年贵州省高考数学试卷(理科)(全国新课标ⅱ)(最新整理)
2020年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)

2020年普通高等学校招生全国统一考试理科数学注意事项:1.答题前,考生务必将自己的姓名、考生号、座位号填写在答题卡上.本试卷满分150分.2.作答时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题目:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U A B ð()A.{−2,3}B.{−2,2,3}C.{−2,−1,0,3}D.{−2,−1,0,2,3}【答案】A 【解析】【分析】首先进行并集运算,然后计算补集即可.【详解】由题意可得: 1,0,1,2A B ,则 U 2,3A B ð.故选:A.【点睛】本题主要考查并集、补集的定义与应用,属于基础题.2.若α为第四象限角,则()A.cos2α>0 B.cos2α<0C.sin2α>0D.sin2α<0【答案】D 【解析】【分析】由题意结合二倍角公式确定所给的选项是否正确即可.【详解】当6时,cos 2cos 03,选项B 错误;当3时,2cos 2cos 03,选项A 错误;由 在第四象限可得:sin 0,cos 0 ,则sin 22sin cos 0 ,选项C 错误,选项D 正确;故选:D.【点睛】本题主要考查三角函数的符号,二倍角公式,特殊角的三角函数值等知识,意在考查学生的转化能力和计算求解能力.3.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A.10名B.18名C.24名D.32名【答案】B 【解析】【分析】算出第二天订单数,除以志愿者每天能完成的订单配货数即可.【详解】由题意,第二天新增订单数为50016001200900 ,故需要志愿者9001850名.故选:B【点晴】本题主要考查函数模型的简单应用,属于基础题.4.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块【答案】C 【解析】【分析】第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,设n S 为{}n a 的前n 项和,由题意可得322729n n n n S S S S ,解方程即可得到n ,进一步得到3n S .【详解】设第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,9(1)99n a n n ,设n S 为{}n a 的前n 项和,则第一层、第二层、第三层的块数分别为232,,n n n n n S S S S S ,因为下层比中层多729块,所以322729n n n n S S S S ,即3(927)2(918)2(918)(99)7292222n n n n n n n n 即29729n ,解得9n ,所以32727(9927)34022n S S .故选:C【点晴】本题主要考查等差数列前n 项和有关的计算问题,考查学生数学运算能力,是一道容易题.5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y 的距离为()A.55B.255C.355D.455【答案】B 【解析】【分析】由题意可知圆心在第一象限,设圆心的坐标为 ,,0a a a ,可得圆的半径为a ,写出圆的标准方程,利用点 2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y 的距离.【详解】由于圆上的点 2,1在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必第一象限,设圆心的坐标为,a a ,则圆的半径为a ,圆的标准方程为 222x a y a a .由题意可得 22221a a a ,可得2650a a ,解得1a 或5a ,所以圆心的坐标为 1,1或 5,5,圆心到直线230x y 距离均为22555d;所以,圆心到直线230x y 的距离为255.故选:B.【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题.6.数列{}n a 中,12a ,m n m n a a a ,若155121022k k k a a a ,则k ()A.2B.3C.4D.5【答案】C 【解析】分析】取1m ,可得出数列 n a 是等比数列,求得数列 n a 的通项公式,利用等比数列求和公式可得出关于k 的等式,由k N 可求得k 的值.【详解】在等式m n m n a a a 中,令1m ,可得112n n n a a a a ,12n na a,所以,数列 n a 是以2为首项,以2为公比的等比数列,则1222n n n a ,1011011105101210122122212211212k k k k k k a a a a,1522k ,则15k ,解得4k .故选:C.【点睛】本题考查利用等比数列求和求参数的值,解答的关键就是求出数列的通项公式,考查计算能力,属于中等题.7.如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为()A.EB.FC.GD.H【答案】A 【解析】【分析】根据三视图,画出多面体立体图形,即可求得M 点在侧视图中对应的点.【详解】根据三视图,画出多面体立体图形,图中标出了根据三视图M 点所在位置,可知在侧视图中所对应的点为E 故选:A【点睛】本题主要考查了根据三视图判断点的位置,解题关键是掌握三视图的基础知识和根据三视图能还原立体图形的方法,考查了分析能力和空间想象,属于基础题.8.设O 为坐标原点,直线x a 与双曲线2222:1(0,0)x y C a b a b的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为()A.4B.8C.16D.32【答案】B 【解析】【分析】因为2222:1(0,0)x y C a b a b ,可得双曲线的渐近线方程是b y x a,与直线x a 联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE 的面积为8,可得ab 值,根据2222c a b ,结合均值不等式,即可求得答案.【详解】∵2222:1(0,0)x y C a b a b双曲线的渐近线方程是by x a∵直线x a 与双曲线2222:1(0,0)x y C a b a b的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限联立x ab y x a,解得x a y b故(,)D a b 联立x ab y x a,解得x a y b故(,)E a b ||2ED bODE 面积为:1282ODE S a b ab△∵双曲线2222:1(0,0)x y C a b a b其焦距为2222222168c a b ab 当且仅当22a b 取等号C 的焦距的最小值:8故选:B.【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.9.设函数()ln |21|ln |21|f x x x ,则f (x )()A.是偶函数,且在1(,)2 单调递增B.是奇函数,且在11(,)22单调递减C.是偶函数,且在1(,)2单调递增D.是奇函数,且在1(,)2单调递减【答案】D 【解析】【分析】根据奇偶性的定义可判断出 f x 为奇函数,排除AC ;当11,22x时,利用函数单调性的性质可判断出 f x 单调递增,排除B ;当1,2x时,利用复合函数单调性可判断出 f x 单调递减,从而得到结果.【详解】由 ln 21ln 21f x x x 得 f x 定义域为12x x,关于坐标原点对称,又 ln 12ln 21ln 21ln 21f x x x x x f x ,f x 为定义域上的奇函数,可排除AC ;当11,22x时, ln 21ln 12f x x x , ln 21y x Q 在11,22 上单调递增, ln 12y x 在11,22上单调递减,f x 在11,22上单调递增,排除B ;当1,2x时, 212ln 21ln 12ln ln 12121x f x x x x x,2121x∵在1,2上单调递减, ln f 在定义域内单调递增,根据复合函数单调性可知: f x 在1,2上单调递减,D 正确.故选:D.【点睛】本题考查函数奇偶性和单调性的判断;判断奇偶性的方法是在定义域关于原点对称的前提下,根据 f x 与 f x 的关系得到结论;判断单调性的关键是能够根据自变量的范围化简函数,根据单调性的性质和复合函数“同增异减”性得到结论.10.已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为()A.3B.32C.1D.32【答案】C【解析】【分析】根据球O 的表面积和ABC 的面积可求得球O 的半径R 和ABC 外接圆半径r ,由球的性质可知所求距离22d R r.【详解】设球O 的半径为R ,则2416R ,解得:2R .设ABC 外接圆半径为r ,边长为a ,ABC ∵ 是面积为934的等边三角形,21393224a ,解得:3a ,22229933434a r a ,球心O 到平面ABC 的距离22431d R r .故选:C.【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.11.若2233x y x y ,则()A.ln(1)0y x B.ln(1)0y x C.ln ||0x y D.ln ||0x y 【答案】A 【解析】【分析】将不等式变为2323x x y y ,根据 23t tf t 的单调性知x y ,以此去判断各个选项中真数与1的大小关系,进而得到结果.【详解】由2233x y x y 得:2323x x y y ,令 23ttf t ,2x y ∵为R 上的增函数,3x y 为R 上的减函数, f t 为R 上的增函数,x y ,0y x Q ,11y x , ln 10y x ,则A 正确,B 错误;x y Q 与1的大小不确定,故CD 无法确定.故选:A.【点睛】本题考查对数式的大小的判断问题,解题关键是能够通过构造函数的方式,利用函数的单调性得到,x y 的大小关系,考查了转化与化归的数学思想.12.0-1周期序列在通信技术中有着重要应用.若序列12n a a a 满足{0,1}(1,2,)i a i ,且存在正整数m ,使得(1,2,)i m i a a i 成立,则称其为0-1周期序列,并称满足(1,2,)i m i a a i 的最小正整数m 为这个序列的周期.对于周期为m 的0-1序列12n a a a ,11()(1,2,,1)mi i k i C k a a k m m 是描述其性质的重要指标,下列周期为5的0-1序列中,满足1()(1,2,3,4)5C k k 的序列是()A 11010 B.11011C.10001D.11001【答案】C 【解析】【详解】由i m i a a 知,序列i a 的周期为m ,由已知,5m ,511(),1,2,3,45i i k i C k a a k 对于选项A ,511223344556111111(1)()(10000)55555i i i C a a a a a a a a a a a a52132435465711112(2)()(01010)5555i i i C a a a a a a a a a a a a ,不满足;对于选项B ,51122334455611113(1)()(10011)5555i i i C a a a a a a a a a a a a ,不满足;对于选项D ,51122334455611112(1)()(10001)5555i i i C a a a a a a a a a a a a ,不满足;故选:C【点晴】本题考查数列的新定义问题,涉及到周期数列,考查学生对新定义的理解能力以及数学运算能力,是一道中档题.二、填空题目:本题共4小题,每小题5分,共20分.13.已知单位向量a ,b 的夹角为45°,ka –b 与a 垂直,则k =__________.【答案】22【解析】【分析】首先求得向量的数量积,然后结合向量垂直的充分必要条件即可求得实数k 的值.【详解】由题意可得:211cos 452a b ,由向量垂直的充分必要条件可得:0k a b a,即:2202k a a b k ,解得:22k .故答案为:22.【点睛】本题主要考查平面向量的数量积定义与运算法则,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.14.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.【答案】36【解析】【分析】根据题意,采用捆绑法,先取2名同学看作一组,现在可看成是3组同学分配到3个小区,即可求得答案.【详解】∵4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学先取2名同学看作一组,选法有:246C 现在可看成是3组同学分配到3个小区,分法有:336A根据分步乘法原理,可得不同的安排方法6636 种故答案为:36.【点睛】本题主要考查了计数原理的实际应用,解题关键是掌握分步乘法原理和捆绑法的使用,考查了分析能力和计算能力,属于中档题.15.设复数1z ,2z 满足12||=||=2z z ,123i z z ,则12||z z =__________.【答案】23【解析】【分析】令12cos 2sin z i ,22cos 2sin z i ,根据复数的相等可求得1cos cos sin sin 2,代入复数模长的公式中即可得到结果.【详解】122z z ∵,可设12cos 2sin z i ,22cos 2sin z i , 122cos cos 2sin sin 3z z i i ,2cos cos 32sin sin 1,两式平方作和得: 422cos cos 2sin sin 4 ,化简得:1cos cos sin sin 2122cos cos 2sin sin z z i224cos cos 4sin sin 88cos cos sin sin 8423 故答案为:23.【点睛】本题考查复数模长的求解,涉及到复数相等的应用;关键是能够采用假设的方式,将问题转化为三角函数的运算问题.16.设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l 平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ②12p p ③23p p ④34p p 【答案】①③④【解析】【分析】利用两交线直线确定一个平面可判断命题1p 的真假;利用三点共线可判断命题2p 的真假;利用异面直线可判断命题3p 的真假,利用线面垂直的定义可判断命题4p 的真假.再利用复合命题的真假可得出结论.【详解】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为 ;若3l 与1l 相交,则交点A 在平面 内,同理,3l 与2l 的交点B 也在平面 内,所以,AB ,即3l ,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m 平面 ,则m 垂直于平面 内所有直线,∵直线l 平面 , 直线m 直线l ,命题4p 为真命题.综上可知,14p p 为真命题,12p p 为假命题,23p p 为真命题,34p p 为真命题.故答案为:①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C.(1)求A ;(2)若BC =3,求ABC 周长的最大值.【答案】(1)23;(2)323 .【解析】【分析】(1)利用正弦定理角化边,配凑出cos A 的形式,进而求得A ;(2)利用余弦定理可得到 29AC AB AC AB ,利用基本不等式可求得AC AB 的最大值,进而得到结果.【详解】(1)由正弦定理可得:222BC AC AB AC AB ,2221cos 22AC AB BC A AC AB , 0,A ∵,23A .(2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB ,即 29AC AB AC AB .22AC AB AC AB∵(当且仅当AC AB 时取等号), 22223924AC AB AC AB AC AB AC AB AC AB ,解得:23AC AB (当且仅当AC AB 时取等号),ABC 周长323L AC AB BC ,ABC 周长的最大值为323 .【点睛】本题考查解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值.18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i i x ,2011200i i y,2021)80i i x x (,2021)9000i i y y (,201))800i i i x y x y ((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r =12211))))ni i i i i n n i i x y x x y y y x((((,2=1.414.【答案】(1)12000;(2)0.94;(3)详见解析【解析】【分析】(1)利用野生动物数量的估计值等于样区野生动物平均数乘以地块数,代入数据即可;(2)利用公式20120202211()()()()ii i i i i i x x y y r x x y y 计算即可;(3)各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样.【详解】(1)样区野生动物平均数为201111200602020i i y ,地块数为200,该地区这种野生动物的估计值为2006012000(2)样本(,)i i x y 的相关系数为20120202211()()800220.943809000()()i i i i i i i x x y y r x x y y (3)由于各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样先将植物覆盖面积按优中差分成三层,在各层内按比例抽取样本,在每层内用简单随机抽样法抽取样本即可.【点晴】本题主要考查平均数的估计值、相关系数的计算以及抽样方法的选取,考查学生数学运算能力,是一道容易题.19.已知椭圆C 1:22221x y a b(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【答案】(1)12;(2)221:13627x y C ,22:12C y x .【解析】【分析】(1)求出AB 、CD ,利用43CD AB可得出关于a 、c 的齐次等式,可解得椭圆1C 的离心率的值;(2)由(1)可得出1C 的方程为2222143x y c c,联立曲线1C 与2C 的方程,求出点M 的坐标,利用抛物线的定义结合5MF 可求得c 的值,进而可得出1C 与2C 的标准方程.【详解】(1) ,0F c ∵,AB x 轴且与椭圆1C 相交于A 、B 两点,则直线AB 的方程为x c ,联立22222221x c x y a b a b c,解得2x c b y a ,则22b AB a,抛物线2C 的方程为24y cx ,联立24x c y cx,解得2x c y c ,4CD c ,43CD AB ∵,即2843b c a,223b ac ,即222320c ac a ,即22320e e ,01e Q ,解得12e ,因此,椭圆1C 的离心率为12;(2)由(1)知2a c ,3b c ,椭圆1C 的方程为2222143x y c c,联立222224143y cx x y c c,消去y 并整理得22316120x cx c ,解得23x c 或6x c (舍去),由抛物线的定义可得25533c MF c c ,解得3c .因此,曲线1C 的标准方程为2213627x y ,曲线2C 的标准方程为212y x .【点睛】本题考查椭圆离心率的求解,同时也考查了利用抛物线的定义求抛物线和椭圆的标准方程,考查计算能力,属于中等题.20.如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.【答案】(1)证明见解析;(2)1010.【解析】【分析】(1)由,M N 分别为BC ,11B C 的中点,1//MN CC ,根据条件可得11//AA BB ,可证1MN AA //,要证平面11EB C F 平面1A AMN ,只需证明EF 平面1A AMN 即可;(2)连接NP ,先求证四边形ONPA 是平行四边形,根据几何关系求得EP ,在11B C 截取1B Q EP ,由(1)BC ⊥平面1A AMN ,可得QPN 为1B E 与平面1A AMN 所成角,即可求得答案.【详解】(1)∵,M N 分别为BC ,11B C 的中点,1//MN BB 又11//AA BB 1//MN AA 在ABC 中,M 为BC 中点,则BC AM又∵侧面11BB C C 为矩形,1BC BB 1//MN BB ∵MN BC由MN AM M ,,MN AM 平面1A AMNBC ⊥平面1A AMN又∵11//B C BC ,且11B C 平面ABC ,BC 平面ABC ,11//B C 平面ABC又∵11B C 平面11EB C F ,且平面11EB C F 平面ABC EF 11//B C EF//EF BC又BC ∵平面1A AMNEF 平面1A AMNEF ∵平面11EB C F平面11EB C F 平面1A AMN(2)连接NP∵//AO 平面11EB C F ,平面AONP 平面11EB C F NP //AO NP根据三棱柱上下底面平行,其面1A NMA 平面ABC AM ,面1A NMA 平面1111A B C A N //ON AP故:四边形ONPA 是平行四边形设ABC 边长是6m (0m )可得:ON AP ,6NP AO AB m∵O 为111A B C △的中心,且111A B C △边长为6m 16sin 6033ON m 故:3ON AP m∵//EF BC AP EP AM BM3333EP 解得:EP m在11B C 截取1B Q EP m ,故2QN m∵1B Q EP 且1//B Q EP四边形1B QPE 是平行四边形,1//B E PQ由(1)11B C 平面1A AMN故QPN 为1B E 与平面1A AMN 所成角在Rt QPN △,根据勾股定理可得: 222226210PQ QN PN m m m 210sin 10210QN m QPN PQ m 直线1B E 与平面1A AMN 所成角的正弦值:1010.【点睛】本题主要考查了证明线线平行和面面垂直,及其线面角,解题关键是掌握面面垂直转为求证线面垂直的证法和线面角的定义,考查了分析能力和空间想象能力,属于难题.21.已知函数f (x )=sin 2x sin2x .(1)讨论f (x )在区间(0,π)的单调性;(2)证明:33()8f x ;(3)设n ∈N *,证明:sin 2x sin 22x sin 24x …sin 22n x ≤34nn .【答案】(1)当0,3x时, '0,f x f x 单调递增,当2,33x 时, '0,f x f x 单调递减,当2,3x时, '0,f x f x 单调递增.(2)证明见解析;(3)证明见解析.【解析】【分析】(1)首先求得导函数的解析式,然后由导函数的零点确定其在各个区间上的符号,最后确定原函数的单调性即可;(2)首先确定函数的周期性,然后结合(1)中的结论确定函数在一个周期内的最大值和最小值即可证得题中的不等式;(3)对所给的不等式左侧进行恒等变形可得2222123sin sin sin 2sin 2sin 4sin 2sin 2sin 2n n n f x x x x x x x x x ,然后结合(2)的结论和三角函数的有界性进行放缩即可证得题中的不等式.【详解】(1)由函数的解析式可得: 32sin cos f x x x ,则: 224'23sin cos sin f x x x x2222sin 3cos sin x x x 222sin 4cos 1x x 22sin 2cos 12cos 1x x x ,'0f x 在 0,x 上的根为:122,33x x,当0,3x时, '0,f x f x 单调递增,当2,33x时, '0,f x f x 单调递减,当2,3x时, '0,f x f x 单调递增.(2)注意到 22sinsin 2sin sin 2f x x x x x f x ,故函数 f x 是周期为 的函数,结合(1)的结论,计算可得: 00f f ,233333228f ,2233333228f ,据此可得: max 338f x, min 338f x ,即 338f x .(3)结合(2)的结论有:2222sin sin 2sin 4sin 2n x x x x 233333sin sin 2sin 4sin 2n x x x x2222123sin sin sin 2sin 2sin 4sin 2sin 2sin 2n n n x x x x x x x x 232333333sin sin 2888n x x 23338n 34n .【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.(二)选考题:共10分.请考生在第22、23题中任选一题作答.并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分.如果多做,则按所做的第一题计分.[选修4—4:坐标系与参数方程]22.已知曲线C 1,C 2的参数方程分别为C 1:224cos 4sin x y ,(θ为参数),C 2:1,1x t t y t t(t 为参数).(1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.【答案】(1)1:4C x y ;222:4C x y ;(2)17cos 5.【解析】【分析】(1)分别消去参数 和t 即可得到所求普通方程;(2)两方程联立求得点P ,求得所求圆的直角坐标方程后,根据直角坐标与极坐标的互化即可得到所求极坐标方程.【详解】(1)由22cos sin 1 得1C 的普通方程为:4x y ;由11x t t y t t 得:2222221212x t t y t t,两式作差可得2C 的普通方程为:224x y .(2)由2244x y x y 得:5232x y ,即53,22P ;设所求圆圆心的直角坐标为 ,0a ,其中0a ,则22253022a a,解得:1710a , 所求圆的半径1710r , 所求圆的直角坐标方程为:22217171010x y ,即22175x y x , 所求圆的极坐标方程为17cos 5.【点睛】本题考查极坐标与参数方程的综合应用问题,涉及到参数方程化普通方程、直角坐标方程化极坐标方程等知识,属于常考题型.[选修4—5:不等式选讲]23.已知函数2()|21|f x x a x a .(1)当2a 时,求不等式()4f x 的解集;(2)若()4f x ,求a 的取值范围.【答案】(1)32x x或112x;(2) ,13, .【解析】【分析】(1)分别在3x 、34x 和4x 三种情况下解不等式求得结果;(2)利用绝对值三角不等式可得到 21f x a ,由此构造不等式求得结果.【详解】(1)当2a 时, 43f x x x .当3x 时, 43724f x x x x ,解得:32x ≤;当34x 时, 4314f x x x ,无解;当4x 时, 43274f x x x x ,解得:112x;综上所述: 4f x 的解集为32x x或112x .(2) 22222121211f x x a x a x ax a a a a (当且仅当221a x a 时取等号), 214a ,解得:1a 或3a ,a 的取值范围为 ,13, .【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型.祝福语祝你马到成功,万事顺意!。
贵州新高考数学试题及答案

