(2k+1)m 2]2+3<m 2成立,问题等价于存在k ∈Z 使不等式m 2(k+12)2+3<m 2成立,因为(k+12)2的最小值为14,所以只要14m 2+3<m 2成立即可,即m 2>4,解得m>2或m<-2.故选C.19.(1)由f(x)=ax-e x +2,得f '(x)=a-e x .当a<0时,对任意x ∈R,f'(x)<0,所以f(x)单调递减.当a>0时,令f '(x)=0,得x=ln a,当x ∈(-∞,ln a)时,f '(x)>0,当x ∈(ln a,+∞)时,f '(x)<0,所以f(x)在(-∞,ln a)上单调递增,在(ln a,+∞)上单调递减.综上所述,当a<0时,f(x)在R 上单调递减,无增区间;当a>0时,f(x)在(-∞,ln a)上单调递增,在(ln a,+∞)上单调递减.(2)存在满足条件的实数a,且实数a 的值为e+1.理由如下:①当a ≤1,且a ≠0时,由(1)知,f(x)在[0,1]上单调递减,则x ∈[0,1]时,f(x)max =f(0)=1,则f(x 1)+f(x 2)≤2f(0)=2<4,所以此时不满足题意;②当1<a<e 时,由(1)知,在[0,ln a]上,f(x)单调递增,在(ln a,1]上,f(x)单调递减, 则当x ∈[0,1]时,f(x)max =f(ln a)=aln a-a+2.当x 1=0时,对任意x 2∈[0,1],f(x 1)+f(x 2)≤f(0)+f(ln a)=1+aln a-a+2=a(ln a-1)+3<3,所以此时不满足题意;③当a ≥e 时,令g(x)=4-f(x)(x ∈[0,1]),由(1)知,f(x)在[0,1]上单调递增,从而知g(x)在[0,1]上单调递减,所以g(x)max =g(0)=4-f(0),g(x)min =g(1)=4-f(1).若对任意的x 1∈[0,1],总存在x 2∈[0,1],使得f(x 1)+f(x 2)=4,则f(x)的值域为g(x)值域的子集,即{f(0)≥g(1),f(1)≤g(0),即{f(0)+f(1)≥4,f(1)+f(0)≤4,所以f(0)+f(1)=a-e+3=4,解得a=e+1.综上,存在满足题意的实数a,且实数a 的值为e+1.。
2022版新教材高考数学一轮复习第3章导数及其应用第2节第1课时导数与函数的单调性课件新人教A版20
考点 2 利用导数讨论函数的单调性——应用性
(2019·全国卷Ⅲ节选)已知函数 f (x)=2x3-ax2+b.讨论 f (x) 的单调性.
解:f ′(x)=6x2-2ax=2x(3x-a). 令 f ′(x)=0,得 x=0 或 x=a3. ①若 a>0,则当 x∈(-∞,0)∪a3,+∞时,f ′(x)>0;当 x∈0,a3 时,f ′(x)<0. 故 f (x)在(-∞,0),a3,+∞上单调递增,在0,a3上单调递减.
1a,+∞,
单调递减区间为1,ln
1a.
考点 3 导数与函数单调性的简单应用——综合性
考向 1 利用导数解不等式
若函数 f (x)=ex-e-x+sin 2x,则满足 f (2x2-1)+f (x)>0
的 x 的取值范围是( )
A.-1,12 C.-12,1
B.(-∞,-1)∪12,+∞ D.-∞,-12∪(1,+∞)
x-π<x<-π2或0<x<π2
,即
f
(x)的单调递增区间为-π,-π2,0,π2.
求函数单调区间的步骤 (1)确定函数 f (x)的定义域; (2)求 f ′(x); (3)在定义域内解不等式 f ′(x)>0,得函数 f (x)的单调递增区间; (4)在定义域内解不等式 f ′(x)<0,得函数 f (x)的单调递减区间. 提醒:若所求函数的单调区间不止一个时,用“,”或“和”连 接,不能用“∪”连接.
考点1 考点2 考点3
考点 1 利用导数求函数的单调区间——基础性
1.函数 y=4x2+1x的单调递增区间为(
)
A.(0,+∞) C.(-∞,-1)
B.12,+∞ D.-∞,-12
2022版高考数学大一轮复习第3章导数及其应用第2讲导数的简单应用1
第三章导数及其应用第二讲导数的简单应用练好题·考点自测1.[2021陕西模拟]若函数f(x)=kx-ln x在区间(1,+∞)上单调递增,则k的取值范围是() A。
(-∞,—2]B.(-∞,—1]C。
[2,+∞)D.[1,+∞)2。
下列说法错误的是()A。
函数在某区间上或定义域内的极大值是唯一的B。
若x0是可导函数y=f(x)的极值点,则一定有f'(x0)=0 C。
函数的最大值不一定是极大值,函数的最小值也不一定是极小值D.函数f(x)=x sin x有无数个极值点3.[2020安徽安庆一中5月模拟]函数y=f(x)的导函数的图象如图3—2—1所示,给出下列命题:①(0,3)为函数y=f(x)的单调递减区间;②(5,+∞)为函数y=f(x)的单调递增区间;③函数y=f(x)在x=0处取得极大值;④函数y=f(x)在x=5处取得极小值.其中正确的命题序号是() A.①③B.②④C.①④ D。
②③④图3-2-14.[2017全国卷Ⅱ,11,5分]若x =—2是函数f (x )=(x 2+ax —1)e x -1的极值点,则 f (x )的极小值为 ( )A 。
—1 B.—2e -3 C 。
5e —3 D 。
15.[2021河南省名校第一次联考]已知函数f (x )=x (x -c )2在x =2处取极大值,则c = 。
6。
[2021武汉市部分学校质检]设函数f (x )=ln1+sinx 2cosx在区间[−π4,π4]上的最小值和最大值分别为m 和M ,则m +M = .拓展变式1。
[2020全国卷Ⅱ,21,12分][文]已知函数f (x )=2ln x +1. (1)若f (x )≤2x +c ,求c 的取值范围; (2)设a >0,讨论函数g (x )=f (x )-f (a )x -a的单调性。
2。
已知函数g (x )=13x 3−a 2x 2+2x +5。
(1)若函数g (x )在(—2,-1)内单调递减,则a 的取值范围为 ;(2)若函数g (x )在(-2,-1)内存在单调递减区间,则a 的取值范围为 ;(3)若函数g (x )在(—2,—1)上不单调,则a 的取值范围为 。
2025版高考数学全程一轮复习第三章一元函数的导数及其应用高考大题研究课二利用导数证明不等式课件
×
ln 3 32
×
l4n24×…×lnn2n<n1.
解析:由(1)知,a=1时,ln x+1-x≤0即ln x≤x-1,当且仅当x=1时等号成
立.
令x=n,其中n∈N+且n≥2,则有ln n<n-1,
又n-1<n(n-1),所以ln n<n(n-1),即lnn2n<n−n1,
所以l2n22
×
ln 3 32
高考用导数证明不等式问题,重点掌握导数与函数的性质、函数 的零点、数列等相结合的问题,提高学生分析问题、解决问题的能 力.
关键能力·题型剖析
题型一将不等式转化为函数的最值问题
例1 (12分)[2023·新课标Ⅰ卷]已知函数f(x)=a(ex+a)-x. (1)讨论f(x)的单调性; (2)证明:当a>0时,f(x)>2ln a+32.
单调递增.→正确写出结论得1分
(2)证明:由(1)得,f(x)min=f(-ln a)=a(e-ln a+a)+ln a=1+a2+ln a→正确求出f(x)min得1分
要证f(x)≥2ln a+32,即证1+a2+ln a>2ln a+32,即证a2-12-ln a>0 恒成立.→正确转化f(x)>2ln a+32⇒f(x)min>2ln a+32得2分
巩固训练1 [2024·河南新乡模拟]已知函数f(x)=x2ln x. (1)求f(x)的单调区间;
解析:因为f(x)=x2ln x,x>0, 所以f′(x)=2x ln x+x=x(2ln x+1), 由f′(x)=0,得x=e−12. 当x ∈ (0,e−12)时,f′(x)<0;当x ∈ (e−12,+∞)时,f′(x)>0. 故f(x)的单调递减区间为(0,e−12),单调递增区间为(e−12,+∞).
2021-2022年高考数学一轮总复习第3章导数及其应用第2节导数的应用高考AB卷理
2021年高考数学一轮总复习第3章导数及其应用第2节导数的应用高考AB 卷理利用导数研究函数的单调性1.(xx·全国Ⅱ,21)(1)讨论函数f (x )=x -2x +2e x的单调性,并证明当x >0时,(x -2)e x+x +2>0;(2)证明:当a ∈[0,1)时,函数g (x )=e x -ax -ax2(x >0)有最小值.设g (x )的最小值为h (a ),求函数h (a )的值域.(1)解 f (x )的定义域为(-∞,-2)∪(-2,+∞). f ′(x )=(x -1)(x +2)e x -(x -2)e x (x +2)2=x 2e x (x +2)2≥0,且仅当x =0时,f ′(x )=0,所以f (x )在(-∞,-2),(-2,+∞)单调递增. 因此当x ∈(0,+∞)时,f (x )>f (0)=-1. 所以(x -2)e x >-(x +2),即(x -2)e x +x +2>0.(2)证明 g ′(x )=(x -2)e x +a (x +2)x 3=x +2x3(f (x )+a ). 由(1)知,f (x )+a 单调递增,对任意a ∈[0,1),f (0)+a =a -1<0,f (2)+a =a ≥0. 因此,存在唯一x a ∈( 0,2],使得f (x a )+a =0,即g ′(x a )=0. 当0<x <x a 时,f (x )+a <0,g ′(x )<0,g (x )单调递减; 当x >x a 时,f (x )+a >0,g ′(x )>0,g (x )单调递增. 因此g (x )在x =x a 处取得最小值,最小值为g (x a )=e x a -a (x a +1)x 2a =e x a +f (x a )(x +1)x 2a=e x ax a +2. 于是h (a )=e x a x a +2,由⎝ ⎛⎭⎪⎫e xx +2′=(x +1)e x (x +2)2>0,e x x +2单调递增. 所以,由x a ∈(0,2],得12=e 00+2<h (a )=e x a x a +2≤e 22+2=e 24. 因为e x x +2单调递增,对任意λ∈⎝ ⎛⎦⎥⎤12,e 24,存在唯一的x a ∈(0,2],a =-f (x a )∈[0,1),使得h (a )=λ.所以h (a )的值域是⎝ ⎛⎦⎥⎤12,e 24.综上,当a ∈[0,1)时,g (x )有最小值h (a ),h (a )的值域是⎝ ⎛⎦⎥⎤12,e 24.2.(xx·全国Ⅱ,21)设函数f (x )=e mx +x 2-mx .(1)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x 1,x 2∈[-1,1],都有|f (x 1)-f (x 2)|≤e -1,求m 的取值范围. (1)证明 f ′(x )=m (e mx -1)+2x .若m ≥0,则当x ∈(-∞,0)时,e mx -1≤0,f ′(x )<0;当x ∈(0,+∞)时, e mx -1≥0,f ′(x )>0.若m <0,则当x ∈(-∞,0)时,e mx -1>0,f ′(x )<0;当x ∈(0,+∞)时, e mx -1<0,f ′(x )>0.所以,f (x )在(-∞,0)单调递减, 在(0,+∞)上单调递增.(2)解 由(1)知,对任意的m ,f (x )在[-1,0]上单调递减,在[0,1]上单调递增,故f (x )在x =0处取得最小值.所以对于任意x 1,x 2∈[-1,1],|f (x 1)-f (x 2)|≤e -1的充要条件是⎩⎨⎧f (1)-f (0)≤e -1,f (-1)-f (0)≤e -1,即⎩⎨⎧e m-m ≤e -1,e -m +m ≤e -1.①设函数g (t )=e t -t -e +1,则g ′(t )=e t -1. 当t <0时,g ′(t )<0;当t >0时,g ′(t )>0.故g (t )在(-∞,0)上单调递减,在(0,+∞)上单调递增. 又g (1)=0,g (-1)=e -1+2-e <0, 故当t ∈[-1,1]时,g (t )≤0.当m ∈[-1,1]时,g (m )≤0,g (-m )≤0,即①式成立; 当m >1时,由g (t )的单调性,g (m )>0,即e m -m >e -1; 当m <-1时,g (-m )>0,即e -m +m >e -1. 综上,m 的取值范围是[-1,1]. 利用导数研究函数的极值与最值3.(xx·全国Ⅱ,12)设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( ) A.(-∞,-1)∪(0,1) B.(-1,0)∪(1,+∞) C.(-∞,-1)∪(-1,0)D.(0,1)∪(1,+∞)解析 因为f (x )(x ∈R )为奇函数,f (-1)=0,所以f (1)=-f (-1)=0.当x ≠0时,令g (x )=f (x )x,则g (x )为偶函数,且g (1)=g (-1)=0.则当x >0时,g ′(x )=⎝ ⎛⎭⎪⎫f (x )x ′=xf ′(x )-f (x )x 2<0,故g (x )在(0,+∞)上为减函数,在(-∞,0)上为增函数.所以在(0,+∞)上,当0<x <1时,g (x )>g (1)=0⇔f (x )x>0⇔f (x )>0;在(-∞,0)上,当x <-1时,g (x )<g (-1)=0⇔f (x )x<0⇔f (x )>0.综上,得使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1),选A. 答案 A4.(xx·全国Ⅱ,12)设函数f (x )=3sinπxm.若存在f (x )的极值点x 0满足x 20+[f (x 0)]2<m 2,则m 的取值范围是( ) A.(-∞,-6)∪(6,+∞) B.(-∞,-4)∪(4,+∞) C.(-∞,-2)∪(2,+∞)D.(-∞,-1)∪(1,+∞)解析 由正弦型函数的图象可知:f (x )的极值点x 0满足f (x 0)=±3,则πx 0m =π2+kπ(k ∈Z ),从而得x 0=(k +12)m (k ∈Z ).所以不等式x 20+[f (x 0)]2<m 2即为(k +12)2m 2+3<m 2,变形得m 2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫k +122>3,其中k ∈Z .由题意,存在整数k 使得不等式m 2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫k +122>3成立.当k ≠-1且k ≠0时,必有⎝ ⎛⎭⎪⎫k +122>1,此时不等式显然不能成立,故k =-1或k =0,此时,不等式即为34m 2>3,解得m <-2或m >2.答案 C5.(xx·全国Ⅲ,21)设函数f (x )=a cos 2x +(a -1)·(cos x +1),其中a >0,记|f (x )|的最大值为4.(1)求f ′(x );(2)求A ;(3)证明|f ′(x )|≤2A . (1)解 f ′(x )=-2a sin 2x -(a -1)sin x .(2)解 当a ≥1时,|f (x )|=|a cos 2x +(a -1)(cos x +1)| ≤a +2(a -1)=3a -2.因此A =3a -2.当0<a <1时,将f (x )变形为f (x )=2a cos 2x +(a -1)·cos x -1,令g (t )=2at 2+(a -1)t -1,则A 是|g (t )|在[-1,1]上的最大值,g (-1)=a ,g (1)=3a -2,且当t =1-a 4a 时,g (t )取得极小值,极小值为g ⎝ ⎛⎭⎪⎫1-a 4a =-(a -1)28a -1=-a 2+6a +18a.