2019届九年级上学期第三次月考政治试题(附答案)
人教版2022-2023学年第一学期九年级数学第三次月考测试题(附答案)
![人教版2022-2023学年第一学期九年级数学第三次月考测试题(附答案)](https://img.taocdn.com/s3/m/bb37f538f08583d049649b6648d7c1c708a10b78.png)
2022-2023学年第一学期九年级数学第三次月考测试题(附答案)一、单项选择题(共18分)1.下列图形中,不是中心对称图形的是()A.B.C.D.2.在平面直角坐标系中,点(2,﹣1)关于原点对称的点的坐标是()A.(2,1)B.(﹣2,1)C.(﹣1,2)D.(﹣2,﹣1)3.⊙O的半径为3,点P在⊙O外,点P到圆心的距离为d,则d需要满足的条件()A.d>3B.d=3C.0<d<3D.无法确定4.将一元二次方程x2+6x+3=0化为(x+h)2=k的形式,则k的值为()A.3B.6C.9D.125.关于二次函数y=﹣(x+1)2+3的图象,下列说法错误的是()A.开口向下B.对称轴为直线x=﹣1C.当x<﹣1时,y随x的增大而增大D.当x=﹣1时,函数有最小值,最小值为y=36.如图,AB为⊙O的直径,过圆上一点C作⊙O的切线,交直径AB的延长线于点D,若∠A=22.5°,⊙O的半径为2,则BD的长为()A.1B.2C.2﹣2D.3﹣2二、填空题(共18分)7.已知x=﹣1是方程x2﹣ax+1=0的一个根,则a的值为.8.一个不透明的盒子里,装有除颜色外无其他差别的白珠子2颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.2左右,则盒子中黑珠子可能有颗.9.一个圆锥的母线长为5,侧面展开图的面积是20π,则该圆锥的底面半径为.10.如图,紫荆花图案旋转一定角度后能与自身重合,则旋转的角度至少为°.11.东汉时期的数学家赵爽在注解《周髀算经》时,给出的“赵爽弦图”是我国古代数学的瑰宝,如图1,四个直角三角形是全等的,且直角三角形的长直角边与短直角边之比为2:1,现连接四条线段得到图2的新的图案.若随机向该图形内掷一枚针,则针尖落在图2中阴影区域的概率为.12.如图,已知点A从原点O出发,以每秒2个单位长度的速度沿着x轴的正方向运动,经过t(t≥1.5)秒后,以O,A为顶点作菱形OABC,使点B,C都在第一象限内,且∠AOC=60°.若以点P(0,2)为圆心,PC为半径的圆恰好与菱形OABC某一条边所在的直线相切,则t的值为.三、解答题(共84分)13.(1)解方程:x2﹣4x+1=0.(2)如图,E是正方形ABCD的边DC上一点,把△ADE绕点A旋转一定角度后与△ABF重合.若四边形AECF的面积为16,求AD的长.14.如图,抛物线y=ax2+x+c与x轴交于点A(﹣1,0),且对称轴为直线x=1.求抛物线的解析式.15.已知AB是⊙O的直径,DE与⊙O相切于点D,且DE⊥BE,设BE交⊙O于点C,请仅用无刻度直尺按下列要求作图(保留作图痕迹).(1)在图1中,作∠ABC的平分线.(2)在图2中,找出BC边上的中点G.16.已知关于x的一元二次方程x2﹣(m+1)x+m=0.(1)求证:无论m为何值,方程总有实数根.(2)设方程的两根均为等腰△ABC的边长,且△ABC的周长为5,求m的值.17.如图,已知△ABC是⊙O的内接三角形,AD是⊙O的直径,连接BD.(1)若∠BAD=20°,求∠ACB的度数.(2)若BC平分∠ABD,AD=2,求AC的长.18.江西可谓物华天宝,山清水秀.寒假期间小尹打算去领略江西四大名山的风采,分别为A.明月山;B.武功山;C.庐山;D.三清山.由于时间原因,只能选择其中两个景点,于是小尹决定通过抽签的方式选择,将四张小纸条分别写上四个景点的名字,做出四个签(外表完全相同),然后从中随机抽出两张,每张签抽到的机会均等.(1)抽到“明月山”是事件,抽到“井冈山”是事件(填“不可能”或“必然”或“随机”).