贵州新高考数学试题及答案一、选择题(每题4分,共40分)1. 若函数\( f(x) = ax^2 + bx + c \)在\( x = 1 \)处取得极值,则下列哪个选项是正确的?A. \( a = 0 \)B. \( b = 0 \)C. \( a + b + c = 0 \)D. \( a = -b \)答案:C2. 已知数列\( \{a_n\} \)是等比数列,且\( a_1 = 2 \),\( a_4 =16 \),则\( a_7 \)的值为?A. 32B. 64C. 128D. 256答案:C3. 若\( \sin(2x) = \frac{1}{2} \),则\( \cos(2x) \)的值可能是?A. \( \frac{\sqrt{3}}{2} \)B. \( -\frac{\sqrt{3}}{2} \)C. \( \frac{1}{2} \)D. \( -\frac{1}{2} \)答案:B4. 已知向量\( \vec{a} = (3, -2) \)和\( \vec{b} = (2, 1) \),则\( \vec{a} \cdot \vec{b} \)的值为?A. 4B. 2C. -2D. -4答案:B5. 函数\( y = \ln(x) \)的导数为?A. \( \frac{1}{x} \)B. \( -\frac{1}{x} \)C. \( x \)D. \( -x \)答案:A6. 若\( \tan(\alpha) = 2 \),则\( \tan(2\alpha) \)的值为?A. \( \frac{4}{3} \)B. \( \frac{3}{4} \)C. \( -\frac{4}{3} \)D. \( -\frac{3}{4} \)答案:A7. 已知双曲线\( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \)的一条渐近线方程为\( y = \frac{b}{a}x \),则\( a \)和\( b \)的关系为?A. \( a = b \)B. \( a = 2b \)C. \( b = 2a \)D. \( b = \sqrt{2}a \)答案:D8. 集合\( A = \{x | x^2 - 5x + 6 = 0\} \),\( B = \{x | x^2 - 3x + 2 = 0\} \),则\( A \cap B \)的元素个数为?A. 0B. 1C. 2D. 3答案:C9. 已知\( \log_2(3) = a \),\( \log_2(9) = b \),则\( a \)和\( b \)的关系为?A. \( a = b \)B. \( a = 2b \)C. \( b = 2a \)D. \( b = 3a \)答案:C10. 若\( \cos(\theta) = \frac{1}{2} \),则\( \sin(2\theta) \)的值为?A. \( \frac{\sqrt{3}}{2} \)B. \( -\frac{\sqrt{3}}{2} \)C. \( \frac{1}{2} \)D. \( -\frac{1}{2} \)答案:B二、填空题(每题4分,共20分)11. 已知\( \sin(\alpha) = \frac{3}{5} \),且\( \alpha \)在第一象限,则\( \cos(\alpha) \)的值为________。
2024年高考新课标全国Ⅱ卷数学真题卷(含答案与解析)

2024年普通高等学校招生全国统一考试(新课标II 卷)数学本试卷共10页,19小题,满分150分.注意事项:1 .答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2. 选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3. 填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4. 考试结束后,请将本试卷和答题卡一并上交.一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中, 只有一个选项是正确的・请把正确的选项填涂在答题卡相应的位置上.1. 已知z = —1 —i,则()A. 0B. 1C. V2D. 22. 已知命题p : Vx e R , x +11> 1 ;命题 q : > 0 , x 3 = x ,贝I ( )A. p 和q 都是真命题B. ~^P 和q 都是真命题C. p 和「0都是真命题D. F 和「0都是真命题3. 已知向量口,直满足|4 = 1J q + 2,= 2,且— 则料=()A. |B. —C.匝D. 12 2 24. 某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位:kg )并部分整理下表据表中数据,结论中正确的是()亩产量[900,950)[950,1000)[1000,1050)[1100,1150)[1150,1200)频数612182410A. 100块稻田亩产量的中位数小于1050kgB.100块稻田中亩产量低于1100kg的稻田所占比例超过80%C.100块稻田亩产量的极差介于200kg至300kg之间D.100块稻田亩产量的平均值介于900kg至1000kg之间5.已知曲线C:x2+y2=16(歹>0),从。
2023年高考理科数学试卷及答案(贵州)_完整版

你若盛开,蝴蝶自来。
2023年高考理科数学试卷及答案(贵州)_完整版2023年高考理科数学试卷及答案(贵州)_完整版我带来了2023年高考理科数学试卷及答案(贵州),数学起源于人类早期的生产活动,古巴比伦人从远古时代开头已经积累了肯定的数学学问,并能应用实际问题。
下面是我为大家整理的2023年高考理科数学试卷及答案(贵州),期望能帮忙到大家!2023年高考理科数学试卷及答案(贵州)高中数学不等式学问点总结(1)不等式恒成立问题(肯定不等式问题)可考虑值域。
f(x)(xA)的值域是[a,b]时,不等式f(x)0恒成立的充要条件是f(x)max0,即b0;不等式f(x)0恒成立的充要条件是f(x)min0,即a0。
f(x)(xA)的值域是(a,b)时,不等式f(x)0恒成立的充要条件是b0;不等式f(x)0恒成立的充第1页/共3页千里之行,始于足下。
要条件是a0。
(2)证明不等式f(x)0可转化为证明f(x)max0,或利用函数f(x)的单调性,转化为证明f(x)f(x0)0。
高一数学期末考试怎么复习1、回归课本、明确复习范围及重点范围本学期我们高一学习了必修1、必修4两本教材。
先把考查的内容分类整理,理清脉络,使考查的学问在心中形成网络系统,并在此基础上明确每一个考点的内涵与外延。
在建立学问系统的同时,同学们还要依据考纲要求,把握试卷结构,明确考查内容、考查的重难点及题型特点、分值安排,使学问结构与试卷结构组合成一个结构体系,并据此进一步完善自己的复习结构,使复习效果事半功倍。
2、弄懂基本概念先把你以前学过的却不懂的学问,概念,定理再结合课本、笔记复习,直到弄懂为止。
3、弄会基本方法复习课上,老师会把最基本,最重要的思想、方法再过一遍,这时候肯定仔细听(为什么有的同学似乎平常没怎么好好学,可是考试成果不错呢,就是由于他抓紧了这段时间),当然,既然是“过”一遍,不行能还像刚开头讲课那样具体,因此课后你肯定要对老师讲的方法做针对性练习,真正把数学复习方案落实到实处。
贵州省高考数学试卷(理科)(全国新课标ⅱ)

2014年贵州省高考数学试卷(理科)(全国新课标n)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.1. (5 分)设集合M={0, 1 , 2} , N={X|X2—3X+2W0},则M n N=()A. {1}B. {2}C. {0,1}D. {1,2}2.(5分)设复数Z1,z2在复平面内的对应点关于虚轴对称,Z1=2+i,则Z1Z2=()A. - 5 B . 5 C. - 4+i D . - 4 - i3. (5 分)设向量I,I’满足| i+= 一1, | | -〕丿| = ■,则'I? ■=()A . 1B . 2 C. 3 D . 54 . (5分)钝角三角形ABC的面积是十,AB=1, BC无,则AC=()A . 5B . .!■ C. 2 D . 15. (5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75, 连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A . 0.8B . 0.75 C. 0.6 D . 0.456 . (5分)如图,网格纸上正方形小格的边长为1 (表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()77(5 分)执行如图所示的程序框图,若输入的x, t均为2,则输出的S=()/WAT777占 jf sTTA . 4 B. 5 C. 6 D . 78. (5 分)设曲线y=ax- In (x+1)在点(0, 0)处的切线方程为y=2x,则a=()A . 0 B. 1 C 2 D . 3x+y-7^09. (5分)设x , y 满足约束条件x-3yM<0 ,则z=2x- y 的最大值为()L 3i-y-5^0 A . 10 B . 8 C. 3 D . 211. (5 分)直三棱柱 ABC- A 1B 1C 1 中,/ BCA=90, M , N 分别是 A 1B 1, A 1C 1 的中点,BC=CA=CC 则BM 与AN 所成角的余弦值为( ) B. 10 ,若存在f (x )的极值点x 0满足X 02+[f (X 0)]2v m 2,贝U m 的取值范围是() A . (-x,- 6)U( 6, +x) B. (-x,- 4)U( 4, +^) C. (-^, - 2) U( 2, +x) D. (-x,- 1)U( 1, +x)二、填空题:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个 试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)13. (5分)(x+a ) 10的展开式中,x 7的系数为15,则a= _________ .14. (5 分)函数 f (x ) =sin (x+2 ©) - 2sin © co$x+©)的最大值为 ___________ .10. (5分)设F 为抛物线C :『=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△ OAB 的面积为( )A 「B . 4 8 C. 63 32 D 「 12. (5 分)设函数 f (x ) =. ■:si 115. (5分)已知偶函数f (x )在[0, +x )单调递减,f (2) =0,若f (x - 1)>0,则x 的取值范围是 ________ .16. (5分)设点M (x o ,1),若在圆O : x 2+y 2=1上存在点N ,使得/ OMN=45 ,则x o 的取值范围是________ .三、解答题:解答应写出文字说明,证明过程或验算步骤•17. (12分)已知数列{a n }满足 a i =1,a n +i =3a n +1.(I )证明{an+亍}是等比数列,并求{a n }的通项公式;18. (12分)如图,四棱锥 P -ABCD 中,底面ABCD 为矩形,P 从平面ABCD ,E为PD 的中点.(I )证明:PB//平面AEC(U )设二面角D -AE- C 为60° AP=1, ADV3,求三棱锥E- ACD 的体积.19. (12分)某地区2007年至2013年农村居民家庭人均纯收入y (单位:千元)的数据如表: 年份2007 2008 2009 2010 2011 2012 2013年份代号t1 2 3 4 5 6 7 人均纯收2.93.3 3.64.4 4.85.2 5.9 入y(I )求y 关于t 的线性回归方程;(U )利用(I )中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区 2015年农村居民家庭人均纯收入.(U )证明: + 1 Va n 2附:回归直线的斜率和截距的最小二乘估计公式分别为: 2 220. (12分)设F i , F 2分别是C:二+—=1 (a >b >0)的左,右焦点,M 是Ca 2b 3上一点且MF 2与x 轴垂直,直线MF i 与C 的另一个交点为N .(1) 若直线MN 的斜率为色,求C 的离心率;4 (2) 若直线MN 在y 轴上的截距为2,且|MN|=5|F i N|,求a ,b .21. (12 分)已知函数 f (x ) =6" - e 「x - 2x .(I )讨论f (x )的单调性;(U)设 g (x ) =f (2x )- 4bf (x ),当 x >0 时,g (x )> 0,求 b 的最大值;(川)已知1.4142V -:< 1.4143,估计ln2的近似值(精确到0.001).请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1 :几何证明选讲】22. (10分)如图,P 是。
贵州高考数学试题及答案

