直流输电技术

合集下载

柔性电力技术-第4章-直流输电技术

柔性电力技术-第4章-直流输电技术

i4 i6 i2
V4 V6 V2
Id
n
eW
t
4.2.1 6脉动整流器工作原理
eU
N eV
eW
eU
U
Lr
V
Lr
W
Lr
eV
m
Ld
Id
V1 V3 V5 i1 i3 i5
i4 i6 i2
V4 V6 V2
Id
n
eW
t
4.2.1 6脉动整流器工作原理
m
Ld
Id
V1 V3 V5
eU
U
Lr
i1 i3 i5
N eV
4.2.1 6脉动整流器工作原理
结论:
➢直流电压瞬时值在一个周期内由六段相同的曲线所组成, 取其中一段就可求出直流平均电压Udo。
➢6脉动整流器的理想空载直流电压:
A
6
2EL cos(t)d(t)
2EL sin(t) |6
2EL
6
6
Ud0
A
3
2EL
1.35EL
交流线电压有效值
3
Udo为 0 , 0 时直流电压平均值,称为理想空载直流电压
12脉动换流单元在交流侧和直流侧分别产生12k±1次和12k次的特征谐波。
12脉动换流单元
平波电抗器
换流变压器
换流变压器 交流滤波器
直流滤波器 控制保护装置
2.1 6脉动整流器工作原理
晶闸管换流阀的特点:
单向导电性。
导通条件(两个):
➢ 阳极对阴极为正电压; ➢ 控制极对阴极加能量足够的正向触发脉冲。
➢20世纪90年代以后,电压源换流器得到应用。 • 由于新的大功率自换相器件(如GTO和IGBT)的出现; • 由于数字信号处理(DSP)强大的计算处理能力使得在技 术上能够满足控制要求,在经济上具备竞争力。

特高压直流输电技术

特高压直流输电技术
建设 费用 通道清理费用上涨 后交流架空线路 通道清理费用上涨 后直流架空线路 交流架空线路 直流架空线路

换流站国产化水平 提高后直流架空线 路
换流站建设费用
变电站建设费用
14
0 线路等价距离 线路等价距离 输电距离
-800kV DC
8
(二)直流输电技术的分类 • 按工程结构分类
分类I(按换流站数量分类) • 两端直流输电(或“点对点直流输电”) • 多端直流输电 分类II(按线路长度分类) • 长距离直流输电 • 背靠背直流输电 分类III(按电压等级分类) • (超)高压直流输电 • 特高压直流输电
由地下电缆向大城市供电;
交流系统互联或者配电网增容时,作为限 制短路容量的措施之一;
配合新能源输电。
13
交直流等价距离

直流输电的经济性及交直流经济比较:直流输电两侧换流站费用高, ¥1000元/kW;直流线路相对便宜: ¥250万—¥480万/km;与交流 输电的等价距离:600-800km。 换流站设备价格问题:整体成降价趋势: 输送距离超过一定值时, 交流需要增加中间站,加串补。线路的建设费用问题,整体趋势是 上涨,国外由于线路走廊需要征地,费用更高,等价距离更短。
特高压直流输电技术
1
直流输电技术基本原理
(一)直流输电技术的原理
(二)直流输电技术的分类
(三)直流输电技术的特点
2
(一)直流输电技术的原理
直流电概念(相对于交流大小和方向随时间周期变化) 直流输电工程是以直流电的方式实现电能传输的工程。直流电 必须经过换流(整流和逆变)实现直流电变交流电,然后与交流系 统连接。 直流输电工程构成(换流站、直流线路、接地极、通信与远动)

直流输电技术

直流输电技术
贵广直流工程。三广直流工程于2004年投运;三常直流工程 (±500kV,3000MW, 962km)于2004年5月投入运行。
一、 直流输电技术的发展
我国直流输电的发展:

云南—广东±800kV直流输电工程,额定容量5000MW,
2010年实现双极投运。
向家坝-上海±800千伏特高压直流输电示范工程起于四川
2)晶闸管的模块化结构和额定值增加;
3)换流器采用12或24脉波运行; 4)采用氧化金属变阻器; 5)换流器控制采用数字和光纤技术。
三、 发展特高压输电技术的必要性
电压等级的划分:

交流:
超高压:330kV、500kV 和 750kV; 特高压:1000kV。


直流:
距离大容量输电,不同频率电网之间的联网、
海底电缆和大城市地下电缆等。
一、 直流输电技术的发展
直流输电的发展与换流技术有密切的关系。 (特别与高电压、大功率换流设备的发展) 第一阶段:汞弧阀换流时期

世界上共有12项汞弧阀换流的直流工程投入运行,其中最 大的输送容量为1600MW(美国太平洋联络线I期工程),最高 输电电压为±450kV(纳尔逊河l期工程),最长输电距离为 1362km(太平洋联络线)。 但是汞弧阀制造技术复杂、价格昴贵、逆弧故障率高、可 靠性较差、运行维护不便等因素,使直流输电的应用和发展 受到限制。
一、 直流输电技术的发展
第二阶段:晶闸管阀换流时期
20世纪70年代以后,电力电子技术和微电子技术的迅速 发展,高压大功率晶闸管的问世,晶闸管换流阀和计算机控 制技术在直流输电工程中的应用,这些进步有效地改善了直 流输电的运行性能和可靠性,促进了直流输电技术的发展。