令-1<1-a 4a <1,解得a <-13(舍去),a >15.(ⅰ)当0<a ≤15时,g (t )在(-1,1)内无极值点,|g (-1)|=a ,|g (1)|=2-3a ,|g (-1)|<|g (1)|,所以A =2-3a . (ⅱ)当15<a <1时,由g (-1)-g (1)=2(1-a )>0,知g (-1)>g (1)>g ⎝⎛⎭⎪⎫1-a 4a . 又⎪⎪⎪⎪⎪⎪g ⎝ ⎛⎭⎪⎫1-a 4a -|g (-1)|=(1-a )(1+7a )8a >0,所以A =⎪⎪⎪⎪⎪⎪g ⎝ ⎛⎭⎪⎫1-a 4a =a 2+6a +18a . 综上,A =⎩⎪⎨⎪⎧2-3a ,0<a ≤15,a 2+6a +18a ,15<a <1,3a -2,a ≥1.(3)证明 由(1)得|f ′(x )|=|-2a sin 2x -(a -1)sin x |≤2a +|a -1|. 当0<a ≤15时,|f ′(x )|≤1+a ≤2-4a <2(2-3a )=2A .当15<a <1时,A =a 8+18a +34≥1, 所以|f ′(x )|≤1+a <2A .当a ≥1时,|f ′(x )|≤3a -1≤6a -4=2A . 所以|f ′(x )|≤2A .6.(xx·全国Ⅰ,21)已知函数f (x )=x 3+ax +14,g (x )=-ln x .(1)当a 为何值时,x 轴为曲线y =f (x )的切线;(2)用min{m ,n }表示m ,n 中的最小值,设函数h (x )=min{f (x ),g (x )}(x >0),讨论h (x )零点的个数.解 (1)设曲线y =f (x )与x 轴相切于点(x 0,0),则f (x 0)=0,f ′(x 0)=0.即⎩⎪⎨⎪⎧x 30+ax 0+14=0,3x 20+a =0,解得x 0=12,a =-34.因此,当a =-34时,x 轴为曲线y =f (x )的切线.(2)当x ∈(1,+∞)时,g (x )=-ln x <0, 从而h (x )=min{f (x ),g (x )}≤g (x )<0, 故h (x )在(1,+∞)无零点.当x =1时,若a ≥-54,则f (1)=a +54≥0,h (1)=min{f (1),g (1)}=g (1)=0,故x =1是h (x )的零点;若a <-54,则f (1)<0,h (1)=min{f (1),g (1)}=f (1)<0,故x =1不是h (x )的零点.当x ∈(0,1)时,g (x )=-ln x >0.所以只需考虑f (x )在(0,1)的零点个数. (ⅰ)若a ≤-3或a ≥0,则f ′(x )=3x 2+a 在(0,1)无零点,故f (x )在(0,1)单调.而f (0)=14,f (1)=a +54,所以当a ≤-3时,f (x )在(0,1)有一个零点;当a ≥0时,f (x )在(0,1)没有零点.(ⅱ)若-3<a <0,则f (x )在⎝⎛⎭⎪⎫0,-a 3单调递减,在⎝⎛⎭⎪⎫-a 3,1单调递增,故在(0,1)上,当x =-a3时,f (x )取得最小值,最小值为f ⎝⎛⎭⎪⎫-a 3=2a3-a 3+14. ①若f ⎝⎛⎭⎪⎫-a 3>0,即-34<a <0,f (x )在(0,1)无零点;②若f ⎝⎛⎭⎪⎫-a 3=0,即a =-34,则f (x )在(0,1)有唯一零点;③若f ⎝⎛⎭⎪⎫-a 3<0,即-3<a <-34,由于f (0)=14,f (1)=a +54,所以当-54<a <-34时,f (x )在(0,1)有两个零点;当-3<a ≤-54时,f (x )在(0,1)有一个零点.综上,当a >-34或a <-54时,h (x )有一个零点;当a =-34或a =-54时,h (x )有两个零点;当-54<a <-34时,h (x )有三个零点.导数的综合问题7.(xx·全国Ⅰ,12)设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫-32e ,1B.⎣⎢⎡⎭⎪⎫-32e ,34 C.⎣⎢⎡⎭⎪⎫32e ,34D.⎣⎢⎡⎭⎪⎫32e ,1解析 设g (x )=e x (2x -1),y =ax -a ,由题知存在唯一的整数x 0,使得g (x 0)在直线y =ax -a 的下方,因为g ′(x )=e x (2x +1),所以当x <-12时,g ′(x )<0,当x >-12时,g ′(x )>0,所以当x =-12时,[g (x )]min =-2e -12,当x =0时,g (0)=-1,g (1)=3e>0,直线y =a (x -1)恒过(1,0)且斜率为a ,故-a >g (0)=-1,且g (-1)=-3e -1≥-a -a ,解得32e≤a <1,故选D.答案 D8.(xx·全国Ⅰ,21)已知函数f (x )=(x -2)e x +a (x -1)2有两个零点. (1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2. 解 (1)f ′(x )=(x -1)e x+2a (x -1)=(x -1)(e x+2a ). ①设a =0,则f (x )=(x -2)e x ,f (x )只有一个零点.②设a >0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0,所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增.又f (1)=-e ,f (2)=a ,取b 满足b <0且b <ln a2,则f (b )>a2(b -2)+a (b -1)2=a ⎝⎛⎭⎪⎫b 2-32b >0,故f (x )存在两个零点.③设a <0,由f ′(x )=0得x =1或x =ln(-2a ).若a ≥-e2,则ln(-2a )≤1,故当x ∈(1,+∞)时,f ′(x )>0,因此f (x )在(1,+∞)上单调递增.又当x ≤1时,f (x )<0,所以f (x )不存在两个零点. 若a <-e2,则ln(-2a )>1,故当x ∈(1,ln(-2a ))时,f ′(x )<0;当x ∈(ln(-2a ),+∞)时,f ′(x )>0,因此f (x )在(1,ln(-2a ))上单调递减,在(ln(-2a ),+∞)上单调递增.又当x ≤1时,f (x )<0,所以f (x )不存在两个零点. 综上,a 的取值范围为(0,+∞).(2)不妨设x 1<x 2.由(1)知,x 1∈(-∞,1),x 2∈(1,+∞),2-x 2∈(-∞,1),f (x )在(-∞,1)上单调递减,所以x 1+x 2<2等价于f (x 1)>f (2-x 2),即f (2-x 2)<0. 由于f (2-x 2)=-x 2e2-x2+a (x 2-1)2,而f (x 2)=(x 2-2)e x 2+a (x 2-1)2=0, 所以f (2-x 2)=-x 2e2-x2-(x 2-2)e x2.设g (x )=-x e 2-x -(x -2)e x ,则g ′(x )=(x -1)(e 2-x -e x ),所以当x >1时,g ′(x )<0,而g (1)=0,故当x >1时,g (x )<0,从而g (x 2)=f (2-x 2)<0,故x 1+x 2<2.9.(xx·全国Ⅰ,21)设函数f (x )=a e xln x +b e x -1x,曲线y =f (x )在点(1,f (1))处的切线方程为y =e(x -1)+2. (1)求a ,b ; (2)证明:f (x )>1.(1)解 函数f (x )的定义域为(0,+∞),f ′(x )=a e x ln x +a x e x -b x 2e x -1+bxe x -1.由题意可得f (1)=2,f ′(1)=e.故a =1,b =2. (2)证明 由(1)知,f (x )=e xln x +2xe x -1,从而f (x )>1等价于x ln x >x e -x -2e .设函数g (x )=x ln x ,则g ′(x )=1+ln x .所以当x ∈⎝ ⎛⎭⎪⎫0,1e 时,g ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,g ′(x )>0.故g (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增,从而g (x )在(0,+∞)上的最小值为g ⎝ ⎛⎭⎪⎫1e =-1e .设函数h (x )=x e -x -2e,则h ′(x )=e -x (1-x ).所以当x ∈(0,1)时,h ′(x )>0;当x ∈(1,+∞)时,h ′(x )<0. 故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 从而h (x )在(0,+∞)上的最大值为h (1)=-1e .综上,当x >0时,g (x )>h (x ),即f (x )>1.利用导数研究函数的单调性1.(xx·福建,10)若定义在R 上的函数f (x )满足f (0)=-1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )A.f ⎝ ⎛⎭⎪⎫1k <1kB.f ⎝ ⎛⎭⎪⎫1k >1k -1C.f ⎝⎛⎭⎪⎫1k -1<1k -1D.f ⎝⎛⎭⎪⎫1k -1>k k -1解析 ∵导函数f ′(x )满足f ′(x )>k >1,∴f ′(x )-k >0,k -1>0,1k -1>0,可构造函数g (x )=f (x )-kx ,可得g ′(x )>0,故g (x )在R 上为增函数,∵f (0)=-1,∴g (0)=-1,∴g ⎝⎛⎭⎪⎫1k -1>g (0), ∴f ⎝⎛⎭⎪⎫1k -1-k k -1>-1,∴f ⎝ ⎛⎭⎪⎫1k -1>1k -1, ∴选项C 错误,故选C. 答案 C2.(xx·北京,18)设函数f (x )=x e a -x +bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y =(e -1)x +4. (1)求a ,b 的值; (2)求f (x )的单调区间. 解 (1)f (x )的定义域为R .∵f ′(x )=e a -x -x e a -x +b =(1-x )e a -x +b .依题设,⎩⎨⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎨⎧2e a -2+2b =2e +2,-e a -2+b =e -1.解得a =2,b =e.(2)由(1)知f (x )=x e 2-x +e x ,由f ′(x )=e 2-x (1-x +e x -1)及e 2-x >0知,f ′(x )与1-x +e x -1同号.令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.所以,当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减; 当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增. 故g (1)=1是g (x )在区间(-∞,+∞)上的最小值, 从而g (x )>0,x ∈(-∞,+∞), 综上可知,f ′(x )>0,x ∈(-∞,+∞). 故f (x )的单调递增区间为(-∞,+∞). 3.(xx·北京,18)已知函数f (x )=ln 1+x1-x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)求证:当x ∈(0,1)时,f (x )>2⎝ ⎛⎭⎪⎫x +x 33;(3)设实数k 使得f (x )>k ⎝ ⎛⎭⎪⎫x +x 33对x ∈(0,1)恒成立,求k 的最大值.(1)解 因为f (x )=ln(1+x )-ln(1-x ),所以f ′(x )=11+x +11-x,f ′(0)=2.又因为f (0)=0,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =2x .(2)证明 令g (x )=f (x )-2⎝ ⎛⎭⎪⎫x +x 33,则g ′(x )=f ′(x )-2(1+x 2)=2x 41-x 2.因为g ′(x )>0(0<x <1),所以g (x )在区间(0,1)上单调递增. 所以g (x )>g (0)=0,x ∈(0,1),即当x ∈(0,1)时,f (x )>2⎝ ⎛⎭⎪⎫x +x 33.(3)解 由(2)知,当k ≤2时,f (x )>k ⎝ ⎛⎭⎪⎫x +x 33对x ∈(0,1)恒成立. 当k >2时,令h (x )=f (x )-k ⎝ ⎛⎭⎪⎫x +x 33,则h ′(x )=f ′(x )-k (1+x 2)=kx 4-(k -2)1-x 2.所以当0<x <4k -2k 时,h ′(x )<0,因此h (x )在区间⎝⎛⎭⎪⎫0,4k -2k 上单调递减. 当0<x <4k -2k时,h (x )<h (0)=0,即f (x )<k ⎝ ⎛⎭⎪⎫x +x 33.所以当k >2时,f (x )>k ⎝ ⎛⎭⎪⎫x +x 33并非对x ∈(0,1)恒成立.综上可知,k 的最大值为2.4.(xx·四川,21)已知函数f (x )=-2(x +a )ln x +x 2-2ax -2a 2+a ,其中a >0. (1)设g (x )是f (x )的导函数,讨论g (x )的单调性;(2)证明:存在a ∈(0,1),使得f (x )≥0在区间(1,+∞)内恒成立,且f (x )=0在区间(1,+∞)内有唯一解.(1)解 由已知,函数f (x )的定义域为(0,+∞),g (x )=f ′(x )=2(x -a )-2ln x -2⎝ ⎛⎭⎪⎫1+a x ,所以g ′(x )=2-2x +2a x 2=2⎝ ⎛⎭⎪⎫x -122+2⎝ ⎛⎭⎪⎫a -14x2, 当0<a <14时,g (x )在区间⎝ ⎛⎭⎪⎫0,1-1-4a 2,⎝ ⎛⎭⎪⎫1+1-4a 2,+∞上单调递增,在区间⎝⎛⎭⎪⎫1-1-4a 2,1+1-4a 2上单调递减; 当a ≥14时,g (x )在区间(0,+∞)上单调递增.(2)证明 由f ′(x )=2(x -a )-2ln x -2⎝⎛⎭⎪⎫1+a x =0,解得a =x -1-ln x1+x-1, 令φ(x )=-2⎝ ⎛⎭⎪⎫x +x -1-ln x 1+x -1ln x +x 2-2⎝ ⎛⎭⎪⎫x -1-ln x 1+x -1x -2⎝ ⎛⎭⎪⎫x -1-ln x 1+x -12+x -1-ln x1+x -1,则φ(1)=1>0,φ(e)=-e (e -2)1+e -1-2⎝ ⎛⎭⎪⎫e -21+e -12<0, 故存在x 0∈(1,e),使得φ(x 0)=0,令a 0=x 0-1-ln x 01+x -1,u (x )=x -1-ln x (x ≥1), 由u ′(x )=1-1x≥0知,函数u (x )在区间(1,+∞)上单调递增,所以0=u (1)1+1<u (x 0)1+x -1=a 0<u (e )1+e -1=e -21+e -1<1,即a 0∈(0,1), 当a =a 0时,有f ′(x 0)=0,f (x 0)=φ(x 0)=0, 由(1)知,f ′(x )在区间(1,+∞)上单调递增, 故当x ∈(1,x 0)时,f ′(x )<0,从而f (x )>f (x 0)=0; 当x ∈(x 0,+∞)时,f ′(x )>0,从而f (x )>f (x 0)=0, 所以,当x ∈(1,+∞)时,f (x )≥0,综上所述,存在a ∈(0,1),使得f (x )≥0在区间(1,+∞)内恒成立,且f (x )=0在区间(1,+∞)内有唯一解.5.