污水处理厂泵房的设计计算

合集下载

吨每天城市污水处理厂设计计算

吨每天城市污水处理厂设计计算

污水厂设计计算书第一章 污水处理构筑物设计计算一、粗格栅1.设计流量Q=20000m 3/d ,选取流量系数K z =则: 最大流量Q max =×20000m 3/d=30000m 3/d =0.347m 3/s2.栅条的间隙数(n )设:栅前水深h=0.4m,过栅流速v=0.9m/s,格栅条间隙宽度b=0.02m,格栅倾角α=60° 则:栅条间隙数85.449.04.002.060sin 347.0sin 21=⨯⨯︒==bhv Q n α(取n=45)3.栅槽宽度(B)设:栅条宽度s=0.01m则:B=s (n-1)+bn=×(45-1)+×45=1.34m 4.进水渠道渐宽部分长度设:进水渠宽B 1=0.90m,其渐宽部分展开角α1=20°(进水渠道前的流速为0.6m/s ) 则:m B B L 60.020tan 290.034.1tan 2111=︒-=-=α5.栅槽与出水渠道连接处的渐窄部分长度(L 2)m L L 30.0260.0212===6.过格栅的水头损失(h 1)设:栅条断面为矩形断面,所以k 取3则:m g v k kh h 102.060sin 81.929.0)02.001.0(4.23sin 2234201=︒⨯⨯⨯⨯===αε其中ε=β(s/b )4/3k —格栅受污物堵塞时水头损失增大倍数,一般为3 h 0--计算水头损失,mε--阻力系数,与栅条断面形状有关,当为矩形断面时形状系数β=将β值代入β与ε关系式即可得到阻力系数ε的值7.栅后槽总高度(H)设:栅前渠道超高h 2=0.3m 则:栅前槽总高度H 1=h+h 2=+=0.7m 栅后槽总高度H=h+h 1+h 2=++=0.802m 8.格栅总长度(L)L=L 1+L 2+++ H 1/tan α=++++tan60°= 9. 每日栅渣量(W)设:单位栅渣量W 1=0.05m 3栅渣/103m 3污水则:W=Q W 1=05.0105.130000100031max ⨯⨯=⨯⨯-Z K W Q =1.0m 3/d 因为W>0.2 m 3/d,所以宜采用机械格栅清渣 10.计算草图:α1αα图1-1 粗格栅计算草图二、集水池设计集水池的有效水深为6m,根据设计规范,集水池的容积应大于污水泵5 min的出水量,即:V>0.347m3/s×5×60=104.1m3,可将其设计为矩形,其尺寸为3 m×5m,池高为7m,则池容为105m3。

污水处理设计计算

污水处理设计计算

污水处理设计计算引言概述在现代城市生活中,污水处理是一项重要的环保工作。

合理的污水处理设计计算是确保污水处理设施运行效率和效果的关键。

本文将介绍污水处理设计计算的相关内容,包括设计原则、设计参数、设备选型、运行维护和效果评估等方面。

一、设计原则1.1 确定处理工艺:根据污水性质和处理要求,选择适合的处理工艺,如生物处理、物理化学处理等。

1.2 确定处理规模:根据污水产生量和质量,确定处理设施的处理规模,包括处理能力和处理效果。

1.3 确定处理流程:根据处理工艺和处理规模,设计合理的处理流程,包括进水处理、主处理和出水处理等环节。

二、设计参数2.1 污水水质参数:包括COD、BOD、氨氮、总磷等参数,根据不同水质参数确定处理工艺和设备。

2.2 处理设施参数:包括处理设施的设计流量、停留时间、曝气量等参数,确保设施运行效果。

2.3 出水标准参数:根据国家环保标准和地方要求,确定出水的水质标准,保证出水符合排放标准。

三、设备选型3.1 污水处理设备:根据处理工艺和处理规模,选择适合的污水处理设备,如曝气器、混合器、除磷装置等。

3.2 设备布局设计:根据处理流程和设备选型,设计合理的设备布局,确保设备运行效率和维护便捷。

3.3 设备运行参数:根据设备选型和设计参数,确定设备的运行参数,包括曝气量、搅拌速度、投加药剂量等。

四、运行维护4.1 设备运行监控:定期监测处理设施的运行情况和水质参数,及时调整设备运行参数,确保设施稳定运行。

4.2 设备维护保养:定期对处理设施进行维护保养,清理设备、更换滤料、修复漏水等,延长设备使用寿命。

4.3 应急处理措施:制定应急处理方案,处理设施浮现故障或者异常情况时,及时采取措施,防止污水泄漏或者排放超标。

五、效果评估5.1 出水水质检测:定期对出水进行水质检测,检测出水是否符合排放标准,评估处理效果。

5.2 处理效率评估:根据处理设施的运行情况和水质参数,评估处理效率和运行效果,及时调整处理工艺和设备。

污水处理设计常用计算公式

污水处理设计常用计算公式

污水处理设计常用计算公式
1.污水流量计算公式:
污水流量=污水产生量×日用水率
污水产生量=人均产污量×人口数+工业废水排放量
2.污染负荷计算公式:
COD负荷=污水流量×COD浓度
BOD负荷=污水流量×BOD浓度
TP负荷=污水流量×TP浓度
TN负荷=污水流量×TN浓度
3.池体尺寸计算公式:
曝气池尺寸=曝气池容积/曝气通量
沉淀池尺寸=沉淀池容积/停留时间
活性污泥池尺寸=活性污泥池容积/深度
4.沉淀速度计算公式:
沉淀速度=比表面积×重力加速度×其中一种颗粒物的密度/动力粘度×浓缩度
5.曝气负荷计算公式:
曝气负荷=曝气量/曝气池有效体积
曝气量=溶氧量/溶解氧传质系数
以上仅为污水处理设计中的一些常用计算公式,实际设计过程中还需要根据具体情况选择合适的公式并考虑其他影响因素。