(2)请你用列表法或画树状图法表示出这次抽签所有可能的结果,并求“小尹抽到明月山和庐山”的概率.19.如图,△ABC的顶点坐标分别为A(﹣3,5),B(﹣4,2),C(2,3).(1)画出△ABC关于点O中心对称的△A1B1C1.(2)画出△ABC绕点C顺时针旋转90°后的△A2B2C,当点A旋转到A2时,求点A所经过的路径长.20.桑葚被称为“民间圣果”,其营养价值是苹果的5~6倍,是葡萄的4倍,具有降压降脂,健脾养胃等功效.今年某采摘园喜获丰收,经市场调研发现,当桑葚的售价为30元/千克时,每天可销售200千克,若单价每降价1元,销售量可增加50千克.已知该品种的桑葚成本价为15元/千克.(1)若该采摘园每天获利3500元,且尽量增加销售量,桑葚售价应降低多少元?(2)设桑葚售价降低a元,当a为何值时,该采摘园每天的利润最大.21.如图,以△ABC的边BC上一点O为圆心,OB为半径的圆,经过点A,且与边BC交于点E,D为⊙O上一点,连接AE,AD,其中∠CAE=∠ABC.(1)求证:AC是⊙O的切线.(2)若∠ADB=60°,⊙O的半径为3,求阴影部分的面积.(结果保留根号)22.函数图象在探究函数的性质时有非常重要的作用,某同学根据学习函数的经验,探究了函数y=x2﹣2|x|+1的图形和性质.(1)如表给出了部分x,y的取值:x…﹣3﹣2﹣10123…y…m10n014…则m=,n=.(2)在如图所示的平面直角坐标系中画出函数y=x2﹣2|x|+1的图象.(3)根据画出的函数图象,写出该函数的一条性质.(4)若点M(m,y1)在图象上,且y1≤1,若点N(m+k,y2)也在图象上,且满足y2≥4恒成立,请直接写出k的取值范围.23.【操作发现】如图1,在等边△ABC中,点B,C在直线MN上,E为BC边上的一点,连接AE,并把线段AE绕点E顺时针旋转60°得到线段EF,连接CF,则线段CF与BE 的数量关系是,线段CF与直线MN所夹锐角的度数是.【类比探究】如图2,在等边△ABC中,点B,C在直线MN上,若E为BC延长线上的一点,连接AE,并把线段AE绕点E顺时针旋转60°得到线段EF,连接CF,上述两个结论还成立吗?请说明理由.【拓展应用】如图3,在正方形ABCD中,点B,C在直线MN上,E为直线MN上的任意一点,连接AE,并把线段AE绕点E顺时针旋转90°得到线段EF,连接CF.(1)试探究线段BE与CF的数量关系及线段CF与直线MN所夹锐角的度数,并说明理由.(2)若正方形的边长为2,连接DF,当DF=时,求线段BE的长.参考答案一、单项选择题(共18分)1.解:A、不是中心对称图形,故此选项符合题意;B、是中心对称图形,故此选项不合题意;C、是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项不合题意;故选:A.2.解:点(2,﹣1)关于原点对称的点的坐标是(﹣2,1),故选:B.3.解:∵点P在⊙O外,∴d>3.故选:A.4.解:方程x2+6x+3=0,移项得:x2+6x=﹣3,配方得:x2+6x+9=6,即(x+3)2=6,则k=6,故选:B.5.解:∵二次函数y=﹣(x+1)2+3,∴a=﹣1<0,函数的图象开口向下,故选项A正确,不符合题意;对称轴是直线x=﹣1,故选项B正确,不符合题意;当x<﹣1时,y随x的增大而增大,故选项C正确,不符合题意;当x=﹣1时,函数有最大值y=3,故选项D错误,符合题意;故选:D.6.解:连接OC,∵∠A=22.5°,∴∠COD=2∠A=45°,∵CD是⊙O的切线,∴∠OCD=90°,∴△OCD是等腰直角三角形,∵OC=2,∴OD=,∴BD=OD﹣OB=2﹣2,故选:C.二、填空题(共18分)7.解:由题意得:把x=﹣1代入方程x2﹣ax+1=0中,则(﹣1)2﹣a•(﹣1)+1=0,∴1+a+1=0,∴a=﹣2,故答案为:﹣2.8.解:设有黑色珠子n颗,由题意可得,,解得n=8.故估计盒子中黑珠子大约有8个.故答案为:8.9.解:设底面半径为R,则底面周长=2πR,圆锥的侧面展开图的面积=×2πR×5=20π,∴R=4.