(xx·天津,20)已知函数f (x )=nx -x n ,x ∈R ,其中n ∈N *,n ≥2. (1)讨论f (x )的单调性;(2)设曲线y =f (x )与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为y =g (x ),求证:对于任意的正实数x ,都有f (x )≤g (x );(3)若关于x 的方程f (x )=a (a 为实数)有两个正实根x 1,x 2,求证:|x 2-x 1|<a1-n +2.(1)解由f(x)=nx-x n,可得f′(x)=n-nx n-1=n(1-x n-1).其中n∈N*,且n≥2,下面分两种情况讨论:①当n为奇数时.令f′(x)=0,解得x=1,或x=-1.当x变化时,f′(x),f(x)的变化情况如下表:所以,f(.②当n为偶数时.当f′(x)>0,即x<1时,函数f(x)单调递增;当f′(x)<0,即x>1时,函数f(x)单调递减;所以,f(x)在(-∞,1)上单调递增,在(1,+∞)上单调递减.(2)证明设点P的坐标为(x0,0),则x0=n 1n-1,f′(x0)=n-n2.曲线y=f(x)在点P处的切线方程为y=f′(x0)(x-x0),即g(x)=f′(x0)(x-x0).令F(x)=f(x)-g(x),即F(x)=f(x)-f′(x0)(x-x0),则F′(x)=f′(x)-f′(x0).由于f′(x)=-nx n-1+n在(0,+∞)上单调递减,故F′(x)在(0,+∞)上单调递减,又因为F′(x0)=0,所以当x ∈(0,x 0)时,F ′(x )>0, 当x ∈(x 0,+∞)时,F ′(x )<0, 所以F (x )在(0,x 0)内单调递增,在(x 0,+∞)上单调递减,所以对于任意的正实数x ,都有F (x )≤F (x 0)=0,即对于任意的正实数x ,都有f (x )≤g (x ). (3)证明 不妨设x 1≤x 2. 由(2)知g (x )=(n -n 2)(x -x 0),设方程g (x )=a 的根为x 2′,可得x 2′=an -n 2+x 0.当n ≥2时,g (x )在(-∞,+∞)上单调递减, 又由(2)知g (x 2)≥f (x 2)=a =g (x 2′),可得x 2≤x 2′. 类似地,设曲线y =f (x )在原点处的切线方程为y =h (x ), 可得h (x )=nx .当x ∈(0,+∞),f (x )-h (x )=-x n <0, 即对于任意的x ∈(0,+∞),f (x )<h (x ).设方程h (x )=a 的根为x 1′,可得x 1′=a n.因为h (x )=nx 在(-∞,+∞)上单调递增,且h (x 1′)=a =f (x 1)<h (x 1),因此x 1′<x 1.由此可得x 2-x 1<x 2′-x 1′=a1-n +x 0.因为n ≥2,所以2n -1=(1+1)n -1≥1+C 1n -1=1+n -1=n ,故2≥n 1n -1=x 0.则当x 1≤x 2时,|x 2-x 1|=x 2-x 1<a1-n+2,同理可证当x 1>x 2结论成立.所以,|x 2-x 1|<a1-n+2.6.(xx·重庆,17)设f (x )=a (x -5)2+6ln x ,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线与y 轴相交于点(0,6). (1)确定a 的值;(2)求函数f (x )的单调区间与极值.解 (1)因为f (x )=a (x -5)2+6ln x ,故f ′(x )=2a (x -5)+6x.令x =1,得f (1)=16a ,f ′(1)=6-8a , 所以曲线y =f (x )在点(1,f (1))处的切线方程为y -16a =(6-8a )(x -1),由点(0,6)在切线上可得6-16a =8a -6,故a =12.(2)由(1)知,f (x )=12(x -5)2+6ln x (x >0),f ′(x )=x -5+6x=(x -2)(x -3)x.令f ′(x )=0,解得x 1=2,x 2=3. 当0<x <2或x >3时,f ′(x )>0,故f (x )在(0,2),(3,+∞)上为增函数;当2<x <3时,f ′(x )<0,故f (x )在(2,3)上为减函数.由此可知f (x )在x =2处取得极大值f (2)=92+6ln 2,在x =3处取得极小值f (3)=2+6ln 3.利用导数研究函数的极值与最值7.(xx·陕西,12)对二次函数f (x )=ax 2+bx +c (a 为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是( ) A.-1是f (x )的零点 B.1是f (x )的极值点 C.3是f (x )的极值 D.点(2,8)在曲线y =f (x )上 解析 A 正确等价于a -b +c =0,① B 正确等价于b =-2a ,② C 正确等价于4ac -b 24a =3,③D 正确等价于4a +2b +c =8.④ 下面分情况验证,若A 错,由②、③、④组成的方程组的解为⎩⎨⎧a =5,b =-10,c =8.符合题意;若B 错,由①、③、④组成的方程组消元转化为关于a 的方程后无实数解; 若C 错,由①、②、④组成方程组,经验证a 无整数解;若D 错,由①、②、③组成的方程组a 的解为-34也不是整数.综上,故选A.答案 A8.(xx·浙江,8)已知e 为自然对数的底数,设函数f (x )=(e x -1)(x -1)k (k =1,2),则( )A.当k =1时,f (x )在x =1处取到极小值B.当k=1时,f(x)在x=1处取到极大值C.当k=2时,f(x)在x=1处取到极小值D.当k=2时,f(x)在x=1处取到极大值解析当k=1时,f(x)=(e x-1)(x-1),此时f′(x)=e x(x-1)+(e x-1)=e x·x -1,所以f′(1)=e-1≠0,所以f(1)不是极值,A,B项均错.当k=2时,f(x)=(e x-1)(x-1)2,此时f′(x)=e x(x-1)2+(2x-2)(e x-1)=e x·x2-2x-e x+2=e x(x+1)(x-1)-2(x-1)=(x-1)[e x(x+1)-2],所以f′(1)=0,且当x>1时,f′(x)>0;在x=1附近的左侧,f′(x)<0,所以f(1)是极小值.答案C9.(xx·陕西,7)设函数f(x)=x e x,则( )A.x=1为f(x)的极大值点B.x=1为f(x)的极小值点C.x=-1为f(x)的极大值点D.x=-1为f(x)的极小值点解析f′(x)=(x+1)e x,当x<-1时,f′(x)<0,当x>-1时,f′(x)>0,所以x =-1为f(x)的极小值点,故选D.答案D10.(xx·江苏,19)已知函数f(x)=x3+ax2+b(a,b∈R).(1)试讨论f(x)的单调性;(2)若b=c-a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(-∞,-3)∪⎝ ⎛⎭⎪⎫1,32∪⎝ ⎛⎭⎪⎫32,+∞,求c 的值.解 (1)f ′(x )=3x 2+2ax ,令f ′(x )=0,解得x 1=0,x 2=-2a3.当a =0时,因为f ′(x )=3x 2>0(x ≠0), 所以函数f (x )在(-∞,+∞)上单调递增;当a >0时,x ∈⎝ ⎛⎭⎪⎫-∞,-2a 3∪(0,+∞)时,f ′(x )>0,x ∈⎝ ⎛⎭⎪⎫-2a 3,0时,f ′(x )<0,所以函数f (x )在⎝ ⎛⎭⎪⎫-∞,-2a 3,(0,+∞)上单调递增,在⎝ ⎛⎭⎪⎫-2a 3,0上单调递减;当a <0时,x ∈(-∞,0)∪⎝ ⎛⎭⎪⎫-2a 3,+∞时,f ′(x )>0,x ∈⎝⎛⎭⎪⎫0,-2a 3时,f ′(x )<0,所以函数f (x )在(-∞,0),⎝ ⎛⎭⎪⎫-2a 3,+∞上单调递增,在⎝ ⎛⎭⎪⎫0,-2a 3上单调递减.(2)由(1)知,函数f (x )的两个极值为f (0)=b ,f ⎝ ⎛⎭⎪⎫-2a 3=427a 3+b ,则函数f (x )有三个零点等价于f (0)·f ⎝ ⎛⎭⎪⎫-2a 3=b ⎝ ⎛⎭⎪⎫427a 3+b <0, 从而⎩⎪⎨⎪⎧a >0,-427a 3<b <0,或⎩⎪⎨⎪⎧a <0,0<b <-427a 3.又b =c -a ,所以当a > 0时,427a 3-a +c >0或当a <0时,427a 3-a +c <0.设g (a )=427a 3-a +c ,因为函数f (x )有三个零点时,a 的取值范围恰好是(-∞,-3)∪⎝ ⎛⎭⎪⎫1,32∪⎝ ⎛⎭⎪⎫32,+∞,则在(-∞,-3)上g (a )<0,且在⎝ ⎛⎭⎪⎫1,32∪⎝ ⎛⎭⎪⎫32,+∞上g (a )>0均恒成立.从而g (-3)=c -1≤0,且g ⎝ ⎛⎭⎪⎫32=c -1≥0,因此c =1.此时,f (x )=x 3+ax 2+1-a =(x +1)[x 2+(a -1)x +1-a ],因函数有三个零点,则x 2+(a -1)x +1-a =0有两个异于-1的不等实根,所以Δ=(a -1)2-4(1-a )=a 2+2a -3>0,且(-1)2-(a -1)+1-a ≠0,解得a ∈(-∞,-3)∪⎝ ⎛⎭⎪⎫1,32∪⎝ ⎛⎭⎪⎫32,+∞.综上c =1.11.(xx·重庆,20)设函数f (x )=3x 2+axe x(a ∈R ).(1)若f (x )在x =0处取得极值,确定a 的值,并求此时曲线y =f (x )在点(1,f (1))处的切线方程;(2)若f (x )在[3,+∞)上为减函数,求a 的取值范围. 解 (1)对f (x )求导得f ′(x )=(6x +a )e x -(3x 2+ax )e x(e x )2=-3x 2+(6-a )x +a e x,因为f (x )在x =0处取得极值, 所以f ′(0)=0,即a =0.当a =0时,f (x )=3x 2e x ,f ′(x )=-3x 2+6x e x,故f (1)=3e ,f ′(1)=3e ,从而f (x )在点(1,f (1))处的切线方程为y -3e =3e (x -1),化简得3x -e y =0.(2)由(1)知f ′(x )=-3x 2+(6-a )x +ae x. 令g (x )=-3x 2+(6-a )x +a , 由g (x )=0解得x 1=6-a -a 2+366,x 2=6-a +a 2+366.当x <x 1时,g (x )<0,即f ′(x )<0,故f (x )为减函数; 当x 1<x <x 2时,g (x )>0,即f ′(x )>0,故f (x )为增函数; 当x >x 2时,g (x )<0,即f ′(x )<0,故f (x )为减函数.由f (x )在[3,+∞)上为减函数,知x 2=6-a +a 2+366≤3,解得a ≥-92,故a 的取值范围为⎣⎢⎡⎭⎪⎫-92,+∞.12.(xx·安徽,21)设函数f (x )=x 2-ax +b .(1)讨论函数f (sin x )在⎝ ⎛⎭⎪⎫-π2,π2内的单调性并判断有无极值,有极值时求出极值;(2)记f 0(x )=x 2-a 0x +b 0,求函数|f (sin x )-f 0(sin x )|在⎣⎢⎡⎦⎥⎤-π2,π2上的最大值D ;(3)在(2)中,取a 0=b 0=0,求z =b -a 24满足D ≤1时的最大值.解 (1)f (sin x )=sin 2 x -a sin x +b = sin x (sin x -a )+b ,-π2<x <π2.[f (sin x )]′=(2sin x -a )cos x ,-π2<x <π2.因为-π2<x <π2,所以cos x >0,-2<2sin x <2.①a ≤-2,b ∈R 时,函数f (sin x )单调递增,无极值. ②a ≥2,b ∈R 时,函数f (sin x )单调递减,无极值.③对于-2<a <2,在⎝ ⎛⎭⎪⎫-π2,π2内存在唯一的x 0,使得2sin x 0=a .-π2<x ≤x 0时,函数f (sin x )单调递减; x 0≤x <π2时,函数f (sin x )单调递增;因此,-2<a <2,b ∈R 时,函数f (sin x )在x 0处有极小值f (sin x 0)=f ⎝ ⎛⎭⎪⎫a 2=b -a 24.(2)-π2≤x ≤π2时,|f (sin x )-f 0(sin x )|=|(a 0-a )sin x +b -b 0|≤|a -a 0|+|b -b 0|.当(a 0-a )(b -b 0)≥0时,取x =π2,等号成立.当(a 0-a )(b -b 0)<0时,取x =-π2,等号成立.由此可知,|f (sin x )-f 0(sin x )|在⎣⎢⎡⎦⎥⎤-π2,π2上的最大值为D =|a -a 0|+|b -b 0|.(3)D ≤1即为|a |+|b |≤1,此时0≤a 2≤1,-1≤b ≤1,从而z =b -a 24≤1.取a =0,b =1,则|a |+|b |≤1,并且z =b -a 24=1.由此可知,z =b -a 24满足条件D ≤1的最大值为1.13.(xx·福建,17)已知函数f (x )=x -a ln x (a ∈R ).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程; (2)求函数f (x )的极值.解 函数f (x )的定义域为(0,+∞),f ′(x )=1-a x.(1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x(x >0),因而f (1)=1,f ′(1)=-1,所以曲线y =f (x )在点A (1,f (1))处的切线方程为y -1=-(x -1),即x +y -2=0.(2)由f ′(x )=1-a x =x -ax,x >0知:①当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值; ②当a >0时,由f ′(x )=0,解得x =a . 又当x ∈(0,a )时,f ′(x )<0; 当x ∈(a ,+∞)时,f ′(x )>0,从而函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值. 综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值a -a ln a ,无极大值. 导数的综合问题14.(xx·辽宁,11)当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A.[-5,-3]B.⎣⎢⎡⎦⎥⎤-6,-98C.[-6,-2]D.[-4,-3]解析 当x ∈(0,1]时,得a ≥-3⎝ ⎛⎭⎪⎫1x 3-4⎝ ⎛⎭⎪⎫1x 2+1x ,令t =1x ,则t ∈[1,+∞),a ≥-3t 3-4t 2+t ,令g (t )=-3t 3-4t 2+t ,t ∈[1,+∞),则g ′(t )=-9t 2-8t +1=-(t +1)(9t -1),显然在[1,+∞)上,g ′(t )<0,g (t )单调递减,所以g (t )max =g (1)=-6,因此a ≥-6;同理,当x ∈[-2,0)时,得a ≤-2.由以上两种情况得-6≤a ≤-2,显然当x =0时也成立.故实数a 的取值范围为[-6,-2]. 答案 C15.(xx·四川,10)设函数f (x )=e x +x -a (a ∈R ,e 为自然对数的底数).若曲线y =sin x 上存在点(x 0,y 0)使得f (f (y 0))=y 0,则a 的取值范围是( ) A.[1,e] B.[e -1-1,1] C.