断裂力学中的数值计算方法及工程应用(解德,钱勤,李长安著)PPT模板
合集下载
断裂力学导论讲诉课件
THANKS
感谢观看
对未来学习和研究者的建议和展望
总结:随着科学技术的发展,断裂力学仍然是一个充 满挑战和机遇的领域。对于未来的学习和研究者来说 ,深入理解断裂力学的原理和方法,结合实际工程问 题,开展创新性的研究是至关重要的。
首先,建议学习和研究者具备扎实的力学基础和一定 的工程背景知识。其次,通过参加学术会议、研讨会 等活动,与同行交流,了解最新的研究动态和趋势。 此外,积极拓展相关领域的知识和技术,例如数值模 拟和实验研究等。最后,结合实际工程问题开展研究 ,不仅可以提高研究的意义和实用性,还可以促进学 科之间的交叉和融合。
03
包括应力、应变、弹性模量、泊松比等,是理解弹性
力学的基础。
塑性力学基础知识
01
塑性力学简介
塑性力学是研究物体在塑性范围 内的应力、应变和位移关系的学 科。
02
塑性力学的基本方 程
包括屈服条件、流动法则、强化 准则等,用于描述塑性物体的力 学行为。
03
塑性力学的基本概 念
包括塑性应变、塑性应力、加工 硬化等,是理解塑性力学的基础 。
研究材料在高温高压条件下的相变过程与断裂行为之间的关联,探索相变对材料从微观结构角度出发,研究高温高压条件下材料的晶体结构、化学键合、缺陷等与断裂行为之间的关系 。
多场耦合作用下断裂力学的研究
01
多物理场耦合模型
建立多物理场(如温度场、应力场、 电场、磁场等)耦合作用的数学模型 ,研究多场耦合对材料断裂行为的影 响机制。
金属材料抗疲劳性能评估
运用断裂力学的理论和方法,评估金属材料的抗疲劳性能,为提高 工程结构的安全性和可靠性提供依据。
断裂力学在复合材料中的应用
复合材料的层间断裂
断裂力学导论讲诉课件
弹塑性材料的特性
弹塑性材料在受到外力作用时,会同 时发生弹性变形和塑性变形。在裂纹 尖端附近,由于应力集中,材料会发 生屈服并进入塑性区。
能量释放率
能量释放率是描述裂纹扩展所需最小 能量的物理量。在弹塑性断裂力学中 ,当能量释放率达到材料的临界值时 ,裂纹将发生失稳扩展。
断裂韧性测试方法
紧凑拉伸试样法
压力容器的断裂分析
压力容器的断裂分析
压力容器的断裂分析主要关注压力容器在各种工况下的强度和稳定性。由于压力容器内部储存着高压气体或液体,一旦发生 破裂,后果将非常严重。因此,对压力容器的断裂分析需要采用严格的测试和评估方法,以确保压力容器的安全性和可靠性 。
压力容器的断裂分析
压力容器的断裂分析
在压力容器的断裂分析中,需要考虑压力容器的结构形式、 材料特性以及各种工况下的应力分布。通过断裂力学的理论 和方法,可以评估压力容器的强度和稳定性,为压力容器的 设计、制造和使用提供重要的安全保障。
高层建筑抗震设计
利用断裂力学原理,可以评估高层建 筑在地震作用下的抗震性能,优化抗 震设计。
机械工程
转子动力学分析
在机械工程中,断裂力学可用于转子动 力学的分析,研究转子裂纹的形成和扩 展,提高旋转机械的稳定性和可靠性。
VS
焊接结构完整性评估
焊接是机械工程中常用的连接方式,断裂 力学可以用于焊接结构的完整性评估,确 保焊接结构的可靠性和安全性。
课程目标
掌握断裂力学的基本 原理和方法。
培养学生对断裂力学 研究的兴趣和独立思 考能力。
了解断裂力学在工程 实践中的应用和案例 分析。
02
断裂力学基础知识
断裂力学的定义
总结词
断裂力学是一门研究材料断裂行为的学科。
弹塑性材料在受到外力作用时,会同 时发生弹性变形和塑性变形。在裂纹 尖端附近,由于应力集中,材料会发 生屈服并进入塑性区。