故答案为:4.10.解:紫荆花图案可以被中心发出的射线分成5个全等的部分,则旋转的角度至少为360÷5=72度,故答案为:72.11.解:如图2,设直角三角形的长直角边与短直角边分别为2x和x,则AC=x,BD=x,AB=CD,△ABD是直角三角形,则大正方形面积=AC2=5x2,△ADC面积=•x•x=x2,阴影部分的面积S=5x2﹣4×x2=3x2,∴针尖落在阴影区域的概率为=.故答案为:.12.解:∵已知A点从(0,0)点出发,以每秒2个单位长的速度沿着x轴的正方向运动,∴经过t秒后,∴OA=2t,∵四边形OABC是菱形,∴OC=2t,当⊙P与OA,即与x轴相切时,如图所示,则切点为O,此时PC=OP,过P作PE⊥OC,∴OE=CE=OC,∴OE=t,∵∠AOC=60°,∴∠POC=30°,∵A(0,2),∴PE=,∴OE==6,∴t=6.故答案为:6.三、解答题(共84分)13.解:(1)∵x2﹣4x+1=0,∴(x﹣2)2=3,∴x﹣2=±,∴x1=+2,x2=﹣+2;(2)∵把△ADE绕点A旋转一定角度后与△ABF重合,∴△ADE≌△ABF,∴S△ADE=S△ABF,∴四边形AECF的面积等于正方形的面积,∴AD2=16,∴AD=4.14.解:由已知可得:,解得,∴抛物线解析式为y=﹣x2+x+.15.解:(1)如图1,BD为所作;(2)如图2,点G为所作.16.(1)证明:∵a=1,b=﹣(m+1),c=m,∴Δ=b2﹣4ac=[﹣(m+1)]2﹣4×1×m=m2+2m+1﹣4m=m2﹣2m+1=(m﹣1)2≥0,∴无论m为何值,方程总有实数根;(2)解:∵x2﹣(m+1)x+m=0,即(x﹣1)(x﹣m)=0,解得:x1=1,x2=m.当关于x的一元二次方程x2﹣(m+1)x+m=0有两个相等的实数根时,m=1,∴△ABC的三条边长分别为1,1,3,∵1+1=2<3,∴1,1,3不能组成三角形,∴m=1不符合题意,舍去;当关于x的一元二次方程x2﹣(m+1)x+m=0有两个不相等的实数根时,m==2,∴△ABC的三条边长分别为1,2,2,∵1+2=3>2,∴1,2,2能组成三角形.∴m的值为2.17.解:(1)∵AD是⊙O的直径,∴∠ABD=90°,∵∠BAD=20°,∴∠D=90°﹣20°=70°,∴∠ACB=∠D=70°;(2)连接OC,∵BC平分∠ABD,∴∠ABC=ABD=45°,∴∠AOC=2∠ABC=90°,∵AD=2,∴AO=1,∴AC=AO=.18.解:(1)抽到“明月山”是随机事件,抽到“井冈山”是不可能事件,故答案为:随机,不可能;(2)画树状图如下:这次抽签所有等可能的结果共有12种,其中“小尹抽到明月山和庐山”的结果有2种,即AC、CA,∴“小尹抽到明月山和庐山”的概率为=.19.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C即为所求,∵AC==,∴弧长AA2==.20.解:设桑葚售价应降低x元,则每天可售出(200+50x)千克,由题意得,(30﹣15﹣x)(200+50x)=3500,解得x1=1,x2=10,∵采摘园尽量增加销售量,∴x=10,答:桑葚售价应降低10元;(2)设采摘园每天的利润为w元,根据题意得:w=(30﹣15﹣a)(200+50a)=﹣50a2+550a+3000=﹣50(a﹣)2+4512,∵﹣50<0,∴当a=时,w有最大值,最大值为4512.5,答:当a=时,该采摘园每天的利润最大.21.(1)证明:如图,连接OA,∵BE是⊙O的直径,∴∠BAE=90°,∴∠OAB+∠OAE=90°,∵OA=OB,∴∠OBA=∠OAB,∵∠CAE=∠ABC,∴∠CAE=∠OAB,∴∠CAE+∠OAE=90°,∴OA⊥AC,∵OA是⊙O的半径,∴AC是⊙O的切线;(2)解:∵∠ADB=60°,∴∠AEB=∠ADB=60°,∵OA=OE,∴△OAE为等边三角形,∴∠AOC=60°,∴AC=OA=3,∴S阴影部分=S△OAC﹣S扇形AOE=×3×3﹣=﹣π.22.