贵州高考数学试题及答案一、选择题(每题4分,共40分)1. 若函数f(x)=x^2-4x+3,求f(2)的值。
A. -1B. 1C. 3D. 5答案:B2. 已知等差数列{an}的首项a1=2,公差d=3,求a5的值。
A. 14B. 17C. 20D. 23答案:A3. 若直线l的方程为y=2x+1,求该直线与x轴的交点坐标。
A. (-1/2, 0)B. (1/2, 0)C. (0, 1)D. (0, -1)答案:B4. 已知三角形ABC的三边长分别为a、b、c,且满足a^2+b^2=c^2,判断三角形ABC的形状。
A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法确定答案:B5. 已知圆的方程为(x-2)^2+(y+1)^2=9,求该圆的半径。
A. 3B. 4C. 5D. 6答案:A6. 若复数z满足|z|=1,且z的实部为1/2,求z的虚部。
A. √3/2B. -√3/2C. √3/2iD. -√3/2i答案:A7. 已知函数f(x)=x^3-3x^2+2,求f'(x)的表达式。
A. 3x^2-6xB. x^2-6x+2C. 3x^2-6x+2D. x^3-3x^2+2答案:A8. 若双曲线的方程为x^2/a^2-y^2/b^2=1,且a=2,b=1,求该双曲线的渐近线方程。
A. y=±x/2B. y=±2xC. y=±xD. y=±1/2x答案:C9. 已知向量a=(2, -1),b=(1, 3),求向量a·b的值。
A. 5B. -1C. 7D. 1答案:D10. 若函数f(x)=sin(x)+cos(x),求f(π/4)的值。
A. √2B. 1C. 2D. 0答案:A二、填空题(每题4分,共20分)11. 已知等比数列{bn}的首项b1=8,公比q=1/2,求b4的值。
答案:212. 若直线l的倾斜角为45°,且过点(1, 2),求该直线的方程。
2021年高考新课标2数学(理)试卷及答案

2021年高考新课标2数学(理)试卷及答案2021年普通高等学校招生全国统一考试理科数学(新课标卷二ⅱ)第ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设子集m={0,1,2},n=?x|x2?3x?2≤0?,则m?n=()a.{1}【答案】d【ks5u解析】b.{2}c.{0,1}d.{1,2}把m={0,1,2}中的数,代入不等式x2-3x+2≤0,经检验x=1,2满足用户。
所以挑选d.2.设复数z1,z2在复平面内的对应点关于虚轴对称,z1?2?i,则z1z2?()a.-5【答案】b【ks5u解析】b.5c.-4+id.-4-iz1=2+i,z1与z2关于虚轴对称,∴z2=-2+i,∴z1z2=-1-4=-5,故选b.3.设向量a,b满足用户|a+b|=10,|a-b|=6,则a?b=()a.1【答案】a【ks5u解析】b.2c.3d.5|a+b|=10,|a-b|=6,,∴a+b+2ab=10,a+b-2ab=6,联立方程Champsaurab=1,故挑选a.4.钝角三角形abc的面积是1,ab=1,bc=2,则ac=()22222a.5【答案】b【ks5u解析】b.5c.2d.1第1页共1页1112acsinb=?2?1?sinb=∴sinb=,2222π3ππ∴b=,或.当b=时,经计算δabc为等腰直角三角形,不符合题意,舍去。
4443π∴b=,采用余弦定理,b2=a2+c2-2accosb,Champsaurb=5.故挑选b.4?sδabc=5.某地区空气质量监测资料说明,一天的空气质量为优良的概率就是0.75,已连续两为优良的概率就是0.6,未知某天的空气质量为优良,则随后一天的空气质量为优良的概率就是()a.0.8b.0.75c.0.6d.0.45【答案】a【ks5u解析】设某天空气质量优良,则随后一个空气质量也优良的概率为p,则据题有0.6=0.75?p,解得p=0.8,故选a.6.例如图,网格纸上正方形小格的边长为1(则表示1cm),图中粗线孔颖草的就是某零件的三视图,该零件由一个底面半径为3cm,低为6cm的圆柱体毛坯焊接获得,则焊接掉部分的体积与原来毛坯体积的比值为()a.17b.5c.10d.1279273【答案】c【ks5u解析】加工前的零件半径为3,高6,∴体积v1=9π?6=54π.?加工后的零件,左半部为小圆柱,半径2,高4,右半部为大圆柱,半径为3,高为2.∴体积v2=4π?4+9π?2=34π.∴削掉部分的体积与原体积之比=54π-34π10=.故选c.54π277.继续执行右图程序框图,如果输出的x,t均为2,则输入的s=()a.4b.5c.6d.7【答案】c【ks5u解析】第2页共2页x=2,t=2,变量变化情况如下:msk131252273故选c.8.设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=a.0b.1c.2d.3【答案】d【ks5u解析】f(x)=ax-ln(x+1),∴f′(x)=a-1.x+1∴f(0)=0,且f′(0)=2.联立解得a=3.故选d.?x?y?7≤0?9.设x,y满足用户约束条件?x?3y?1≤0,则z?2x?y的最大值为()?3x?y?5≥0?a.10b.8c.3d.2【答案】b【ks5u解析】图画出来区域,所述区域为三角形,经比较斜率,所述目标函数z=2x-y在两条直线x-3y+1=0与x+y-7=0的交点(5,2)处,获得最大值z=8.故挑选b.10.设f为抛物线c:y2?3x的焦点,过f且倾斜角为30°的直线交c于a,b两点,o 为坐标原点,则△oab的面积为()a.3393b.c.63d.983244【答案】d【ks5u解析】第3页共3页设点a、b分别在第一和第四象限,af=2m,bf=2n,则由抛物线的定义和直角三角形科学知识可以得,33332m=2?+3m,2n=2?-3n,Champsaurm=(2+3),n=(2-3),∴m+n=6.4422139∴sδoab=??(m+n)=.故挑选d.24411.直三棱柱abc-a1b1c1中,∠bca=90°,m,n分别是a1b1,a1c1的中点,bc=ca=cc1,则bm与an所成的角的余弦值为()a.1b.2c.10530d.1022【答案】c【ks5u解析】例如图,分别以c1b1,c1a1,c1c为x,y,z轴,创建坐标系。
2020年高考全国II卷理科数学试题(含解析)

2020年全国统一高考数学试卷(理科)(全国新课标Ⅱ)一、选择题1.已知集合{2,1,0,1,2,3}U =--,{1,0,1}A =-,{1,2}B =,则()U C A B ⋃=( ) A.{2,3}- B.{2,2,3}-C.{2,1,0,3}--D.{2,1,0,2,3}--【答案】A 【解析】∵{1,0,1,2}AB =-,∴ (){2,3}UC A B ⋃=-.2.若α为第四象限角,则( ) A.cos20α> B.cos20α<C.sin 20α>D.sin 20α<【答案】D 【解析】∵22()2k k k Z ππαπ-+<<∈,∴424()k k k Z ππαπ-+<<∈,∴2α是第三象限角或第四象限角,∴sin 20α<.3.在新冠肺炎疫情期间,某超市开通网上销售业务,每天能完成1200份订单配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作。
已知该超市某日积压500份订单未配货,预计第二天新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( ) A.10名 B.18名 C.24名 D.32名 【答案】B【解析】因为公司可以完成配货1200份订单,则至少需要志愿者为160050012001850+-=名.4.北京天坛的圆丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,己知每层环数相同,且下层比中层多729块,则三层共有扇形面形石板(不含天心石)( ) A.3699块B.3474块C.3402块D.3339块【答案】C【解析】设每一层有n 环,由题可知从内到外每环之间构成等差数列,公差9d =,19a =,由等差数列性质知n S ,2n n S S -,32n n S S -成等差数列,且2322()()n n n n S S S S n d ---=,则29729n =,得9n =,则三层共有扇形面石板为3271272627934022n S S a ⨯==+⨯=块. 5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A.【答案】B【解析】设圆心为(,)a a ,则半径为a ,圆过点(2,1),则222(2)(1)a a a -+-=,解得1a =或5a =,所以圆心坐标为(1,1)或(5,5),圆心到直线的距离都是5d =. 6.数列{}n a 中,12a =,m n m n a a a +=,若155121022k k k a a a ++++++=-,则k =( )A.2B.3C.4D.5【答案】C【解析】取1m =,则11n n a a a +=,又12a =,所以12n na a +=,所以{}n a 是首项为2,公比为2的等比数列,则2nn a =,所以11011115512102(12)222212k k k k k k a a a ++++++-+++==-=--,得4k =.7.右图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为( )A.EB.FC.GD.H【答案】A【解析】该几何体是两个长方体拼接而成,如图所示,显然选A.8.设O 为坐标原点,直线x a =与双曲线2222:1x yC a b-=(0,0)a b >>的两条渐近线分别交于D ,E 两点,若ODE ∆的面积为8,则C 的焦距的最小值为( ) A.4 B.8 C.16 D.32 【答案】B【解析】双曲线2222:1x y C a b -=(0,0)a b >>的两条渐近线分别为b y x a =±,则容易得到||2DE b =,则8ODE S ab ∆==,222216c a b ab =+≥=,当且仅当a b ==号成立,所以min 4c =,焦距min (2)8c =.9.设函数()ln |21|ln |21|f x x x =+--,则()f x ( )A. 是偶函数,且在1(,)2+∞单调递增B.是奇函数,且在11(,)22-单调递减C. 是偶函数,且在1(,)2-∞-单调递增D.是奇函数,且在1(,)2-∞-单调递减【答案】D【解析】函数()ln |21|ln |21|ln |21|ln |21|()f x x x x x f x -=-+---=--+=-,则()f x 为奇函数,故排除A 、C ;当11(,)22x ∈-时,()ln(21)ln(12)f x x x =+--,根据函数单调性的性质可判断()f x 在11(,)22-上单调递增,故排除B ;当1(,)2x ∈-∞-时,212()ln(21)ln(12)lnln(1)2121x f x x x x x +=----==+--,根据复合函数单调性可判断()f x 在1(,)2-∞-上单调递减,故D 正确.10.已知ABC ∆的等边三角形,且其顶点都在球O 的球面上,若球O 的表面积为16π,则O 到平面ABC 的距离为( )B.32C.1【答案】C【解析】设ABC ∆的外接圆圆心为1O ,记1OO d =,圆1O 的半径为r ,球O 半径为R ,等边三角形ABC ∆的边长为a ,则2ABC S ∆==,可得3a =,于是r ==,由题知球O 的表面积为16π,则2R =,由222R r d =+易得1d =,即O 到平面ABC 的距离为1.11.若2233x y x y ---<-,则( ) A.ln(1)0y x -+> B.ln(1)0y x -+< C.ln ||0x y -> D.ln ||0x y -<【答案】A【解析】2323x x y y---<-,设()23x x f x -=-,则()2ln 23ln30x xf x -'=+>,所以函数()f x 在R 上单调递增,因为()()f x f y <,所以x y <,则11y x -+>,ln(1)0y x -+>,选A.12.01-周期序列在通信技术中有着重要应用,若序列12......n a a a 满足{}10,1(1,2,...)a i ∈=,且存在正整数m ,使得(1,2,...)i m i a a i +==成立,则称其为01-周期序列,并称满足(1,2,...)i m i a a i +== 的最小正整数m 为这个序列的周期,对于周期为m的01-序列12......n a a a ,11()(1,2,...,1)mi i k i C k a a k m m +===-∑是描述其性质的重要指标,下列周期为5的01-序列中,满足1()(1,2,3,4)5C k k ≤=的序列是( ) A. 11010... B.11011... C. 10001... D.11001... 【答案】C【解析】对于A 选项:511111(1)(10000)555i i i C a a +===++++=∑,5211121(2)(01010)5555i i i C a a +===++++=>∑,不满足,排除;对于B 选项,5111131(1)(10011)5555i i i C a a +===++++=>∑,不满足,排除;对于C 选项,511111(1)(00001)555i i i C a a +===++++=∑,52111(2)(00000)055i i i C a a +===++++=∑,53111(3)(00000)055i i i C a a +===++++=∑,541111(4)(10000)555i i i C a a +===++++=∑,满足;对于D 选项,5111121(1)(10001)5555i i i C a a +===++++=>∑,不满足,排除;故选C 。
2023年高考数学试卷及答案(新课标全国Ⅱ卷)