污水处理构筑物设计计算

污水处理构筑物设计计算

污水厂设计计算书第一章 污水处理构筑物设计计算一、泵前中格栅1.设计参数:设计流量Q=5×104m3/d=578.7L/s栅前流速v1=0.7m/s,过栅流速v2=0.9m/s栅条宽度s=0.01m,格栅间隙e=20mm栅前部分长度0.5m,格栅倾角α=60°单位栅渣量ω1=0.05m3栅渣/103m3污水2.设计计算(1)确定格栅前水深,根据最优水力断面公式计算得:栅前槽宽,则栅前水深(2)栅条间隙数(取n=48)(3)栅槽有效宽度B=s(n-1)+en=0.01(48-1)+0.02×48=1.43m (4)进水渠道渐宽部分长度(其中α1为进水渠展开角)(5)栅槽与出水渠道连接处的渐窄部分长度(6)过栅水头损失(h1)因栅条边为矩形截面,取k=3,则其中ε=β(s/e)4/3h0:计算水头损失k:系数,格栅受污物堵塞后,水头损失增加倍数,取k=3ε:阻力系数,与栅条断面形状有关,当为矩形断面时β=2.42(7)栅后槽总高度(H)取栅前渠道超高h2=0.3m,则栅前槽总高度H1=h+h2=0.64+0.3=0.94m栅后槽总高度H=h+h1+h2=0.64+0.103+0.3=1.04(8)格栅总长度L=L1+L2+0.5+1.0+0.77/tanα=0.206+0.103+0.5+1.0+0.77/tan60°=2.35m(9)每日栅渣量ω=Q平均日ω1==1.79m3/d>0.2m3/d所以宜采用机械格栅清渣(10)计算草图如下:▲二、污水提升泵房1.设计参数设计流量:Q=578.7L/s,泵房工程结构按远期流量设计2.泵房设计计算采用氧化沟工艺方案,污水处理系统简单,对于新建污水处理厂,工艺管线可以充分优化,故污水只考虑一次提升。

污水经提升后入旋流沉砂池,然后自流通过厌氧池、氧化沟、二沉池、砂滤池及接触池,最后由出水管道排入神仙沟。

各构筑物的水面标高和池底埋深见高程计算。

(完整版)污水处理厂设计计算书

(完整版)污水处理厂设计计算书
2.格栅槽宽度
式中一一格栅槽宽度(m);
S――每跟格栅条的宽度(m)。
设计中取S=0.01m。
3.进水渠道渐宽部分的长度
式中——进水渠道渐宽部分的长度(m);
进水明渠宽度(m;
渐宽处角度(°),一般采用10°〜30
设计中=1.27m,=20°,此时进水渠道内的流速为0.67m/s,介于0.4〜0.9m/s之间。
1.格栅间隙数
式中一一格栅栅条间隙数(个);
3
Q――最大设计流量(m /s);
――格栅倾角(°);
b――栅条净间距(m);
h——栅前水深(m);
v――过栅流速(m/s),宜采用0.6〜1.0m/s。
栅前水深:根据水力最优断面公式计算得,0.57=X0.7/2,=1.28m ,/2=0.64m
设计中取=0.64m,0.9m/s,0.02m,60°。
4.出水渠道渐窄部分的长度
式中一一出水渠道渐窄部分的长度(m;
——渐窄处角度(°),。
设计中=1.27m,=20°。
5.通过格栅的水头损失
式中——水头损失(m;
――格栅条的阻力系数;
――格栅受污染物堵塞时的水头损失增大系数,一般采用=3。
因栅条为矩形截面,取=2.41o
6.栅后明渠总高度
式中 一一栅后明渠总高度(m);
(三)平面布置67
十七、污水处理厂高程布置68
(一)主要任务68
(二)高程布置的原则68
(三)污水处理构筑物的高程布置68
参考文献72
第一部分污水处理
一、
格栅按照远期规划进行设计。
3
Q=8.16万m/d=944.4L/s
总变化系数=1.2,Qmax=944.4X1.2=1133.28 L/s

污水设计构筑物的计算

污水设计构筑物的计算

污⽔设计构筑物的计算污⽔处理构筑物的设计计算中格栅及泵房格栅是由⼀组平⾏的⾦属栅条或筛⽹制成,安装在污⽔渠道上、泵房集⽔井的进⼝处或污⽔处理⼚的端部,⽤以截留较⼤的悬浮物或漂浮物。