[1,e +1]D.[e -1-1,e +1]解析 因为y 0=sin x 0∈[-1,1],而f (x )≥0,f (f (y 0))=y 0,所以y 0∈[0,1].设e x +x -a =x ,x ∈[0,1],①所以e x +x -x 2=a 在x ∈[0,1]上有解,令g (x )=e x +x -x 2,所以g ′(x )=e x +1-2x ,设h (x )=e x +1-2x ,则h ′(x )=e x -2,所以当x ∈(0,ln 2)时,h ′(x )<0,当x ∈(ln 2,1)时,h ′(x )>0,所以g ′(x )≥g ′(ln2)=3-2ln 2>0,所以g (x )在[0,1]上单调递增.所以原题中的方程有解必须方程①有解,所以g (0)≤a ≤g (1),故选A. 答案 A16.(xx ·四川,21)设函数f (x )=ax 2-a -ln x ,其中a ∈R .(1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使得f (x )>1x-e 1-x 在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数).解 (1)f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减.当a >0时,由f ′(x )=0,有x =12a.此时,当x ∈⎝ ⎛⎭⎪⎫0,12a 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝⎛⎭⎪⎫12a ,+∞时,f ′(x )>0,f (x )单调递增. (2)令g (x )=1x -1e x -1,s (x )=e x -1-x .则s ′(x )=e x -1-1.而当x >1时,s ′(x )>0, 所以s (x )在区间(1,+∞)内单调递增.又由s (1)=0,有s (x )>0,从而当x >1时,g (x )>0. 当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0.故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0. 当0<a <12时,12a>1.由(1)有f ⎝⎛⎭⎪⎫12a <f (1)=0,而g ⎝ ⎛⎭⎪⎫12a >0, 所以此时f (x )>g (x )在区间(1,+∞)内不恒成立.当a ≥12时,令h (x )=f (x )-g (x )(x ≥1).当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x>x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x2>0. 因此,h (x )在区间(1,+∞)单调递增.又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0,即f (x )>g (x )恒成立.综上,a ∈⎣⎢⎡⎭⎪⎫12,+∞.17.(xx·山东,20)已知f (x )=a (x -ln x )+2x -1x2,a ∈R .(1)讨论f (x )的单调性;(2)当a =1时,证明f (x )>f ′(x )+32对于任意的x ∈[1,2]成立.(1)解 f (x )的定义域为(0,+∞),f ′(x )=a -a x -2x 2+2x 3=(ax 2-2)(x -1)x 3.当a ≤0时,x ∈(0,1)时,f ′(x )>0,f (x )单调递增,x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.当a >0时,f ′(x )=a (x -1)x 3⎝⎛⎭⎪⎫x -2a ⎝⎛⎭⎪⎫x +2a .①0<a <2时,2a>1,当x ∈(0,1)或x ∈⎝⎛⎭⎪⎫2a,+∞时,f ′(x )>0,f (x )单调递增,当x ∈⎝⎛⎭⎪⎫1,2a 时,f ′(x )<0,f (x )单调递减.②a =2时,2a=1,在x ∈(0,+∞)内,f ′(x )≥0,f (x )单调递增.③a >2时,0<2a<1,当x ∈⎝⎛⎭⎪⎫0,2a 或x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增,当x ∈⎝⎛⎭⎪⎫2a,1时,f ′(x )<0,f (x )单调递减.综上所述,当a ≤0时,f (x )在(0,1)内单调递增,在(1,+∞)内单调递减;当0<a <2时,f (x )在(0,1)内单调递增,在⎝⎛⎭⎪⎫1,2a 内单调递减,在⎝⎛⎭⎪⎫2a,+∞内单调递增;当a =2时,f (x )在(0,+∞)内单调递增;当a >2时,f (x )在⎝⎛⎭⎪⎫0,2a 内单调递增,在⎝⎛⎭⎪⎫2a,1内单调递减,在(1,+∞)内单调递增.(2)证明 由(1)知,a =1时,f (x )-f ′(x )=x -ln x +2x -1x2-⎝⎛⎭⎪⎫1-1x -2x2+2x 3=x -ln x +3x +1x 2-2x3-1,x ∈[1,2].设g (x )=x -ln x ,h (x )=3x +1x 2-2x3-1,x ∈[1,2],则f (x )-f ′(x )=g (x )+h (x ).由g ′(x )=x -1x≥0, 可得g (x )≥g (1)=1,当且仅当x =1时取得等号.又h ′(x )=-3x 2-2x +6x 4. 设φ(x )=-3x 2-2x +6,则φ(x )在x ∈[1,2]单调递减.因为φ(1)=1,φ(2)=-10,所以∃x 0∈(1,2),使得x ∈(1,x 0)时,φ(x )>0,x ∈(x 0,2)时,φ(x )<0.所以h (x )在(1,x 0)内单调递增,在(x 0,2)内单调递减.由h (1)=1,h (2)=12,可得h (x )≥h (2)=12, 当且仅当x =2时取得等号.所以f (x )-f ′(x )>g (1)+h (2)=32.即f (x )>f ′(x )+32对于任意的x ∈[1,2]成立. 18.(xx·广东,19)设a >1,函数f (x )=(1+x 2)e x -a .(1)求f (x )的单调区间;(2)证明:f (x )在(-∞,+∞)上仅有一个零点;(3)若曲线y =f (x )在点P 处的切线与x 轴平行,且在点M (m ,n )处的切线与直线OP平行(O 是坐标原点),证明:m ≤3a -2e -1.(1)解 f ′(x )=2x e x +(1+x 2)e x =(x 2+2x +1)e x =(x +1)2e x,∀x ∈R ,f ′(x )≥0恒成立.∴f (x )的单调增区间为(-∞,+∞).(2)证明 ∵f (0)=1-a ,f (a )=(1+a 2)e a -a ,∵a >1,∴f (0)<0,f (a )>2a e a -a >2a -a =a >0,∴f (0)·f (a )<0,∴f (x )在(0,a )上有一零点,又∵f (x )在(-∞,+∞)上递增,∴f (x )在(0,a )上仅有一个零点,∴f (x )在(-∞,+∞)上仅有一个零点.(3)证明 f ′(x )=(x +1)2e x,设P (x 0,y 0),则f ′(x 0)=e x0(x 0+1)2=0,∴x 0=-1,把x 0=-1,代入y =f (x )得y 0=2e-a , ∴k OP =a -2e .f ′(m )=e m (m +1)2=a -2e, 令g (m )=e m -(m +1),g ′(m )=e m -1.令g ′(x )>0,则m >0,∴g (m )在(0,+∞)上增.令g ′(x )<0,则m <0,∴g (m )在(-∞,0)上减.∴g (m )min =g (0)=0.∴e m -(m +1)≥0,即e m ≥m +1.∴e m (m +1)2≥(m +1)3,即a -2e ≥(m +1)3. ∴m +1≤3a -2e ,即m ≤3a -2e-1. 19.(xx·山东,21)设函数f (x )=ln(x +1)+a (x 2-x ),其中a ∈R .(1)讨论函数f (x )极值点的个数,并说明理由;(2)若∀x >0,f (x )≥0成立,求a 的取值范围.解 (1)由题意知,函数f (x )的定义域为(-1,+∞),f ′(x )=1x +1+a (2x -1) =2ax 2+ax -a +1x +1. 令g (x )=2ax 2+ax -a +1,x ∈(-1,+∞).①当a =0时,g (x )=1,此时f ′(x )>0,函数f (x )在(-1,+∞)上单调递增,无极值点;②当a >0时,Δ=a 2-8a (1-a )=a (9a -8).(ⅰ)当0<a ≤89时,Δ≤0,g (x )≥0, f ′(x )≥0,函数f (x )在(-1,+∞)上单调递增,无极值点;(ⅱ)当a >89时,Δ>0, 设方程2ax 2+ax -a +1=0的两根为x 1,x 2(x 1<x 2),因为x 1+x 2=-12,所以x 1<-14,x 2>-14. 由g (-1)=1>0,可得-1<x 1<-14. 所以当x ∈(-1,x 1)时,g (x )>0,f ′(x )>0,函数f (x )单调递增;当x ∈(x 1,x 2)时,g (x )<0,f ′(x )<0,函数f (x )单调递减;当x ∈(x 2,+∞)时,g (x )>0,f ′(x )>0,函数f (x )单调递增;因此函数有两个极值点.(ⅲ)当a <0时,Δ>0,由g (-1)=1>0,可得x 1<-1.当x ∈(-1,x 2)时,g (x )>0,f ′(x )>0,函数f (x )单调递增;当x ∈(x 2,+∞)时,g (x )<0,f ′(x )<0,函数f (x )单调递减;所以函数有一个极值点.综上所述,当a <0时,函数f (x )有一个极值点;当0≤a ≤89时,函数f (x )无极值点; 当a >89时,函数f (x )有两个极值点. (2)由(1)知,①当0≤a ≤89时,函数f (x )在(0,+∞)上单调递增, 因为f (0)=0,所以x ∈(0,+∞)时,f (x )>0,符合题意;②当89<a ≤1时,由g (0)≥0,得x 2≤0, 所以函数f (x )在(0,+∞)上单调递增,又f (0)=0,所以x ∈(0,+∞)时,f (x )>0,符合题意;③当a >1时,由g (0)<0,可得x 2>0.所以x ∈(0,x 2)时,函数f (x )单调递减;因为f (0)=0,所以x ∈(0,x 2)时,f (x )<0,不合题意;④当a <0时,设h (x )=x -ln(x +1).因为x ∈(0,+∞)时,h ′(x )=1-1x +1=x x +1>0 , 所以h (x )在(0,+∞)上单调递增,因此当x ∈(0,+∞)时,h (x )>h (0)=0,即ln(x +1)<x .可得f (x )<x +a (x 2-x )=ax 2+(1-a )x ,当x >1-1a时,ax 2+(1-a )x <0, 此时f (x )<0,不合题意.综上所述,a 的取值范围是[0,1].20.(xx·湖南,21)已知a >0,函数f (x )=e ax sin x (x ∈[0,+∞)).记x n 为f (x )的从小到大的第n (n ∈N *)个极值点,证明:(1)数列{f (x n )}是等比数列;(2)若a ≥1e 2-1,则对一切n ∈N *,x n <|f (x n )|恒成立. 证明 (1)f ′(x )=a e ax sin x +e ax cos x=e ax (a sin x +cos x )=a 2+1e axsin(x +φ),其中tan φ=1a ,0<φ<π2. 令f ′(x )=0,由x ≥0得x +φ=m π,即x =m π-φ,m ∈N *,对k ∈N ,若2k π<x +φ<(2k +1)π,即2k π-φ<x <(2k +1)π-φ,则f ′(x )>0;若(2k +1)π<x +φ<(2k +2)π,即(2k +1)π-φ<x <(2k +2)π-φ,则f ′(x )<0.因此,在区间((m -1)π,m π-φ)与(m π-φ,m π)上,f ′(x )的符号总相反. 于是当x =m π-φ(m ∈N *)时,f (x )取得极值,所以x n =n π-φ(n ∈N *).此时,f (x n )=e a (n π-φ)sin(n π-φ)=(-1)n +1e a (n π-φ)sin φ.易知f (x n )≠0,而f (x n +1)f (x n )=(-1)n +2e a [(n +1)π-φ]sin φ(-1)n +1e a (n π-φ)sin φ=-e a π是常数,故数列{f (x n )}是首项为 f (x 1)=e a (π-φ)sin φ,公比为-e a π的等比数列.(2)由(1)知,sin φ=1a 2+1,于是对一切n ∈N *; x n <|f (x n )|恒成立, 即n π-φ<1a 2+1e a (n π-φ)恒成立, 等价于a 2+1a <e a (n π-φ)a (n π-φ)(*) 恒成立,因为(a >0).设g (t )=e t t (t >0),则g ′(t )=e t (t -1)t2. 令g ′(t )=0得t =1.当0<t <1时,g ′(t )<0,所以g (t )在区间(0,1)上单调递减;当t >1时,g ′(t )>0,所以g (t )在区间(1,+∞)上单调递增.从而当t =1时,函数g (t )取得最小值g (1)=e.因此,要使(*)式恒成立,只需a 2+1a<g (1)=e , 即只需a >1e 2-1. 而当a =1e 2-1时,由tan φ=1a =e 2-1>3且0<φ<π2知,π3<φ<π2. 于是π-φ<2π3<e 2-1, 且当n ≥2时,n π-φ≥2π-φ>3π2>e 2-1. 因此对一切n ∈N *,ax n =n π-φe 2-1≠1,所以g (ax n )>g (1)=e =a 2+1a.故(*)式亦恒成立. 综上所述,若a ≥1e 2-1,则对一切n ∈N *,x n <|f (x n )|恒成立.21.(xx·北京,18)已知函数f (x )=x cos x -sin x ,x ∈⎣⎢⎡⎦⎥⎤0,π2. (1)求证:f (x )≤0;(2)若a <sin x x <b 对x ∈⎝⎛⎭⎪⎫0,π2恒成立,求a 的最大值与b 的最小值. (1)证明 由f (x )=x cos x -sin x 得f ′(x )=cos x -x sin x -cos x =-x sin x .因为在区间⎝⎛⎭⎪⎫0,π2上f ′(x )=-x sin x <0, 所以f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上单调递减.从而f (x )≤f (0)=0.(2)解 当x >0时,“sin x x >a ”等价于“sin x -ax >0”;“sin x x<b ”等价于“sin x -bx <0”.令g (x )=sin x -cx ,则g ′(x )=cos x -c .当c ≤0时,g (x )>0对任意x ∈⎝⎛⎭⎪⎫0,π2恒成立. 当c ≥1时,因为对任意x ∈⎝⎛⎭⎪⎫0,π2, g ′(x )=cos x -c <0,所以g (x )在区间⎣⎢⎡⎦⎥⎤0,π2上单调递减. 从而g (x )<g (0)=0对任意x ∈⎝⎛⎭⎪⎫0,π2恒成立. 当0<c <1时,存在唯一的x 0∈⎝⎛⎭⎪⎫0,π2使得 g ′(x 0)=cos x 0-c =0.g (x )与g ′(x )在区间⎝⎛⎭⎪⎫0,π2上的情况如下:因为g (x )00g (x )>0对任意x ∈⎝ ⎛⎭⎪⎫0,π2恒成立”当且仅当g ⎝ ⎛⎭⎪⎫π2=1-π2c ≥0,即0<c ≤2π. 综上所述,当且仅当c ≤2π时,g (x )>0对任意x ∈⎝⎛⎭⎪⎫0,π2恒成立;当且仅当c ≥1时,g (x )<0对任意x ∈⎝⎛⎭⎪⎫0,π2恒成立. 所以,若a <sin x x <b 对任意x ∈⎝⎛⎭⎪⎫0,π2恒成立,则a 的最大值为2π,b 的最小值为1.22.(xx·江西,18)已知函数f (x )=(x 2+bx +b )1-2x (b ∈R ).(1)当b =4时,求f (x )的极值;(2)若f (x )在区间⎝ ⎛⎭⎪⎫0,13上单调递增,求b 的取值范围. 解 (1)当b =4时,f ′(x )=-5x (x +2)1-2x, 由f ′(x )=0得x =-2或x =0.当x ∈(-∞,-2)时,f ′(x )<0,f (x )单调递减;当x ∈(-2,0)时,f ′(x )>0,f (x )单调递增;当x ∈⎝ ⎛⎭⎪⎫0,12时,f ′(x )<0,f (x )单调递减,故f (x )在x =-2处取极小值f (-2)=0,在x =0处取极大值f (0)=4.(2)f ′(x )=-x [5x +(3b -2)]1-2x ,因为当x ∈⎝ ⎛⎭⎪⎫0,13时,-x 1-2x<0,依题意, 当x ∈⎝ ⎛⎭⎪⎫0,13时,有5x +(3b -2)≤0,从而53+(3b -2)≤0. 所以b 的取值范围为⎝⎛⎦⎥⎤-∞,19.。