解:(1)将x=﹣3,x=0分别代入函数y=x2﹣2|x|+1,得m=9﹣6+1=4,n=1,故答案为:4,1;(2)画出函数图象如图:(3)该函数的一条性质:函数图象关于y轴对称;(4)由图象得,若点M(m,y1)在图象上,且y1≤1,则﹣1≤m≤1,若点N(m+k,y2)也在图象上,且满足y2≥4恒成立,则m+k≤﹣3或m+k≥3,∴k≤﹣3﹣m或k≥3﹣m,∴k的取值范围为k≤﹣4或k≥4.23.解:【操作发现】如图1中,过点E作EK∥AC交AB于点K.∵△ABC是等边三角形,∴∠ACB=∠CAB=∠ABC=60°,AB=BC,∵EK∥AC,∴∠BEK=∠ACB=60°,∠BKE=∠CAB=60°,∴△BEK是等边三角形,∴BK=BE,∴AK=EC,∵∠AEC=∠AEF+∠FEC=∠ABC+∠EAK,∠AEF=∠ABC=60°,∴∠EAK=∠FEC,在△EAK和△FEC中,,∴△EAK≌△FEC(SAS),∴EK=CF,∠AKE=∠ECF=120°,∵BE=EK,∴CF=BE,∠FCN=60°,故答案为:CF=BE,60°;【类比探究】如图2中,结论成立.理由:过点E作EK∥AC交BA的延长线于点K.∵△ABC是等边三角形,∴∠ACB=∠CAB=∠ABC=60°,AB=BC,∵EK∥AC,∴∠BEK=∠ACB=60°,∠BKE=∠CAB=60°,∴△BEK是等边三角形,∴BK=BE,∴AK=EC,∵∠AEN=∠AEF+∠FEN=∠ABC+∠EAK,∠AEF=∠ABC=60°,∴∠EAB=∠FEN,∴∠EAK=∠FEC,在△EAK和△FEC中,,∴△EAK≌△FEC(SAS),∴EK=CF,∠AKE=∠FCE=60°,∵BE=EK,∴CF=BE;【拓展应用】(1)结论:CF=BE,线段CF与直线MN所夹锐角的度数为45°.理由:在BA上取一点K,使得BK=BE.∵四边形ABCD是正方形,∴∠ABC=90°,∵BK=BE,∴∠BKE=∠BEK=45°,∴∠AKE=135°,∵∠AEN=∠AEF+∠FEC=∠ABC+∠EAK,∠AEF=∠ABC=90°,∴∠EAB=∠FEN,在△EAK和△FEC中,,∴△EAK≌△FEC(SAS),∴EK=CF,∠AKE=∠FCE=135°,∴∠FCN=180°﹣135°=45°;(2)如图4﹣1中,过点D作DH⊥CF于点H.当点F在点H上方时,∵△DCH是等腰直角三角形,CD=2,∴CH=DH=,∵DF=,∴FH===2,∴CF=BE=3.如图4﹣2中,当点F在点H的下方时,同法可得FH=2,∴CF=BE=FH﹣CH=,综上所述,BE的长为或3.。
沪科版九年级上册数学第三次月考试题附答案
![沪科版九年级上册数学第三次月考试题附答案](https://img.taocdn.com/s3/m/aa28e33d302b3169a45177232f60ddccdb38e630.png)
沪科版九年级上册数学第三次月考试题一、选择题。
(每小题只有一个正确答案,每小题3分,共30分)1.如果α是锐角,且cosα=45,那么sinα的值是()A .925B .45C .35D .2.下列判断正确的是()A .不全等的三角形一定不是相似三角形B .不相似的三角形一定不是全等三角形C .相似三角形一定不是全等三角形D .全等三角形不一定是相似三角形3.如图,点D 在ABC 的边AC 上,添加下列一个条件仍不能判断ADB △与ABC 相似的是()A .ABD C ∠=∠B .ADB ABC ∠=∠C .2AB AD AC=⋅D .2BC CD AC=⋅4.若x 1,x 2(x 1<x 2)是方程(x-a )(x-b )=1(a <b )的两个根,则实数x 1,x 2,a ,b 的大小关系为()A .x 1<x 2<a <bB .x 1<a <x 2<bC .x 1<a <b <x 2D .a <x 1<b <x 25.已知在△ABC 中,∠C =90°,设sin B =n ,当∠B 是最小的内角时,n 的取值范围是().A .0<n <22B .0<n <12C .0<n <33D .0<n <326.