本设计采⽤中细两道格栅。

1.1.1中格栅设计计算1.设计参数:最⼤流量:3max 150000 1.22.1/360024Z Q Q K m s ?=?==?栅前⽔深:0.4h m =,栅前流速:10.9/v m s =(0.4/~0.9/m s m s )过栅流速20.9/v m s =(0.6/~1.0m s /m s )栅条宽度0.01S m =,格栅间隙宽度0.04b m = 格栅倾⾓060α= 2.设计计算:(1)栅条间隙数:136n ===根设四座中格栅:1136344n ==根 (2)栅槽宽度:设栅条宽度0.01S m =()()1110.013410.0434 1.69B S n bn m =-+=?-+?=(3)进⽔渠道渐宽部分长度:设进⽔渠道宽1 1.46B m =,渐宽部分展开⾓度20α=1101 1.69 1.460.872tan 2tan 20B B l m α--=== 根据最优⽔⼒断⾯公式max 1 2.11.46440.90.4Q B m vh ===?? (4)栅槽与出⽔渠道连接处的渐宽部分长度:120.870.4322l l m ===(5)通过格栅的⽔头损失:02h K h ?=220sin 2v h g ξα=,43s b ξβ??=? ???h 0 ─────计算⽔头损失; g ─────重⼒加速度;K ─────格栅受污物堵塞使⽔头损失增⼤的倍数,⼀般取3;ξ─────阻⼒系数,其数值与格栅栅条的断⾯⼏何形状有关,对于锐边矩形断⾯,形状系数β = 2.42;43220.010.93 2.42sin 600.0410.0429.81h ??=≈m (6)栅槽总⾼度:设栅前渠道超⾼20.3h m =120.40.30.0410.741H h h h m =++=++=(7)栅槽总长度:1120.5 1.0tan H L L L α=++++0.40.30.870.430.5 1.0tan 60+=++++3m =(8)每⽇栅渣量:格栅间隙40mm 情况下,每31000m 污⽔产30.03m 。

污水处理厂设计计算

污水处理厂设计计算

某污水处理厂设计说明书计算依据、工程概况该城市污水处理厂服务面积为,近期(年)规划人口万人,远期(年)规划人口万人。

、水质计算依据.根据《室外排水设计规范》,生活污水水质指标为:人人.工业污染源,拟定为.氨氮根据经验值确定为、水量数据计算依据:.生活污水按人均生活污水排放量人·;.生产废水量近期×,远期×考虑;.公用建筑废水量排放系数近期按,远期考虑;.处理厂处理系数按近期,远期考虑。

、出水水质根据该厂城镇环保规划,污水处理厂出水进入水体水质按照国家三类水体标准控制,同时执行国家关于污水排放的规范和标准,拟定出水水质指标为:污水量的确定、综合生活污水近期综合生活污水远期综合生活污水、工业污水近期工业污水远期工业污水、进水口混合污水量处理厂处理系数按近期,远期考虑,由于工业废水必须完全去除,所以不考虑其处理系数。

近期混合总污水量取远期混合总污水量取、污水厂最大设计水量的计算近期;,取日变化系数;时变化系数;。

远期;,取日变化系数;时变化系数;。

拟订该城市污水处理厂的最大设计水量为污水水质的确定近期取取远期取取则根据以上计算以及经验值确定污水厂的设计处理水质为:,,,,考虑远期发展问题,结合《城镇污水处理厂污染物排放标准》(-),处理水质达到《城镇污水处理厂污染物排放标准》()中的一级标准()排放要求。

拟定出水水质指标为:表进出水水质一览表注:[]取水温>℃的控制指标,水温≤℃的控制指标。

[]基本控制项目单位为,除外。

第二章各单体构筑物计算粗格栅设计、设计参数设计流量,栅前水深,过栅流速,栅条间隙,栅前长度,栅后长度,格栅倾角,栅条宽度,栅前渠超高。

、设计计算图粗格栅计算示意图格栅设两组,按两组同时工作设计,一格停用,一格工作校核。

()栅条间隙数:取()栅槽宽度格栅宽度一般比格栅宽~,取;则()通过栅头的水头损失()栅后槽总高度:()栅前渠道深:()栅槽总长度:()每日栅渣量:式中,为栅渣量,格栅间隙为~时,污水。

污水处理厂粗格栅进水泵房计算

污水处理厂粗格栅进水泵房计算

1
格栅渠道宽度取值B=
1
格栅数量N=
2
每个格栅栅格数
29
渠道流速v=
0.41
事故流速v1=
1.38
实际过栅流速v2=
0.69
过栅水头损失计算
数值
形状系数
2.42
增大系数k=
3
过栅水头损失计算值h=
0.17
过栅水头损失取值h=
0.075
格栅产渣率w=
0.075
每日栅渣总量W=
3.24
栅渣含水率
处理前
处理后
1.0m/s
锐边矩形 过栅流速和栅
前水深
(干渣量) ~95% ~55%
m3/h
LY-300型
kw
栅条间隙 安装角度 栅前水深 过栅流速
栅宽 电机功率
3、进水提升泵房
设计参数 设计污水量QMAX=
= = 水泵扬程计算 水泵扬程 水泵台数 单泵流量
水泵轴功率N 水泵发动机所需功率
备用泵流量 水泵扬程 水泵台数 集水池最小容积V= 集水池宽度B= 集水池长度L= 潜水泵停车水位以上高
1.基本资料
参数
近期 K总= 设计规模Q= 设计污水量QMAX=
数值 40,000 1.40 56,072 0.65
CODcr BOD5
SS NH3-N
TN TP
单位 m3/d
m3/d m3/s 单位 mg/l mg/l mg/l mg/l mg/l mg/l
2.粗格栅
设计参数 设计污水量Qmax=
去除率(%)
76.9
BOD5/COD=
0.58
>0.3
86.7
TN/COD=