能量释放率
能量释放率是描述裂纹扩展所需最小 能量的物理量。在弹塑性断裂力学中 ,当能量释放率达到材料的临界值时 ,裂纹将发生失稳扩展。
断裂韧性测试方法
紧凑拉伸试样法
压力容器的断裂分析
压力容器的断裂分析
压力容器的断裂分析主要关注压力容器在各种工况下的强度和稳定性。由于压力容器内部储存着高压气体或液体,一旦发生 破裂,后果将非常严重。因此,对压力容器的断裂分析需要采用严格的测试和评估方法,以确保压力容器的安全性和可靠性 。
压力容器的断裂分析
压力容器的断裂分析
在压力容器的断裂分析中,需要考虑压力容器的结构形式、 材料特性以及各种工况下的应力分布。通过断裂力学的理论 和方法,可以评估压力容器的强度和稳定性,为压力容器的 设计、制造和使用提供重要的安全保障。
高层建筑抗震设计
利用断裂力学原理,可以评估高层建 筑在地震作用下的抗震性能,优化抗 震设计。
机械工程
转子动力学分析
在机械工程中,断裂力学可用于转子动 力学的分析,研究转子裂纹的形成和扩 展,提高旋转机械的稳定性和可靠性。
VS
焊接结构完整性评估
焊接是机械工程中常用的连接方式,断裂 力学可以用于焊接结构的完整性评估,确 保焊接结构的可靠性和安全性。
课程目标
掌握断裂力学的基本 原理和方法。
培养学生对断裂力学 研究的兴趣和独立思 考能力。
了解断裂力学在工程 实践中的应用和案例 分析。
02
断裂力学基础知识
断裂力学的定义
总结词
断裂力学是一门研究材料断裂行为的学科。
《断裂力学强度理论》课件
金属材料的断裂强度预 测
断裂强度理论可以帮助工程 师选择合适的材料和优化部 件厚度,以确保其在服役期 间不发生破坏。
其他工程材料的断裂强 度预测
断裂力学强度理论不仅应用 于玻璃和金属等材料,还可 以用于预测其他工程材料的 断裂强度。
结论
1
断裂力学强度理论的优势与不足
优势:具有高准确性、普适性、可靠性等特点。不足:对材料的试样和工况有一 定的限制。
2
发展前景及未来研究方向
今后的研究方向包括开展复合材料、高温材料等断裂强度预测研究;探究宏观微观的耦合效应对断裂行为的影响;研究基于机器学习等人工智能技术的断裂分 析方法等。
线性弹性断裂力学强度理论
在弹性阶段,虽然微小裂纹的长度会随着载荷的施 加而增长,但其不会导致整个材料的破坏。
断裂力学强度理论的非线性
随着载荷的增加,材料的微小裂纹会扩展到一定程 度,此后而产生剧烈扩展,最终导致破坏。
断裂力学强度理论的应用
玻璃材料的断裂强度预 测
根据玻璃材料的力学性质和 断裂特征,可以通过断裂力 学强度理论预测其本概念 和特征
• 断裂前的材料状态 • 断裂过程中的断裂表现 • 断裂后的断面形貌
断裂模式的分类及其 特征
• 拉伸断裂 • 压缩断裂 • 剪切断裂 • 扭转断裂
断裂力学的几种分析 方法
• 线性弹性断裂力学 • 非线性断裂力学 • 应变能法 • 渐进断裂力学
断裂力学强度理论的基本原理
《断裂力学强度理论》 PPT课件
本课件讲解断裂力学强度理论的基本概念、分类、原理以及应用。欢迎大家 学习、探讨和分享。
引言
1 什么是断裂力学强度理论
断裂力学是研究材料在受力作用下,从无损状态转向破坏状态的力学学科。
《断裂力学绪论》PPT课件
从工程观点看,如何防止或减少断裂事故的 发生呢?首先提出以下5个问题
1.多小的裂纹或者缺陷是允许存在的,即此小裂纹 或者缺陷不会在预定的服役期间发展成断裂的大 裂纹?
2.多大的裂纹就可能发生断裂,即用什么判据来判 断断裂发生的时机?
3.从允许存在的小裂纹扩展到断裂时的大裂纹需要 多长时间,即机械结构的寿命如何估算?