二次函数y=ax 2+bx+c(a≠0)的图象如图,则反比例函数y=ax与一次函数y=bx ﹣c 在同一坐标系内的图象大致是()A .B .C .D .7.如图,在平行四边形ABCD 中,E 为CD 上一点,DE :CE =2:3,连结AE ,BD 交于点F ,则S △DEF :S △ADF :S △ABF 等于()A .2:3:5B .4:9:25C .4:10:25D .2:5:258.如图,在ABC 中,CD 平分ACB ∠,过D 作BC 的平行线交AC 于M ,若BC m =,AC n =,则DM =()A .m m n+B .mn m n+C .n m n+D .m nn m +9.(2016湖南省娄底市)如图,已知在Rt △ABC 中,∠ABC =90°,点D 沿BC 自B 向C 运动(点D 与点B 、C 不重合),作BE ⊥AD 于E ,CF ⊥AD 于F ,则BE +CF 的值()A .不变B .增大C .减小D .先变大再变小10.如图,在梯形ABCD 中,AB =BC =10cm ,CD =6cm ,∠C =∠D =90°,动点P 、Q 同时以每秒1cm 的速度从点B 出发,点P 沿BA 、AD 、DC 运动,点Q 沿BC 、CD 运动,P 点与Q 点相遇时停止,设P 、Q 同时从点B 出发x 秒时,P 、Q 经过的路径与线段PQ 围成的图形的面积为y (cm 2),则y 与x 之间的函数关系的大致图象为()A .B .C .D .二、填空题11.若点A (2,m )在函数y=x 2-1的图象上,则A 点的坐标是______.12.在△ABC 中,若∠A =30°,∠B =45°,AC =22,则BC =_______.13.如图所示,在一个直角三角形的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设m AB x ,长方形的面积为2m y ,要使长方形的面积最大,其边长x 应为______.14.如图,在矩形ABCD 中,6AB =,12AD =,点E 在边AD 上,8AE =,点F 在边DC 上,则当EF =________时,ABE △与DEF 相似.15.二次函数y=ax 2+bx+c (a≠0)图象如图,下列结论:①a ﹣b+c >0;②2a+b=0;③当m≠1时,a+b >am 2+bm ;④若ax 12+bx 1=ax 22+bx 2,且x 1≠x 2,则x 1+x 2=2.其中正确的结论的序号是______.16.如图,直线y =x +2与反比例函数y =kx的图象在第一象限交于点P .若OP 10,则k 的值为________.三、解答题17.计算:22cos 30cos 60tan 60tan 30+⋅+sin45°.18.已知线段a 、b 、c 满足a :b :c =3:2:6,且a +2b +c =26.(1)求a 、b 、c 的值;(2)若线段x 是线段a 、b 的比例中项,求x 的值.19.如图,Rt △ABC 中,斜边AB 上一点M ,MN ⊥AB 交AC 于N ,若AM =3cm ,AB :AC =5:4,求MN 的长.20.如图,在矩形ABCD 中,E 是AD 边上的一点,BE AC ⊥,垂足为点F .求证:AEF CAB △∽△.21.如图,两幢建筑物AB 和CD ,AB ⊥BD ,CD ⊥BD ,AB=15cm ,CD=20cm ,AB 和CD 之间有一景观池,小南在A 点测得池中喷泉处E 点的俯角为42°,在C 点测得E 点的俯角为45°(点B 、E 、D 在同一直线上),求两幢建筑物之间的距离BD (结果精确到0.1m ).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)22.如图所示,已知平行四边形ABCD 的周长为8cm ,30B ∠=,若边长()AB x cm =.()1写出ABCD的面积()2y cm与x的函数关系式,并求自变量x的取值范围.