特高压直流输电技术及其应用

特高压直流输电技术及其应用

特高压直流输电技术及其应用一、概述特高压直流输电技术是一种高效能、低损耗、远距离长输、抗干扰能力强且可靠性高的电力输电技术。

特高压直流输电技术的应用不仅可以改善电网的无功角,提高稳定性,而且还可以优化电网的结构布局,提高电能利用率。

二、技术原理特高压直流输电技术是利用电力电子器件对交流电进行整流、变换、滤波处理后,形成直流电,再通过输电线路对直流电进行传输的一项新技术。

特高压直流输电系统主要由换流站、高压直流输电线路和终端换流站等组成。

电源通过换流站的交流侧接入,变为直流电后经过高压直流输电线路输送到接收站,再通过终端换流站变为交流电接入电网。

三、优点1. 低损耗:采用直流输电可避免交流输电过程中会产生的电抗、电流互感等损失。

2. 远距离高效能输电:直流输电线路作为可替代交流输电的新型电网架构,其输送长度远高于交流输电,可在远距离长距离输送电力。

3. 抗干扰能力强:特高压直流输电技术在功率变化、相位跳跃、短时间过载、负载波动以及输电线路受到外来干扰等情况下仍能保证良好的电能传输和供应。

4. 可靠性高:通过对换流站、输电线路、终端换流站等设备进行可靠性设计,并采取智能化技术,可确保特高压直流输电系统的稳定性和安全性。

四、应用1. 遥远地区电力输送:特高压直流输电技术能够长距离超远距离输送电力,为遥远地区的电力需求提供解决方案,并充分利用负载率,实现对电力资源的优化利用。

2. 解决电网瓶颈问题:特高压直流输电技术具有抗干扰能力强和输电长度远的特点,可以有效解决传统交流输电在电网瓶颈问题上的限制。

3. 可再生能源输送:随着可再生能源发电技术的不断发展,特高压直流输电技术可以用于传输风力发电、太阳能发电等可再生能源的电力。

4. 铝、铜资源集中地输电:利用特高压直流输电技术,可以将铝、铜等原材料在世界范围内集中输电,进一步实现资源优化布局。

五、发展前景特高压直流输电技术是未来电力送输的主要方向。

作为一项领先的电力技术,其优越的性能和可靠性,将推动电力输送的新型模式。

高压直流输电技术简析

高压直流输电技术简析

高压直流输电技术简析高压直流输电技术是一种将电能以直流形式进行长距离传输的技术。

相比传统的交流输电技术,高压直流输电技术具有许多优势,如输电损耗小、输电距离远、电网稳定性高等。

本文将对高压直流输电技术进行简析,介绍其原理、应用和发展前景。

一、高压直流输电技术的原理高压直流输电技术是利用变流器将交流电转换为直流电,然后通过高压直流输电线路将直流电进行传输,最后再通过变流器将直流电转换为交流电。

这种技术的核心是变流器,它能够实现电能的双向转换,即将交流电转换为直流电,也可以将直流电转换为交流电。

二、高压直流输电技术的应用1. 长距离输电:高压直流输电技术适用于长距离输电,特别是在海底或山区等地形复杂的地方。

由于直流电的输电损耗较小,可以有效减少能源的浪费,提高输电效率。

2. 交流与直流互联:高压直流输电技术可以实现交流电与直流电的互联,使得不同电网之间可以进行互相补充,提高电网的稳定性和可靠性。

3. 可再生能源输电:随着可再生能源的快速发展,如风能、太阳能等,高压直流输电技术可以有效解决可再生能源的输电问题,将分散的可再生能源集中输送到用电地区,提高能源利用率。

三、高压直流输电技术的发展前景高压直流输电技术在能源领域具有广阔的应用前景。

随着能源需求的增加和能源结构的调整,高压直流输电技术将成为未来能源输送的重要手段。

目前,我国已经建成了多条高压直流输电线路,如长江三峡-上海、青海-河南等,这些线路的建设和运行经验为我国高压直流输电技术的发展提供了宝贵的经验。

未来,高压直流输电技术还将面临一些挑战和机遇。

一方面,随着技术的不断进步,高压直流输电技术的输电效率将进一步提高,输电损耗将进一步降低。

另一方面,随着可再生能源的快速发展,高压直流输电技术将成为可再生能源大规模开发和利用的重要手段。

总之,高压直流输电技术是一种具有广泛应用前景的技术。

它不仅可以实现长距离输电,提高能源利用效率,还可以实现交流与直流的互联,提高电网的稳定性和可靠性。

直流输电课件

直流输电课件
超高压直流输电技术的研发
随着技术的不断进步,人们开始研究超高压直流输电技术,以进一步提高电力 传输的效率和安全性。
超高压直流输电技术的应用
超高压直流输电技术在跨洲、跨国电力传输以及海上风电并网等领域具有广阔 的应用前景。通过采用先进的绝缘材料、控制技术和设备,超高压直流输电技 术的传输容量、稳定性和经济效益将得到进一步提升。
换流器类型
包括整流器和逆变器,分 别用于将交流电转换为直 流电和将直流电转换为交 流电。
换流器控制
对换流器进行控制,确保 其输出稳定的直流电能。
输电线路
线路类型
线路保护
包括架空线路和地下电缆,根据输电 距离和地形选择合适的线路类型。
对输电线路进行保护,防止其受到自 然灾害和人为破坏的影响。
线路设计
互联。
直流输电的应用场景
大规模风电和太阳能发电基地的并网输送
01
直流输电可以用于大规模可再生能源基地的并网输送,实现清
洁能源的优化配置和利用。
城市和工业园区的供电
02
直流输电可以用于城市和工业园区的供电,提高供电可靠性和
稳定性。
跨区域大电网互联
03
直流输电可以用于实现跨区域大电网互联,提高电网的稳定性
和可靠性。
02
直流输电系统的组成
电源010203电源类型包括化石燃料发电、核能 发电、可再生能源发电等。
电源接入
电源通过换流站接入直流 输电系统,实现电能转换 和传输。
电源控制
对电源进行控制,确保其 输出稳定的直流电能。
换流器
工作原理
换流器通过控制半导体开 关的通断,实现交流电与 直流电之间的转换。
政策和市场环境
政府政策和市场环境对直流输电技术的发展和应用具有重要影响, 需要加强政策支持和市场推广。

直流输电技术

直流输电技术

直流输电技术摘要直流输电是指,将发电厂发出的交流电,经整流器变换成直流电输送至受电端,再用逆变器将直流电变换成交流电送到受端交流电网的一种输电方式。

主要应用于远距离大功率输电和非同步交流系统的联网,具有线路投资少、不存在系统稳定问题、调节快速、运行可靠等优点。

直流输电系统主要由换流站(整流站和逆变站)、直流线路、交流侧和直流侧的电力滤波器、无功补偿装置、换流变压器、直流电抗器以及保护、控制装置等构成。

其中换流站是直流输电系统的核心,它完成交流和直流之间的变换。

直流输电的发展也受到一些因素的限制。

首先,直流输电的换流站比交流系统的变电所复杂、造价高、运行管理要求高;其次,换流装置(整流和逆变)运行中需要大量的无功补偿,正常运行时可达直流输送功率的40~60%;换流装置在运行中在交流侧和直流侧均会产生谐波,要装设滤波器;直流输电以大地或海水作回路时,会引起沿途金属构件的腐蚀,需要防护措施。