2023年新课标全国Ⅱ卷数学真题一、单选题1.在复平面内,对应的点位于( ).A.第一象限B.第二象限C.第三象限D.第四象限答案:A解析:,所以该复数对应的点为,位于第一象限.2.设集合,,若,则( ).A.2B.1C.D.答案:B解析:观察发现集合A中有元素0,故只需考虑B中的哪个元素是0。
因为,,所以,故或,解得:或1,注意不能保证,故还需代回集合检验,若,则,,不满足,不合题意;若,则,,满足. 故选B.3.某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( ).A.种B.种C.种D.种答案:D解析:应先找到两层中各抽多少人,因为是比例分配的分层抽取,故各层的抽取率都等于总体的抽取率,设初中部抽取x人,则,解得:,所以初中部抽40人,高中部抽20人,故不同的抽样结果共有种.4.若为偶函数,则( ).A .B.0C.D.1答案:B解法1:偶函数可抓住定义来建立方程求参,因为为偶函数,所以,即 ①,而,代入①得:,化简得:,所以.5.已知椭圆的左、右焦点分别为,,直线与C交于A,B两点,若面积是面积的2倍,则( ).A.B.C.D.答案:C解析:如图,观察发现两个三角形有公共的底边AB,故只需分析高的关系,作于点G,于点I,设AB与x轴交于点K,由题意,,所以,由图可知,所以,故,又椭圆的半焦距,所以,从而,故,所以,代入可得,解得:.6.已知函数在区间上单调递增,则a的最小值为( ).A.B.e C.D.答案:C解析:的解析式较复杂,不易直接分析单调性,故求导,由题意,,因为在上,所以在上恒成立,即 ①,观察发现参数a容易全分离,故将其分离出来再看,不等式①等价于,令,则,所以在上,又,,所以,故,因为在上恒成立,所以,故a的最小值为.7.已知为锐角,,则( ).A.B.C.D.答案:D解析:,此式要开根号,不妨上下同乘以2,将分母化为,所以,故,又为锐角,所以,故.8.记为等比数列的前n项和,若,,则( ).A.120B.85C.D.答案:C解法1:观察发现,,,的下标都是2的整数倍,故可考虑片段和性质,先考虑q是否为,若的公比,则,与题意不符,所以,故,,,成等比数列 ①,条件中有,不妨由此设个未知数,设,则,所以,,由①可得,所以,解得:或,若,则,,,所以,故;到此结合选项已可确定选C,另一种情况我也算一下,若,则,而,所以与同号,故,与题意不符;综上所述,m只能取,此时.二、多选题9.已知圆锥的顶点为P,底面圆心为O,AB为底面直径,,,点C在底面圆周上,且二面角为45°,则( ).A.该圆锥的体积为B.该圆锥的侧面积为C.D.的面积为答案:AC解析:A项,因为,,所以,,,从而圆锥的体积,故A项正确;B项,圆锥的侧面积,故B项错误;C项,要求AC的长,条件中的二面角还没用,观察发现和都是等腰三角形,故取底边中点即可构造棱的垂线,作出二面角的平面角,取AC中点Q,连接PQ,OQ,因为,,所以,,故即为二面角的平面角,由题意,,所以,故,所以,故C项正确;D项,,所以,故D项错误.10.设O为坐标原点,直线过抛物线的焦点,且与C交于M,N两点,l为C的准线,则( ).A.B.C.以MN为直径的圆与l相切D.为等腰三角形答案:AC解析:A项,在中令可得,由题意,抛物线的焦点为,所以,从而,故A项正确;B项,此处可以由直线MN的斜率求得,再代角版焦点弦公式求,但观察发现后续选项可能需要用M,N的坐标,所以直接联立直线与抛物线,用坐标版焦点弦公式来算,设,,将代入消去y整理得:,解得:或3,对应的y分别为和,所以图中,,从而,故B项错误;C项,判断直线与圆的位置关系,只需将圆心到直线的距离d和半径比较,的中点Q到准线的距离,从而以MN为直径的圆与准线l相切,故C项正确;D项,M,N的坐标都有了,算出,即可判断,,,所以,,均不相等,故D项错误.11.若函数既有极大值也有极小值,则( ).A.B.C.D.答案:BCD解析:由题意,,函数既有极大值,又有极小值,所以在上有2个变号零点,故方程在上有两个不相等实根,所以,由①可得,故C项正确;由②可得,所以a,c异号,从而,故D项正确;由③可得a,b同号,所以,故B项正确;因为a,c异号,a,b同号,所以b,c异号,从而,故A项错误.12.在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为,收到0的概率为;发送1时,收到0的概率为,收到1的概率为. 考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输 是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).A.采用单次传输方案,若依次发送1,0,1,则依次收到l,0,1的概率为B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为C.采用三次传输方案,若发送1,则译码为1的概率为D.当时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率答案:ABD解析:A项,由题意,若采用单次传输方案,则发送1收到1的概率为,发送0收到0的概率为,所以依次发送1,0,1,则依次收到1,0,1的概率为,故A项正确;B项,采用三次传输方案,若发送1,则需独立重复发送3次1,依次收到1,0,1的概率为,故B项正确;C项,采用三次传输方案,由B项的分析过程可知若发送1,则收到1的个数,而译码为1需收2个1,或3个1,所以译码为1的概率为,故C项错误;D项,若采用单次传输方案,则发送0译码为0的概率为;若采用三次传输方案,则发送0等同于发3个0,收到0的个数,且译码为0的概率为,要比较上述两个概率的大小,可作差来看,,因为,所以,从而,故D项正确.三、填空题13.已知向量,满足,,则______.答案:解析:条件涉及两个模的等式,想到把它们平方来看,由题意, ①,又,所以,故,整理得:,代入①可得,即,所以.14.底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为______.答案:28解析:如图,四棱锥与相似,它们的体积之比等于边长之比的立方,故只需求四棱锥的体积,,所以,故所求四棱台的体积,由题意,,所以.15.已知直线与交于A,B两点,写出满足“面积为”的m的一个值__ ____.答案:2(答案不唯一,也可填或或)解析:如图,设圆心到直线AB的距离为,则,注意到也可用d表示,故先由求d,再将d用m表示,建立关于m的方程,又,所以,由题意,,所以,结合解得:或,又,所以或,解得:或.16.已知函数,如图A,B是直线与曲线的两个交点,若,则______.答案:解法1:这个条件怎么翻译?可用求A,B横坐标的通解,得到,从而建立方程求,不妨设,令可得或,其中,由图知,,两式作差得:,故,又,所以,解得:,则,再求,由图知是零点,可代入解析式,注意,是增区间上的零点,且的增区间上的零点是,故应按它来求的通解,所以,从而,故,所以.四、解答题17.记的内角的对边分别为,已知的面积为,为中点,且.(1)若,求;(2)若,求.解:(1)如图,因为,所以,(要求,可到中来分析,所给面积怎么用?可以用它求出,从而得到BD)因为D是BC中点,所以,又,所以,由图可知,所以,故,(此时已知两边及夹角,可先用余弦定理求第三边AB,再用正弦定理求角B)在中,由余弦定理,,所以,由正弦定理,,所以,由可知B为锐角,从而,故.(2)(已有关于bc的一个方程,若再建立一个方程,就能求b和c,故把面积和中线都用b,c表示)由题意,,所以 ①,(中线AD怎样用b,c表示?可用向量处理)因为D为BC中点,所以,从而,故,所以,将代入上式化简得②,(我们希望找的是b,c的方程,故由①②消去A,平方相加即可)由①②得,所以③,由可得,所以,结合式③可得.18.已知为等差数列,,记,分别为数列,的前n项和,,.(1)求的通项公式;(2)证明:当时,.解:(1)(给出了两个条件,把它们用和d翻译出来,即可建立方程组求解和d)由题意, ①,②,由①②解得:,,所以.(2)由(1)可得,(要证结论,还需求,由于按奇偶分段,故求也应分奇偶讨论,先考虑n为偶数的情形)当为偶数时,③,因为和分别也构成等差数列,所以,,代入③化简得:,(要由此证,可作差比较)所以,故;(对于n为奇数的情形,可以重复上述计算过程,但更简单的做法是补1项凑成偶数项,再减掉补的那项)当为奇数时,,所以,故;综上所述,当时,总有.19.某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图:利用该指标制定一个检测标准,需要确定临界值c,将该指标大于c的人判定为阳性,小于或等于c的人判定为阴性.此检测标准的漏诊率是将患病者判定为阴性的概率,记为;误诊率是将未患病者判定为阳性的概率,记为.假设数据在组内均匀分布,以事件发生的频率作为相应事件发生的概率.(1)当漏诊率%时,求临界值c和误诊率;(2)设函数,当时,求的解析式,并求在区间的最小值.解:(1)(给的是漏诊率,故先看患病者的图,漏诊率为0.5%即小于或等于c的频率为0.5%,可由此求c)由患病者的图可知,这组的频率为,所以c在内,且,解得:;(要求,再来看未患病者的图,是误诊率,也即未患病者判定为阳性(指标大于c)的概率)由未患病者的图可知指标大于97.5的概率为,所以.(2)(包含两个分组,故应分类讨论)当时,,,所以,故 ①;当时,,,所以,故②;所以,且由①②可得.20.如图,三棱锥中,,,,E为BC的中点.(1)证明:;(2)点F满足,求二面角的正弦值.解:(1)(BC和DA是异面直线,要证垂直,需找线面垂直,可用逆推法,假设,注意到条件中还有,所以,二者结合可得到面ADE,故可通过证此线面垂直来证)因为,,所以和是全等的正三角形,故,又E为BC中点,所以,,因为AE,平面ADE,,所以平面ADE,又平面ADE,所以.(2)(由图可猜想面BCD,若能证出这一结果,就能建系处理,故先尝试证明)不妨设,则,因为,所以,故,,所以,故,所以EA,EB,ED两两垂直,以E为原点建立如图所示的空间直角坐标系,则,,,所以,,由可知四边形ADEF是平行四边形,所以,设平面DAB和平面ABF的法向量分别为,,则,令,则,所以是平面DAB的一个法向量,,令,则,所以是平面ABF的一个法向量,从而,故二面角的正弦值为.21.已知双曲线C的中心为坐标原点,左焦点为,离心率为.(1)求C的方程;(2)记C的左、右顶点分别为,,过点的直线与C的左支交于M,N两点,M在第二象限,直线与交于点P.证明:点在定直线上.解:(1)设双曲线方程为,由焦点坐标可知,则由可得,,双曲线方程为.(2)由(1)可得,设,显然直线的斜率不为0,所以设直线的方程为,且,与联立可得,且,则,直线的方程为,直线的方程为,联立直线与直线的方程可得:,由可得,即,据此可得点在定直线上运动.【点睛】关键点点睛:求双曲线方程的定直线问题,意在考查学生的计算能力,转化能力和综合应用能力,其中根据设而不求的思想,利用韦达定理得到根与系数的关系可以简化运算,是解题的关键.22.(1)证明:当时,;(2)已知函数,若是的极大值点,求a的取值范围.解:(1)构建,则对恒成立,则在上单调递增,可得,所以;构建,则,构建,则对恒成立,则在上单调递增,可得,即对恒成立,则在上单调递增,可得,所以;综上所述:.(2)令,解得,即函数的定义域为,若,则,因为在定义域内单调递减,在上单调递增,在上单调递减,则在上单调递减,在上单调递增,故是的极小值点,不合题意,所以.当时,令因为,且,所以函数在定义域内为偶函数,由题意可得:,(i)当时,取,,则,由(1)可得,且,所以,即当时,,则在上单调递增,结合偶函数的对称性可知:在上单调递减,所以是的极小值点,不合题意;(ⅱ)当时,取,则,由(1)可得,构建,则,且,则对恒成立,可知在上单调递增,且,所以在内存在唯一的零点,当时,则,且,则,即当时,,则在上单调递减,结合偶函数的对称性可知:在上单调递增,所以是的极大值点,符合题意;综上所述:,即,解得或,故a的取值范围为.。
数学贵州高考真题及答案

数学贵州高考真题及答案贵州高考数学试题一向具有一定的难度,测试学生的数学基础和解题能力。
以下是根据近年来贵州高考数学试题整理的一些真题及答案:一、选择题部分1. 已知函数$f(x)=x^2+mx+n$,对于任何实数$x$,都有$f(x)\geq 3x-4$,则$m+n$的最小值是多少?A. $-3$B. $-2$C. $-1$D. $0$解析:首先,由题意可得 $x^2+mx+n\geq 3x-4$,整理得 $x^2+(m-3)x+(n+4)\geq 0$。
由于对任意实数 $x$, 左侧都是一个二次函数,即判别式小于等于零,即 $(m-3)^2-4(n+4)\leq 0$。
计算得 $m^2-6m+1-16n\leq 0$。
根据题意可知,题目即为求不等式 $m^2-6m+1-16n\leq0$ 的最小整数解。
考察选项,将 $m=-2, n=-1$ 带入方程得到真值,故答案为B。
2. 设点 $A(3,4)$,点 $B(8,5)$,点 $C(6,2)$,则 $\vec{AB}\cdot\vec{BC}$ 的值是多少?A. $10$B. $12$C. $14$D. $16$解析:$\vec{AB}=(8-3,5-4)=(5,1)$,$\vec{BC}=(6-8,2-5)=(-2,-3)$,则 $\vec{AB}\cdot \vec{BC}=5\times(-2)+1\times(-3)=-10-3=-13$,故答案为D。
3. 函数 $y=ax^2+bx+c$ 在点 $(1,3)$ 处的切线方程为 $3x-y-4=0$,则 $b$ 的值为多少?A. $6$B. $2$C. $4$D. $8$解析:由题意可知,函数 $f(x)$ 在点 $(1,3)$ 处切线的斜率等于$f(x)$ 在此点处的导数值。
即 $f'(x)=2ax+b$ 。
又因为切线方程为 $3x-y-4=0$ 的斜率为 3,则有 $2a=3$。
2023年贵州理科数学高考试卷及解析(超详解析)

2023年贵州理科数学高考试卷及解析(超详解析)高考数学答题技巧1.调整好状态,控制好自我(1)保持清醒。
数学的考试时间在下午,建议同学们中午最好休息半个小时或1个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。
(2)按时到位。
但发卷时间应在开考前5-10分钟内,建议同学们提前15-20分钟到达考场。
2.通览试卷,树立自信刚拿到试卷,一般心情比较紧张,此时不易匆忙作答,应从头到尾、通览全卷,哪些是一定会做的题要心中有数,先易后难,稳定情绪。
答题时,见到简单题,要细心,莫忘乎所以。
面对偏难的题,要耐心,不能急。
3.提高解选择题的速度、填空题的准确度数学选择题要求知识灵活运用,解题要求是只要结果、不要过程。
因此,逆代法、估算法、特例法、排除法、数形结合法……尽显威力。
12个选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。
由于选择题的特殊性,由此提出解选择题要求“快、准、巧”,忌讳“小题大做”。
填空题也是只要结果、不要过程,因此要力求“完整、严密”。
4.审题要慢,做题要快,下手要准题目本身就是解这道题的信息源,所以审题一定要逐字逐句看清楚,只有细致地审题才能从题目本身获得尽可能多的信息。
找到解题方法后,书写要简明扼要,快速规范,不拖泥带水,牢记高考评分标准是按步给分,关键步骤不能丢,但允许合理省略非关键步骤。
答题时,尽量使用数学语言、符号,这比文字叙述要节省而严谨。
5.保质保量拿下中下等题目中下题目通常占全卷的80%以上,是试题的主要部分,是考生得分的主要****。
谁能保质保量地拿下这些题目,就已算是打了个胜仗,有了胜利在握的心理,对攻克高难题会更放得开。
6.要牢记分段得分的原则,规范答题会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,今年仍是网上阅卷,望同学们规范答题,减少隐形失分。
高一数学怎么来学一、课后及时回忆如果等到把课堂内容遗忘得差不多时才复习,就几乎等于重新学习,所以课堂学习的新知识必须及时复习。
(完整版)贵州省高考理科数学试题(真题与答案解析),推荐文档