亡最惨重的空难。
四十年代后期美国曾 建造大约2500艘“自由 号”万吨轮,在服役期间 有145艘断成两截,700 艘左右受到严重的损坏。
1949年,东俄亥俄煤气公司的 圆柱形液态天然气罐爆炸,使 周围街市变为废墟。
断裂破坏
美国航空公司一架波音737-800型 客机22日晚抵达牙买加首都金斯 敦诺曼曼利国际机场时冲出跑道, 致伤90多人 (2009-12-22)
断裂破坏
2011年2月13日,美国海军 “格拉维利”号驱逐舰(DDG 107)在佛罗里达南部海域航行 途中,桅杆上部发生断裂. 所幸 无人员伤亡
2009-11-08, 伊朗籍货轮在浙江舟山触 礁断裂
宜宾小南门桥(事故原因:吊杆断裂)
断裂力学的产生背景
传统的强度理论:
传统的强度设计是以材料力学为基础的。假设材料均质, 连续,各向同性,没有裂纹和缺陷,设计时只要满足传统 强度条件就安全。近些年,随着宇航和航空工业的飞速发 展,高强度合金使用量越来越大,而这些高强度合金制成 的机械机构比较脆,容易发生断裂;在腐蚀环境中,甚至 在在相对湿度较高的环境中,就有可能萌生出裂纹。这些 用传统的强度理论,例如屈服判据,是解释不了的。因此 需要寻求新的断裂判据。现代断裂力学就在这种背景下诞 生了。
1-2 脆性断裂和韧性断裂
韧度:是指材料在断裂前的弹塑性变形中吸收能量的能力
断裂力学课件
脆性断裂和韧性断裂
从带裂纹物体的载荷——变形量关系来看,脆性断裂时的载荷与变形量一般呈线性关系,如图(1-4)。在接近最大载荷时才有很小一段非线性关系。脆性断裂的发生是比较突然的,即裂纹开始扩展的启裂点与裂纹扩展失去控制的失稳断裂点非常接近。裂纹扩展后,载荷即迅速下降,断裂过程很快就结束了。韧性断裂的载荷——变形量关系如图(1-5)所示,有较长的非线性阶段,启裂后,裂纹可以缓慢地扩展一段时间。除非载荷增加到失稳断裂点,否则就不会发生失稳断裂。对于金银等延展性相当好的材料,受载时可以发生很大的变形,但承载能力较低,不易立即发生失稳断裂,这不属于断裂力学研究的范围。
断裂力学中的三种裂纹形式
根据外力的作用方式,断裂力学按照裂纹扩展形式将介质中存在的裂纹分为三种基本形式:张开型:裂纹上下表面位移是对称的,由于法向位移的间断造成裂纹上下表面拉开;滑开型:上下表面的切向位移是反对称的,由于上表面切向位移间断,从而引起上下表面滑开,而法向位移则不间断,因而形成面内剪切;撕开型:上下表面的位移间断,沿Z方向扭剪。
断裂力学的相关概念
脆性断裂和韧性断裂
韧度(toughness)是指材料在断裂前的弹塑性变形中吸收能量的能力。高韧度材料比较不容易断裂,在断裂前往往有大量的塑性变形。例如低强度钢,在断裂前必定伸长并颈缩,是塑性大、韧度高的金属。玻璃和粉笔低韧度、低塑性材料,断裂前几乎没有变形,表形为脆性断裂。例如图(1-3)所示的一个带环形尖锐切口的圆棒,受到轴向拉伸载荷的作用,在拉断时,没有明显的塑性变形,断裂面比较平坦,而且基本与轴向垂直,这是典型的脆性断裂。若断裂前的切口根部发生了塑性变形,剩余截面的面积缩小(即发生颈缩),断口可能呈锯齿状,这种断裂一般是韧性断裂。低强度钢的断裂就属于韧性断裂。象金银的圆棒试样,破坏前可颈缩至一条线那样细,这种破坏是大塑性破坏,不能称为韧性断裂。同时,同一种材料在不同的温度或不同的截面积时,也会显出不同的断裂特征。同一种材料一般是随裂纹的存在和长度的增加,以及温度降低和零构件截面积的增大,而增加脆性断裂的倾向。
从带裂纹物体的载荷——变形量关系来看,脆性断裂时的载荷与变形量一般呈线性关系,如图(1-4)。在接近最大载荷时才有很小一段非线性关系。脆性断裂的发生是比较突然的,即裂纹开始扩展的启裂点与裂纹扩展失去控制的失稳断裂点非常接近。裂纹扩展后,载荷即迅速下降,断裂过程很快就结束了。韧性断裂的载荷——变形量关系如图(1-5)所示,有较长的非线性阶段,启裂后,裂纹可以缓慢地扩展一段时间。除非载荷增加到失稳断裂点,否则就不会发生失稳断裂。对于金银等延展性相当好的材料,受载时可以发生很大的变形,但承载能力较低,不易立即发生失稳断裂,这不属于断裂力学研究的范围。