全国统考2022版高考数学大一轮复习第3章导数及其应用第1讲导数的概念及运算2备考试题文含解析
第三章导数及其应用第一讲导数的概念及运算1.点P 在曲线y =4(2x +1)ln2上,α为曲线在点P 处的切线的倾斜角,那么α的取值范围是 ()A .[0,π4) B .[π4,π2) C .(π2,3π4] D .[3π4,π)2.[2021晋南高中联考]函数f (x )=ln 2x -1x的图象在点(12,f (12))处的切线方程为()A.y =6x -5B.y =8x -6C.y =4x -4D.y =10x -73.[条件创新]函数f (x )=(x 2+m )e x(m ∈R)的图象在x =1处的切线的斜率等于e,且g (x )=f (x )x,那么g'(-1)=()A.4e 4eC.e 4e44.[易错题]函数f (x )=f'(1)x 2+2x +2f (1),那么f'(2)的值为()5.[2021石家庄市一检]原子有稳定和不稳定两种.不稳定的原子除天然元素外,主要由核裂变或核聚变过程中产生碎片形成,这些不稳定的元素在放出α、β、γ等射线后,会转变成稳定的原子,这种过程称之为“衰变〞.这种不稳定的元素就称为放射性同位素.随着科学技术的开展,放射性同位素技术已经广泛应用于医学、航天等众多领域,并取得了显著经济效益.假设在放射性同位素钍234的衰变过程中,其含量N (单位:贝克)与时间t (单位:天)满足函数关系N (t )=N 02-t24,其中N 0为t =0时钍234的含量.t =24时,钍234含量的瞬时变化率为-8ln 2,那么N (120)= ()B.12ln 2贝克D.6ln 2贝克6.[2021江西五校联考]曲线C :y =x e x过点A (a ,0)的切线有且仅有两条,那么实数a 的取值范围是 ()A .(-∞,-4)∪(0,+∞)B .(0,+∞)C .(-∞,-1)∪(1,+∞)D .(-∞,-1)7.[2021福建五校联考]函数f (x )={ln (-x +1),x <0,x 2+3x ,x ≥0,假设f (x )-(m +2)x ≥0,那么实数m 的取值范围是()A.(-∞,1]B.[-2,1]C.[0,3]D.[3,+∞)8.[2021洛阳市统考]直线y =2x +1与曲线y =x 3+ax +b 相切于点(1,3),那么a 3+b =.9.[2021大同市调研测试]假设曲线y =ln x +1的一条切线的方程是y =ax +b ,那么4a +e b的最小值是. 10.[2021河北六校联考]函数f (x )=x ln x -12mx 2(m ∈R),g (x )=-x+1e x −2e x +e -1e.(1)假设函数f (x )的图象在(1,f (1))处的切线与直线x -y +1=0平行,求m ;(2)证明:在(1)的条件下,对任意x 1,x 2∈(0,+∞),f (x 1)>g (x 2)成立.11.[数学探索]函数f (x )=12ax 2-ax +ln x 的图象在点(x 1,f (x 1))处与点(x 2,f (x 2))(x 1≠x 2)处的切线均平行于x 轴,那么x 1+x 2+x 1x 2+f (x 1)+f (x 2)的取值范围是()A.(-∞,-74-2ln 2) B .(-74-2ln 2,74-2ln 2)C.(74-2ln 2,+∞) D.(-74-2ln 2,+∞)12.[2021南昌市高三测试]曲线C 1:y =e x +m ,C 2:y =x 2,假设恰好存在两条直线l 1,l 2与曲线C 1,C 2都相切,那么实数m 的取值范围是()A.(2ln 2-2,+∞)B.(2ln 2,+∞)C.(-∞,2ln 2-2)D.(-∞,2ln 2)13.[2021长春市第四次质量监测]函数f (x )=e mx +e -mx +x 2-mx (m ∈R)的图象在点A (x 1,f (x 1)),B (-x 1,f (-x 1))处两条切线的交点P (x 0,y 0)一定满足()A.x 0=0B.x 0=mC.y 0=0D.y 0=m14.[2021惠州市二调]实数a >0,函数f (x )=2x +a 2x +a ln x ,x ∈(0,10). (1)讨论函数f (x )的单调性;(2)假设x =1是函数f (x )的极值点,曲线y =f (x )在点P (x 1,f (x 1)),Q (x 2,f (x 2))(x 1<x 2)处的切线分别为l 1,l 2,且l 1,l 2在y 轴上的截距分别为b 1,b 2,假设l 1∥l 2,求b 1-b 2的取值范围.15.[2021唐山市摸底考试]函数f (x )=ax sin x +b cos x ,且曲线y =f (x )与直线y =π2相切于点(π2,π2). (1)求f (x );(2)假设f (x )≤mx 2+1,求实数m 的取值范围. 16.[角度创新]函数f (x )=e x,g (x )=ln x.(1)假设曲线y =f (x )在x =0处的切线方程为y =kx +b ,且存在实数m ,n ,使得直线y -m =k (x +n )+b 与曲线y =g (x )相切,求m +n 的值;(2)假设函数φ(x )=x +af (x )(g (x )-x )有零点,求实数a 的取值范围.答 案第三章导数及其应用第一讲导数的概念及运算1.D y =4(2x +1)ln2的导数为y'=4ln2·-2x ln2(2x +1)2=-42x +12x +2,由2x+12x ≥2√2x ·12x =2(当且仅当x =0时取等号),得12x +12x +2∈(0,14],所以-42x +12x +2∈[-1,0),即tan α∈[-1,0),结合0≤α<π,可得3π4≤α<π.应选D .2.A f (12)=ln 1-2=-2,因为f'(x )=1x +1x 2,所以f'(12)=6,所以切线方程为y -(-2)=6(x −12),即y =6x -5,应选A . 3.A 由题意得f'(x )=2x e x+(x 2+m )e x =(x 2+2x +m )e x ,f'(1)=(3+m )e,由题意得(3+m )e=e,所以m =-2,所以f (x )=(x 2-2)e x.解法一所以g (x )=f (x )x=(x −2x)e x,g'(x )=(1+2x 2)e x+(x −2x)e x,所以g'(-1)=4e.解法二 f'(x )=(x 2+2x -2)e x,f (-1)=−1e,所以f'(-1)=−3e,又g'(x )=xf '(x )-f (x )x 2,所以g'(-1)=4e.4.D 因为f'(x )=2f'(1)x +2,所以f'(1)=2f'(1)+2,解得f'(1)=-2,所以f'(x )=-4x +2,所以f'(2)=-6,应选D.5.A 因为N (t )=N 0·2-t 24,所以N'(t )=N 0·2-t 24·ln 2·(−124)=−N 024·ln 2·2-t 24,因为当t =24时,钍234含量的瞬时变化率为-8ln 2,即N'(24)=-8ln 2,所以−N 024ln 2×2-1=-8ln 2,所以N 0=384,即N (t )=384×2-t 24,所以N (120)=384×2-12024=38432=12,应选A.6.A 对函数y =x e x求导得y'=e x+x ·e x=(1+x )e x.设切点坐标为(x 0,x 0e x 0),那么曲线y =x e x过点A (a ,0)的切线的斜率k =(1+x 0)e x 0=x 0e x 0x 0-a,化简得x 02−ax 0-a =0.依题意知,上述关于x 0的二次方程有两个不相等的实数根,所以Δ=(-a )2-4×1×(-a )>0,解得a <-4或a >0.应选A .7.B 令g (x )=x 2+3x (x ≥0),那么g'(x )=2x +3,所以g'(0)=3,所以函数g (x )的图象在原点处的切线方程为y =3x ,故函数f (x )的图象在原点处的切线方程为y =3x.如图D 3-1-1,画出函数f (x )的图象,切线y =3x ,以及直线y =(m +2)x ,分析可知,为满足f (x )-(m +2)x ≥0,即f (x )≥(m +2)x ,那么0≤m +2≤3,解得-2≤m ≤1.应选B .图D 3-1-18.2因为(x 3+ax +b )'=3x 2+a ,所以{3×12+a =2,13+a ×1+b =3,解得{a =-1,b =3,所以a 3+b =2.9.4 y'=1x ,设切点坐标为(x 0,y 0)(x 0>0),那么{y 0=lnx 0+1,y 0=ax 0+b ,a =1x 0,所以b =ln x 0,所以4a +e b =4x 0+x 0≥2√4x 0·x 0=4,当且仅当x 0=2时取“=〞,故4a +e b 的最小值为4.10.(1)f (x )的定义域为(0,+∞),f'(x )=ln x +1-mx ,f'(1)=1-m ,因为f (x )的图象在(1,f (1))处的切线与直线x -y +1=0平行,所以1-m =1,即m =0. (2)在(1)的条件下,f (x )=x ln x ,f'(x )=ln x +1,当x ∈(0,1e)时,f'(x )<0,f (x )单调递减,当x ∈(1e,+∞)时,f'(x )>0,f (x )单调递增,所以f (x )=x ln x 在x =1e时取得最小值f (1e )=−1e ,所以f (x 1)≥−1e .g (x )=−x+1e x−2e x +e -1e,那么g'(x )=x e x −2e ,令h (x )=g'(x )=xe x −2e ,x >0,那么h'(x )=1-xe x ,所以当x ∈(0,1)时,h'(x )>0,h (x )单调递增,当x ∈(1,+∞)时,h'(x )<0,h (x )单调递减.所以当x >0时,g'(x )≤g'(1)=h (1)=−1e ,因为g'(x )≤−1e <0,所以g (x )在(0,+∞)上单调递减, 所以g (x 2)<g (0)=−1e .所以对任意x 1,x 2∈(0,+∞),f (x 1)>g (x 2).11.A 函数f (x )的定义域为(0,+∞),且f'(x )=ax -a +1x =ax 2-ax+1x,那么根据导数的几何意义知x 1,x 2是方程ax 2-ax +1=0的两个不等正根,那么{Δ=a 2-4a >0,x 1x 2=1a>0,x 1+x 2=1,那么a >4.令h (a )=x 1+x 2+x 1x 2+f (x 1)+f (x 2)=1+1a+ln x 1+12a x 12−ax 1+lnx 2+12a x 22−ax 2=1+1a +ln 1a +12a (1−2a )-a =−12a -ln a +1a .易知函数h (a )=−12a -ln a +1a 在(4,+∞)上单调递减,那么h (a )<h (4)=−74−2ln 2,所以x 1+x 2+x 1x 2+f (x 1)+f (x 2)的取值范围是(-∞,−74−2ln 2),应选A .12.C 解法一设直线l 与曲线C 1和曲线C 2都相切,且与曲线C 1:y =e x +m相切于点(x 0,e x 0+m ),因为(e x +m)'=e x +m,所以直线l 的斜率为e x 0+m ,故直线l 的方程为y −e x 0+m =e x 0+m (x -x 0),即y =e x 0+m x +(1-x 0)·e x 0+m .由{y =e x 0+m x +(1-x 0)·e x 0+m ,y =x 2,消去y 并化简得x 2−e x 0+m x -(1-x 0)·e x 0+m =0,那么其判别式Δ=(−e x 0+m )2+4(1-x 0)·e x 0+m =0,由于e x 0+m >0,所以e x 0+m +4(1-x 0)=0,即e x 0+m −4x 0+4=0.依题意可知关于x 0的方程e x 0+m −4x 0+4=0有两个不同的根.构造函数g (x )=e x +m-4x +4,那么g (x )有两个零点.(题眼)g'(x )=e x +m-4,令g'(x )=0,解得x 1=ln 4-m ,令g'(x )>0,得x >x 1,令g'(x )<0,得x <x 1,所以g (x )在(-∞,x 1)上单调递减,在(x 1,+∞)上单调递增,且当x →-∞时,g (x )→+∞,当x →+∞时,g (x )→+∞,所以要使g (x )有两个零点,那么需g (x 1)<0,即e ln 4-4(ln4-m )+4<0,解得m <2ln 2-2.应选C .解法二同解法一得到“关于x 0的方程e x 0+m −4x 0+4=0有两个不同的根〞,即e x 0+m =4x 0-4有两个不同的根,即函数y =e x +m 与y =4x -4的图象有两个不同的交点.求出直线y =4x -4与曲线y =e x +m 相切时m 的值,即可求出m 的取值范围.令(e x +m )'=e x +m=4,得x =ln 4-m ,那么切点为(ln 4-m ,4),代入切线方程y =4x -4得4=4(ln 4-m )-4,解得m =2ln 2-2,此时直线y =4x -4与曲线y =e x +m 相切,将曲线y =e x +2ln 2-2向右平移可满足与直线y =4x -4有两个不同的交点,所以m <2ln 2-2.应选C .13.A 由题意,得f'(x )=m e mx-m e -mx+2x -m ,那么切线PA 的方程为y -(e mx 1+e -mx 1+x 12−mx 1)=(m e mx 1−m e -mx 1+2x 1-m )(x -x 1),切线PB 的方程为y -(e -mx 1+e mx 1+x 12+mx 1)=(m e -mx 1−m e mx 1−2x 1-m )(x +x 1),将(x 0,y 0)代入两条切线方程,得{y 0-(e mx 1+e -mx 1+x 12-mx 1)=(me mx 1-me -mx 1+2x 1-m )(x 0-x 1) ①,y 0-(e -mx 1+e mx 1+x 12+mx 1)=(me -mx 1-me mx 1-2x 1-m )(x 0+x 1) ②,①-②,得2mx 1=2(m e mx 1−m e -mx 1+2x 1)x 0+2mx 1,即(m e mx 1−m e -mx 1+2x 1)x 0=0. 因为对任意m ∈R,x 1∈R,m e mx 1−m e -mx 1+2x 1=0不恒成立,所以x 0=0,应选A. 14.