城市污水处理厂设计计算

城市污水处理厂设计计算

污水厂设计计算书第一章 污水处理构筑物设计计算一、粗格栅 1.设计流量Q=20000m 3/d ,选取流量系数K z =1.5则:最大流量Q max =1.5×20000m 3/d=30000m 3/d =0.347m 3/s2.栅条的间隙数(n )设:栅前水深h=0.4m,过栅流速v=0.9m/s,格栅条间隙宽度b=0.02m,格栅倾角α=60°则:栅条间隙数85.449.04.002.060sin 347.0sin 21=⨯⨯︒==bhv Q n α(取n=45) 3.栅槽宽度(B)设:栅条宽度s=0.01m则:B=s (n-1)+bn=0.01×(45-1)+0.02×45=1.34m4.进水渠道渐宽部分长度设:进水渠宽B 1=0.90m,其渐宽部分展开角α1=20°(进水渠道前的流速为0.6m/s )则:m B B L 60.020tan 290.034.1tan 2111=︒-=-=α 5.栅槽与出水渠道连接处的渐窄部分长度(L 2)m L L 30.0260.0212=== 6.过格栅的水头损失(h 1)设:栅条断面为矩形断面,所以k 取3则:m g v k kh h 102.060sin 81.929.0)02.001.0(4.23sin 2234201=︒⨯⨯⨯⨯===αε 其中ε=β(s/b )4/3k —格栅受污物堵塞时水头损失增大倍数,一般为3h 0--计算水头损失,mε--阻力系数,与栅条断面形状有关,当为矩形断面时形状系数β=2.4将β值代入β与ε关系式即可得到阻力系数ε的值7.栅后槽总高度(H)设:栅前渠道超高h 2=0.3m则:栅前槽总高度H 1=h+h 2=0.4+0.3=0.7m栅后槽总高度H=h+h 1+h 2=0.4+0.102+0.3=0.802m8.格栅总长度(L)L=L 1+L 2+0.5+1.0+ H 1/tan α=0.6+0.3+0.5+1.0+0.7/tan60°=2.89. 每日栅渣量(W)设:单位栅渣量W 1=0.05m 3栅渣/103m 3污水则:W=Q W 1=05.0105.130000100031max ⨯⨯=⨯⨯-Z K W Q =1.0m 3/d 因为W>0.2 m 3/d,所以宜采用机械格栅清渣10.计算草图:α1αα图1-1 粗格栅计算草图二、集水池设计集水池的有效水深为6m,根据设计规,集水池的容积应大于污水泵5 min的出水量,即:V>0.347m3/s×5×60=104.1m3,可将其设计为矩形,其尺寸为3m×5m,池高为7m,则池容为105m3。

污水处理粗格栅-进水泵房-计算公式

污水处理粗格栅-进水泵房-计算公式
选用螺旋压榨机 排出干渣量 电机功率
选用粗格栅
栅条间隙 安装角度 栅前水深 过栅流速
栅宽 电机功率 3、进水提升泵房 设计参数
设计污水量QMAX=
= = 水泵扬程计算 水泵扬程 水泵台数 单泵流量
0.17 0.075 0.075 3.24 处理05 1.1
回转式格 栅 20 75 75
0.69 1
1.1
数值 56,072 2340 650
15 4 800 222.22
水泵轴功率N
水泵发动机所需功率
40.85 51.06
个 个 m/s
m/s
m/s
单位
m m m3/103
m3/d
0.85 0.5 h/d
m
m3/h
kw
mm 度 m m/s m kw
单位
m3/d m3/h
l/s
m 台
m3/h

m
m
m
1
m
格栅渠道 宽度取值
格栅数量N=
2
每个格栅栅格数
29
渠道流速v=
0.41
事故流速v1=
1.38
实际过栅流速v2=
0.69
过栅水头损失计算 形状系数
数值 2.42
增大系数k=
3
过栅水头损失计算值h= 过栅水头损失取值h=
格栅产渣率w= 每日栅渣总量W=
栅渣含水率
格栅每日工作时间 渠道深 设备选型
l/s kw kw
规范0.4 ~0.9
格栅一台 检修,一
台运行 规范0.6 ~1.0m/s
锐边矩形 过栅流速 和栅前水

(干渣 量) ~95% ~55%
LY-300型

污水处理厂毕业设计(含计算数据)..

污水处理厂毕业设计(含计算数据)..

一、污水处理工艺选择与可行性分析1、污水厂的设计规模近期污水量为2×104 m3/d,远期污水量为4×104 m3/d,其中生活污水和工业废水所占比例约为6:4。

污水厂主要处理构筑物拟分为二组,这样既可满足近期处理水量要求,又留有空地以二期扩建之用。

2、进出水水质由于进水不但含有BOD5,还含有大量的N,P所以不仅要求去除BOD5还应去除水中的N,P使其达到排放标准。

3、处理程度的计算1。

BOD5的去除率2 。

COD的去除率3。

SS的去除率4。

总氮的去除率5。

总磷的去除率4、本工程采用生物脱氮除磷工艺的可行性BOD5:N:P的比值是影响生物脱氮除磷的重要因素,氮和磷的去除率随着BOD5/N和BOD5/P比值的增加而增加。

理论上,BOD5/N>2。

86才能有效地进行脱氮,实际运行资料表明,BOD5/N>3时才能使反硝化正常进行。

在BOD5/N=4~5时,氮的去除率大于50%,磷的去除率也可达60%左右。

本工程BOD5/N=3,可以满足生物脱氮的要求。

对于生物除磷工艺,要求BOD5/P=33~100。

本工程BOD5/P等于36,能满足素之一,在碳化与硝化合并处理工艺中,硝化菌所占的比例很小,约5%。

一般负荷小于0。

15kg BOD5/kgMLSS。

d时,处理系统的硝化反认为处理系统的BOD5应才能正常进行。

根据所给定的污水水量及水质,参考目前国内外城市污水处理厂的设计及运转经验,对于生活污水占比例较大的城市污水而言,以下几种方法最具代表性:A2/O法、AB法、生物滤池、循环式活性污泥法(改良SBR)、氧化沟法.5、工艺比较及确定又要适当去除N,P故可采用SBR 城市污水处理厂的方案,既要考虑去除BOD5或氧化沟法,或A2/O法。