2006 年全国统一高考数学试卷Ⅱ(理科)一、选择题(共12 小题,每小题5 分,满分60 分)1.(5 分)已知集合M={x|x<3},N={x|log2x>1},则M∩N=()A ∅B.{x|0<x<3} C.{x|1<x<3} D..{x|2<x<3} 2.(5 分)(2009•石景ft区一模)函数y=sin2x•cos2x 的最小正周期是()A 2π.B.4πC.D.3.(5 分)=()A B.C.i .﹣iD.4.(5 分)如图,PA、PB、DE 分别与⊙O 相切,若∠P=40°,则∠DOE 等于()度.A 40 B.50 C.70 D 80..5.(5 分)已知△ABC 的顶点B,C 在椭圆+y2=1 上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是()A B.6 C. D 12..6.(5 分)已知函数f(x)=lnx+1(x>0),则f(x)的反函数为()A y=e x+1(x∈R)B.y=e x1﹣C.y=e x+1(x>1)D y=e x﹣1.(x∈R).(x>1)7.(5 分)如图,平面α⊥平面β,A∈α,B∈β,AB 与两平面α、β所成的角分别为和.过A、B 分别作两平面交线的垂线,垂足为A′、B′,则AB:A′B′=()A 2:1 B.3:1 C.3:2 D 4:3..8.(5 分)函数y=f(x)的图象与函数g(x)=log2x(x>0)的图象关于原点对称,则f(x)的表达式为()A B.C.f(x).=﹣log2x(x>0)Df(x).=﹣log2(﹣x)(x<0)9.(5 分)已知双曲线的一条渐近线方程为,则双曲线的离心率为()A B.C. D..10.(5 分)若f(sinx)=2﹣cos2x,则f(cosx)等于()A.2﹣sin2x B.2+sin2x C.2﹣cos2 xD 2+cos2x.11.(5 分)设S n 是等差数列{a n}的前n 项和,若,则=()A B.C. D..12.(5 分)函数的最小值为()A 190 B.171 C.90 D 45..二、填空题(共4 小题,每小题4 分,满分16 分)13.(4 分)(2012•肇庆一模)在的展开式中常数项为(用数字作答).14.(4 分)已知△ABC 的三个内角A、B、C 成等差数列,且AB=1,BC=4,则边BC 上的中线AD 的长为.15.(4 分)(2012•甘肃一模)过点的直线l 将圆(x﹣2)2+y2=4 分成两段弧,当劣弧所对的圆心角最小时,直线l 的斜率k= .16.(4 分)(2014•江苏一模)一个社会调查机构就某地居民的月收入调查了10000 人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000 人中再用分层抽样方法抽出100 人作进一步调查,则在[2500,3000)(元)月收入段应抽出人.三、解答题(共6 小题,满分74 分)17.(12 分)已知向量,,.(1)若,求θ;(2)求的最大值.19.(12 分)某批产品成箱包装,每箱5 件,一用户在购进该批产品前先取出3 箱,再从每箱中任意出取2 件产品进行检验.设取出的第一、二、三箱中分别有0 件、1 件、2 件二等品,其余为一等品.(1)用ξ表示抽检的6 件产品中二等品的件数,求ξ的分布列及ξ的数学期望;(2)若抽检的6 件产品中有2 件或2 件以上二等品,用户就拒绝购买这批产品,求这批产品被用户拒绝的概率.20.(12 分)如图,在直三棱柱ABC﹣A1B1C1 中,AB=BC,D、E 分别为BB1、AC1 的中点.(I)证明:ED 为异面直线BB1 与AC1 的公垂线;(II)设,求二面角A1﹣AD﹣C1 的大小.24.(12 分)设函数f(x)=(x+1)ln(x+1).若对所有的x≥0,都有f(x)≥ax 成立,求实数a 的取值范围.25.(14 分)已知抛物线x2=4y 的焦点为F,A、B 是抛物线上的两动点,且.过A、B 两点分别作抛物线的切线,设其交点为M.(Ⅰ)证明为定值;(Ⅱ)设△ABM 的面积为S,写出S=f(λ)的表达式,并求S 的最小值.27.(12 分)设数列{a n}的前n 项和为S n,且方程x2﹣a n x﹣a n=0 有一根为S n﹣1,n=1,2,3,….(1)求a1,a2;(2)猜想数列{S n}的通项公式,并给出严格的证明.2006 年全国统一高考数学试卷Ⅱ(理科)参考答案与试卷解读一、选择题(共12 小题,每小题5 分,满分60 分)1.(5 分)已知集合M={x|x<3},N={x|log2x>1},则M∩N=()A ∅B.{x|0<x<3} C.{x|1<x<3} D{x|2<x<3} ..考点:交集及其运算.分析:解出集合N,结合数轴求交集.解答:解:N={x|log2x>1}={x|x>2},用数轴表示可得答案D故选D.2.(5 分)(2009•石景ft区一模)函数y=sin2x•cos2x 的最小正周期是()A 2πB.4πC. D..考点:三角函数的周期性及其求法;二倍角的正弦.分析:将函数化简为:y=Asin(ωx+φ)的形式即可得到答案.解答:解:所以最小正周期为,故选D点评:考查知识点有二倍角公式,最小正周期公式本题比较容易3.(5 分)=()A B.C.i D ﹣i..考点:复数代数形式的混合运算.分析:化简复数的分母,再分子、分母同乘分母的共轭复数,化简即可.解答:解:故选A.点评:本题考查的知识点复数的运算,(乘法和除法),比较简单.4.(5 分)如图,PA、PB、DE 分别与⊙O 相切,若∠P=40°,则∠DOE 等于()度.A 40 B.50 C.70 D 80..考点:弦切角.专题:证明题.分析:连接OA、OB、OP,由切线的性质得∠AOB=140°,再由切线长定理求得∠DOE 的度数.解答:解:连接OA、OB、OP,∵∠P=40°,∴∠AOB=140°,∵PA、PB、DE 分别与⊙O 相切,∴∠AOD=∠POD,∠BOE=∠POE,∴∠DOE=∠AOB= ×140°=70°.故选C.点评:本题考查了弦切角定理和切线长定理,是基础知识,要熟练掌握.5.(5 分)(2014•四川二模)已知△ABC 的顶点B,C 在椭圆+y2=1 上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是()A B.6 C. D 12..考点:椭圆的简单性质.专题:计算题;压轴题.分析:由椭圆的定义椭圆上一点到两焦点的距离之和等于长轴长2a,可得△ABC 的周长.解答:解:由椭圆的定义椭圆上一点到两焦点的距离之和等于长轴长2a,可得△ABC 的周长为4a= ,所以选C点评:本题主要考查数形结合的思想和椭圆的基本性质,难度中等6.(5 分)已知函数f(x)=lnx+1(x>0),则f(x)的反函数为()A y=e x+1(x∈R)B.y=e x1﹣C.y=e x+1(x>1)D y=e x﹣1.(x∈R).(x>1)考点:反函数.分析:本题考查反函数的概念、求反函数的方法、指数式与对数式的互化,求函数的值域;解答:将 y=lnx+1 看做方程解出 x ,然后由原函数的值域确定反函数的定义域即可. 解:由 y=lnx+1 解得 x=e y ﹣1,即:y=e x ﹣1∵x >0,∴y ∈R所以函数 f (x )=lnx+1(x >0)反函数为 y=e x ﹣1(x ∈R ) 故选 B点评: 由于是基本题目,解题思路清晰,求解过程简捷,所以容易解答;解答时注意函数 f (x )=lnx+1(x >0)值域的确定,这里利用对数函数的值域推得.7.(5 分)如图,平面 α⊥平面 β,A ∈α,B ∈β,AB 与两平面 α、β 所成的角分别为和.过 A 、B 分别作两平面交线的垂线,垂足为 A ′、B ′,则 AB :A ′B ′=()考点: 平面与平面垂直的性质. 专题: 计算题.分析: 设 AB 的长度为 a 用 a 表示出 A'B'的长度,即可得到两线段的比值. 解答:解:连接 AB'和 A'B ,设 AB=a ,可得 AB 与平面 α 所成的角为, 在 Rt △BAB'中有 AB'=,同理可得 AB 与平面 β 所成的角为, 所以,因此在 Rt △AA'B'中 A'B'=,4:3所以 AB :A'B'=,故选 A .点评: 本题主要考查直线与平面所成的角以及线面的垂直关系,要用到勾股定理及直角三角形中的边角关系.有一定的难度8.(5 分)函数 y=f (x )的图象与函数 g (x )=log 2x (x >0)的图象关于原点对称,则 f (x )的表达式为( )A B . C .f (x ).=﹣log 2x (x >0) Df (x ) . =﹣log 2(﹣x )(x <0)考点: 奇偶函数图象的对称性.分析:先设函数 f (x )上的点为(x ,y ),根据(x ,y )关于原点的对称点为(﹣x ,﹣y )且函数 y=f (x )的图象与函数 g (x )=log 2x (x >0)的图象关于原点对称,得到 x 与 y 的关系式,即得答案.A 2:1B .3:1C .3:2D ..解答:解:设(x,y)在函数f(x)的图象上∵(x,y)关于原点的对称点为(﹣x,﹣y),所以(﹣x,﹣y)在函数g(x)上∴﹣y=log2(﹣x)⇒f(x)=﹣log2(﹣x)(x<0)故选D.点评:本题主要考查对称的性质和对数的相关性质,比较简单,但是容易把与f(x)=﹣log2(﹣x)(x<0)搞混,其实9.(5 分)(2011•普宁市模拟)已知双曲线的一条渐近线方程为,则双曲线的离心率为()A B.C. D..考点:双曲线的简单性质.专题:计算题.分析:由题设条件可知双曲线焦点在x 轴,可得a、b 的关系,进而由离心率的公式,计算可得答案.解答:解:双曲线焦点在x 轴,由渐近线方程可得,故选A点评:本题主要考查双曲线的渐近线方程和离心率公式,涉及a,b,c 间的关系,比较简单10.(5 分)(2004•安徽)若f(sinx)=2﹣cos2x,则f(cosx)等于()A.2﹣sin2x B.2+sin2x C.2﹣cos2 xD 2+cos2x.考点:二倍角的余弦.专题:计算题.分析:本题考查的知识点是函数解读式的求法,根据已知中f(sinx)=2﹣cos2x,结合倍角公式对解读式进行凑配,不难得到函数f(x)的解读式,然后将cosx 代入,并化简即可得到答案.解答:解:∵f(sinx)=2﹣(1﹣2sin2x)=1+2sin2x,∴f(x)=1+2x2,(﹣1≤x≤1)∴f(cosx)=1+2cos2x=2+cos2x.故选D点评:求解读式的几种常见方法:①代入法:即已知f(x),g(x),求f(g(x)用代入法,只需将g(x)替换f(x)中的x 即得;②换元法:已知f(g(x),g(x),求f(x)用换元法,令g(x)=t,解得x=g﹣1(t),然后代入f(g(x)中即得f(t),从而求得f(x).当f(g(x))的表达式较简单时,可用“配凑法”;③待定系数法:当函数f(x)类型确定时,可用待定系数法.④方程组法:方程组法求解读式的实质是用了对称的思想.一般来说,当自变量互为相反数、互为倒数或是函数具有奇偶性时,均可用此法.在解关于f(x)的方程时,可作恰当的变量代换,列出f(x)的方程组,求得f(x).11.(5 分)(2010•锦州二模)设S n 是等差数列{a n}的前n 项和,若,则=()A B.C. D..考点:等差数列的前n 项和.专题:计算题;压轴题.分析:根据等差数列的前n 项和公式,用a1 和d 分别表示出s3 与s6,代入中,整理得a1=2d,再代入中化简求值即可.解答:解:设等差数列{a n}的首项为a1,公差为d,由等差数列的求和公式可得且d≠0,∴,故选A.点评:本题主要考查等比数列的求和公式,难度一般.12.(5 分)函数的最小值为()A 190 B.171 C.90 D 45..考点:数列的求和.专题:压轴题;数形结合.分析:利用绝对值的几何意义求解或者绝对值不等式的性质求解.解答:解法一:f(x)= =|x﹣1|+|x﹣2|+|x﹣3|+|x﹣19|表示数轴上一点到1,2,3,…,19 的距离之和,可知x 在1﹣19 最中间时f(x)取最小值.即x=10 时f(x)有最小值90,故选C.解法二:|x﹣1|+|x﹣19|≥18,当1≤x≤19 时取等号;|x﹣2|+|x﹣18|≥16,当2≤x≤18 时取等号;k= 10 10|x ﹣3|+|x ﹣17|≥14,当 3≤x ≤17 时取等号; …|x ﹣9|+|x ﹣11|≥2,当 9≤x ≤11 时取等号;|x ﹣10|≥0,当 x=10 时取等号;将上述所有不等式累加得|x ﹣1|+|x ﹣2|+|x ﹣3|+…+|x ﹣19|≥18+16+14+…+2+0=90(当且仅当 x=10 时取得最小值) 故选 C .点评: 本题主要考查求和符号的意义和绝对值的几何意义,难度较大,且求和符号不在高中要求范围内,只在线性回归中简单提到过.二、填空题(共 4 小题,每小题 4 分,满分 16 分) 13.(4 分)(2012•肇庆一模)在的展开式中常数项为 45 (用数字作答).考点: 二项式定理.分析: 利用二项式的通项公式(让次数为 0,求出 r )就可求出答案. 解答: 解: 要求常数项,即 40﹣5r=0,可得 r=8 代入通项公式可得 T r+1=C 8=C 2=45 故答案为:45.点评: 二项展开式的通项公式是解决二项展开式的特定项问题的工具.14.(4 分)已知△ABC 的三个内角 A 、B 、C 成等差数列,且 AB=1,BC=4,则边 BC 上的中线 AD 的长为.考点: 解三角形.专题: 计算题.分析: 先根据三个内角 A 、B 、C 成等差数列和三角形内角和为 π 可求得 B 的值,进而利用 AD 为边 BC 上的中线求得 BD ,最后在△ABD 中利用余弦定理求得 AD . 解答: 解:∵△ABC 的三个内角 A 、B 、C 成等差数列∴A+C=2B ∵A+B+C=π∴∵AD 为边 BC 上的中线 ∴BD=2,由余弦定理定理可得故答案为:点评: 本题主要考查等差中项和余弦定理,涉及三角形的内角和定理,难度一般.15.(4 分)(2012•甘肃一模)过点的直线 l 将圆(x ﹣2)2+y 2=4 分成两段弧,当劣弧所对的圆心角最小时,直线 l 的斜率.考点:直线的斜率;直线和圆的方程的应用.专题:压轴题;数形结合.分析:本题考查的是直线垂直时斜率之间的关系,及直线与圆的相关性质,要处理本题我们先要画出满足条件的图形,数形结合容易得到符合题目中的条件的数理关系,由劣弧所对的圆心角最小弦长最短,及过圆内一点最短的弦与过该点的直径垂直,易得到解题思路.解答:解:如图示,由图形可知:点A 在圆(x﹣2)2+y2=4 的内部,圆心为O(2,0)要使得劣弧所对的圆心角最小,只能是直线l⊥OA,所以.点评:垂径定理及其推论是解决直线与圆关系时常用的定理,要求大家熟练掌握,垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧.相关推论,过圆内一点垂直于该点直径的弦最短,且弦所地的劣弧最短,优弧最长,弦所对的圆心角、圆周角最小….16.(4 分)(2014•江苏一模)一个社会调查机构就某地居民的月收入调查了10000 人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000 人中再用分层抽样方法抽出100 人作进一步调查,则在[2500,3000)(元)月收入段应抽出 25 人.考点:分层抽样方法.专题:压轴题.分析:直方图中小矩形的面积表示频率,先计算出[2500,3000)内的频率,再计算所需抽取人数即可.解答:解:由直方图可得[2500,3000)(元)月收入段共有10000×0.0005×500=2500 人按分层抽样应抽出人故答案为:25点评:本题主要考查直方图和分层抽样,难度不大.三、解答题(共6 小题,满分74 分)17.(12 分)已知向量,,.(1)若,求θ;(2)求的最大值.考点:数量积判断两个平面向量的垂直关系;向量的模.专题:计算题.分析:(1)利用向量垂直的充要条件列出方程,利用三角函数的商数关系求出正切,求出角.(2)利用向量模的平方等于向量的平方,利用三角函数的平方关系及公式,化简,利用三角函数的有界性求出范围.解答:解:(1)因为,所以得又,所以θ=(2)因为=所以当θ=时,的最大值为5+4=9故的最大值为3点评:本题考查向量垂直的充要条件|数量积等于0;向量模的平方等于向量的平方;三角函数的同角三角函数的公式;19.(12 分)某批产品成箱包装,每箱5 件,一用户在购进该批产品前先取出3 箱,再从每箱中任意出取2 件产品进行检验.设取出的第一、二、三箱中分别有0 件、1 件、2 件二等品,其余为一等品.(1)用ξ表示抽检的6 件产品中二等品的件数,求ξ的分布列及ξ的数学期望;(2)若抽检的6 件产品中有2 件或2 件以上二等品,用户就拒绝购买这批产品,求这批产品被用户拒绝的概率.考离散型随机变量及其分布列;等可能事件的概率;离散型随机变量的期望与方差.点:专计算题.题:分(1)由取出的第一、二、三箱中分别有0 件、1 件、2 件二等品可知变量ξ 的取值,结合变量对应的事件做出析:这四个事件发生的概率,写出分布列和期望.(2)由上一问做出的分布列可以知道,P(ξ=2)=,P(ξ=3)= ,这两个事件是互斥的,根据互斥事件的概率公式得到结果.解解(1)由题意知抽检的6 件产品中二等品的件数ξ=0,1,2,3:答∴ξ 的分布列为∴ξ的数学期望E(ξ)=(2)∵P(ξ=2)= ,P(ξ=3)= ,这两个事件是互斥的∴P(ξ≥2)=点本题主要考查分布列的求法以及利用分布列求期望和概率,求离散型随机变量的分布列和期望是近年来理科高评:考必出的一个问题,题目做起来不难,运算量也不大.20.(12 分)如图,在直三棱柱ABC﹣A1B1C1 中,AB=BC,D、E 分别为BB1、AC1 的中点.(I)证明:ED 为异面直线BB1 与AC1 的公垂线;(II)设,求二面角A1﹣AD﹣C1 的大小.考点:与二面角有关的立体几何综合题;异面直线.专题:计算题.分析:(Ⅰ)设O 为AC 中点,连接EO,BO,欲证ED 为异面直线AC1 与BB1 的公垂线,只需证明ED 与直线AC1 与BB1 都垂直且相交,根据线面垂直的性质可知ED⊥CC1,而ED⊥BB1,即可证得;(Ⅱ)连接A1E,作EF⊥AD,垂足为F,连接A1F,根据二面角的平面角定义可知∠A1FE 为二面角A1﹣AD﹣C1 的平面角,在三角形A1FE 中求出此角即可.解答:解:(Ⅰ)设O 为AC 中点,连接EO,BO,则EO C1C,又C1C B1B,所以EO DB,EOBD 为平行四边形,ED∥OB.(2 分)∵AB=BC,∴BO⊥AC,又平面ABC⊥平面ACC1A1,BOÌ面ABC,故BO⊥平面ACC1A1,∴ED⊥平面ACC1A1,ED⊥AC1,ED⊥CC1,∴ED⊥BB1,ED 为异面直线AC1 与BB1 的公垂线.(6 分)(Ⅱ)连接A1E,由AA1=AC=AB 可知,A1ACC1 为正方形,∴A1E⊥AC1,又由ED⊥平面ACC1A1 和EDÌ平面ADC1 知平面ADC1⊥平面A1ACC1,∴A1E⊥平面ADC1.作EF⊥AD,垂足为F,连接A1F,则A1F⊥AD,∠A1FE 为二面角A1﹣AD﹣C1 的平面角.不妨设AA1=2,则AC=2,AB= ,ED=OB=1,EF= =,tan∠A1FE= ,∴∠A1FE=60°.所以二面角A1﹣AD﹣C1 为60°.(12 分)点评:本题主要考查了异面直线公垂线的证明,二面角的度量,以及空间想象能力和推理能力,属于基础题.24.(12 分)设函数f(x)=(x+1)ln(x+1).若对所有的x≥0,都有f(x)≥ax 成立,求实数 a 的取值范围.考点:函数恒成立问题;利用导数求闭区间上函数的最值.专题:计算题.分析:令g(x)=(x+1)ln(x+1)﹣ax 对g(x),求导得g'(x)=ln(x+1)+1﹣a,令g'(x)=0⇒x=e a﹣1﹣1,当a≤1 时,对所有的x>0 都有g'(x)>0,所以g(x)在[0,+∞)上为单调增函数,又g(0)=0,所以对x≥0 时有g(x)≥g(0),即当a≤1 时都有f(x)≥ax,所以a≤1 成立,当a>1 时,对于0<x<e a﹣1﹣1 时,g'(x)<0,所以g(x)在(0,e a﹣1﹣1)上是减函数,又g(0)=0,所以对于0<x<e a﹣1﹣1 有g(x)<g(0),即f(x)<ax,所以当a>1 时f(x)≥ax 不一定成立综上所述即可得出a 的取值范围.解答:解法一:令g(x)=(x+1)ln(x+1)﹣ax,对函数g(x)求导数:g′(x)=ln(x+1)+1﹣a令g′(x)=0,解得x=e a﹣1﹣1,(i)当a≤1 时,对所有x>0,g′(x)>0,所以g(x)在[0,+∞)上是增函数,又g(0)=0,所以对x≥0,都有g(x)≥g(0),即当a≤1 时,对于所有x≥0,都有f(x)≥ax.(ii)当a>1 时,对于0<x<e a﹣1﹣1,g′(x)<0,所以g(x)在(0,e a﹣1﹣1)是减函数,又g(0)=0,所以对0<x<e a﹣1﹣1,都有g(x)<g(0),即当a>1 时,不是对所有的x≥0,都有f(x)≥ax 成立.综上,a 的取值范围是(﹣∞,1].解法二:令g(x)=(x+1)ln(x+1)﹣ax,于是不等式f(x)≥ax 成立即为g(x)≥g(0)成立.对函数g(x)求导数:g′(x)=ln(x+1)+1﹣a令g′(x)=0,解得x=e a﹣1﹣1,当x>e a﹣1﹣1 时,g′(x)>0,g(x)为增函数,当﹣1<x<e a﹣1﹣1,g′(x)<0,g(x)为减函数,所以要对所有x≥0 都有g(x)≥g(0)充要条件为e a﹣1﹣1≤0.由此得a≤1,即 a 的取值范围是(﹣∞,1].点评:本题主要考查了函数的导数和利用导数判断函数的单调性,难度较大,涉及分类讨论的数学思想.25.(14 分)已知抛物线x2=4y 的焦点为F,A、B 是抛物线上的两动点,且.过A、B 两点分别作抛物线的切线,设其交点为M.(Ⅰ)证明为定值;(Ⅱ)设△ABM 的面积为S,写出S=f(λ)的表达式,并求S 的最小值.考点:抛物线的应用.专题:计算题;压轴题.分析:(1)设A(x1,y1),B(x2,y2),M(x o,y o),根据抛物线方程可得焦点坐标和准线方程,设直线方程与抛物线方程联立消去y,根据判别式大于0 求得x1+x2 和x1x2,根据曲线4y=x2 上任意一点斜率为y′= ,可得切线AM 和BM 的方程,联立方程求得交点坐标,求得和,进而可求得•的结果为0,进而判断出AB⊥FM.(2)利用(1)的结论,根据x1+x2的关系式求得k 和λ 的关系式,进而求得弦长AB,可表示出△ABM 面积.最后根据均值不等式求得S 的范围,得到最小值.解答:解:(1)设A(x1,y1),B(x2,y2),M(x o,y o),焦点F(0,1),准线方程为y=﹣1,显然AB 斜率存在且过F(0,1)设其直线方程为y=kx+1,联立4y=x2消去y 得:x2﹣4kx﹣4=0,判别式△=16(k2+1)>0.x1+x2=4k,x1x2=﹣4于是曲线4y=x2 上任意一点斜率为y′= ,则易得切线AM,BM 方程分别为y=()x1(x﹣x1)+y1,y=(11 1 1 1)x 2(x ﹣x 2)+y 2,其中 4y 1=1x 2,4y 2=2x 2,联立方程易解得交点 M 坐标, x o = =2k ,y o = =﹣1,即M (,﹣1) 从而, =(,﹣2),(x 2﹣x 1,y 2﹣y 1)• =(x 1+x 2)(x 2﹣x 1)﹣2(y 2﹣y 1)=题得证.这就说明 AB ⊥FM .2(x12﹣x2)﹣22[1x 2﹣x 2)]=0,(定值)命(Ⅱ)由(Ⅰ)知在△ABM 中,FM ⊥AB ,因而 S=|AB||FM|.∵ ,∴(﹣x 1,1﹣y 1)=λ(x 2,y 2﹣1),即, 而 4y =x 2,4y =x 2, 1 2 2则 x 22= ,x 12=4λ,|FM|====. 因为|AF|、|BF|分别等于 A 、B 到抛物线准线 y=﹣1 的距离,所以|AB|=|AF|+|BF|=y 1+y 2+2=+2=λ+ +2=( )2. 于是 S=|AB||FM|=()3,由≥2 知 S ≥4,且当 λ=1 时,S 取得最小值 4.点评: 本题主要考查了抛物线的应用.抛物线与直线的关系和抛物线的性质等都是近几年高考的热点,故应重点掌握.27.(12 分)设数列{a n }的前 n 项和为 S n ,且方程 x 2﹣a n x ﹣a n =0 有一根为 S n ﹣1,n=1,2,3,…. (1)求 a 1,a 2;(2) 猜想数列{S n }的通项公式,并给出严格的证明.考点: 数学归纳法;类比推理. 专题: 证明题;压轴题. 分析: (1)验证当 n=1 时,x 2﹣a x ﹣a =0 有一根为 a 根据根的定义,可求得 a ,同理,当 n=2 时,也可求得a 2;(2) 用数学归纳法证明数列问题时分为两个步骤,第一步,先证明当当 n=1 时,已知结论成立,第二步,先假设 n=k 时结论成立,利用此假设结合题设条件证明当 n=k+1 时,结论也成立即可. 解答:解:(1)当 n=1 时,x 2﹣a 1x ﹣a 1=0 有一根为 S 1﹣1=a 1﹣1,于是(a1﹣1)2﹣a1(a1﹣1)﹣a1=0,解得a1= .n n n n当 n=2 时,x 2﹣a 2x ﹣a 2=0 有一根为S 2﹣1=a 2﹣, 于是(a 2﹣)2﹣a 2(a 2﹣ )﹣a 2=0,解得 a 2=.(2)由题设(S n ﹣1)2﹣a n (S n ﹣1)﹣a n =0,S 2﹣2S +1﹣a S =0.当 n ≥2 时,a n =S n ﹣S n ﹣1,代入上式得 S n ﹣1S n ﹣2S n +1=0.① 由(1)得 S 1=a 1=,S 2=a 1+a 2= +=. 由①可得 S 3=.由此猜想S n =,n=1,2,3,.下面用数学归纳法证明这个结论.(i ) n=1 时已知结论成立.(ii ) 假设 n=k 时结论成立,即 S k =,当 n=k+1 时,由①得 S k+1=,即 S k+1=,故 n=k+1 时结论也成立.综上,由(i )、(ii )可知 S n =对所有正整数 n 都成立.点评: 本题主要考查数学归纳法,数学归纳法的基本形式:设 P (n )是关于自然数 n 的命题,若 1°P (n 0)成立(奠基) 2°假设 P (k )成立(k ≥n 0),可以推出 P (k+1)成立(归纳),则 P (n )对一切大于等于 n 0 的自然数 n 都成立参与本试卷答题和审题的老师有:wdlxh ;wsj1012;zlzhan ;zhwsd ;yhx01248;涨停;wdnah ;minqi5;qiss ;翔宇老师;liuerq ;xintrl ;congtou ;298520;jj2008(排名不分先后)菁优网2014 年 6 月 6 日“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
2020年全国统一高考数学试卷(理科)(新课标Ⅱ)【含详答】