(1)f'(x )=−2x 2+a 2+a x =(ax+2)(ax -1)x 2(0<x <10),∵a >0,0<x <10,∴ax +2>0.①当1a ≥10,即a ∈(0,110]时,f'(x )<0,那么f (x )在(0,10)上单调递减; ②当0<1a<10,即a ∈(110,+∞)时,令f'(x )<0,得0<x <1a ,令f'(x )>0,得1a <x <10,∴f (x )在(0,1a)上单调递减,在(1a,10)上单调递增.(由于a >0,0<x <10,因此分类讨论的标准是以1a是否在定义域内进行制定的)综上,当a ∈(0,110]时,f (x )在(0,10)上单调递减;当a ∈(110,+∞)时,f (x )在(0,1a)上单调递减,在(1a,10)上单调递增.(2)∵x =1是f (x )的极值点,∴f'(1)=0,即(a +2)(a -1)=0, 解得a =1或a =-2(舍),此时f (x )=2x +x +ln x ,f'(x )=−2x 2+1x +1, ∴切线l 1的方程为y -(2x 1+x 1+ln x 1)=(−2x 12+1x 1+1)(x -x 1),令x =0,得b 1=4x 1+ln x 1-1,同理可得b 2=4x 2+ln x 2-1.∵l 1∥l 2,∴−2x 12+1x 1+1=−2x 22+1x 2+1,整理得x 1x 2=2(x 1+x 2),∴x 2=2x 1x1-2,∴b 1-b 2=4x 2-4x 1x 1x 2+lnx 1x 2=2(x 2-x 1)x 1+x 2+lnx 1x 2=2(1-x 1x 2)1+x 1x 2+ln x1x 2.又0<x 1<x 2<10,∴x 1<2x 1x 1-2<10,得52<x 1<4,令x1x 2=t ,那么t =x 1·x 1-22x 1=x 12−1∈(14,1),设g (t )=2(1-t )1+t+ln t ,那么g'(t )=−4(1+t )2+1t=(t -1)2t (t+1)2>0,∴g (t )在(14,1)上单调递增,又g (1)=0,g (14)=65−2ln 2,∴g (t )∈(65−2ln 2,0),(换元以及构造新函数,利用导数研究新函数的单调性和在特定区间上的值域,从而求得b 1-b 2的取值范围) 即b 1-b 2的取值范围为(65−2ln 2,0).15.(1)由f (π2)=aπ2=π2得a =1,那么f'(x )=x cos x +(1-b )sin x ,由f'(π2)=1-b =0得b =1,所以f (x )=x sin x +cos x. (2)令g (x )=mx 2+1-f (x )=mx 2-x sin x -cos x +1, 由g (x )≥0得g (2π)=4π2m ≥0,所以m ≥0.易知g (x )为偶函数,所以只需满足当x ≥0时,g (x )≥0即可.g'(x )=2mx -x cos x =x (2m -cos x ),下面只讨论x ≥0时的情形.当m ≥12时,g'(x )≥0,即g (x )在[0,+∞)上单调递增, 所以g (x )≥g (0)=0,所以当m ≥12时,f (x )≤mx 2+1恒成立.当0≤m <12时,因为y =2m -cos x 在[0,π2]上单调递增, 且当x =0时,y =2m -1<0,当x =π2时,y =2m ≥0,所以存在x 0∈(0,π2],使得2m -cos x 0=0,因此当x ∈(0,x 0)时,g'(x )<0,即g (x )在(0,x 0)上单调递减, 所以当x ∈(0,x 0)时,g (x )<g (0)=0,与g (x )≥0矛盾. 因此当0≤m <12时,f (x )≤mx 2+1不恒成立. 综上,满足题意的m 的取值范围是[12,+∞).16. (1)f'(x )=e x,f'(0)=1,f (0)=1,所以曲线y =f (x )在x =0处的切线方程为y =x +1,所以k =b =1, 那么y -m =k (x +n )+b ,即y =x +m +n +1.g'(x )=1x ,那么曲线y =g (x )在点(x 0,ln x 0)处的切线方程为y -ln x 0=1x 0(x -x 0),即y =1x 0x +ln x 0-1,从而1x 0=1,ln x 0-1=m +n +1,所以x 0=1,m +n =-2.(2)由题意知φ(x )=x +a e x(ln x -x ),x ∈(0,+∞), 函数φ(x )有零点,即φ(x )=0有根. 当a =0时,φ(x )=x >0,不符合题意. 当a ≠0时,函数φ(x )有零点等价于1a =e x(1−lnx x)有根.设h (x )=e x(1−lnx x),那么h'(x )=e x(1−lnx x)+e x(−1-lnx x 2)=e xx 2(x -1)(x +1-ln x ),设s (x )=x +1-ln x ,那么s'(x )=1−1x ,当x ∈(0,1)时,s'(x )<0,s (x )单调递减,当x ∈(1,+∞)时,s'(x )>0, s (x )单调递增,所以s (x )≥s (1)=2>0,所以h'(x )=0仅有一根x =1,且当x ∈(0,1)时,h'(x )<0,h (x )单调递减, 当x ∈(1,+∞)时,h'(x )>0,h (x )单调递增,所以h (x )≥h (1)=e . 所以假设函数φ(x )有零点,那么1a ≥e,从而0<a ≤1e .。
2022版高考数学(理)一轮复习文档:第三章 导数及其应用 3.2 第1课时 Word版含解析
1.函数的单调性在某个区间(a,b)内,假如f′(x)>0,那么函数y=f(x)在这个区间内单调递增;假如f′(x)<0,那么函数y=f(x)在这个区间内单调递减.2.函数的极值(1)一般地,求函数y=f(x)的极值的方法解方程f′(x)=0,当f′(x0)=0时:①假如在x0四周的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;②假如在x0四周的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是微小值.(2)求可导函数极值的步骤:①求f′(x);②求方程f′(x)=0的根;③考察f′(x)在方程f′(x)=0的根四周的左右两侧导数值的符号.假如左正右负,那么f(x)在这个根处取得极大值;假如左负右正,那么f(x)在这个根处取得微小值.3.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.(3)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下:①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.【学问拓展】1.在某区间内f′(x)>0(f′(x)<0)是函数f(x)在此区间上为增(减)函数的充分不必要条件.2.可导函数f(x)在(a,b)上是增(减)函数的充要条件是对∀x∈(a,b),都有f′(x)≥0(f′(x)≤0)且f′(x)在(a,b)上的任何子区间内都不恒为零.3.对于可导函数f(x),f′(x0)=0是函数f(x)在x=x0处有极值的必要不充分条件.【思考辨析】推断下列结论是否正确(请在括号中打“√”或“×”)(1)若函数f(x)在(a,b)内单调递增,那么肯定有f′(x)>0.(×)(2)假如函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.(√)(3)函数的极大值不肯定比微小值大.(√)(4)对可导函数f(x),f′(x0)=0是x0点为极值点的充要条件.(×)(5)函数的最大值不肯定是极大值,函数的最小值也不肯定是微小值.(√)(6)三次函数在R上必有极大值和微小值.(×)1.(教材改编)f(x)=x3-6x2的单调递减区间为()A.(0,4) B.(0,2)C.(4,+∞) D.(-∞,0)答案 A解析f′(x)=3x2-12x=3x(x-4),由f′(x)<0,得0<x<4,∴单调递减区间为(0,4).2.如图是函数y=f(x)的导函数y=f′(x)的图象,则下面推断正确的是()A.在区间(-2,1)上f(x)是增函数B.在区间(1,3)上f(x)是减函数C.在区间(4,5)上f(x)是增函数D.当x=2时,f(x)取到微小值答案 C解析在(-2,1)上,导函数的符号有正有负,所以函数f(x)在这个区间上不是单调函数;同理,函数在(1,3)上也不是单调函数;在x=2的左侧,函数在(-32,2)上是增函数,在x=2的右侧,函数在(2,4)上是减函数,所以当x =2时,f (x )取到极大值;在(4,5)上导函数的符号为正,所以函数在这个区间上为增函数.3.已知定义在实数集R 上的函数f (x )满足f (1)=3,且f (x )的导数f ′(x )在R 上恒有f ′(x )<2(x ∈R ),则不等式f (x )<2x +1的解集为( ) A .(1,+∞) B .(-∞,-1)C .(-1,1)D .(-∞,-1)∪(1,+∞)答案 A解析 令g (x )=f (x )-2x -1,∴g ′(x )=f ′(x )-2<0, ∴g (x )在R 上为减函数,g (1)=f (1)-2-1=0. 由g (x )<0=g (1),得x >1,故选A.4.函数f (x )=x 33+x 2-3x -4在[0,2]上的最小值是________.答案 -173解析 f ′(x )=x 2+2x -3,令f ′(x )=0,得x =1(x =-3舍去), 又f (0)=-4,f (1)=-173,f (2)=-103,故f (x )在[0,2]上的最小值是f (1)=-173.5.设a ∈R ,若函数y =e x+ax 有大于零的极值点,则实数a 的取值范围是________. 答案 (-∞,-1)解析 ∵y =e x +ax ,∴y ′=e x +a . ∵函数y =e x +ax 有大于零的极值点, 则方程y ′=e x +a =0有大于零的解, ∵x >0时,-e x <-1,∴a =-e x <-1.第1课时 导数与函数的单调性题型一 不含参数的函数的单调性例1 (1)函数y =12x 2-ln x 的单调递减区间为( )A .(-1,1)B .(0,1)C .(1,+∞)D .(0,+∞)(2)已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间是________________. 答案 (1)B (2)⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2 解析 (1)y =12x 2-ln x ,y ′=x -1x =x 2-1x=(x -1)(x +1)x(x >0).令y ′<0,得0<x <1,∴单调递减区间为(0,1). (2)f ′(x )=sin x +x cos x -sin x =x cos x . 令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2, 即f (x )的单调递增区间为⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2. 思维升华 确定函数单调区间的步骤 (1)确定函数f (x )的定义域; (2)求f ′(x );(3)解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间; (4)解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.(1)函数y =4x 2+1x的单调增区间为( )A .(0,+∞) B.⎝⎛⎭⎫12,+∞ C .(-∞,-1)D.⎝⎛⎭⎫-∞,-12 (2)已知函数f (x )=x ln x ,则f (x )( ) A .在(0,+∞)上递增B .在(0,+∞)上递减C .在(0,1e )上递增D .在(0,1e)上递减答案 (1)B (2)D解析 (1)由y =4x 2+1x ,得y ′=8x -1x 2,令y ′>0,即8x -1x 2>0,解得x >12,∴函数y =4x 2+1x的单调增区间为⎝⎛⎭⎫12,+∞.故选B. (2)由于函数f (x )=x ln x ,定义域为(0,+∞),所以f ′(x )=ln x +1(x >0), 当f ′(x )>0时,解得x >1e,即函数的单调递增区间为(1e ,+∞);当f ′(x )<0时,解得0<x <1e,即函数的单调递减区间为(0,1e ),故选D.题型二 含参数的函数的单调性例2 已知函数f (x )=ln(e x +1)-ax (a >0). (1)若函数y =f (x )的导函数是奇函数,求a 的值; (2)求函数y =f (x )的单调区间. 解 (1)函数f (x )的定义域为R . 由已知得f ′(x )=e xe x +1-a .∵函数y =f (x )的导函数是奇函数,∴f ′(-x )=-f ′(x ),即e -xe -x +1-a =-e x e x +1+a ,解得a =12.(2)由(1)知f ′(x )=e x e x +1-a =1-1e x +1-a .①当a ≥1时,f ′(x )<0恒成立, ∴当a ∈[1,+∞)时, 函数y =f (x )在R 上单调递减. ②当0<a <1时,由f ′(x )>0,得(1-a )(e x +1)>1,即e x >-1+11-a ,解得x >ln a1-a ,由f ′(x )<0,得(1-a )(e x +1)<1, 即e x <-1+11-a ,解得x <ln a1-a .∴当a ∈(0,1)时, 函数y =f (x )在(ln a1-a,+∞)上单调递增, 在(-∞,lna1-a)上单调递减. 综上,当a ≥1时,f (x )在R 上单调递减;当0<a <1时,f (x )在⎝ ⎛⎭⎪⎫ln a 1-a ,+∞上单调递增,在⎝ ⎛⎭⎪⎫-∞,ln a 1-a 上单调递减.思维升华 (1)争辩含参数的函数的单调性,要依据参数对不等式解集的影响进行分类争辩. (2)划分函数的单调区间时,要在函数定义域内争辩,还要确定导数为0的点和函数的间断点.(3)个别导数为0的点不影响所在区间的单调性,如f (x )=x 3,f ′(x )=3x 2≥0(f ′(x )=0在x =0时取到),f (x )在R 上是增函数.争辩函数f (x )=(a -1)ln x +ax 2+1的单调性.解 f (x )的定义域为(0,+∞),f ′(x )=a -1x +2ax =2ax 2+a -1x.①当a ≥1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增; ②当a ≤0时,f ′(x )<0,故f (x )在(0,+∞)上单调递减;③当0<a <1时,令f ′(x )=0,解得x =1-a2a,则当x ∈(0, 1-a2a)时,f ′(x )<0;当x ∈( 1-a2a,+∞)时,f ′(x )>0,故f (x )在(0, 1-a2a )上单调递减,在( 1-a2a,+∞)上单调递增. 题型三 已知函数单调性求参数例3 (2022·西安模拟)已知函数f (x )=ln x ,g (x )=12ax 2+2x (a ≠0).(1)若函数h (x )=f (x )-g (x )存在单调递减区间,求a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围. 解 (1)h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x -ax -2,由于h (x )在(0,+∞)上存在单调递减区间,所以当x ∈(0,+∞)时,1x -ax -2<0有解,即a >1x 2-2x有解.