要发展多端直流输电,需研制高压直流断路器。

随着电力电子技术的发展,大功率可控硅制造技术的进步、价格下降、可靠性提高,换流站可用率的提高,直流输电技术的日益成熟,直流输电在电力系统中必然得到更多的应用。

当前,研制高压直流断路器、研究多端直流系统的运行特性和控制、发展多端直流系统、研究交直流并列系统的运行机理和控制,受到广泛的关注。

许多科学技术学科的新发展为直流输电技术的应用开拓着广阔的前景,多种新的发电方式──磁流体发电、电气体发电、燃料电池和太阳能电池等产生的都是直流电,所产生的电能要以直流方式输送,并用逆变器变换送入交流电力系统;极低温电缆和超导电缆也更适宜于直流输电,等等。

今后的电力系统必将是交、直流混合的系统。

关键字直流输电直流输电系统系统结构运行特点目录1.直流输电技术发展 (3)1.1汞弧阀换流时期 (3)1.2 晶闸管阀换流时期 (3)1.3 新型半导体换流设备的应用 (4)2. 轻型直流输电 (4)2.1直流输电的特点 (4)2.2轻型直流输电和普通直流输电的区别 (5)3. 直流输电系统 (5)3.1两端直流输电系统 (5)3.1.1 单极系统 (6)3.1.2 双极系统 (7)3.1.3 背靠背直流系统 (9)3.2多端直流输电系统 (9)4. 直流输电的换流技术 (10)4.1换流站的基本换流单元 (10)4.1.1 6脉动换流单元 (11)4.1.2 12脉动换流单元 (11)4.2直流输电换流技术的新发展 (12)4.2.1 传统直流输电的缺陷 (12)4.2.2 传统直流输电的新发展 (12)4.3基于电压源换流器的新型高压直流输电系统 (13)4.3.1 基于电压源换流器的新型直流输电的实现 (13)4.3.2 新型直流输电的控制方法 (14)4.3.3 新型直流输电的技术特点 (14)5. 直流输电的应用和发展 (14)5.1直流输电的应用 (14)5.2直流输电的发展 (15)1.直流输电技术发展电力技术的发展是从直流电开始的,早期的直流输电是不需要经过换流的直流输电,即发电、输电和用电均为直流电。

电力系统中直流输电技术的应用及其经济效益分析

电力系统中直流输电技术的应用及其经济效益分析

电力系统中直流输电技术的应用及其经济效益分析随着时代的发展和科技进步,电力系统的建设和改造也在不断地加强。

而直流输电技术作为一项先进的输电技术,在电力系统中的应用也越来越广泛。

本文将探讨直流输电技术在电力系统中的应用以及其带来的经济效益。

一、直流输电技术的基本原理1.1 直流输电技术的定义直流输电技术,顾名思义,就是指将电能通过直流电路输送到相应的终端,无需经过交流变电站或其他交流设备进行转换,从而提高系统的能效和稳定性。

1.2 直流输电技术的优势与交流输电技术相比,直流输电技术有着更为显著的优势。

具体表现在以下几个方面:(1)高效节能。

直流输电的能效比交流输电更高,可以节省输电过程中的能量损失。

(2)传输距离远。

相比较交流输电,直流输电在传输距离上具有更大的优势。

因此,在远程输电时,直流输电技术的优势更加明显。

(3)支持大容量输电。

直流输电技术可以实现高电压、大容量的输电,适用于大型电力系统的建设。

(4)更高的安全性和可靠性。

由于直流输电不需要经过变频器等设备,所以整个过程中的电量稳定性更高,导线损耗少,从而提高了系统的安全性和可靠性。

二、直流输电技术在电力系统中的应用2.1 直流输电技术在远程输电中的应用作为直流输电技术最为显著的特点,远程输电是直流输电技术在电力系统中的主要应用之一。

在远距离输电时,交流电就会经过多次的变频处理,导致能量损失和电量不稳定。

而直流输电则直接将电能输送到目的地,这种方式更加高效和稳定。

例如,我国“西电东送”工程,便是利用直流输电技术进行远距离输电的典型案例。

2.2 直流输电技术在海洋风电场的应用近年来,随着全球注重环保和可持续发展的意识不断加强,海洋风电的兴起日益强劲。

而海洋风电产生的电能需要通过输电线路输送回岸上电力系统进行利用。

由于海洋环境的特殊性,交流输电的建设难度较大。

而直流输电技术则可以克服这一难题,为海洋风电的开发提供了可靠的输电方式。

2.3 直流输电技术在特殊工况下的应用除了远距离输电和海洋风电场,直流输电技术还可以在一些特殊工况下进行应用。

±800千伏特高压直流输电原理

±800千伏特高压直流输电原理

近年来,随着能源互联网的不断发展,±800千伏特高压直流输电技术备受关注。

本文将从深度和广度两个方面,全面评估这一技术,并撰写一篇有价值的文章,以便读者更加深入地理解这一主题。

一、技术原理1.1 ±800千伏特高压直流输电的基本概念在电力输电领域,直流输电和交流输电各有优势和劣势。

直流输电具有输电损耗小、输电距离远等优点,因此被广泛应用于大距离、大功率的电力输送。

而±800千伏特高压直流输电技术,作为直流输电的一种重要形式,其基本原理在于通过将正负极之间的电压差维持在±800千伏,实现远距离、大容量的电力输送。

1.2 输电线路的构成和特点在±800千伏特高压直流输电技术中,输电线路是其核心组成部分。

该技术的输电线路通常由直流电源、换流站、传输线路、换流站和接收端设备组成。

其中,直流电源部分包括换流变压器、滤波器等设备,而传输线路则采用高压直流输电线路,这些设备共同构成了±800千伏特高压直流输电系统。

二、技术应用2.1 ±800千伏特高压直流输电在国内外的应用目前,±800千伏特高压直流输电技术已经在国内外得到了广泛应用。

在我国,±800千伏特高压直流输电已经在西北等地区实现了大规模的应用,为区域间的大容量输电提供了有效的技术支持;在国际上,类似的技术也被广泛应用于远距离、大容量的国际输电项目中,为全球能源互联网建设提供了有力的技术支撑。