断裂力学中的三种裂纹形式
根据外力的作用方式,断裂力学按照裂纹扩展形式将介质中存在的裂纹分为三种基本形式:张开型:裂纹上下表面位移是对称的,由于法向位移的间断造成裂纹上下表面拉开;滑开型:上下表面的切向位移是反对称的,由于上表面切向位移间断,从而引起上下表面滑开,而法向位移则不间断,因而形成面内剪切;撕开型:上下表面的位移间断,沿Z方向扭剪。
断裂力学的相关概念
脆性断裂和韧性断裂
韧度(toughness)是指材料在断裂前的弹塑性变形中吸收能量的能力。高韧度材料比较不容易断裂,在断裂前往往有大量的塑性变形。例如低强度钢,在断裂前必定伸长并颈缩,是塑性大、韧度高的金属。玻璃和粉笔低韧度、低塑性材料,断裂前几乎没有变形,表形为脆性断裂。例如图(1-3)所示的一个带环形尖锐切口的圆棒,受到轴向拉伸载荷的作用,在拉断时,没有明显的塑性变形,断裂面比较平坦,而且基本与轴向垂直,这是典型的脆性断裂。若断裂前的切口根部发生了塑性变形,剩余截面的面积缩小(即发生颈缩),断口可能呈锯齿状,这种断裂一般是韧性断裂。低强度钢的断裂就属于韧性断裂。象金银的圆棒试样,破坏前可颈缩至一条线那样细,这种破坏是大塑性破坏,不能称为韧性断裂。同时,同一种材料在不同的温度或不同的截面积时,也会显出不同的断裂特征。同一种材料一般是随裂纹的存在和长度的增加,以及温度降低和零构件截面积的增大,而增加脆性断裂的倾向。
弹塑性力学断裂力学基础PPT课件
第2页/共6页
第八章 断裂力学基础
8.4 应力强度因子(stress intensity factors)
应力强度因子
① 与坐标无关,是表征裂纹尖端附近应力场强度的参量; ② 与裂纹形状、尺寸、方向有关 ③ 与载荷的大小及作用方式有关 ④ 与材料参数相关 物理意义:在断裂力学分析中人为引进的,反映裂纹尖端应力场强度
的 力学参量。 第3页/共6页
第八章 断裂力学基础
8.5 断裂准则(fracture criterion)
Ki Kic (i I,II,III)
——断裂韧度,表征材料抵抗裂纹扩展的抗力,由实验确定 (平面应力型,平面应变型)。
当试样厚度较小时,裂纹尖端处
于平面应力状态,相对塑性区较
大,裂纹扩展耗能高Kic高;
采用三点弯曲(图8-3)或紧凑拉伸(图8-4)试验进行测试。
第5页/共6页
感谢您的欣赏
第6页/共6页
当试样厚度较小时裂纹尖端处于平面应力状态相对塑性区较大裂纹扩展耗能高当试样厚度较大时裂纹尖端处于平面应变状态相对塑性区较小裂纹扩展耗能低型裂纹断裂准则为材料常数应与试样几何尺寸无关
第八章 断裂力学基础
8.2 裂纹扩展(propagation of cracks) 的基本 类型
Ⅰ型(张开型): 正应力作用,裂纹扩展方向垂直于应力 Ⅱ型(滑开型):剪应力作用,裂纹扩展方向平行于应力 Ⅲ型(撕开型):剪应力作用,裂纹线与应力方向一致
当试样厚度较大时,裂纹尖端处 于平面应变状态,相对塑性区较
第4页/共6页
第八章 断裂力学基础
8.6 KIC—— 平 面 应 变 断 裂 韧 度 (fracture toughness)
KI = KIC(Ⅰ型裂纹断裂准则) KIC为材料常数,应与试样几何尺寸无关。但在测试时,应尽量增大
第八章 断裂力学基础
8.4 应力强度因子(stress intensity factors)
应力强度因子
① 与坐标无关,是表征裂纹尖端附近应力场强度的参量; ② 与裂纹形状、尺寸、方向有关 ③ 与载荷的大小及作用方式有关 ④ 与材料参数相关 物理意义:在断裂力学分析中人为引进的,反映裂纹尖端应力场强度