设G (x )=1x 2-2x ,所以只要a >G (x )min 即可.而G (x )=(1x -1)2-1,所以G (x )min =-1.所以a >-1.(2)由h (x )在[1,4]上单调递减得,当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立,即a ≥1x 2-2x恒成立.所以a ≥G (x )max ,而G (x )=(1x -1)2-1,由于x ∈[1,4],所以1x ∈[14,1],所以G (x )max =-716(此时x =4), 所以a ≥-716,即a 的取值范围是[-716,+∞).引申探究1.本例(2)中,若函数h (x )=f (x )-g (x )在[1,4]上单调递增,求a 的取值范围. 解 由h (x )在[1,4]上单调递增得, 当x ∈[1,4]时,h ′(x )≥0恒成立, ∴当x ∈[1,4]时,a ≤1x 2-2x恒成立,又当x ∈[1,4]时,(1x 2-2x )min =-1(此时x =1),∴a ≤-1,即a 的取值范围是(-∞,-1].2.本例(2)中,若h (x )在[1,4]上存在单调递减区间,求a 的取值范围. 解 h (x )在[1,4]上存在单调递减区间, 则h ′(x )<0在[1,4]上有解, ∴当x ∈[1,4]时,a >1x 2-2x 有解,又当x ∈[1,4]时,(1x 2-2x )min =-1,∴a >-1,即a 的取值范围是(-1,+∞). 思维升华 依据函数单调性求参数的一般思路(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上f ′(x )不恒为零,应留意此时式子中的等号不能省略,否则漏解. (3)函数在某个区间存在单调区间可转化为不等式有解问题.已知函数f (x )=e x ln x -a e x (a ∈R ).(1)若f (x )在点(1,f (1))处的切线与直线y =1e x +1垂直,求a 的值;(2)若f (x )在(0,+∞)上是单调函数,求实数a 的取值范围. 解 (1)f ′(x )=e x ln x +e x ·1x -a e x =(1x -a +ln x )e x ,f ′(1)=(1-a )e ,由(1-a )e·1e =-1,得a =2.(2)由(1)知f ′(x )=(1x-a +ln x )e x ,若f (x )为单调递减函数,则f ′(x )≤0在x >0时恒成立. 即1x -a +ln x ≤0在x >0时恒成立. 所以a ≥1x +ln x 在x >0时恒成立.令g (x )=1x+ln x (x >0),则g ′(x )=-1x 2+1x =x -1x 2(x >0),由g ′(x )>0,得x >1; 由g ′(x )<0,得0<x <1.故g (x )在(0,1)上为单调递减函数,在(1,+∞)上为单调递增函数,此时g (x )的最小值为g (1)=1,但g (x )无最大值(且无趋近值).故f (x )不行能是单调递减函数. 若f (x )为单调递增函数,则f ′(x )≥0在x >0时恒成立,即1x -a +ln x ≥0在x >0时恒成立,所以a ≤1x +ln x 在x >0时恒成立,由上述推理可知此时a ≤1.故实数a 的取值范围是(-∞,1].5.用分类争辩思想争辩函数的单调性典例 (12分)已知函数f (x )=ln x ,g (x )=f (x )+ax 2+bx ,其中函数g (x )的图象在点(1,g (1))处的切线平行于x 轴.(1)确定a 与b 的关系;(2)若a ≥0,试争辩函数g (x )的单调性.思想方法指导 含参数的函数的单调性问题一般要分类争辩,常见的分类争辩标准有以下几种可能: ①方程f ′(x )=0是否有根;②若f ′(x )=0有根,求出根后推断其是否在定义域内;③若根在定义域内且有两个,比较根的大小是常见的分类方法. 规范解答解 (1)依题意得g (x )=ln x +ax 2+bx , 则g ′(x )=1x+2ax +b .[2分]由函数g (x )的图象在点(1,g (1))处的切线平行于x 轴得g ′(1)=1+2a +b =0, ∴b =-2a -1.[4分](2)由(1)得g ′(x )=2ax 2-(2a +1)x +1x=(2ax -1)(x -1)x.∵函数g (x )的定义域为(0,+∞), ∴当a =0时,g ′(x )=-x -1x.由g ′(x )>0,得0<x <1,由g ′(x )<0,得x >1,[6分] 当a >0时,令g ′(x )=0,得x =1或x =12a ,[7分]若12a <1,即a >12, 由g ′(x )>0,得x >1或0<x <12a ,由g ′(x )<0,得12a <x <1;[9分]若12a >1,即0<a <12, 由g ′(x )>0,得x >12a 或0<x <1,由g ′(x )<0,得1<x <12a,若12a =1,即a =12,在(0,+∞)上恒有g ′(x )≥0.[11分] 综上可得:当a =0时,函数g (x )在(0,1)上单调递增, 在(1,+∞)上单调递减;当0<a <12时,函数g (x )在(0,1)上单调递增,在(1,12a )上单调递减,在(12a ,+∞)上单调递增;当a =12时,函数g (x )在(0,+∞)上单调递增;当a >12时,函数g (x )在(0,12a)上单调递增,在(12a,1)上单调递减,在(1,+∞)上单调递增.[12分]1.(2022·合肥模拟)函数f (x )=x ·e x -e x +1的单调递增区间是( )A .(-∞,e)B .(1,e)C .(e ,+∞)D .(e -1,+∞)答案 D解析 由f (x )=x ·e x -e x +1, 得f ′(x )=(x +1-e)·e x , 令f ′(x )>0,解得x >e -1,所以函数f (x )的单调递增区间是(e -1,+∞).2.已知函数f (x )=12x 3+ax +4,则“a >0”是“f (x )在R 上单调递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 f ′(x )=32x 2+a ,当a ≥0时,f ′(x )≥0恒成立,故“a >0”是“f (x )在R 上单调递增”的充分不必要条件.3.已知f (x )=1+x -sin x ,则f (2),f (3),f (π)的大小关系正确的是( ) A .f (2)>f (3)>f (π) B .f (3)>f (2)>f (π) C .f (2)>f (π)>f (3) D .f (π)>f (3)>f (2) 答案 D解析 由于f (x )=1+x -sin x ,所以f ′(x )=1-cos x , 当x ∈(0,π]时,f ′(x )>0, 所以f (x )在(0,π]上是增函数, 所以f (π)>f (3)>f (2). 故选D.4.已知函数f (x )=x +1ax在(-∞,-1)上单调递增,则实数a 的取值范围是( )A .[1,+∞)B .(-∞,0)∪(0,1]C .(0,1]D .(-∞,0)∪[1,+∞)答案 D解析 函数f (x )=x +1ax 的导数为f ′(x )=1-1ax 2,由于f (x )在(-∞,-1)上单调递增, 则f ′(x )≥0在(-∞,-1)上恒成立, 即1a ≤x 2在(-∞,-1)上恒成立, 由于当x <-1时,x 2>1, 则有1a≤1,解得a ≥1或a <0.5.(2022·中山模拟)已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图象如图所示,则下列叙述正确的是( )A .f (b )>f (c )>f (d )B .f (b )>f (a )>f (e )C .f (c )>f (b )>f (a )D .f (c )>f (e )>f (d ) 答案 C解析 依题意得,当x ∈(-∞,c )时,f ′(x )>0, 所以函数f (x )在(-∞,c )上是增函数, 由于a <b <c ,所以f (c )>f (b )>f (a ),因此C 正确.6.(2021·课标全国Ⅱ)设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( ) A .(-∞,-1)∪(0,1) B .(-1,0)∪(1,+∞) C .(-∞,-1)∪(-1,0) D .(0,1)∪(1,+∞) 答案 A解析 由于f (x )(x ∈R )为奇函数,f (-1)=0, 所以f (1)=-f (-1)=0. 当x ≠0时,令g (x )=f (x )x ,则g (x )为偶函数,g (1)=g (-1)=0.则当x >0时,g ′(x )=[f (x )x ]′=xf ′(x )-f (x )x 2<0,故g (x )在(0,+∞)上为减函数,在(-∞,0)上为增函数. 所以在(0,+∞)上,当0<x <1时,g (x )>g (1)=0 ⇔f (x )x >0⇔f (x )>0;在(-∞,0)上,当x <-1时,g (x )<g (-1)=0⇔f (x )x<0⇔f (x )>0. 综上,知使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1),故选A.7.(2022·青岛模拟)若函数f (x )=x 3+bx 2+cx +d 的单调减区间为(-1,3),则b +c =________. 答案 -12解析 f ′(x )=3x 2+2bx +c ,由题意知-1<x <3是不等式3x 2+2bx +c <0的解集, ∴-1,3是f ′(x )=0的两个根, ∴b =-3,c =-9,b +c =-12.8.(2022·衡水中学模拟)已知函数f (x )(x ∈R )满足f (1)=1,f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为________________.答案 (-∞,-1)∪(1,+∞) 解析 设F (x )=f (x )-12x ,∴F ′(x )=f ′(x )-12,∵f ′(x )<12,∴F ′(x )=f ′(x )-12<0,即函数F (x )在R 上单调递减, ∵f (x 2)<x 22+12, ∴f (x 2)-x 22<f (1)-12, ∴F (x 2)<F (1),而函数F (x )在R 上单调递减,∴x 2>1,即x ∈(-∞,-1)∪(1,+∞).9.若函数f (x )=-13x 3+12x 2+2ax 在[23,+∞)上存在单调递增区间,则a 的取值范围是________.答案 (-19,+∞)解析 对f (x )求导,得f ′(x )=-x 2+x +2a =-(x -12)2+14+2a .当x ∈[23,+∞)时,f ′(x )的最大值为f ′(23)=29+2a .令29+2a >0,解得a >-19, 所以a 的取值范围是(-19,+∞).10.若函数f (x )=2x 3-3mx 2+6x 在区间(2,+∞)上为增函数,则实数m 的取值范围为________. 答案 (-∞,52]解析 ∵f ′(x )=6x 2-6mx +6, 当x ∈(2,+∞)时,f ′(x )≥0恒成立,即x 2-mx +1≥0恒成立,∴m ≤x +1x 恒成立.令g (x )=x +1x ,g ′(x )=1-1x2,∴当x >2时,g ′(x )>0,即g (x )在(2,+∞)上单调递增, ∴m ≤2+12=52.11.(2022·北京)设函数f (x )=x e a -x +bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y =(e -1)x +4. (1)求a ,b 的值; (2)求f (x )的单调区间. 解 (1)f (x )的定义域为R .∵f ′(x )=e a -x -x e a -x +b =(1-x )e a -x +b .依题设,⎩⎪⎨⎪⎧ f (2)=2e +2,f ′(2)=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1.解得a =2,b =e.(2)由(1)知f (x )=x e 2-x +e x ,由f ′(x )=e 2-x (1-x +e x -1)及e 2-x >0知, f ′(x )与1-x +e x -1同号. 令g (x )=1-x +ex -1,则g ′(x )=-1+ex -1.所以,当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减; 当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增. 故g (1)=1是g (x )在区间(-∞,+∞)上的最小值, 从而g (x )>0,x ∈(-∞,+∞), 综上可知,f ′(x )>0,x ∈(-∞,+∞). 故f (x )的单调递增区间为(-∞,+∞). 12.已知函数f (x )=ln x ,g (x )=12ax +b .(1)若f (x )与g (x )在x =1处相切,求g (x )的表达式;(2)若φ(x )=m (x -1)x +1-f (x )在[1,+∞)上是减函数,求实数m 的取值范围.解 (1)由已知得f ′(x )=1x ,∴f ′(1)=1=12a ,∴a =2.又∵g (1)=0=12a +b ,∴b =-1,∴g (x )=x -1.(2)∵φ(x )=m (x -1)x +1-f (x )=m (x -1)x +1-ln x 在[1,+∞)上是减函数.∴φ′(x )=-x 2+(2m -2)x -1x (x +1)2≤0在[1,+∞)上恒成立.即x 2-(2m -2)x +1≥0在[1,+∞)上恒成立, 则2m -2≤x +1x ,x ∈[1,+∞),∵x +1x ∈[2,+∞),∴2m -2≤2,m ≤2.故实数m 的取值范围是(-∞,2].*13.(2022·辽宁鞍山一中高三月考)已知函数f (x )=13x 3-a2x 2.(1)求函数f (x )的单调区间;(2)设函数g (x )=f (x )+2x ,且g (x )在区间(-2,-1)上存在单调递减区间,求实数a 的取值范围.解 (1)f ′(x )=x 2-ax =x (x -a ), ①当a =0时,f ′(x )=x 2≥0恒成立, ∴f (x )在R 上单调递增.②当a >0时,当x ∈(-∞,0)时,f ′(x )>0;当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0, ∴f (x )的增区间为(-∞,0),(a ,+∞),减区间为(0,a ). ③当a <0时,当x ∈(-∞,a )时,f ′(x )>0;当x ∈(a,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0, ∴f (x )的增区间为(-∞,a ),(0,+∞),减区间为(a,0). (2)g ′(x )=x 2-ax +2,依题意,存在x ∈(-2,-1), 使不等式g ′(x )=x 2-ax +2<0成立,即当x ∈(-2,-1)时,a <(x +2x )max =-22即可.所以满足要求的a 的取值范围是(-∞,-22).。
2022版新教材高考数学一轮复习第3章导数及其应用第2节第5课时利用导数研究函数的零点问题课件新人教
考点 2 由函数的零点个数求参数的范围 ——综合性
(2020·全国卷Ⅰ)已知函数 f(x)=ex-a(x+2). (1)当 a=1 时,讨论 f(x)的单调性; (2)若 f(x)有两个零点,求 a 的取值范围.