2.2 技术的优势和挑战在实际应用中,±800千伏特高压直流输电技术具有诸多优势,如输电损耗小、占地面积少、造价低等,但同时也面临着技术难度大、设备成本高等挑战。

在实际应用中需要充分权衡其优势和挑战,以实现最佳的技术应用效果。

三、个人观点±800千伏特高压直流输电技术作为直流输电的一种重要形式,其在能源互联网建设中具有重要意义。

我认为,随着我国能源互联网的不断发展,±800千伏特高压直流输电技术将在未来得到更加广泛的应用,并为我国电力系统的高效、安全运行做出更大的贡献。

直流输电技术在电力系统中的应用分析

直流输电技术在电力系统中的应用分析

直流输电技术在电力系统中的应用分析近年来,随着能源需求的不断增长和传统电力系统的限制,直流输电技术在电力行业中得到了广泛关注和应用。

直流输电技术以其高效、稳定、灵活的特点,成为解决长距离输电、大规模新能源接入、能源互联互通等问题的有效手段。

本文将对直流输电技术在电力系统中的应用进行分析。

一、直流输电技术的基本原理与优势直流输电技术是指将发电厂产生的交流电转换为直流电进行输送的一种技术。

与传统的交流输电技术相比,直流输电技术具有以下几个优势。

首先,直流输电技术具有更高的输电效率。

在交流输电中,由于电流和电压频繁变化,电线电缆中存在着一定的电阻与电感,从而产生导致能量损耗的电阻与电感损耗。

而直流输电中,电流和电压始终保持一个方向不变,避免了由电阻和电感引起的损耗,从而提高了输电效率。

其次,直流输电技术具有更远的传输距离。

在传统交流输电中,随着输电距离的增加,电线电缆中的电阻和电感损耗将会更加明显,导致传输能力下降。

而直流输电中,由于没有电阻和电感的损耗,传输距离可以更长,可以实现远距离输电。

再次,直流输电技术具有更高的适应性。

直流输电系统可以通过调整换流器的工作方式,实现功率的双向传输。

在实际应用中,直流输电技术可以灵活应对电力系统中的负荷波动和电力供需平衡问题,同时能够方便地实现多能源互联互通,如风电、光电等新能源与传统能源的接入。

二、直流输电技术在电力系统中的应用场景1. 长距离输电直流输电技术在长距离输电中具有明显的优势。

在传统交流输电中,由于电导率和电感的限制,长距离输电会导致较大的能量损失。

而直流输电技术则可以克服这一问题,有效减少输电线路的能量损失。

通过直流输电技术,可以实现超过1000公里的远距离输电,为偏远地区和边远地区提供了可靠的电力供应。

2. 大规模新能源接入随着新能源的快速发展,直流输电技术成为实现新能源大规模接入的重要手段。

由于新能源发电具有间歇性和不可控性的特点,传统交流输电技术很难有效吸纳大规模新能源。

直流输电技术的研究与应用

直流输电技术的研究与应用

直流输电技术的研究与应用引言:直流输电技术是电子与电气工程领域中的一项重要研究课题,其应用能够显著提高电力传输效率、降低能源损耗,并且有助于解决远距离电力传输中的诸多挑战。

本文将探讨直流输电技术的研究进展、应用领域以及未来发展趋势。

1. 直流输电技术的原理与特点直流输电技术是指将电能以直流形式进行传输的一种电力传输方式。

与传统的交流输电技术相比,直流输电具有以下几个显著特点:首先,直流输电能够有效降低输电线路的电阻损耗。

在交流输电中,由于电流的周期性变化,导致输电线路存在较大的电阻损耗,而直流输电则能够避免这种损耗,提高能源利用率。

其次,直流输电技术具有较低的电磁辐射水平。

交流输电中,电流的频繁变化会产生较强的电磁辐射,对周围环境和人体健康造成潜在影响。

而直流输电则能够显著降低电磁辐射水平,减少对环境的影响。

此外,直流输电技术还具备较高的输电容量和稳定性。

由于直流电流的稳定性较好,可以通过合理设计输电线路和设备,提高输电容量和稳定性,满足不同规模的电力传输需求。

2. 直流输电技术的研究进展近年来,随着电力需求的不断增长和能源互联网的发展,直流输电技术得到了广泛关注和研究。

在直流输电技术的研究中,主要涉及以下几个方面的进展:2.1 高压直流输电技术高压直流输电技术是直流输电领域的核心研究方向之一。

通过提高输电电压,可以有效降低输电线路的电阻损耗,提高输电效率。

研究人员通过改进直流输电线路的设计和材料,提高输电电压的稳定性和安全性,以实现高效高压直流输电。

2.2 直流输电换流技术直流输电换流技术是直流输电系统中的关键环节,用于实现交流电网和直流输电线路之间的能量转换。

目前,多种直流输电换流技术被广泛研究和应用,如基于半导体器件的换流技术、多电平换流技术等。

这些技术的不断创新和改进,为直流输电系统的稳定运行提供了可靠的支持。

2.3 直流输电系统的控制与保护技术直流输电系统的控制与保护技术是直流输电研究的重要方向之一。

特高压直流输电技术现状及在我国的应用前景

特高压直流输电技术现状及在我国的应用前景

近年来,特高压直流输电技术取得了丰硕的研究成果。在理论成果方面,研 究者们针对特高压直流输电系统的运行特性、稳定性分析、优化控制等方面进行 了深入探讨,提出了一系列新的理论和方法。在应用实践方面,特高压直流输电 技术已经在国内外多条电力工程中得到了广泛应用,如中国的三峡工程、巴西的 美丽山二期工程等,取得了良好的运行效果和社会效益。
特高压直流输电技术现状及在我国 的应用前景
目录
01 一、特高压直流输电 技术现状
02
二、特高压直流输电 技术特点
03
三、特高压直流输电 技术应用前景
04 四、特高压直流输电 技术在我国的应用
05 五、结论
06 参考内容
随着全球能源结构的调整和电力市场的不断发展,特高压直流输电技术成为 了电力行业的重要研究方向。特高压直流输电具有输电距离远、容量大、损耗低 等特点,对于实现能源资源的优化配置和能源供应的安全性、可靠性具有重要意 义。本次演示将介绍特高压直流输电技术的现状及在我国的应用前景。
二、特高压直流输电技术特点
特高压直流输电技术具有以下特点:
1、输电距离远:特高压直流输电的电压等级较高,一般为1000kV及以上, 使得电能能够远距离传输,大大扩展了电力系统的覆盖范围。
2、容量大:特高压直流输电工程的输送容量较大,一般在1000万至2000万 千瓦之间,甚至更高,使得大规模能源资源的优化配置成为可能。
1、能源传输:特高压直流输电技术的远距离输送特点使得不同地区的能源 资源能够得到优化配置。例如,可将中西部地区的丰富能源通过特高压直流输电 线路输送到东部地区,满足东部地区经济社会发展的紧急救援:在自然灾害或其他紧急情况下,特高压直流输电技术可以迅 速恢复受灾地区的电力供应。例如,通过特高压直流输电线路向受灾地区输送电 力资源,保障灾区人民的基本生活需求和应急救援工作的正常进行。