2020年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题(本大题共12小题,共60.0分)1.已知集合U={−2,−1,0,1,2,3},A={−1,0,1},B={1,2},则C U(A⋃B)=()A. {−2,3}B. {−2,2,3}C. {−2,−1,0,3}D. {−2,−1,0,2,3}2.若α为第四象限角,则()A. cos2α>0B. cos2α<0C. sin2α>0D. sin2α<03.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A. 10名B. 18名C. 24名D. 32名4.北京天坛的圆丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A. 3699块B. 3474块C. 3402块D. 3339块5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x−y−3=0的距离为()A. √55B. 2√55C. 3√55D. 4√556.数列{a n}中,a1=2,a m+n=a m a n,若a k+1+a k+2+⋯+a k+10=215−25,则k=()A. 2B. 3C. 4D. 57.右图是一个多面体的三视图,这个多面体某条棱的一个断点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为()A. EB. FC. GD. H8.设O为坐标原点,直线x=a与双曲线C:x2a2−y2b2=1(a>0,b>0)的两条渐近线分别交于D、E两点,若ODE的面积为8,则C的焦距的最小值为()A. 4B. 8C. 16D. 329.设函数f(x)=ln|2x+1|−ln|2x−1|,则f(x)()A. 是偶函数,且在(12,+∞)单调递增B. 是奇函数,且在(−12,12)单调递减C. 是偶函数,且在(−∞,−12)单调递增D. 是奇函数,且在(−∞,−12)单调递减10.已知▵ABC是面积为9√34的等边三角形,且其顶点都在球O的表面上,若球O 的表面积为16π,则球O到平面ABC的距离为()A. √3B. 32C. 1 D. √3211.11.若2x−2y<3−x−3−y,则()A. ln(y−x+1)>0B. ln(y−x+1)<0C. ln|x−y|>0D. ln|x−y|<012.0−1周期序列在通信技术中有着重要应用,若序列a1a2…a n…满足a i∈(0,1)(i=1,2,…),且存在正整数m,使得a i+m=a i(i=1,2,…)成立,则称其为0−1周期序列,并称满足a i+m=a i(i=1,2,…)的最小正整数m为这个序列的周期.对于周期为m的0−1序列a1a2…a n…,C(k)=1m ∑a i a i+k(k=1,2,…,m−1)mi=1是描述其性质的重要指标.下列周期为5的0−1序列中,满足C(k)≤15(k=1,2,3,4)的序列是()A. 11010…B. 11011…C. 10001…D. 11001…二、填空题(本大题共4小题,共20.0分)13.已知单位向量a,b的夹角为45°,ka−b与a垂直,则k=_______.14. 4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有______种.15.设复数z1,z2满足|z1|=|z2|=2,z1+z2=√3+i,则|z1−z2|=______.16.设有下列四个命题:P1:两两相交且不过同一点的三条直线必在同一平面内.P2:过空间中任意三点有且仅有一个平面.P3:若空间两条直线不相交,则这两条直线平行.P4:若直线l⊂平面α,直线m⊥平面α,则m⊥l.则下述命题中所有真命题的序号是________.①p1∧p4②p1∧p2③¬p2∨p3④¬p3∨¬p4三、解答题(本大题共7小题,共82.0分)17. ▵ABC 中,sin 2A −sin 2B −sin 2C =sinBsinC .(1)求A ;(2)若BC =3,求▵ABC 周长的最大值.18. 某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得∑x i =6020i=1,∑y i =120020i=1,∑(x i −x )2=8020i=1,∑(y i −y )2=900020i=1,∑(x i −x )(y i −y )=8020i=10.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数,√2≈1.414.19. 已知椭圆C 1:x 2a +y2b =1(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与的C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C1的离心率;(2)设M是C1与C2的公共点,若|MF|=5,求C1与C2的标准方程.20.如图,已知三棱柱ABC−A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC 于F.(1)证明:AA1//MN,且平面A1AMN⊥平面EB1C1F;(2)设O为△A1B1C1的中心,若AO//平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.21.已知函数f(x)=sin2xsin2x.(1)讨论f(x)在区间(0,π)的单调性;(2)证明:|f(x)|≤3√3;8(3)设n∈N∗,证明:sin2xsin22xsin24x⋯sin22n x≤3n.4n22.已知曲线C1,C2的参数方程分别为C1:{x=4cos 2θy=4sin2θ(θ为参数),C2:{x=t+1ty=t−1t(t为参数).(1)将C1,C2的参数方程化为普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系.设C1,C2的交点为P,求圆心在极轴上,且经过极点和P的圆的极坐标方程.23.已知函数f(x)=|x2−a|+|x−2a+1|.(1)当a=2时,求不等式f(x)≥4的解集;(2)若f(x)≥4,求a的取值范围.2020年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题(本大题共12小题,共60.0分)1.已知集合U={−2,−1,0,1,2,3},A={−1,0,1},B={1,2},则C U(A⋃B)=()A. {−2,3}B. {−2,2,3}C. {−2,−1,0,3}D. {−2,−1,0,2,3}【答案】A【解析】【分析】本题考查集合的运算,属基础题.先求出A∪B,再求补集.【解答】解:∵A∪B={−1,0,1,2},∴∁U(A∪B)={−2,3}.故选A.2.若α为第四象限角,则()A. cos2α>0B. cos2α<0C. sin2α>0D. sin2α<0【答案】D【解析】【分析】本题考查三角函数在各象限的正负,属于基础题.根据所给角是第四象限角,写出角α的范围,求出2α的范围,进而可判断出三角函数值的正负.【解答】+2kπ<α<2kπ,∴−π+4kπ<2α<4kπ,解:∵−π2∴2α是第三象限或第四象限角或终边在y轴的非正半轴上,∴sin2α<0.故选D.3.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A. 10名B. 18名C. 24名D. 32名【答案】B【解析】【分析】本题考查对概率的理解,通过条件容易得出第二天需配送的总订单数,进而可求出所需至少人数.【解答】解:因为公司可以完成配货1200份订单,=18名.则至少需要志愿者为1600+500−120050故选B.4.北京天坛的圆丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A. 3699块B. 3474块C. 3402块D. 3339块【答案】C【解析】【分析】本题考查等差数列前n项和的性质,属于中档题.由S n,S2n−S n,S3n−S2n成等差数列,可得每一层的环数,通过等差数列前n项和公式可求得三层扇形石板的总数.【解答】解:设每一层有n环,由题可知从内到外每环之间构成等差数列,公差d=9,a1= 9,由等差数列性质知S n,S2n−S n,S3n−S2n成等差数列,且(S3n−S2n)−(S2n−S n)=n2d,则9n2=729,得n=9,×9=3402块.则三层共有扇形面石板为S3n=S27=27a1+27×262故选C.5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x−y−3=0的距离为()A. √55B. 2√55C. 3√55D. 4√55【答案】B【解析】【分析】本题考查直线与圆的位置关系及点到直线的距离计算,属基础题.由圆与坐标轴相切,可得圆心坐标及半径,再用点到直线的距离公式求解即可.【解答】解:设圆心为(a,a),则半径为a,圆过点(2,1),则(2−a)2+(1−a)2=a2,解得a=1或a=5,所以圆心坐标为(1,1)或(5,5),圆心到直线的距离都是d=2√55.故选B.6.数列{a n}中,a1=2,a m+n=a m a n,若a k+1+a k+2+⋯+a k+10=215−25,则k=()A. 2B. 3C. 4D. 5【答案】C【解析】【分析】本题考查等比数列的判定及等比数列前n项求和,属基础题.取m=1,知数列是等比数列,再由等比数列前n项和公式可求出k的值.【解答】解:取m=1,则a n+1=a1a n,又a1=2,所以a n+1a n=2,所以{a n}是等比数列,则a n=2n,所以,得k=4.故选C.7.右图是一个多面体的三视图,这个多面体某条棱的一个断点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为()A. EB. FC. GD. H【答案】A【解析】【分析】本题三视图,考查空间想象能力,属基础题.由三视图,通过还原几何体,观察可知对应点.【解答】解:该几何体是两个长方体拼接而成,如图所示,显然选A.8.设O为坐标原点,直线x=a与双曲线C:x2a2−y2b2=1(a>0,b>0)的两条渐近线分别交于D、E两点,若ODE的面积为8,则C的焦距的最小值为()A. 4B. 8C. 16D. 32【答案】B【解析】【分析】本题主要考查双曲线的几何性质及双曲线的渐近线,属于中档题.【解答】解:双曲线C的两条渐近线分别为y=±bax,由于直线x=a与双曲线的两条渐近线分别交于D、E两点,则易得到|DE|=2b,则S△ODE=ab=8,c2=a2+b2⩾2ab=16,即c⩾4,所以焦距2c⩾8.故选B.9. 设函数f(x)=ln |2x +1|−ln |2x −1|,则f(x)( )A. 是偶函数,且在(12,+∞)单调递增 B. 是奇函数,且在(−12,12)单调递减 C. 是偶函数,且在(−∞,−12)单调递增 D. 是奇函数,且在(−∞,−12)单调递减【答案】D【解析】【分析】本题主要考查函数的奇偶性、单调性,属于中档题. 【解答】解:函数f(−x)=ln |−2x +1|−ln |−2x −1|=ln |1−2x |−ln |2x +1|=−f(x), 则f(x)为奇函数,x ∈(−12,12)时,f(x)=ln(2x +1)−ln(1−2x),单调递增; x ∈(−∞,−12)时,f(x)=ln(−2x −1)−ln(1−2x)=ln 2x+12x−1=ln(1+22x−1),单调递减. 故选D .10. 已知▵ABC 是面积为9√34的等边三角形,且其顶点都在球O 的表面上,若球O 的表面积为16π,则球O 到平面ABC 的距离为( )A. √3B. 32C. 1D. √32【答案】C【解析】【分析】本题主要考查点到平面的距离求法,属于中档题. 【解答】解:设△ABC 的外接圆圆心为O 1,设OO 1=d ,圆O 1的半径为r ,球O 的半径为R , △ABC 的边长为a ,则S △ABC =√34a 2=9√34,可得a =3,于是r =√3=√3, 由题意知,球O 的表面积为16π,则R=2,由R2=r2+d2,求得d=1,即O到平面ABC的距离为1.故选C.11.11.若2x−2y<3−x−3−y,则()A. ln(y−x+1)>0B. ln(y−x+1)<0C. ln|x−y|>0D. ln|x−y|<0【答案】A【解析】【分析】本题主要考查对数函数与指数函数,考查函数的单调性,属于较难题.【解答】解:2x−3−x<2y−3−y,设f(x)=2x−3−x,则f′(x)=2x ln2+3−x ln3>0,所以函数f(x)在R上单调递增,因为f(x)<f(y),所以x<y,则y−x+1>1,ln(y−x+1)>0.故选A.12.0−1周期序列在通信技术中有着重要应用,若序列a1a2…a n…满足a i∈(0,1)(i=1,2,…),且存在正整数m,使得a i+m=a i(i=1,2,…)成立,则称其为0−1周期序列,并称满足a i+m=a i(i=1,2,…)的最小正整数m为这个序列的周期.对于周期为m的0−1序列a1a2…a n…,C(k)=1m ∑a i a i+k(k=1,2,…,m−1)mi=1是描述其性质的重要指标.下列周期为5的0−1序列中,满足C(k)≤15(k=1,2,3,4)的序列是()A. 11010…B. 11011…C. 10001…D. 11001…【答案】C【解析】【分析】本题主要考查新定义类型的问题,属于较难题.【解答】解:对于A选项,C(1)=15∑a i5i=1a i+1=15(1+0+0+0+0)=15,C(2)=15∑a i5i=1a i+2=15(0+1+0+1+0)=25>15,不满足,排除;对于B选项,C(1)=15∑a i5i=1a i+1=15(1+0+0+1+1)=35>15,不满足,排除;对于C选项,C(1)=15∑a i5i=1a i+1=15(0+0+0+0+1)=15,C(2)=15∑a i5i=1a i+2=15(0+0+0+0+0)=0,C(3)=15∑a i5i=1a i+3=15(0+0+0+0+0)=0,C(4)=15∑a i5i=1a i+4=15(1+0+0+0+0)=15,满足;对于D选项,C(1)=15∑a i5i=1a i+1=15(1+0+0+0+1)=25>15,不满足,排除;故选C.二、填空题(本大题共4小题,共20.0分)13.已知单位向量a,b的夹角为45°,ka−b与a垂直,则k=_______.【答案】√22【解析】【分析】本题主要考查平面向量的运算以及向量间的垂直关系,属于基础题.【解答】解:由单位向量a⃗,b⃗ 的夹角为45∘,k a⃗−b⃗ 与a⃗垂直,所以(k a⃗−b⃗ )⋅a⃗=k−√22=0,则k=√22.故答案为√22.14. 4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有______种.【答案】36【解析】【分析】本题考查计数原理,属于基础题.【解答】解:由题意可得不同的安排方法有:C42A33=36.答案:36.15.设复数z1,z2满足|z1|=|z2|=2,z1+z2=√3+i,则|z1−z2|=______.【答案】2√3【解析】【分析】本题考查复数的运算及复数的模,属于基础题.【解答】解:在复平面内,用向量方法求解,原问题即等价于平面向量a⃗,b⃗ 满足|a⃗|=|b⃗ |=2,a⃗+b⃗ =(√3,1),求|a⃗−b⃗ |,由(a⃗+b⃗ )2+(a⃗−b⃗ )2=2|a⃗|2+2|b⃗ |2,可得4+(a⃗−b⃗ )2=16,故|a⃗−b⃗ |=2√3.故答案为2√3.16.设有下列四个命题:P1:两两相交且不过同一点的三条直线必在同一平面内.P2:过空间中任意三点有且仅有一个平面.P3:若空间两条直线不相交,则这两条直线平行.P4:若直线l⊂平面α,直线m⊥平面α,则m⊥l.则下述命题中所有真命题的序号是________.①p1∧p4②p1∧p2③¬p2∨p3④¬p3∨¬p4【答案】①③④【解析】【分析】本题考查含逻辑联结词的命题真假的判断以及立体几何相关知识,属于中档题.【解答】解:对于p1:可设l1与l2,所得平面为α.若l3与l1相交,则交点A必在平面α内.同理l2与l3的交点B在平面α内,故直线AB在平面α内,即l3在平面α内,故p1为真命题.对于p2:过空间中任意三点,若三点共线,可形成无数个平面,故p2为假命题.对于p3:空间中两条直线的位置关系有平行,相交,异面,故p3为假命题.对于p4:若m⊥α,则m垂直于平面α内的所有直线,故m⊥l,故p4为真命题.综上可知,p1∧p4为真命题,¬p2∨p3为真命题,¬p3∨¬p4为真命题.故答案为①③④.三、解答题(本大题共7小题,共82.0分)17.▵ABC中,sin2A−sin2B−sin2C=sinBsinC.(1)求A;(2)若BC =3,求▵ABC 周长的最大值.【答案】解:(1)在▵ABC 中,设内角A ,B ,C 的对边分别为a ,b ,c , 因为sin 2A −sin 2B −sin 2C =sinBsinC ,由正弦定理得,a 2−b 2−c 2=bc ,即b 2+c 2−a 2=−bc , 由余弦定理得,cosA =b 2+c 2−a 22bc =−12,因为0<A <π,所以A =2π3.(2)由(1)知,A =2π3,因为BC =3,即a =3,由余弦定理得,a 2=b 2+c 2−2bccosA , 所以9=b 2+c 2+bc =(b +c )2−bc , 由基本不等式可得bc ≤(b+c )24,所以9=(b +c )2−bc ≥34(b +c )2,所以b +c ≤2√3(当且仅当b =c =√3时取得等号), 所以▵ABC 周长的最大值为3+2√3.【解析】本题主要考查利用正余弦定理解三角形的问题,属于中档题. (1)直接利用正余弦定理即可求解;(2)利用余弦定理与基本不等式即可求解.18. 某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得∑x i =6020i=1,∑y i =120020i=1,∑(x i −x )2=8020i=1,∑(y i −y )2=900020i=1,∑(x i −x )(y i −y )=8020i=10.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数,√2≈1.414.【答案】解:(1)由题可知,每个样区这种野生动物数量的平均数为120020=60,所以该地区这种野生动物数量的估计值为60×200=12000(2)根据公式得r=i −x)(y i−y)ni=1√(x i−x)(y i−y)i=1i=1=80×9000=32≈0.94(3)为了提高样本的代表性,选用分层抽样法更加合理,因为分层抽样可以按照规定的比例从不同的地块间随机抽样,其代表性较好,抽样误差更小。
2022年贵州高考理科数学真题及答案