的 力学参量。 第3页/共6页
第八章 断裂力学基础
8.5 断裂准则(fracture criterion)
Ki Kic (i I,II,III)
——断裂韧度,表征材料抵抗裂纹扩展的抗力,由实验确定 (平面应力型,平面应变型)。
当试样厚度较小时,裂纹尖端处
于平面应力状态,相对塑性区较
大,裂纹扩展耗能高Kic高;
采用三点弯曲(图8-3)或紧凑拉伸(图8-4)试验进行测试。
第5页/共6页
感谢您的欣赏
第6页/共6页
当试样厚度较小时裂纹尖端处于平面应力状态相对塑性区较大裂纹扩展耗能高当试样厚度较大时裂纹尖端处于平面应变状态相对塑性区较小裂纹扩展耗能低型裂纹断裂准则为材料常数应与试样几何尺寸无关
第八章 断裂力学基础
8.2 裂纹扩展(propagation of cracks) 的基本 类型
Ⅰ型(张开型): 正应力作用,裂纹扩展方向垂直于应力 Ⅱ型(滑开型):剪应力作用,裂纹扩展方向平行于应力 Ⅲ型(撕开型):剪应力作用,裂纹线与应力方向一致
当试样厚度较大时,裂纹尖端处 于平面应变状态,相对塑性区较
第4页/共6页
第八章 断裂力学基础
8.6 KIC—— 平 面 应 变 断 裂 韧 度 (fracture toughness)
KI = KIC(Ⅰ型裂纹断裂准则) KIC为材料常数,应与试样几何尺寸无关。但在测试时,应尽量增大
断裂力学理论基础全解PPT课件
第一节 断裂力学基础
一、断裂力学的形成与发展
20世纪40年代到60年代,发生了大量的低应力脆断的压力容器事故, 容器破坏时应力低于屈服极限、甚至低于许用应力。
此类事故的特点:高强度钢或者厚的中低强度钢;低温下工作;断裂发 生在焊接接头或应力集中处。直接的原因是结构中有裂纹存在,由于裂纹 的扩展而引起破坏。
三、线弹性断裂力学基本理论
2、裂纹的开裂型式 线弹性断裂分析是建立在弹性力学的基础上,研究的 对象是带有裂纹的线弹性体。 对于各种复杂的断裂形式,总可以分解成三种基本断 裂类型的组合,这三种基本类型是Ⅰ型、Ⅱ型和Ⅲ型 断裂。
第7页/共29页
第八章 压力容器缺陷安全评定
Ⅰ型断裂属于张开型断裂,外加应力σ与裂纹 垂直,在应力σ作用下,裂纹尖端张开,裂纹扩 展方向与应力σ方向垂直。
第1页/共29页
第一节 断裂力学基础
一、断裂力学的形成与发展
断裂力学是研究含裂纹物体的强度和裂纹扩展规律的科 学。根据所研究的裂纹尖端附近材料塑性区的大小,可 分为线弹性断裂力学和弹塑性断裂力学。 线弹性断裂力学的理论基础:应力强度因子理论和 Griffith能量理论。 弹塑性断裂力学的理论基础:COD理论、J积分理论。
第八章 压力容器缺陷安全评定
利用弹性力学方法,可得到裂纹尖端附近任一点
(r,q)处的正应力sx、sy和剪应力txy。
sx
K cosq 1 sin q sin 3q
2r 2
2 2
K s a
sy
K
q
cos
1
sin
q
sin
3q
2r 2
2 2
t xy
K sin q cosq cos3q 2r 2 2 2
一、断裂力学的形成与发展
20世纪40年代到60年代,发生了大量的低应力脆断的压力容器事故, 容器破坏时应力低于屈服极限、甚至低于许用应力。
此类事故的特点:高强度钢或者厚的中低强度钢;低温下工作;断裂发 生在焊接接头或应力集中处。直接的原因是结构中有裂纹存在,由于裂纹 的扩展而引起破坏。
三、线弹性断裂力学基本理论
2、裂纹的开裂型式 线弹性断裂分析是建立在弹性力学的基础上,研究的 对象是带有裂纹的线弹性体。 对于各种复杂的断裂形式,总可以分解成三种基本断 裂类型的组合,这三种基本类型是Ⅰ型、Ⅱ型和Ⅲ型 断裂。
第7页/共29页
第八章 压力容器缺陷安全评定
Ⅰ型断裂属于张开型断裂,外加应力σ与裂纹 垂直,在应力σ作用下,裂纹尖端张开,裂纹扩 展方向与应力σ方向垂直。