()2当x取什么值时,y的值最大?并求最大值.23.在△ABC中,点D、E分别在边AB、AC上,且AD:DB=3:2,AE:EC=1:2,直线ED和CB的延长线交于点F,求:FB:FC.24.如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.(1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P 的坐标,并求出△POB的面积;若不存在,请说明理由.25.问题提出:数学课本上有这样一道题目:如图①,一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm.把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?初步思考:(1)试计算出正方形零件的边长;深入探究:(2)李华同学通过探究发现如果要把△ABC按照图②加工成三个相同大小的正方形零件,△ABC的边BC与高AD需要满足一定的数量关系.则这一数量关系是:.(直接写出结论,不用说明理由);(3)若△ABC可以按照图③加工成四个大小相同的正方形,且∠B=30°,求证:AB=BC.参考答案1.C2.B3.D4.C5.A6.C7.C8.B9.C 10.C 11.(2,3)12.1213.5m 214.5或20315.②③④16.317.222+18.(1)a =6,b =4,c =12;(2)x 的值为19.9420.见解析21.36.7m .22.(1)212(04)2y x x x =-+<<;(2)当2x =时,y 有最大值,其最大值为2.23.1324.(1)y=x 2﹣3x .(2)点B 的坐标为:(4,4).(3)存在;理由见解析;25.(1)正方形零件的边长为48mm .(2)AD=BC ,(3)证明见解析.。
人教版2022-2023学年第一学期九年级数学第三次月考测试题(附答案)
![人教版2022-2023学年第一学期九年级数学第三次月考测试题(附答案)](https://img.taocdn.com/s3/m/3f46ae86dc3383c4bb4cf7ec4afe04a1b071b01c.png)
2022-2023学年第一学期九年级数学第三次月考测试题(附答案)一、选择题(共40分)1.下列各曲线是在平面直角坐标系xOy中根据不同的方程绘制而成的,其中是中心对称图形的是()A.B.C.D.2.点P(2,﹣5)关于原点的对称点的坐标是()A.(﹣2,﹣5)B.(2,5)C.(﹣2,5)D.(﹣5,2)3.已知⊙O的半径为3,点M在⊙O上,则OM的长可能是()A.2B.3C.4D.54.如图所示,在⊙O中=,∠A=30°,则∠B=()A.150°B.75°C.60°D.15°5.平面上一点P与⊙O的点的距离的最小值是2,最大值是8,则⊙O的直径是()A.6或10B.3或5C.6D.56.如图,已知线段OA交⊙O于点B,且OB=AB,点P是⊙O上的一个动点,那么∠OAP 的最大值是()A.90°B.60°C.45°D.30°7.如图,△ODC是由△OAB绕点O顺时针旋转31°后得到的图形,若点D恰好落在AB 上,且∠AOC的度数为100°,则∠DOB的度数是()A.34°B.36°C.38°D.40°8.下列说法:①弧长相等的弧是等弧;②三点确定一个圆;③相等的圆心角所对的弧相等;④垂直于半径的直线是圆的切线;⑤三角形的外心到三角形三个顶点的距离相等.其中不正确的有()个.A.1B.2C.3D.49.某数学兴趣小组研究二次函数y=x2+bx+c的图象时,得出如下四个结论:甲:图象与x轴的一个交点为(1,0);乙:图象与x轴的一个交点为(3,0);丙:图象与x轴的交点在原点两侧;丁:图象的对称轴为过点(1,0),且平行于y轴的直线;若这四个结论中只有一个是不正确的,则该结论是()A.甲B.乙C.丙D.丁10.如图,AB是⊙O的直径,AB=4,C为的三等分点(更靠近A点),点P是⊙O上个动点,取弦AP的中点D,则线段CD的最大值为()A.2B.C.D.