A A2/O法A2/O工艺即缺氧/厌氧/好氧活性污泥法, A2/O法处理城市污水的特点:运行费用较传统活性污泥法低,曝气池池容小,需气量少,具有脱氮除磷功能,BOD5和SS去除率高,出水水质较好,工作稳定可靠,有较成熟的设计、施工及运行管理经验,产泥量较传统活性污泥法少;污泥脱水性能较好;无需设初沉池;对水质和水温度化有一定适应能力;另外,从节省能耗的角度看,A2/O可以充分利,回收了部分硝化反应的需氧量,反硝化反应所用硝化液中的硝态氧来氧化BOD5产生的碱度可以部分补偿硝化反应消耗的碱度,因此对含氮浓度不高的城市污水可以不另外加碱来调节PH。

20000吨每天城市污水处理厂设计计算解析

20000吨每天城市污水处理厂设计计算解析

20000吨每天城市污水处理厂设计计算解析一、粗格栅1、设计流量Q=20000m3/d,选取流量系数Kz=1、5则:最大流量Qmax=1、520000m3/d=30000m3/d=0、347m3/s2、栅条的间隙数(n)设:栅前水深h=0、4m,过栅流速v=0、9m/s,格栅条间隙宽度b=0、02m,格栅倾角α=60则:栅条间隙数(取n=45)3、栅槽宽度(B)设:栅条宽度s=0、01m则:B=s(n-1)+bn=0、01(45-1)+0、0245=1、34m4、进水渠道渐宽部分长度设:进水渠宽B1=0、90m,其渐宽部分展开角α1=20(进水渠道前的流速为0、6m/s)则:5、栅槽与出水渠道连接处的渐窄部分长度(L2)6、过格栅的水头损失(h1)设:栅条断面为矩形断面,所以k取3则:其中ε=β(s/b)4/3k格栅受污物堵塞时水头损失增大倍数,一般为3 h0--计算水头损失,m ε--阻力系数(与栅条断面形状有关,当为矩形断面时形状系数β=2、42),将β值代入β与ε关系式即可得到阻力系数ε的值。

7、栅后槽总高度(H)设:栅前渠道超高h2=0、3m则:栅前槽总高度H1=h+h2=0、4+0、3=0、7m 栅后槽总高度H=h+h1+h2=0、4+0、26+0、3=0、96m8、格栅总长度(L)L=L1+L2+0、5+1、0+ H1/tanα=1、48+0、47+0、5+1、0+0、7/tan60=3、85m9、每日栅渣量(W)设:单位栅渣量W1=0、10m3栅渣/103m3污水则:W=Q W1==2、0m3/d因为W>0、2 m3/d,所以宜采用机械格栅清渣10、计算草图如下:四、沉砂池采用平流式沉砂池1、沉砂池长度(L)设:流速v=0、25m/s水力停留时间:t=30s则:L=vt=0、2530=7、5m2、水流断面积(A)设:最大流量Qmax=0、347m3/s(设计1组,分为2格)则:A=Qmax/v=0、347/0、25=1、388m23、池总宽度(B)设:n=2格,每格宽取b=1m则:池总宽B=nb=21=2m4有效水深(h2):h2=A/B=1、388/2=0、69m(介于0、25~1、0m之间,符合要求)5、贮砂斗所需容积V1 设:T=2d 则:其中X1--城市污水沉砂量,一般采用30m3/106m3,Kz--污水流量总变化系数,取1、56、每个污泥沉砂斗容积(V0)设:每一分格有2个沉砂斗则:V0= V1/(2*2)=1、2/4=0、3 m37、沉砂斗各部分尺寸及容积(V)设:沉砂斗底宽b1=0、5m,斗高hd=0、45m,斗壁与水平面的倾角为55则:沉砂斗上口宽:沉砂斗容积:(略大于V1=0、3m3,符合要求)8、沉砂池高度(H)采用重力排砂设:池底坡度为、06 则:坡向沉砂斗长度为:则:沉泥区高度为h3=hd+0、06L2 =0、45+0、062、26=0、59m 则:池总高度H设:超高h1=0、3m则:H=h1+h2+h3=0、3+0、45+0、59=1、34m9、验算最小流量时的流速:在最小流量时只用一格工作,即n=1,最小流量即平均流量Q=20000m3/d=0、232m3/s 则:vmin=Q/A=0、232/1、388=0、17m/s 沉砂池要求的设计流量在0、15 m/s2、0 m3/ m2、h ,取q=1、5 m3/ m2、hm22、沉淀池直径(D)3、有效水深为(h1)设:水力停留时间(沉淀时间):t=2 h 则:h1=qt=1、52=3m 校核(介于6~12,符合要求)4、沉淀区有效容积(V1)V1=Ah1=2783=834m35、贮泥斗容积:设:污泥回流比为R=50%回流污泥浓度Xr=10000mg/L 为了防止磷在池中发生厌氧释放,贮泥时间采用Tw=2h则:二沉池污泥区所需存泥容积:则污泥区高度为6、二沉池总高度:设:二沉池缓冲层高度h3=0、4m,超高为h4=0、3m则:池边总高度为 h=h1+h2+h3+h4=3+2、5+0、4+0、3=6、2m设:池底坡度为i=0、05则:池底坡度降为则:池中心总深度为H=h+h5=4、8+0、425=5、23m7、校核堰负荷:径深比堰负荷以上各项均符合要求8、辐流式二沉池计算草图如下:第二章污泥处理构筑物设计计算一、污泥泵房1、设计说明二沉池活性污泥由吸泥管吸入,由池中心落泥管及排泥管排入池外套筒阀井中,然后由管道输送至回流泵房,其他污泥由刮泥板刮入污泥井中,再由排泥管排入剩余污泥泵房集泥井中。