第1页/共29页
第一节 断裂力学基础
一、断裂力学的形成与发展
断裂力学是研究含裂纹物体的强度和裂纹扩展规律的科 学。根据所研究的裂纹尖端附近材料塑性区的大小,可 分为线弹性断裂力学和弹塑性断裂力学。 线弹性断裂力学的理论基础:应力强度因子理论和 Griffith能量理论。 弹塑性断裂力学的理论基础:COD理论、J积分理论。
第八章 压力容器缺陷安全评定
利用弹性力学方法,可得到裂纹尖端附近任一点
(r,q)处的正应力sx、sy和剪应力txy。
sx
K cosq 1 sin q sin 3q
2r 2
2 2
K s a
sy
K
q
cos
1
sin
q
sin
3q
2r 2
2 2
t xy
K sin q cosq cos3q 2r 2 2 2
第四章-弹塑性断裂力学PPT课件
a* 2a
18
3.材料加工硬化的修正
考虑材料加工硬化,当 s 200 ~ 400MPa 时,低
碳钢取
f
1 2
(
s
b)
代替 s 。其中 f
为流变应力。
b 为材料的抗拉强度。
综合考虑上述3部分内容
D-B模型的计算公式
8 f a* ln sec[ (M )]
E
2 f
19
§4.5 J积分的定义和特性
主要包括COD理论和J积分理论.
3
§4.1 小范围屈服条件下的COD 一.COD
COD(Crack Opening Displacement) 裂纹张开位移。 裂纹体受载后,裂纹尖端附近的塑性区导致裂纹尖端表面 张开——裂纹张开位移:表达材料抵抗延性断裂能力
c —COD准则
裂纹失稳扩展的临界值
第四章 弹塑性断裂 力学
线弹性断裂力学 脆性材料或高强度钢所发生的脆性断裂 小范围屈服:塑性区的尺寸远小于裂纹尺寸
弹塑性断裂力学 大范围屈服:端部的塑性区尺寸接近或超过裂纹尺寸,
如:中低强度钢制成的构件. 全面屈服:材料处于全面屈服阶段,如:压力容器的
接管部位.
2
弹塑性断裂力学的任务:在大范围屈服下,确定能定 量描述裂纹尖端区域弹塑性应力,应变场强度的参量.以 便利用理论建立起这些参量与裂纹几何特性、外加载荷之 间的关系,通过试验来测定它们,并最后建立便于工程应 用的断裂准则。
( 12
x1
22
x2
)
u2 x1
11
2u1 x12
12
2u2 x12
21
2u1 x1x2
22
2u2 x1x2
)]dx1dx2
断口学--断裂力学基础 ppt课件
12
ppt课件
第五章:断裂失效分析的思路
❖5.1 断裂失效分析思路的思想方法
❖ 5.1.2 五个具体方法 ❖ 系统方法 ❖ 抓主要矛盾法 ❖ 比较方法 ❖ 历史方法 ❖ 逻辑方法
13
ppt课件
第五章:断裂失效分析的思路
❖5.2 断裂失效分析思路
❖ 5.2.1 相关性思路
❖ 根据断裂分类的分析思路
14
ppt课件
第五章:断裂失效分析的思路
❖5.2 断裂失效分析思路
❖ 5.2.2 系统工程的分析思路
15
ppt课件
16
ppt课件
17
ppt课件
18
ppt课件
第六章:韧性断裂的断口及其分析
❖6.1 韧性断裂的机理及其影响因素
❖ 6.1.1 单晶的韧性断裂现象 ❖ 6.1.2 多晶的断裂现象
19
49
ppt课件
第六章:韧性断裂的断口及其分析
❖6.4 韧脆转移
❖ 6.4.1 韧脆转移现象
50
ppt课件
第六章:韧性断裂的断口及其分析
42
ppt课件
第六章:韧性断裂的断口及其分析
43
ppt课件
第六章:韧性断裂的断口及其分析
44
ppt课件
第六章:韧性断裂的断口及其分析
❖6.2 韧性断口的特征和诊断
❖ 6.2.3 韧性断口的诊断 ❖ 韧性断口形成原因的诊断
(1)韧性断裂的分析思路
45
ppt课件
第六章:韧性断裂的断口及其分析
❖6.4 韧脆转移
❖ 4.1.1 主断口的确定
T型法、分叉法、变形法、氧化颜色法、疲劳扩展区长度法
11