二、填空题(共24分)11.已知关于x的方程x2﹣3x﹣m=0的一个根是1,则m=.12.如图,若∠BOD=140°,则∠BCD=.13.在半径为10cm的⊙O中,圆心O到弦AB的距离为6cm,则弦AB的长是cm.14.如图,⊙O上三点A,B,C,半径OC=1,∠ABC=30°,⊙O的切线P A交OC延长线于点P,则PC的长为.15.在等边△ABC中,AB=5,点D是AB上的定点,点P是BC上的动点,DP绕点D逆时针旋转60°恰好落在AC上,已知BD=2,则此时DP=.16.如图,矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD 边F处,连接AF,在AF上取点O,以O为圆心,OF长为半径作⊙O与AD相切于点P,若AB=6,BC=3,则下列结论:①F是CD的中点:②⊙O的半径是2;③AE=CE,其中正确的是.(写序号)三、解答题(共86分)17.解方程:x2﹣2x﹣5=0.18.小晗家客厅装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏电灯,因刚搬进新房不久,不熟悉情况.(1)若小晗任意按下一个开关,正好楼梯灯亮的概率是;(2)若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图或列表法加以说明.19.已知关于x的一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,且n+2m=4,求n 的取值范围.20.如图,在Rt△ABC中,∠ACB=90°,BD平分∠ABC.求作⊙O,使得点O在边AB 上,且⊙O经过B、D两点;并证明AC与⊙O相切.(尺规作图,保留作图痕迹,不写作法)21.如图,△ABC中,AB=AC,∠BAC=50°,P是BC边上一点,将△ABP绕点A逆时针旋转50°,点P旋转后的对应点为P′.(1)画出旋转后的三角形;(2)连接PP′,若∠BAP=20°,求∠PP′C的度数;22.某药店新进一批桶装消毒液,每桶进价35元,原计划以每桶55元的价格销售,为更好地助力疫情防控,现决定降价销售.已知这种消毒液销售量y(桶)与每桶降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)在这次助力疫情防控活动中,该药店仅获利1760元.这种消毒液每桶实际售价多少元?23.如图,△ABC内接于⊙O,AB是⊙O的直径,过点A作AD平分∠CAB,交⊙O于点D,过点D作DE∥BC交AC的延长线于点E.(1)依据题意,补全图形;(2)判断直线DE与⊙O的位置关系并证明;(3)若AB=10,BC=8,求CE的长.24.如图,△ABC内接于⊙O,弦BD⊥AC,垂足为E,点D、点F关于AC对称,连结AF 并延长交⊙O于点G.(1)连结OB,求证:∠ABD=∠OBC;(2)求证:点F、点G关于BC对称.25.已知抛物线y=x2+bx+c的顶点为P,与y轴交于点A,与直线OP交于点B.(1)若点P的横坐标为1,点B的坐标为(3,6).①求抛物线的解析式;②若当m≤x≤3时,y=x2+bx+c的最小值为2,最大值为6,求m的取值范围;(2)若点P在第一象限,且P A=PO,过点P作PD⊥x轴于D,将抛物线y=x2+bx+c 平移,平移后的抛物线经过点A、D,与x轴的另一个交点为C,试探究四边形OABC的形状,并说明理由.参考答案一、选择题(共40分)1.解:选项A、B、D均不能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以不是中心对称图形,选项C能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以是中心对称图形,故选:C.2.解:因为点P(2,﹣5)关于原点的对称点的坐标特点:横纵坐标互为相反数,所以对称点的坐标是(﹣2,5),故选:C.3.