污水处理粗格栅及进水提升泵房计算公式

污水处理粗格栅及进水提升泵房计算公式

(三)
主要通道宽度 挡水墙宽度 泵房宽度 泵房深度 泵房操作间高度 单体内部水头损失计算
W1=
0.05~0.10 m3/103吨污水 格栅间隙为25~16mm
W2=
0.01~0.03 m3/103吨污水 格栅间隙为50~30mm
W3=
0.07 m3/103吨污水 本项目格栅间隙20mm
W4=
Q总×W3/1000=
sin α
bhn
1250 m3/h 0.34722222 m3/s 0.17361111 m3/s
70
°
1.22111111 弧度
0.93948061
0.02 m
0.6 m
0.6 m/s
23.3716261 个
取值
24

0.01 m
0.71 m
取值 0.8 m
0.1 m
0.9 m
0.4 m
2.2 m
Qh*Kz=
计算值
单位
20000 m3/d
1.5
833.333333 m3/h
0.23148148 m3/s
1250 m3/h
Qmax= Q/3600=
Q/2=
2π×α/360=
Q1
sin α
bhv
S(n-1)+bn=
B+B1= 2×W1+W2=
h1'+DN×Di= 0-h2'-h=
H1+h1=
0.7Q s
1.4 吨/天
>0.2吨/天,机械清渣
n1= q1= n2= n3= q= W3= l= b= b'= L=
= W4= W5= B= H2= H3=
2

污水处理厂泵房的设计计算

污水处理厂泵房的设计计算

水管埋深、沿程损失系数、站
内管线水头损失和安全水头为
设计值。
生活污水 定额
(L/d.人)
城市人口 数量(人)
平均秒流 量(L/s)
总变化系 数KZ
最大秒流 量(L/s)
实用水泵 数量(台)
每台水泵 容量 (L/s)
集水池容 积(m3)
单泵6min
集水池面 积(m2) H=2m
270 64000
200
泵站建设设计计算:流速和坡度为查表 得到(用Q和管径),出水管埋深、沿程 损失系数、吸水管吸程和进出水管的高
差为设计值。
泵轴高程 (m)
进出管的 高差 (m)
管径 (m)
吸水管水平段管底 高程(m)
58.58868 0.41
0.4
57.57868152
非自灌泵
站的设计
吸水局部 损失 (m)
出水水面 地下水位 高程 高程 (m) (m)
格栅水头 损失(m)
出水管水 面高程
(m)
进水管管 底高程
(m)
进水管径 DN(m)
管道充满 度
H/DN(m)
集水池正 常水位
(m)
提升高度 (m)
0.1
41.8 24.8
600
0.75
1
17.65
设计管线 长度(m)
出水管水 面高程
(m)
集水池有 效水深
(m)
泵房原地 面高度
(m)
总出水管 中心埋深
生活污水 定额
(L/d.人)
城市人口 数量(人)
平均秒流 量(L/s)
总变化系 数KZ
最大秒流 量(L/s)
实用水泵 数量(台))
单泵6min

泵房设计参数计算过程及数据

泵房设计参数计算过程及数据

细格栅计算:设计参数设计流量:Q=1.3 /s(1) 栅槽宽度①栅条间隙数n 个n=式中,n——栅条间隙在此处键入公式。

数,个Q_max ——最大设计流量,/sa ----- 格栅倾角(°)取a=60 °b ――栅条间隙,取b=0.005mh ----- 栅前水深,取h=1v ----- 过栅流苏,m/s,取V=0.9m/s格栅设两组,按两组同时进行工作设计,一格停用,一格工作校核,则栅条间隙数,n=②栅槽宽度B,栅槽宽度一般比格栅宽0.2-0.3,取0.2,设栅条宽度s=0.01m,则栅槽宽度B=S(n-1)+bn=0.2=0.01*(265-1)+0.005*265+0,2=4.165(m)(2) 通过格栅水头损失(m)式中,——设计水头损失,m——计算水头损失,mg ——重力加速度,m/sK――系数,一般采用3设栅条断面为锐形断面,B =2.42,代入,得=K= 3=2。

42*2.46*0.041*0.86*3=0.642 (m)(3) 栅后槽总高度H (m),设栅前深渠=0.3m,则H=h+ = =1+0.642+0.3=1.942 ( m)(4) )栅槽总长度L(m)①进水渠道渐宽部分长度,设进水渠宽=0.85m, 其渐宽部分展开角度=20°,进水渠道流速为0.77m/s②栅槽与出水渠道连接处渐窄部分长度(m)L= + +1+0.5+. = +h式中, 为栅前渠道深, m,L=4.6+2.3+1.0+0.5+(5) 每日栅渣量W ( )W=式中,为栅渣量,污水,格栅间隙为16-25mm时,=0.1-0.05 污水,格栅间隙为30-50mm时,=0。

03-0.1 ,格栅间隙为5mm , W=选型根据有效宽选择XGC-1000型旋格栅除污流。

XGC型旋转格栅除污机为新型的细格栅除污设备,可拦截并连续自动清除污水中的各种形状固体杂物。

该机分为不锈钢网齿和非金属网齿两种,最大特点是自动固液分离,此结构设计合理,正常运行时有自净作用,无杜塞,设备动力少,工作时无噪声,主要参数见下表1 )有效容积V()V= *60Q=1.79t 取2min V=1.79*2*60=214.8 ( ) ( 2 )水流断面积A= / 取0.1m/sA=1.79/0.1=17.9( 3 )池总宽度B=A/ 取2mB=17.9/2=8.95m(4) 宽度b 取n=3 格b=B/n=8.95/3=2.98=3m宽深(5 )池长LL=v/A=214.8/17.9=12(m)(6) 每小时所需空气量qq=d *3600 d 取0.2 /q=0.2*1.79*36000=1288.8 /h污泥浓缩池:剩余污泥Q=4493 /d,含水率=99.3%。