解:因为 ,即 ①,
要使函数在区间 恰有三个极值点、两个零点,又 , 的图象如下所示:
则 ,解得 ,即 .
故选:C.
12.已知 ,则()
A. B. C. D.
【答案】A
【解析】
【分析】由 结合三角函数的性质可得 ;构造函数 ,利用导数可得 ,即可得解.
【详解】因为 ,因为当
所以 ,即 ,所以 ;
设 ,
,所以 在 单调递增,
(一)必考题:共60分.
17.记 为数列 的前n项和.已知 .
(1)证明: 是等差数列;
(2)若 成等比数列,求 的最小值.
【答案】(1)证明见解析;
(2) .
【解析】
【分析】(1)依题意可得 ,根据 ,作差即可得到 ,从而得证;
(2)由(1)及等比中项的性质求出 ,即可得到 的通项公式与前 项和,再根据二次函数的性质计算可得.
【解析】
【分析】由三视图还原几何体,再由棱柱的体积公式即可得解.
【详解】由三视图还原几何体,如图,
则该直四棱柱的体积 .
故选:B.
5.函数 在区间 的图象大致为()
A. B.
C. D.
【答案】A
【解析】
【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解.
详解】令 ,
则 ,
所以 为奇函数,排除BD;
则 ,所以 ,
所以 ,所以 ,
故选:A
二、填空题:本题共4小题,每小题5分,共20分.
13.设向量 , 的夹角的余弦值为 ,且 , ,则 _________.
【答案】
【解析】
【分析】设 与 的夹角为 ,依题意可得 ,再根据数量积的定义求出 ,最后根据数量积的运算律计算可得.
2023年贵州高考数学(理)试题及答案