直流输电技术体系

直流输电技术体系

直流输电技术体系直流输电技术体系(Direct Current Transmission Technology)是一种电力传输方式,与传统的交流输电技术相比有很多优势。

和交流输电技术相比,直流输电技术容量更大、输电距离更远、输电损失更少。

直流输电技术目前被广泛应用于高压输电线路、海底电缆、能源互联网等领域。

直流输电技术体系包括以下方面。

1. 换流站技术直流输电技术靠换流站实现梯级功率转换。

换流站是直流输电系统的核心设备,把交流电能转换成直流电能,实现输电方向的转变。

换流站由交流侧整流机组、直流侧逆变机组以及互连变压器等部件组成。

换流站的设计对直流输电系统的稳定性和可靠性有很大影响。

2. 直流输电线路技术直流输电线路技术主要包括直流输电导线和直流输电杆塔的设计和制造。

为了减小电阻损耗,直流输电导线要选用高导电性能的材料,如铜、铝等。

直流输电线路的导线间距也有一定的要求,一般来说是5-7米,这可以尽可能的减少线路的交叉阻抗。

直流输电杆塔的制造也非常关键,因为直流输电线路的输电功率3. 直流输电电缆技术直流输电电缆是一种覆盖在高压输电线路或悬挂在杆塔上的电缆。

它将直流电输送到需要的地方,同时还可以提高电力传输的可靠性和稳定性,并减少对自然环境的影响。

直流输电电缆的输电能力和种类也有所不同,可以根据需要选择适合的电缆方式进行传输。

4. 直流输电控制技术直流输电控制技术是直流输电技术中最核心的技术之一。

直流输电技术需要保证电气信号的同步性,为了实现这一要求,需要使用先进的控制技术,来完成对整个直流输电系统的实时监测和控制。

同时,直流输电技术还需要适配电力系统的特点,如本地系统的电气参数、远地的电气参数等,确保直流输电系统稳定运行。

总之,直流输电技术体系的发展,可以为我国经济发展和新能源的利用提供重要的支撑。

未来,随着技术的不断发展和传输容量的不断提高,直流输电技术必将成为提高我国能源利用效率、构建可持续发展的新能源体系的重要手段。

特高压直流输电技术

特高压直流输电技术

交流系统互联或者配电网增容时,作为 限制短路容量的措施之一;
配合新能源输电。
32
三、特高压直流输电技术应用与实践
(一)直流工程建设选择 (二)我国特高压直流技术实践成就
33
(一)直流工程建设选择
直流工程要因地制宜:

不同电压等级、不同频率的两个交流系统联网,或者两个弱交 流系统联网,推荐直流工程(背靠背)。
1888年三相交流电的出现是电工技术发展的一个重要里程碑,交流电 网建设得到迅速发展,并很快占据了主导地位。
能方便而又经济地升高或降低电压,使远距离输电成为可能。 三相交流发电机和电动机结构简单,价格低,容量又可设计得很大。 三相交流电气设备效率高,运行维护简单。
4
(一)直流输电的兴起
交流输电在发展过程中也遇到了问题,
5
(二)直流输电的发展
瑞典哥特兰岛直流工程是世 界上首个商用高压直流输电 工程,直流电压100kV、功率 20MW。
高压直流输 电技术 三相交流变 压器 特高压直流 输电技术
直流发电机
电磁感应 定律
汞弧阀
晶闸管阀
1831年
1870年
1891年
1954年
2010年
6
(二)直流输电的发展
汞弧阀
制造技术复杂、价格昂 贵、逆弧故障率高、可 靠性较低、运行维护不 便
临沂 重庆
绍兴 泰州 武汉 新余 成都
±800 ±800
±800 ±800 ±800 ±800 ±1100
760 760
760 760 760 760 1050
1200 2300
2000 1600 1450 1400 2687
22
二、直流输电技术基本原理