污水处理厂初步的设计计算

污水处理厂初步的设计计算

污水处理厂初步的设计计算1概述1。

1 设计的依据本设计采用的主要规范及标准:《城市污水处理厂污染物排放标准(GB18918-2002)》二级排放标准《室外排水设计规范》(1997年版) (GBJ 14-87)《给水排水工程概预算与经济评价手册》2原水水量与水质和处理要求2.1 原水水量与水质要求指标Q=60000m3/dBOD5=190mg/L COD=360mg/L SS=200mg/LNH3—N=45mg/L TP=5mg/L2。

2处理要求污水排放的要求执行《城镇污水处理厂污染物排放标准(GB18918—2002)》二级排放标准:BOD5≤30mg/L COD≤100mg/L SS≤30mg/LNH3—N≤25(30)mg/L TP≤3mg/L3污水处理工艺的选择本污水处理厂水质执行《城镇污水处理厂污染物排放标准(GB18918—2002)》二级排放标准,其污染物的最高允许排放浓度为:BOD5≤30mg/L;COD≤100mg/L;SS≤30mg/L;NH3-N≤25(30)mg/L;TP≤3mg/L.城市污水中主要污染物质为易生物降解的有机污染物,因此常采用二级生物处理的方法来进行处理。

二级生物处理的方法很多,主要分两类:一类是活性污泥法,主要包括传统活性污泥法、吸附—再生活性污泥法、完全混合活性污泥法、延时活性污泥法(氧化沟)、AB 工艺、A/O工艺、A2/O工艺、SBR工艺等。

另一类是生物膜法,主要包括生物滤池、生物转盘、生物接触氧化法等工艺.任何工艺都有其各自的特点和使用条件。

活性污泥法是当前使用比较普遍并且有比较实际的参考数据。

在该工艺中微生物在处理单元内以悬浮状态存在,因此与污水充分混合接触,不会产生阻塞,对进水有机物浓度的适应范围较大,一般认为BOD5在150—400 mg/L之间时,都具有良好的处理效果。

但是传统活性污泥处理工艺在处理的多功能性、高效稳定性和经济合理性方面已经难以满足不断提高的要求,特别是进入90年代以来,随着水体富营养化的加剧,我国明确制定了严格的氨氮和硝酸盐氮的排放标准,从而各种具有除磷、脱氮功能的污水处理工艺:如 A/O工艺、A2/O工艺、SBR工艺、氧化沟等污水处理工艺得到了深入的研究、开发和广泛的应用,成为当今污水处理工艺的主流。

(完整版)污水处理厂设计计算书

(完整版)污水处理厂设计计算书

污水处理厂设计计算书201x年xx月xx日目录第一部分污水处理 (1)一、格栅设计计算 (1)二、污水泵房 (4)三、平流沉砂池设计计算 (5)四、初沉池(平流沉淀池)设计计算 (9)五、A2/O工艺设计计算 (15)六、曝气系统 (21)七、二沉池(辐流式)设计计算 (27)八、消毒设施计算 (34)九、计量设备计算 (37)第二部分污泥处理 (40)十、污泥量计算 (40)(一)初沉池污泥量计算 (40)(二)剩余污泥量计算 (40)(三)污泥处理的目的 (41)(四)污泥处理的原则 (41)十一、污泥泵房设计 (42)(一)集泥池计算 (42)(二)污泥泵的选择 (42)十二、污泥浓缩池计算 (43)十三、贮泥池计算 (47)十四、污泥消化池计算 (49)(一)容积计算 (49)(二)平面尺寸计算 (52)(三)消化后的污泥量计算 (52)(四)沼气产量计算 (53)(五)一级消化池的管道系统 (54)(六)二级消化池的管道系统 (56)(七)贮气柜 (58)(八)沼气压缩机 (59)(九)混合搅拌设备 (59)十五、污泥脱水计算 (61)(一)脱水污泥量的计算 (61)(二)脱水机的选择 (62)(三)附属设施 (63)第三部分平面及高程布置 (65)十六、污水处理厂平面布置 (65)(一)污水处理厂设施组成 (65)(二)平面布置的原则 (66)(三)平面布置 (67)十七、污水处理厂高程布置 (68)(一)主要任务 (68)(二)高程布置的原则 (68)(三)污水处理构筑物的高程布置 (68)参考文献 (72)第一部分污水处理一、格栅设计计算格栅按照远期规划进行设计。

Q=8.16万m3/ d=944.4L/sQ=944.4×1.2=1133.28 L/s总变化系数=1.2,max设计中选择两组格栅同时工作,每组格栅单独设置,则每组格栅的进水量为566.64L/s。

1.格栅间隙数式中——格栅栅条间隙数(个);Q——最大设计流量(m3/s);——格栅倾角(°);b——栅条净间距(m);h——栅前水深(m);v——过栅流速(m/s),宜采用0.6~1.0m/s。