A.214.向量||||1,|a b ==- A.15-5.已知正项等比数列{A.76.有60人报名足球俱乐部,60若已知某人报足球俱乐部,则其报乒乓球俱乐部的概率为(A.0.87.“22sin sin αβ+=(1)求证:1AC A C =;(2)若直线1AA 与1BB 距离为2,求19.为探究某药物对小鼠的生长抑制作用,加药物)和实验组(加药物).(1)设其中两只小鼠中对照组小鼠数目为(2)测得40只小鼠体重如下(单位:g)对照组:17.318.420.120.425.426.126.326.4628.3实验组:5.4 6.6 6.810.411.214.417.319.2226.0(i)求40只小鼠体重的中位数m<m≥对照组1.A【分析】根据整数集的分类,以及补集的运算即可解出.【详解】因为整数集{}{}{}|3,|31,|32,x x k k x x k k x x k k ==∈=+∈=+∈Z Z ZZ ,U Z =,所以,(){}|3,U A B x x k k ==∈Z ð.故选:A.2.C【分析】根据复数的代数运算以及复数相等即可解出.【详解】因为()()()22i 1i i i 21i 2a a a a a a a +-=-++=+-=,所以22210a a =⎧⎨-=⎩,解得:1a =.故选:C.3.B【分析】根据程序框图模拟运行,即可解出.【详解】当1n =时,判断框条件满足,第一次执行循环体,123A =+=,325B =+=,112n =+=;当2n =时,判断框条件满足,第二次执行循环体,358A =+=,8513B =+=,213n =+=;当3n =时,判断框条件满足,第三次执行循环体,81321A =+=,211334B =+=,314n =+=;当4n =时,判断框条件不满足,跳出循环体,输出34B =.故选:B.4.D【分析】作出图形,根据几何意义求解.【详解】因为0a b c ++=,所以a b c +=-r r r ,即2222a b a b c ++⋅= ,即1122a b ++⋅=r r ,所以0a b ⋅= .如图,设,,OA a OB b OC c === ,由题知,1,OA OB OC ==AB 边上的高2,2OD AD =所以2CD CO OD =+=1tan ,cos 3AD ACD CD ∠==∠cos ,cos a c b c ACB 〈--〉=∠23421510⎛⎫=⨯-= ⎪⎝⎭.故选:D.22考虑3π3π7π2,2,2222x x x =-==,即x 系,当3π4x =-时,3π3πsin 42f ⎛⎫⎛⎫-=--= ⎪ ⎪⎝⎭⎝⎭当3π4x =时,3π3πsin 142f ⎛⎫=-= ⎪⎝⎭,y 当7π4x =时,7π7πsin 142f ⎛⎫=-= ⎪⎝⎭,所以由图可知,()f x 与1122y x =-的交点个数为故选:C.11.C【分析】法一:利用全等三角形的证明方法依次证得得到PA PB =,再在PAC △中利用余弦定理求得中利用余弦定理与三角形面积公式即可得解;因为底面ABCD 为正方形,AB =又3PC PD ==,PO OP =,所以又3PC PD ==,42AC BD ==,所以在PAC △中,3,42,PC AC ==则由余弦定理可得22PA AC PC =+故17PA =,则17PB =,故在PBC 中,7,3,1P PB C ==所以22cos 2PC BC PB PCB PC BC +-∠=⋅又0πPCB <∠<,所以sin PCB ∠所以PBC 的面积为12S PC BC =⋅法二:连结,AC BD 交于O ,连结PO ,则因为底面ABCD 为正方形,AB =在PAC △中,3,45PC PCA =∠=则由余弦定理可得22PA AC PC =+17PA =,所以22cos 2PA PC AC APC PA PC +-∠=⋅cos 17PA PC PA PC APC ⋅=∠= 不妨记,PB m BPD θ=∠=,因为()(1122PO PA PC PB =+=+ 即2222PA PC PA PC PB PD ++⋅=+ 则()217923923m ++⨯-=++⨯⨯又在PBD △中,22BD PB PD =+26cos 230m m θ--=②,两式相加得22340m -=,故PB 故在PBC 中,7,3,1P PB C ==所以22cos 2PC BC PB PCB PC BC +-∠=⋅又0πPCB <∠<,所以sin PCB ∠所以PBC 的面积为12S PC BC =⋅故选:C.由图可知,当目标函数322z y x =-+过点A 时,z 有最大值,由题意可知,O 为球心,在正方体中,EF =即2R =,则球心O 到1BB 的距离为22OM ON MN =+=所以球O 与棱1BB 相切,球面与棱1BB 只有1个交点,同理,根据正方体的对称性知,其余各棱和球面也只有所以以EF 为直径的球面与正方体每条棱的交点总数为故答案为:1216.2【分析】方法一:利用余弦定理求出AC ,再根据等面积法求出方法二:利用余弦定理求出AC ,再根据正弦定理求出【详解】如图所示:记,,AB c AC b BC a ===,方法一:由余弦定理可得,22222b +-⨯⨯0,解得:13b =+,ABD ACD S S =+ 可得,11sin 602sin 3022AD AD ⨯=⨯⨯⨯+⨯ ()2313323312b AD b +===++.故答案为:2.方法二:由余弦定理可得,22222b +-⨯⨯由正弦定理可得,62sin 60sin sin b B C==,解得:362>>,所以45C = ,180B =30=o ,所以75ADB ∠= ,即AD 故答案为:2.本题压轴相对比较简单,既可以利用三角形的面积公式解决角平分线问题,用角平分定义结合正弦定理、余弦定理求解,知识技能考查常规.1n a n =-()1222nn ⎛⎫-+ ⎪⎝⎭1AC ⊥ 底面ABC ,BC ⊂面ABC 1AC BC ∴⊥,又BC AC ⊥,AC BC ∴⊥平面ACC 1A 1,又BC ⊂平面∴平面11ACC A ⊥平面11BCC B ,过1A 作11A O CC ⊥交1CC 于O ,又平面1AO ∴⊥平面11BCC B 1A 到平面11BCC B 的距离为1,在11Rt A CC △中,111,AC AC CC ⊥设CO x =,则12C O x =-,11111,,AOC AOC ACC △△△为直角三角形,且22211CO A O A C +=,2211A O OC +2211(2)4x x ∴+++-=,解得x 1112AC AC AC ∴===,1AC AC ∴=(2)111,,AC AC BC AC BC =⊥ 1Rt Rt ACB ACB ∴△≌△1BA BA ∴=,过B 作1BD AA ⊥,交1AA 于D ,则224【点睛】。
贵州省黔西南布依族苗族自治州数学高考理数真题试卷(新课标Ⅱ)

贵州省黔西南布依族苗族自治州数学高考理数真题试卷(新课标Ⅱ)姓名:________ 班级:________ 成绩:________一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的 (共12题;共60分)1. (5分)(2018·枣庄模拟) 已知全集,则集合()A .B .C .D .2. (5分)若2cos2α=sin(α﹣),且α∈(,π),则cos2α的值为()A . -B . -C . 1D .3. (5分) (2019高三上·双流期中) 已知圆 ,在圆中任取一点 ,则点的横坐标小于的概率为()A .B .C .D . 以上都不对4. (5分)(2016·淮南模拟) 已知等差数列{an},{bn}的前n项和分别为Sn , Tn ,若对于任意的自然数n,都有 = ,则 + =()A .B .C .D .5. (5分)如果直线ax+by=4与圆x2+y2=4有两个不同的交点,那么点P(a , b)与圆的位置关系是()A . P在圆外B . P在圆上C . P在圆内D . P与圆的位置关系不确定6. (5分)(2017·襄阳模拟) 已知数列{an}满足a1=2,(n∈N*),则a1•a2•a3…a2017=()A . ﹣6B . 6C . ﹣2D . 27. (5分) (2018高一下·伊春期末) 空间某几何体的三视图如右图所示,该几何体的体积为,则正视图与侧视图中x的值为()A . 5B . 4C . 3D . 28. (5分)某校甲、乙两食堂2013年元月份的营业额相等,甲食堂的营业额逐月增加,并且每月增加值相同;乙食堂的营业额也逐月增加,且每月增加的百分率相同。
已知2013年9月份两食堂的营业额又相等,则2013年5月份营业额较高的是()A . 甲B . 乙C . 甲、乙营业额相等D . 不能确定9. (5分)设函数f(x)= ,则f(x)是()A . 奇函数B . 偶函数C . 既是奇函数,又是偶函数D . 既不是奇函数,也不是偶函数10. (5分)正方体的棱长为1,C、D、M分别为三条棱的中点,A、B是顶点,那么点M到截面ABCD的距离是()A .B .C .D .11. (5分)若,则()A . a>b>cB . b>a>cC . c>a>bD . b>c>a12. (5分) (2016高二下·龙海期中) 在等差数列{an}中,若an>0,公差d>0,则有a4•a6>a3•a7 ,类比上述性质,在等比数列{bn}中,若bn>0,q>1,则b4 , b5 , b7 , b8的一个不等关系是()A . b4+b8>b5+b7B . b5+b7>b4+b8C . b4+b7>b5+b8D . b4+b5>b7+b8二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【选修 4-4:坐标系与参数方程】 23.在直角坐标系 xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,
第 4 页(共 26 页)
半圆 C 的极坐标方程为 ρ=2cosθ,θ∈[0, ] (Ⅰ)求 C 的参数方程; (Ⅱ)设点 D 在半圆 C 上,半圆 C 在 D 处的切线与直线 l:y= x+2 垂直,根据(1) 中你得到的参数方程,求直线 CD 的倾斜角及 D 的坐标. 六、解答题(共 1 小题,满分 0 分) 24.设函数 f(x)=|x+ |+|x﹣a|(a>0). (Ⅰ)证明:f(x)≥2; (Ⅱ)若 f(3)<5,求 a 的取值范围.
的数据如表:
年份
2007 2008 2009 2010 2011 2012 2013
年份代号 t 1
2
3
4
5
6
7
人均纯收 2.9
3.3
3.6
4.4
4.8
5.2
5.9
入y
(Ⅰ)求 y 关于 t 的线性回归方程;
(Ⅱ)利用(Ⅰ)中的回归方程,分析 2007 年至 2013 年该地区农村居民家庭人
第 3 页(共 26 页)
D.(﹣∞,﹣1)∪(1,+∞) 二、填空题:本大题共 4 小题,每小题 5 分.(第 13 题~第 21 题为必考题,每个 试题考生都必须作答,第 22 题~第 24 题为选考题,考生根据要求作答)
第 2 页(共 26 页)
13.(5 分)(x+a)10 的展开式中,x7 的系数为 15,则 a= . 14.(5 分)函数 f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为 .
A. B. C. D.
第 1 页(共 26 页)
7.(5 分)执行如图所示的程序框图,若输入的 x,t 均为 2,则输出的 S=( )
A.4 B.5 C.6 D.7 8.(5 分)设曲线 y=ax﹣ln(x+1)在点(0,0)处的切线方程为 y=2x,则 a=( ) A.0 B.1 C.2 D.3
9.(5 分)设 x,y 满足约束条件
,则 z=2x﹣y 的最大值为( )
A.10 B.8 C.3 D.2 10.(5 分)设 F 为抛物线 C:y2=3x 的焦点,过 F 且倾斜角为 30°的直线交 C 于 A,B 两点,O 为坐标原点,则△OAB 的面积为( )
A.
B.
C. D.
11.(5 分)直三棱柱 ABC﹣A1B1C1 中,∠BCA=90°,M,N 分别是 A1B1,A1C1 的中 点,BC=CA=CC1,则 BM 与 AN 所成角的余弦值为( ) A. B. C. D. 12.(5 分)设函数 f(x)= sin ,若存在 f(x)的极值点 x0 满足 x02+[f(x0)]2< m2,则 m 的取值范围是( ) A.(﹣∞,﹣6)∪(6,+∞) B.(﹣∞,﹣4)∪(4,+∞) C.(﹣∞,﹣2)∪(2,+∞)
均纯收入的变化情况,并预测该地区 2015 年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二பைடு நூலகம்估计公式分别为: =
,
=﹣ .
20.(12 分)设 F1,F2 分别是 C: + =1(a>b>0)的左,右焦点,M 是 C
上一点且 MF2 与 x 轴垂直,直线 MF1 与 C 的另一个交点为 N. (1)若直线 MN 的斜率为 ,求 C 的离心率; (2)若直线 MN 在 y 轴上的截距为 2,且|MN|=5|F1N|,求 a,b. 21.(12 分)已知函数 f(x)=ex﹣e﹣x﹣2x. (Ⅰ)讨论 f(x)的单调性; (Ⅱ)设 g(x)=f(2x)﹣4bf(x),当 x>0 时,g(x)>0,求 b 的最大值; (Ⅲ)已知 1.4142< <1.4143,估计 ln2 的近似值(精确到 0.001). 请考生在第 22、23、24 三题中任选一题作答,如果多做,则按所做的第一题计 分,作答时请写清题号.【选修 4-1:几何证明选讲】 22.(10 分)如图,P 是⊙O 外一点,PA 是切线,A 为切点,割线 PBC 与⊙O 相交于点 B,C,PC=2PA,D 为 PC 的中点,AD 的延长线交⊙O 于点 E,证明: (Ⅰ)BE=EC; (Ⅱ)AD•DE=2PB2.
15.(5 分)已知偶函数 f(x)在[0,+∞)单调递减,f(2)=0,若 f(x﹣1)>0, 则 x 的取值范围是 . 16.(5 分)设点 M(x0,1),若在圆 O:x2+y2=1 上存在点 N,使得∠OMN=45°, 则 x0 的取值范围是 . 三、解答题:解答应写出文字说明,证明过程或验算步骤. 17.(12 分)已知数列{an}满足 a1=1,an+1=3an+1. (Ⅰ)证明{an+ }是等比数列,并求{an}的通项公式; (Ⅱ)证明: + +…+ < .
2014 年贵州省高考数学试卷(理科)(全国新课标Ⅱ)
一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只 有一个选项符合题目要求. 1.(5 分)设集合 M={0,1,2},N={x|x2﹣3x+2≤0},则 M∩N=( ) A.{1} B.{2} C.{0,1} D.{1,2} 2.(5 分)设复数 z1,z2 在复平面内的对应点关于虚轴对称,z1=2+i,则 z1z2=( ) A.﹣5 B.5 C.﹣4+i D.﹣4﹣i 3.(5 分)设向量 , 满足| + |= ,| ﹣ |= ,则 • =( ) A.1 B.2 C.3 D.5 4.(5 分)钝角三角形 ABC 的面积是 ,AB=1,BC= ,则 AC=( ) A.5 B. C.2 D.1 5.(5 分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是 0.75, 连续两天为优良的概率是 0.6,已知某天的空气质量为优良,则随后一天的空气 质量为优良的概率是( ) A.0.8 B.0.75 C.0.6 D.0.45 6.(5 分)如图,网格纸上正方形小格的边长为 1(表示 1cm),图中粗线画出 的是某零件的三视图,该零件由一个底面半径为 3cm,高为 6cm 的圆柱体毛坯 切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )
18.(12 分)如图,四棱锥 P﹣ABCD 中,底面 ABCD 为矩形,PA⊥平面 ABCD,E 为 PD 的中点. (Ⅰ)证明:PB∥平面 AEC; (Ⅱ)设二面角 D﹣AE﹣C 为 60°,AP=1,AD= ,求三棱锥 E﹣ACD 的体积.
19.(12 分)某地区 2007 年至 2013 年农村居民家庭人均纯收入 y(单位:千元)