ppt课件
断裂力学ppt课件
应力面或主平面。在主应力面上, = 0; = T = 为主应力。从而,
T1 .n1 , T2 .n2 , T3 .n3
即:
Ti .ni
代入方程 Ti ij.nj , 有:.ni ij.nj , 或 ij ij nj 0
即: (11 )n1 12n2 13n3 0 21n1 (22 )n2 23n3 0 31n1 32n2 (33 )n3 0
18
y
x xy y
Ox
x
y
xy
y
0
x
二维平面斜截面上的应力
x
y
2
x
y
2
cos2xy
sin2
x
y
2
sin2xy
cos2
上式平方和相加,得:
x 2y 2 2 x 2y 2x 2y
n
在 坐标系中,与
落在一个,圆上
19
§ 1-1-3 主应力和主平面
若斜截面上只有正应力,而没有剪应力时,我们把这个平面叫做主
I1112233123 I21 2[(112222332)2(122232312)I12]1 22 33 1 I3det[ij]
21
应力不变量亦可写成:
I1 11 22 33
I2
11 21
12 22 22 32
23 33 33 13
x
x x
11 12 13
[ ij ] 21
22
23
31 32 33
13
• 一点的应力 各向同性材料过一点的其它各面上的应力都可以通过平衡关系用这9个量来表示。
这9个量表示了一点的应力状态。张量是一组表示某种性质的量的组合。它不是一个值。 因此,不可以说一点的应力多大,只能说某个面上的应力有多大,或一点某个方向
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
08
第六章 虚拟裂纹闭 合法的应用
第六章 虚拟裂纹闭合法的应用
6.1 复合材料的断裂分
1
析
6.2 其他材料的断裂分
析
2
6.3 加强构件的断裂分
3
析与评价
6.4 动态载荷与循环载
荷作用下的断裂响应
4
6.5 温湿效应和热载荷
5
6.6 电子封装与压电材
料
6
第六章 虚拟裂纹 闭合法的应用
6.7 杂例
09
断裂力学中的数值计算方法及工 程应用(解德,钱勤,李长安著)
演讲人
2 0 2 X - 11 - 11
01
序
序
02
前言
前言
03
第一章 断裂参数的 数值计算方法
第一章 断裂参数的数值计算方法
1.1 断裂力学中的主要
1
参数
1.2 断裂模式与裂纹类
型
2
1.3 有限宽中心裂纹板
3
及其闭合解
1.4 应力强度因子与外
1
算公式
4.2 面状裂纹的哑节点
断裂单元
2
4.3 哑节点断裂单元的
3
使用与例题
4.4 高阶单元和板壳单
元
4
4.5 网格的正交性
5
4.6 空间中任意面状裂
纹的处理
ห้องสมุดไป่ตู้
6
07
第五章 若干断裂专 题问题
第五章 若干断裂 专题问题
5.1 弯折裂纹与界面裂纹 5.2 裂纹对冲击载荷的响应 5.3 静态裂纹扩展问题 5.4 动态运动裂纹问题 5.5 疲劳裂纹扩展问题
第三章 线状裂纹的虚拟裂纹闭合法
3.1 虚拟裂纹闭合法的
1
数学解释
3.2 平面内任意线状裂
纹的断裂单元
2
3.3 经典I型问题上的应
3
用
3.4 复合型断裂问题 4
3.5 高阶单元和奇异单
5
元
3.6 空间中任意线状裂
纹的处理
6
06
第四章 面状裂纹的 虚拟裂纹闭合法
第四章 面状裂纹的虚拟裂纹闭合法
4.1 面状裂纹的基本计
参考文献
参考文献
感谢聆听
推法
4
1.5 J积分与等效积分区
5
域法
1.6 应变能释放率与虚
拟裂纹法
6
04
第二章 哑节点断裂 单元
第二章 哑节点断 裂单元
2.1 ABAQUS自定义单元子程 序UEL 2.2 虚拟裂纹闭合法的子程序 2.3 外推法的子程序 2.4 等效积分区域法的子程序
05
第三章 线状裂纹的 虚拟裂纹闭合法