直流输电技术的研究与应用发展

直流输电技术的研究与应用发展

直流输电技术的研究与应用发展随着全球化进程的加速和城市化程度的提高,电力需求快速增长。

传统的交流输电方式已经不能满足不断扩大的电力负荷,直流输电技术应运而生。

直流输电技术具有可靠性高、能耗低、输电距离远等优点,被广泛应用于国际能源互联网建设、大型跨海跨山输电工程以及绿色能源开发利用等领域。

本文从技术原理、应用领域、发展趋势等方面,对直流输电技术进行探讨。

一、技术原理直流输电技术是指将交流电转换为直流电,利用半导体功率器件将直流电输送到远距离的负荷端,再将其转换为交流电供电设备使用。

与传统的交流输电方式不同,直流输电技术可以通过高功率半导体器件将电能从源端以高电压、低电流的方式输送到终端,降低了输电线路的电阻、电感损耗,提高了输电效率。

二、应用领域1. 国际能源互联网建设随着全球化的加速,国际能源互联网建设已成为国际能源合作的重要方向。

而直流输电技术则是实现国际能源互联网的重要技术支撑。

利用直流输电技术,可以实现不同国家之间的能源共享,促进全球能源可持续发展。

2. 大型跨海跨山输电工程直流输电技术在大型跨海跨山输电工程中应用广泛。

由于交流输电线路在远距离传输电能时会受到电阻和电感损耗的限制,输电线路的开销会很大。

而直流输电技术可以通过高电压、低电流的方式降低输电线路电阻、电感的影响,实现长距离电能传输。

例如中国南方的西部电网与东部电网、世界各地的海底电缆输电工程等。

3. 绿色能源开发利用随着全球对绿色能源的需求不断增长,直流输电技术也成为开发和利用绿色能源的有效手段。

例如,风能、太阳能等可再生能源与直流输电技术相结合,可以实现小型独立电力系统的建设和运营。

同时,直流输电技术还可以降低输电损耗,提高电力系统的能源利用率,从而实现经济和环保的双重效益。

三、发展趋势1. 高温超导材料的应用将进一步推动直流输电技术的发展。

高温超导材料具有极低的电阻和磁阻,可以实现长距离、大容量电能输送,减少输电线路的电阻和电感损耗,提高输电效率。

直流输电技术在电网中的应用

直流输电技术在电网中的应用

直流输电技术在电网中的应用随着工业化和城市化进程的加速,对电力的需求也越来越大。

为了满足远距离电力传输的需求,直流输电技术被广泛应用于电网系统中。

本文将介绍直流输电技术在电网中的应用,包括其优势、实施方法和未来发展方向。

一、直流输电技术的优势1. 高效传输:相比交流输电,直流输电具有更高的传输效率。

由于直流输电不会受到交流输电的电阻、电感和电容损耗,能够减少能量的损失,提高传输效率。

2. 远距离传输:直流输电技术适用于远距离的电力传输,能够有效地减少传输线路的电阻和电容对电力传输的影响,达到长距离输电的要求。

3. 节约资源:直流输电系统在长距离输电中需要的输电线路较少,相比交流输电系统能够节省用于输电线路建设的土地面积和材料资源。

4. 稳定性高:直流输电系统具有较高的稳定性和可靠性。

在电网中引入HVDC(高压直流输电)技术能够有效地降低电力系统的短路故障率和电网频繁发生的故障。

二、直流输电技术的实施方法1. HVDC线路:HVDC线路是实现直流输电的基础。

它由直流电源、换流器和传输线路组成。

直流电源将交流电转换为直流电,换流器则将直流电转换为交流电,实现电力的传输。

2. 换流站:换流站是直流输电系统中的重要组成部分。

它用于将交流电转换为直流电或将直流电转换为交流电。

换流站还能够调节输电线路上的电压、频率和功率,并对电力进行可靠地分配和控制。

3. 并网技术:并网技术是将直流输电系统与交流输电系统灵活地连接起来,使得直流输电系统能够与现有的交流电网兼容。

这种技术实现了直流输电系统与交流输电系统之间的相互衔接,确保电力的平稳传输。

三、直流输电技术的未来发展方向1. 降低成本:随着技术的进步和应用的推广,直流输电技术的成本将逐渐降低。

特别是在换流器的制造和线路建设方面,通过改进工艺和降低材料成本,能够进一步降低直流输电系统的造价。

2. 提高传输容量:随着能源需求的不断增长,直流输电技术需要进一步提高其传输容量。

直流输电技术

直流输电技术

送端和受端换流器均采用VSC,则两个换流器具有
相同的结构。换流器由换流桥、换流电抗器、直流
电容器和交流滤波器组成。换流桥每个桥臂均由多
个IGBT 串联而成。换流电抗器是VSC 与交流侧能量
交换的纽带,同时也起到滤波的作用。直流电容器 的作用是为逆变器提供电压支撑、缓冲桥臂关断时 的冲击电流、减小直流侧谐波。交流滤波器的作用 是滤除交流侧谐波。
2019/4/5
4
换流器整流前后电压波形:
直流电压(平均值):
3 Ud 2U 1.35U
5
2019/4/5
换向器阀电流和交流侧电流
交流电源各相电 流由与该相相连 的两个阀中的电 流合成
2019/4/5
6
1.2直流输电系统的类型:
有三种不同类型值得直流输电系统 1、点对点直流输电系统
2019/4/5
3
HVDC输电的核心是相控换流器(PCC)
阀的从关断到导通必须同时具 有两个条件: (1)阀要承受正向电压,即 阀的阳极点位高于阴极电位; 控制极的到足够能量的触发脉 冲信号。 (2)阀在导通状态下流通电 流降为0时才会关断,并在承 受足够的反向电压后确保关断。
简单的的六脉冲换流器
Q U g (U g Un cos ) / X
2019/4/5
23
2.4脉宽调制技术
PWM的控制方式就是对逆变电路开关器件的通断进行控 制,使输出端得到一系列幅值相等而宽度不等的脉冲, 用这些脉冲来代替正弦波或所要的波形。PWM通过在两 固定直流电压间快速切换来产生交流电压,并通过交流 低通滤波器从高脉冲调制电压中得到期望的基波电压。 使用PWM技术,可以瞬时地改变交流输出电压的相位与 幅值,从而实现有功无功的独立调节,经过PWM逆变的 交流电压可随控制系统的变化而变化,这样可以省略传 统HVDC中的换流变压器,是电路结构简单,缩小占地面 积。