解:(1)当 a=1 时,f(x)=ex-(x+2),f′(x)=ex-1. 令 f′(x)<0,解得 x<0; 令 f′(x)>0,解得 x>0. 所以 f(x)的单调递减区间为(-∞,0),单调递增区间为(0,+∞). (2)因为 f(x)=ex-a(x+2), 所以 f′(x)=ex-a. 若 a≤0,则 f′(x)=ex-a>0 在 R 上恒成立, 所以 f(x)在 R 上单调递增,则最多只有一个零点,不符合题意.
曲线
y=ex
在点
B-ln
x0,x10处切线的斜率是x10,曲线
y=ln
x
在点
A(x0,ln x0)处切线的斜率也是x10,所以曲线 y=ln x 在点 A(x0,ln x0)处
的切线也是曲线 y=ex 的切线.
将本例中的函数改为“f(x)=ln x+mx ,m∈R”,讨论函数 g(x)
=f′解(x:)-由3x零题点设的,个g(x数)=.f′(x)-3x=1x-xm2-3x(x>0). 令 g(x)=0,得 m=-13x3+x(x>0). 设 φ(x)=-13x3+x(x>0),
-f(x1)=0,故 f(x)在(0,1)上有唯一零点x11.综上,f(x)有且仅有两个零点.
(2)因为x10=e-ln x0,
所以点
B-ln
x0,x10在曲线
y=ex
上.
由题设知 f(x0)=0,即 ln x0=xx00+-11,故直线 AB 的斜率 k=-x10l-n xl0n-x0x0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 导数及其应用第二讲 导数的简单应用练好题·考点自测1.[2021陕西模拟]若函数f (x )=kx -ln x 在区间(1,+∞)上单调递增,则k 的取值范围是( ) A .(-∞,-2] B .(-∞,-1] C .[2,+∞) D .[1,+∞)2.下列说法错误的是( )A.函数在某区间上或定义域内的极大值是唯一的B.若x 0是可导函数y =f (x )的极值点,则一定有f'(x 0)=0C.函数的最大值不一定是极大值,函数的最小值也不一定是极小值D.函数f (x )=x sin x 有无数个极值点3.[2020安徽安庆一中5月模拟]函数y =f (x )的导函数的图象如图3-2-1所示,给出下列命题: ①(0,3)为函数y =f (x )的单调递减区间; ②(5,+∞)为函数y =f (x )的单调递增区间; ③函数y =f (x )在x =0处取得极大值; ④函数y =f (x )在x =5处取得极小值. 其中正确的命题序号是( ) A.①③ B.②④ C.①④ D.②③④4.[2017全国卷Ⅱ,11,5分][理]若x =-2是函数f (x )=(x 2+ax -1)e x -1的极值点,则 f (x )的极小值为( ) A.-1B.-2e -3C.5e -3D.15.[2021河南省名校第一次联考]已知函数f (x )=x (x -c )2在x =2处取极大值,则c = . 6.[2021武汉市部分学校质检]设函数f (x )=ln 1+sinx2cosx 在区间[-π4,π4]上的最小值和最大值分别为m 和M ,则m +M = .拓展变式1.[2020全国卷Ⅰ,21,12分][理]已知函数f (x )=e x +ax 2-x. (1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围. 2.已知函数g (x )=13x 3-a2x 2+2x +5.(1)若函数g (x )在(-2,-1)内单调递减,则a 的取值范围为 ;(2)若函数g (x )在(-2,-1)内存在单调递减区间,则a 的取值范围为 ; (3)若函数g (x )在(-2,-1)上不单调,则a 的取值范围为 . 3.[2017北京,19,13分][理]已知函数f (x )=e xcos x -x. (1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )在区间[0,π2]上的最大值和最小值.4.[2020广西桂林三校联考]已知函数f (x )=ax 2-(a +2)x +ln x.(1)函数g (x )=f (x )-ax 2+1,在其定义域上g (x )≤0恒成立,求实数a 的最小值; (2)当a >0时, f (x )在区间[1,e]上的最小值为-2,求实数a 的取值范围.5.[2021湖南名校大联考]若f (x )为定义在R 上的偶函数,当x ∈(-∞,0]时,f'(x )+2x >0,则不等式f (x +1)-f (x +2)>2x +3的解集为( )A .(32,+∞)B.(-∞,-3)C.(-∞,-32) D.(-32,+∞)答 案第二讲 导数的简单应用1.D 因为f (x )=kx -ln x ,所以f'(x )=k -1x .因为f (x )在区间(1,+∞)上单调递增,所以当x >1时,f'(x )=k -1x ≥0恒成立,即k ≥1x 在区间(1,+∞)上恒成立.因为x >1,所以0<1x <1,所以k ≥1.故选D .2.A 对于A 选项,函数在某区间上或定义域内的极大值不一定是唯一的,如f (x )=sin x 在定义域内有无数个极大值点,故A 错误;对于B 选项,若x 0是可导函数y =f (x )的极值点,则一定有f'(x 0)=0,故B 正确;对于C 选项,显然正确;对于D 选项,函数f (x )=x sin x 的导数f'(x )=sin x +x cos x ,令f'(x )=0,则x =-tan x ,因为y =x 与y =-tan x 的图象有无数个交点,故函数f (x )=x sin x 有无数个极值点,故D 正确.选A .3.B 由函数y =f (x )的导函数的图象可知,当x <-1或3<x <5时,f'(x )<0,y =f (x )单调递减,当-1<x <3或x >5时,f'(x )>0,y =f (x )单调递增,由此可知①错误,②正确;函数y =f (x )在x =-1,x =5处取得极小值,在x =3处取得极大值,由此可知③错误,④正确.故选B .4.A 因为f (x )=(x 2+ax -1)e x -1,所以f'(x )=(2x +a )e x -1+(x 2+ax -1)e x -1=[x 2+(a +2)x +a -1]e x -1.因为x =-2是函数f (x )=(x 2+ax -1)e x -1的极值点,所以-2是x 2+(a +2)x +a -1=0的根,所以a =-1,f'(x )=(x 2+x -2)e x -1=(x +2)(x -1)e x -1.令f'(x )>0,解得x <-2或x >1,令f'(x )<0,解得-2<x <1,所以f (x )在(-∞,-2)上单调递增,在(-2,1)上单调递减,在(1,+∞)上单调递增,所以当x =1时,f (x )取得极小值,且f (x )极小值=f (1)=-1,故选A .5.6 解法一 由题知,f'(x )=(x -c )2+2x (x -c )=(x -c )(3x -c ),当c ≤0时,不合题意,故c >0.当x 变化时,f'(x ),f (x )的变化情况如下表:x (-∞,c3)c 3(c3,c )c(c ,+∞) f'(x ) + 0- 0+ f (x )↗极大值f (c3)↘极小值f (c )↗故c 3=2,c =6.解法二 由题知,f' (x )=(x -c )2+2x (x -c )=(x -c )(3x -c ),则f'(2)=(2-c )(6-c )=0,解得c =2或c =6,经检验,c =2不合题意,故c =6. 6.-2ln 2 令g (x )=1+sinx 2cosx,x ∈[-π4,π4],则g'(x )=cos 2x+sinx (1+sinx )2cos x=sinx+12cos x,因为x ∈[-π4,π4],所以sin x ∈[-√22,√22],所以g'(x )>0,则g (x )在[-π4,π4]上单调递增,所以f (x )在[-π4,π4]上单调递增,因为g (-π4)=1-√222×√22=√2-12,g (π4)=1+√222×√22=√2+12,所以f (x )的最小值与最大值的和m +M =ln√2-12+ln √2+12=ln 14=-2ln 2.1.(1)当a =1时,f (x )=e x +x 2-x ,f'(x )=e x+2x -1.故当x ∈(-∞,0)时,f'(x )<0;当x ∈(0,+∞)时,f'(x )>0. 所以f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增. (2)f (x )≥12x 3+1等价于(12x 3-ax 2+x +1)e -x≤1. 设函数g (x )=(12x 3-ax 2+x +1)e -x(x ≥0),则g'(x )=-(12x 3-ax 2+x +1-32x 2+2ax -1)e -x=-12x [x 2-(2a +3)x +4a +2]e -x=-12x (x -2a -1)(x -2)e -x.(i)若2a +1≤0,即a ≤-12,则当x ∈(0,2)时,g'(x )>0.所以g (x )在(0,2)上单调递增,而g (0)=1,故当x ∈(0,2)时,g (x )>1,不合题意.(ii)若0<2a +1<2,即-12<a <12,则当x ∈(0,2a +1)∪(2,+∞)时,g'(x )<0;当x ∈(2a +1,2)时,g'(x )>0.所以g (x )在(0,2a +1),(2,+∞)上单调递减,在(2a +1,2)上单调递增.由于g (0)=1,所以g (x )≤1当且仅当g (2)=(7-4a )e -2≤1,即a ≥7-e 24.所以当7-e 24≤a <12时,g (x )≤1.(iii)若2a +1≥2,即a ≥12,则g (x )≤(12x 3+x +1)e -x. 由于0∈[7-e 24,12),故由(ii)可得当a =0时,g (x )=(12x 3+x +1)e -x≤1.故当a ≥12时,g (x )≤1. 综上,a 的取值范围是[7-e 24,+∞).2.因为g (x )=13x 3-a2x 2+2x +5,所以g'(x )=x 2-ax +2.(1)(-∞,-3] 解法一 因为g (x )在(-2,-1)内单调递减, 所以g'(x )=x 2-ax +2≤0在(-2,-1)内恒成立. 所以{g '(-2)≤0,g '(-1)≤0,即{4+2a +2≤0,1+a +2≤0,解得a ≤-3.即实数a 的取值范围为(-∞,-3].解法二 由题意知x 2-ax +2≤0在(-2,-1)内恒成立, 所以a ≤x +2x在(-2,-1)内恒成立,记h (x )=x +2x,则x ∈(-2,-1)时,-3<h (x )≤-2√2,所以a ≤-3. 即实数a 的取值范围为(-∞,-3].(2)(-∞,-2√2) 因为函数g (x )在(-2,-1)内存在单调递减区间,所以g'(x )=x 2-ax +2<0在(-2,-1)内有解, 所以a <(x +2x )max .又x +2x ≤-2√2,当且仅当x =2x 即x =-√2时等号成立, 所以满足要求的a 的取值范围是(-∞,-2√2).(3)(-3,-2√2) 由(1)知g (x )在(-2,-1)上单调递减时,a 的范围是(-∞,-3]. 若g (x )在(-2,-1)上单调递增,则a ≥x +2x在(-2,-1)上恒成立,又在(-2,-1)上y =x +2x的值域为(-3,-2√2],所以a 的取值范围是[-2√2,+∞),所以函数g (x )在(-2,-1)上单调时,a 的取值范围是(-∞,-3]∪[-2√2,+∞), 故g (x )在(-2,-1)上不单调时,实数a 的取值范围是(-3,-2√2). 3.(1)因为f (x )=e xcos x -x ,所以f'(x )=e x(cos x -sin x )-1,f'(0)=0. 又f (0)=1,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =1.(2)设h (x )=e x(cos x -sin x )-1,则h'(x )=e x(cos x -sin x -sin x -cos x )=-2e xsin x. 当x ∈[0,π2]时,h'(x )≤0,当且仅当x =0时“=”成立, 所以h (x )在区间[0,π2]上单调递减.所以对任意x ∈[0,π2],有h (x )≤h (0)=0,即f'(x )≤0,当且仅当x =0时“=”成立. 所以函数f (x )在区间[0,π2]上单调递减.因此f (x )在区间[0,π2]上的最大值为f (0)=1,最小值为f (π2)=-π2.4.(1)由题意得g (x )=ln x -(a +2)x +1≤0在(0,+∞)上恒成立, 因为x >0,所以a +2≥lnx+1x在(0,+∞)上恒成立.设h (x )=lnx+1x(x >0),则h'(x )=1x·x -(lnx+1)·1x 2=-lnx x 2,令h'(x )=0,得x =1.当0<x <1时,h'(x )>0,函数h (x )单调递增;当x >1时,h'(x )<0,函数h (x )单调递减. 因此h (x )max =h (1)=1, 所以a +2≥1,即a ≥-1. 于是所求实数a 的最小值为-1. (2)对f (x )求导,得f'(x )=2ax -(a +2)+1x =(ax -1)(2x -1)x(x >0,a >0),令f'(x )=0,得x 1=12,x 2=1a .①当0<1a ≤1,即a ≥1时,因为x ∈[1,e],所以f'(x )≥0, f (x )单调递增, 所以f (x )min =f (1)=-2,符合题意;②当1<1a <e,即1e <a <1时,因为x ∈[1,e],所以当x ∈[1,1a )时,f'(x )<0,f (x )单调递减, 当x ∈(1a ,e]时, f'(x )>0,f (x )单调递增, 所以f (x )min =f (1a )<f (1)=-2,不符合题意,舍去;③当1a ≥e,即0<a≤1e时,因为x∈[1,e],所以f'(x)≤0, f(x)单调递减,所以f(x)min=f(e)<f(1)=-2,不符合题意,舍去.综上可知,实数a的取值范围为[1,+∞).5.D令g(x)=f(x)+x2,因为f(x)为定义在R上的偶函数,所以g(x)也是定义在R上的偶函数,g'(x)=f'(x)+2x,当x∈(-∞,0]时,g'(x)=f'(x)+2x>0,所以g(x)在(-∞,0]上单调递增,所以当x∈(0,+∞)时,g(x)单调递减.g(x+1)=f(x+1)+(x+1)2,g(x+2)=f(x+2)+(x+2)2,所以不等式f(x+1)-f(x+2)>2x+3,可化为f(x+1)+(x+1)2>f(x+2)+(x+2)2,(题眼)即g(x+1)>g(x+2),所以|x+1|<|x+2|,解得x>-32,故选D.。