(完整版)污水提升泵站工艺设计说明计算书:城市污水,6.00万吨每天,潜水排污泵

(完整版)污水提升泵站工艺设计说明计算书:城市污水,6.00万吨每天,潜水排污泵

污水提升泵站主要用于提升拟建截流箱涵旱季截流污水及雨季2倍截流规模的混流水,并将其转输至污水处理厂处理。

不同边界条件下,污水提升泵站所需提升水量如下表所示:表1.1-1不同边界条件下污水泵站提升水量分析根据上表分析,以近期雨季设计流量作为格栅设计流量,并以近期旱季设计流量进行校核;同时通过泵组的灵活组合,适应近期流量的波动及中远期流量的减少工况。

1.1拦污栅鉴于本工程截流箱涵进水仅来自于各河道的总口截流混流污水,而各河道总口截流处均设有格栅间隙为40mm的抓斗式拦污栅,故本拦污栅定位为中格栅,是污水提升泵站的预处理设施,可去除大尺寸的漂浮物或悬浮物,以保护进水泵的正常运转,并尽量去掉那些不利于后续处理过程的杂物。

根据格栅特点及设计经验,拟采用抓斗式格栅除污机。

1.1.1 总体设计说明栅条的断面主要根据过栅流速确定,过栅流速一般为0.6~1.0m/s,栅槽内流速0.5m/s左右。

如果流速过大,不仅过栅水头损失增加,还可能将已截留在栅上的栅渣冲过格栅,如果流速过小,栅槽内将发生沉淀。

1.1.2 雨季工况设计(1)设计参数:栅条净间隙为b=20.0mm 格栅倾角δ=75°雨季栅前流速ν1=0.7m/s 雨季过栅流速ν=0.9m/s(2)设计规模Q max:格栅井设置2组,旱季运行1组,雨季运行2组,则每组格栅过流水量为3.00万m 3/d (0.35m 3/s )。

(3)栅前水深h :拟建污水泵站处箱涵底高程约-3.79m ,根据水力计算,当箱涵宽度为2.5m 、坡度为0.001、糙率为0.014时,雨季箱涵水深约0.31m ,即栅前进水井水位为-3.48m ;栅前进水井及格栅后井底高程按-4.65m 设计,格栅前井底高程比格栅后井底高程高0.2m ,则格栅前井底高程为-4.45m ,考虑格栅前闸孔0.02m 的水头损失,则格栅前水深h=4.45-3.48-0.02=0.95m 。

(4)格栅计算说明: Q max —最大设计流量,m 3/s ; α—格栅倾角,度(°);h —栅前水深,m ; ν—污水的过栅流速,m/s 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

总出水管 管径 (m)
Байду номын сангаас
出水管管 径(m)
总扬程 (m)
0.025689
67
53
0.7
0.4 13.77446
坡度i
出水沿程 损失 (m)
出水局部 损失系数
沿程局部 损失 (m)
进水管提 升高度 (m)
进水管段 长度 (m)
吸水沿程 损失 (m)
0.00504 0.125496
0.3 0.037649 4.99
12 0.08563
污 水 泵 站 的 设 计 计 算
自灌泵 站的设

水池宽度 水池长度 (m) (m) 4 6.75 泵站建设设计计算:流速和坡度为查表 得到(用Q和管径),出水管埋深、沿程 损失系数、吸水管吸程和进出水管的高 差为设计值。
泵站建设设计计算:流速和坡度为查表 得到(用Q和管径),出水管埋深、沿程 损失系数、吸水管吸程和进出水管的高
差为设计值。
泵轴高程 (m)
进出管的 高差 (m)
管径 (m)
吸水管水平段管底 高程(m)
58.58868 0.41
0.4
57.57868152
非自灌泵
站的设计
吸水局部 损失 (m)
出水水面 地下水位 高程 高程 (m) (m)
生活污水 定额
(L/d.人)
城市人口 数量(人)
平均秒流 量(L/s)
总变化系 数KZ
最大秒流 量(L/s)
实用水泵 数量(台)
每台水泵 容量 (L/s)
集水池容 积(m3)
单泵6min
集水池面 积(m2) H=2m
135 80000
125 1.59 198.75
2 99.375 35.775 17.8875
1.5
300
2
150
54
27
格栅水头 损失(m)
出水管水 面高程
(m)
进水管管 底高程
(m)
进水管径 DN(m)
管道充满 度
H/DN(m)
集水池正 常水位
(m)
提升高度 (m)
0.1
67 54.575 700
0.75
1
13
吸水管吸 程(m)
5.7
出水管提 升高度 (m)
出水管段 长度(m)
6.9
18
格栅水头 损失(m)
出水管水 面高程
(m)
进水管管 底高程
(m)
进水管径 DN(m)
管道充满 度
H/DN(m)
集水池正 常水位
(m)
提升高度 (m)
0.1
41.8 24.8
600
0.75
1
17.65
设计管线 长度(m)
出水管水 面高程
(m)
集水池有 效水深
(m)
泵房原地 面高度
(m)
总出水管 中心埋深
(m)
坡度i
沿程损失 系数
外管线水 头损失 (m)
320
41.8
2
31.8
0.9 0.00893 0.3 3.8182 自


站的设

站内管线 水头损失
(m) 1.5
安全水头 (m)
0.5
提升高度 (m)
外管线水 头损失
(m)
水泵扬程 (m)
23.4682
泵站建设设计计算:流速和坡 度为查表得到(用Q和管径),出
水管埋深、沿程损失系数、站
内管线水头损失和安全水头为
设计值。
生活污水 定额
(L/d.人)
城市人口 数量(人)
平均秒流 量(L/s)
总变化系 数KZ
最大秒流 量(L/s)
实用水泵 数量(台)
每台水泵 容量 (L/s)
集水池容 积(m3)
单泵6min
集水池面 积(m2) H=2m
270 64000
200
相关文档
最新文档