高压直流输电技术简析

高压直流输电技术简析

高压直流输电技术简析1. 引言高压直流输电技术是一种将电能以直流形式进行长距离传输的技术。

相比于传统的交流输电技术,高压直流输电技术具有许多优势,如输电损耗小、线路占地面积小、环境影响小等。

本文将对高压直流输电技术进行简要分析和介绍。

2. 高压直流输电的原理高压直流输电是利用变流器将交流电转换为直流电,并通过高压直流线路进行传输。

在送端,变流器将交流电转换为直流电,并通过高压直流线路输送到接收端。

在接收端,变流器将直流电转换为交流电供给用户使用。

3. 高压直流输电的优势3.1 输电损耗小相比于交流输电,高压直流输电的输电损耗更小。

这是因为在高压直流线路上,由于没有交变磁场的存在,导线的电阻损耗和感应损耗都会减小,从而提高了输电效率。

3.2 线路占地面积小由于高压直流输电线路的输电损耗小,所以可以采用较小的导线截面积,从而减小了线路的占地面积。

这对于在城市中进行输电非常重要,可以减少对土地资源的占用。

3.3 环境影响小相比于交流输电,高压直流输电对环境的影响更小。

由于高压直流线路没有交变磁场的存在,所以对周围环境和生物没有产生明显的影响。

这对于保护生态环境具有重要意义。

4. 高压直流输电的应用4.1 远距离输电由于高压直流输电技术具有输电损耗小的优势,所以适用于远距离输电。

在远距离输电中,高压直流输电可以减少能量损耗,提高能源利用效率。

4.2 海底输电高压直流输电技术还适用于海底输电。

由于海底环境复杂,传统的交流输电技术很难实现海底输电。

而高压直流输电技术可以通过特殊设计的海底线缆实现海底输电,具有较高的可靠性和稳定性。

4.3 新能源接入随着新能源的快速发展,高压直流输电技术也被广泛应用于新能源接入。

由于新能源发电站通常位于偏远地区,而用户需求集中在城市中,传统的交流输电技术无法满足需求。

而高压直流输电技术可以将新能源从发电站输送到城市,实现新能源的大规模接入。

5. 高压直流输电技术的挑战虽然高压直流输电技术具有许多优势,但也面临一些挑战。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直流输电技术课程报告柔性直流输电在城市配电网中的应用院系:电气工程及自动化学院姓名:学号:导师:时间:1.城市配电网交流供电存在问题城市电网是城市现代化建设的重要基础设施之一,是电力系统的主要负荷中心,具有用电量大、负荷密度高、安全可靠和供电质量要求高等特点。

随着城市化进程的不断推进和社会经济的高速发展,城市负荷不仅持续快速增长,并且对供电可靠性以及电能质量的要求越来越高,因此,向城市负荷中心供给大量优质可靠的电能将面临越来越大的困难和挑战。

一,随着城市发展建设的日趋成熟,从环境保护以及土地资源的限制考虑,不仅制约了大容量电源的建设,而且造成向城市供电的线路走廊越来越拥挤,甚至出现缺少必要线路走廊的供电瓶颈;二,由于增加城市供电能力的投资成本越来越高,人们对于健康和居住环境的要求增高,因此需要采取合适的供电方式以节约资金、减少电网建设运行对城市居住环境的影响;三,随着城市供电容量的增加,系统的短路电流增大,这对于开关设备以及其他网络元件的安全运行造成极大的威胁;还有,城市负荷对于供电可靠性以及电能质量的要求越来越高,这就需要向城市负荷中心供电应该满足运行灵活、可控性高的要求,以满足各种运行情况的需求。

目前城市电网的供电方式依然采用高压交流供电,特别是大城市或者中小城市中心区域采用地下电缆供电,高压交流电缆供电在一定程度上解决了城市供电中架空线走廊缺乏、电力设施与城市景观不和谐等问题,但依然受到供电距离、无功消耗较大等问题的限制。

2.城市配电网采用柔性直流输电的优点柔性直流输电能瞬时实现有功和无功的独立解耦控制,结构紧凑、占地面积小、易于构成多端直流系统;能向系统提供有功和无功的紧急支援,在提高系统的稳定性和输电能力等方面具有优势。

利用这些特点不仅可以解决目前城市电网存在的问题,而且可以满足未来城市电网的发展要求,改善系统的安全稳定运行。

主要表现在以下几个方面:(1)增强城市电网的供电能力,满足城市日益增长的负荷需求 VSC-HVDC 采用新型的直流电缆,不仅占用空间小、输电能力强,而且可以安装在现有的交流电缆管或线路走廊,这样可以充分利用输电走廊,增强城市电网的供电能力,满足城市负荷需求。

(2)为城市负荷中心提供必要的无功支撑,克服电压稳定性所构成的限制VSC-HVDC 不仅能实现有功和无功的独立快速控制,还能动态补偿交流母线的无功,稳定母线的电压。

这不仅可以有效缓解城市中心区大量的地下交流电缆以及空调负荷比例的日益增大造成的无功缺乏问题,还可以为城市负荷中心提供必要的无功支撑,维持城市电网的安全稳定运行。

(3)提高城市电网可控性和安全可靠性 VSC-HVDC 具有快速多目标控制能力,可实现正常运行时潮流的优化调节故障时交流系统之间的快速紧急支援和故障隔离。

此外,还可增强系统的可控性和抗扰动能力,从而达到提高稳定性、运行可靠性和不增加短路容量、改善电能质量的目的。

(4)增强城市电网建设的可实施性,节省电力建设成本 VSC-HVDC 结构紧凑、占用空间小,模块化的设计使得设计、生产、安装和调试周期大为缩短。

采用新型的直流电缆不仅安装容易、快速,而且机械强度和柔韧性好、重量轻,更重要的是无油、电磁辐射和无线电干扰小,利于实现与市政设施和环境的协调。

不仅增强城市电网建设的可实施性,而且可节省征地、赔偿等建设成本。

(5)满足电力市场要求,方便新能源接入 VSC-HVDC 快速灵活的有功无功控制能力,可实现电力市场运作的要求,即灵活控制潮流的能力,提供无功支撑等辅助服务,最大限度地满足电源与用户之间输送能力的要求。

VSC-HVDC 不仅可以实现对输送功率的控制,而且改善所连接换流站的电压和频率,方便新能源的接入和增强系统可扩展性。

3.城市配电系统采用直流输电的技术、经济可行性分析输电线路的成本由基础设施投资和运行成本构成,基础设施投资包括线路走廊、杆塔、导线、绝缘子和终端设备的费用,运行成本主要是损耗。

对于给定输送功率水平,直流线路所需要的走廊更窄,杆塔较简单和便宜,导线和绝缘子成本更低。

由于直流输电只需采用两根输电线,若设交、直流输电中每根输电线的载流量相同,则直流线路的输电损耗仅为交流线路的 2/3。

与交流线路相比,直流线路没有集肤效应,在减少损耗方面更为有利。

对于电缆输电,直流电缆的介质损耗也比交流电缆小得多。

直流导体的电晕效应比交流导体小。

影响输电线路成本的其他因素还有无功补偿和终端设备的成本。

柔性直流线路不需要无功补偿,所需的滤波器也较小,但换流器终端设备成本较高。

如图1所示,当输电距离小于等价距离时,交流输电比直流输电经济,但当输电距离超过等价距离,交流输电的成本就高于直流输电。

对于电缆输电线路,等价距离在 25~50km 之间变化。

对于架空输电线路,等价距离介于 400~700km 之间。

图1 直流与交流电缆输电线路成本的比较此外,随着大功率电力电子器件的成本不断降低以及换流站模块化设计的不断完善,换流站的成本必将不断降低。

对于城市供电方式的综合评估从三个方面建立评价准则:经济性、可实施性和系统性能的改善,其中经济性主要指供电总投资,包括建设投资、损耗费用和年运行费用,可实施性包括节约线路走廊、占地面积、周围环境相协调以及满足未来电力发展趋势四个指标,系统支持效益包括不增加短路电流、增加系统的黑启动能力、无功电压支持、提高系统阻尼和系统的动态性能四个指标。

虽然柔性直流输电较交流输电投资大,经济性较差,但其占地面积小、与环境更协调,更易于满足未来电力发展趋势使得建设的可实施性更强;再加上柔性直流输电本身固有特性可大大改善原有系统特性,对原有系统的支持效应更强,因此全面综合考虑各项指标可知柔性直流输电有较大的优势。

4.可能的直流供电方案目前向城市供电可以采用的地下供电方式有两种:(1)传统高压直流供电从1954年连接哥特兰岛与瑞典大陆之间的世界上第一条HVDC输电线路建成至今,高压直流输电的换流元件经历了从汞弧阀、晶闸管半控元件阀和GTO、IGBT 等全控元件阀的变革。

目前广泛应用的电流源换流器型直流输电技术(HVDCCSC),由于晶闸管阀关断不可控,因此需要依靠电网交流线电压或电路的电容器电压来完成换相。

传统高压直流供电(HVDCCSC)的主要元件包括:换流器:主要完成交流/直流和直流/交流的变换,由基于晶闸管元件的阀桥和带负载调节分接头的变压器组成。

平波电抗器:在电流源换流站中,对应每一相安装一个高达1.0H电感的大型电抗器,主要用来减小直流线路的谐波电压和电流、防止逆变器的换向失败、防止轻载时电流不连续和限制直流线路短路时整流器的峰值电流。

滤波器:交流侧和直流侧都需要安装滤波器。

交流滤波器不但用来吸收换流阀产生的谐波电流以减少谐波污染,而且还为换流器提供所需的部分无功功率;直流滤波器用来滤除直流侧的谐波电压以改善直流电压质量。

无功功率电源:提供换流器所需的无功功率以维持其平衡。

直流电缆:构成回路进行有功功率传送。

传统高压直流供电(HVDCCSC)的主要缺点是容易造成换相失败、产生大量的低次谐波和吸收大量的无功功率。

(2)柔性直流供电华北电力大学硕士学位论文网络供电、换流站间无需通讯、且易于构成多端高、压直流系统。

另外,该输电技术能同时向系统提供有功功率和无功功率的紧急支援,在提高系统的暂态稳定性和输电能力等方面具有优势。

柔性直流供电(VSC-HVDC)的主要元件包括:换流器:主要完成交流/直流和直流/交流的变换,由基于GTO、IGBT等全控元件的阀桥和带负载调节分接头的变压器组成。

换流变压器的主要作用是通过调节分接头来调节二次侧的基准电压,进而获取最大的有功和无功输送能力。

换流变压器的另一个重要作用是将系统交流电压变换到与换流器直流侧电压相匹配的二次侧电压,以确保开关调制度不至于过小,从而减小输出电压和电流的谐波量,进而可以减小交流滤波装置的容量。

换流电抗器:在电压源换流站中,对应每一相安装一个换流电抗器。

它是电压源换流站的一个关键部分,是VSC与交流系统之间传输功率的桥梁和纽带,决定换流器的功率输送能力、有功功率和无功功率的控制;同时,换流电抗器能抑制换流器输出的电流和电压中的开关频率谐波量,以获得期望的基波电流和基波电压。

另外,换流电抗器还能抑制短路电流。

直流侧电容器:直流侧电容是VSC的直流侧储能器件,它可以缓冲桥臂开断的冲击电流、减小直流侧的电压谐波,并为受端站提供电压支撑。

同时,直流侧电容的大小决定其抑制直流电压波动的能力,也影响控制器的响应性能。

交流滤波器:与传统直流输电系统不同,电压源型直流输电系统采用PWM技术。

因此,换流站在较高的开关频率下,其输出的交流电压和电流中含有的低次谐波很少,又由于换流电抗器对输出电流具有滤波的作用,,使得电流谐波能较容易符合标准。

然而,在没有任何滤波装置的情况下,输出的交流电压中还含有一定量的高次谐波,并且其总的谐波畸变率并不能达到相关的谐波标准。

因此,通常要在换流母线处安装适当数量的交流滤波器(接地或者不接地)。

直流电缆:构成回路进行有功功率传送。

由ABB公司研制的输电电缆是采用新型的三层聚合材料挤压的单极性电缆,它由导体屏蔽层、绝缘层、绝缘屏蔽层三层同时挤压形成绝缘层;中间导体一般为铝质单芯导体,它不同于传统纸或者油绝缘电缆,这种新型电缆具有高强度、环保和方便掩埋等特点,适合用于深海等恶劣的环境。

另外,这种新型电缆重量轻、传输功率密度大,对于一对95mm2的铝质电缆在直流电压为100KV时能够传输30MW的功率,其重量为1KG/m,绝缘厚度为5.5mm,可以很方便地掩埋入地中。

柔性直流供电(VSC-HVDC)的主要缺点是造价高和换流器损耗大。

5.城市直流配电网的主要研究容(1)具有直流短路故障电流清除能力的电压源换流器拓扑结构电压源型换流器存在整流器效应,当直流线路发生短路故障时,这种效应导致交流系统向短路点提供直流短路电流,造成短路点无法灭弧,只能依靠交流侧断路器断开切断故障,造成系统彻底停运。

研究具有直流故障清除能力的拓扑结构是解决上述问题的手段之一。

目前的研究聚焦于MMC拓扑结构的改进,使换流器具备自身切断直流短路故障电流的能力。

(2)高压直流断路器技术由机械式断路器和电力电子器件组成的混合型固态断路器仍然是未来的发展趋势。

ABB等公司已经宣布研制成功可以应用于320KV直流电网的混合直流断路器,可开断最大16KA的故障电流。

但目前直流断路器方案成本过高,难以商业应用,同时电压等级和关断电流的能力有待于提高。

(3)直流电网运行的基础理论及控制保护技术柔性直流输电系统本质上是新型电力电子变流器在大电网中的应用,基于这种变流器的直流换流站、直流变压器、电源/负荷并网变流器一般都具有较强的可控性,这使得直流电网的潮流分布、故障传播特性有别于交流电网,特别是直流电网嵌入交流电网后,形成的分层分布式可控的交直流混合网络,将极改变电网形态。

相关文档
最新文档