解:∵点M在⊙O上,⊙O的半径为3,∴OM=3,故选:B.4.解:∵=,∴AB=AC,∴∠B=∠C,∵∠A=30°,∴∠B=∠C=×(180°﹣30°)=75°.故选:B.5.解:当点P在圆内时,因为点P与⊙O的点的距离的最小值是2,最大值是8,所以圆的直径为10,当点P在圆外时,因为点P与⊙O的点的距离的最小值是2,最大值是8,所以圆的直径为6.故选:A.6.解:当AP与⊙O相切时,∠OAP有最大值,连接OP,如图,则OP⊥AP,∵OB=AB,∴OA=2OP,∴∠P AO=30°.故选:D.7.解:由题意得,∠AOD=31°,∠BOC=31°,又∠AOC=100°,∴∠DOB=100°﹣31°﹣31°=38°.故选:C.8.解:①弧长相等的弧是等弧,故该说法不正确;②不在同一直线的三点可以确定一个圆,故该说法不正确;③在同圆和等圆中,相等的圆心角所对的弧相等,故该说法不正确;④经过半径外端且垂直于这条半径的直线是圆的切线,故该说法不正确;⑤三角形的外心是三角形三边垂直平分线的交点,到三角形三个顶点的距离相等,故该说法正确.故选:D.9.解:若甲、乙成立,(1+3)÷2=1,∴图象的对称轴为过点(1,0),且平行于y轴的直线,图象与x轴的交点在原点右侧,故丁结论正确;图象与x轴的交点在原点右侧,故丙结论不正确,符合题意.故选:C.10.解:如图,连接OD,OC,∵AD=DP,∴OD⊥P A,∴∠ADO=90°,∴点D的运动轨迹为以AO为直径的⊙K,连接CK,AC,当点D在CK的延长线上时,CD的值最大,∵C为的三等分点,∴∠AOC=60°,∴△AOC是等边三角形,∴CK⊥OA,在Rt△OCK中,∵∠COA=60°,OC=2,OK=1,∴CK==,∵DK=OA=1,∴CD=+1,∴CD的最大值为+1,故选:D.二、填空题(共24分)11.解:把x=1代入方程可得:1﹣3﹣m=0,解得m=﹣2.故答案为:﹣2.12.解:由圆周角定理得,∠A=∠BOD=70°,∵四边形ABCD是圆内接四边形,∴∠BCD=180°﹣∠A=110°,故答案为:110°.13.解:连接OB.在Rt△ODB中,OD=6cm,OB=10cm.由勾股定理得BD===8.∴AB=2BD=2×8=16cm.14.解:连接OA,∵AP是⊙O的切线,∴OA⊥AP,∵∠ABC=30°,∴∠AOP=2∠ABC=60°,∴∠APO=30°,∵OA=OC=1,∴OP=2OA=2,∴PC=OP﹣OC=1.故答案为:1.15.解:如图,连接PP',过点D作DE⊥BC,∵DP绕点D逆时针旋转60°,∴DP=DP',∠PDP'=60°,∴△DP'P是等边三角形,∴DP=PP',∠DPP'=60°,∵△ABC是等边三角形,∴AB=BC=AC,∠A=∠B=∠C=60°,∵∠BPP'=∠C+∠PP'C=∠BPD+∠DPP',∴∠PP'C=∠BPD,且DP=PP',∠B=∠C,∴△BDP≌△CPP'(AAS)∴BD=CP=2,∴BP=3,∵∠B=60°,BD=2,DE⊥BC,∴BE=1,DE=BE=,∴PE=2,∴DP===,故答案为.16.解:①∵AF是AB翻折而来,∴AF=AB=6,∵矩形ABCD,则,∴,∴DF=CF,∴F是CD中点;故①正确;②如图,连接OP,∵⊙O与AD相切于点P,∴OP⊥AD,∵AD⊥DC,∴OP∥CD,∴△APO∽△ADF,∴,设OP=OF=x,则,解得:x=2,故②正确;③∵Rt△ADF中,AF=6,DF=3,∴,∴∠DAF=30°,∠AFD=60°,∴∠EAF=∠EAB=30°,∴AE=2EF;∵∠AFE=∠B=90°,∴∠EFC=90°﹣∠AFD=30°,∴EF=2EC,∴AE=4CE,故③错误;故答案为:①②.三、解答题(共86分)17.解:x2﹣2x=5,x2﹣2x+1=6,(x﹣1)2=6,x﹣1=±,所以x1=1+,x2=1﹣.18.解:(1)∵小晗家客厅里装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,∴小晗任意按下一个开关,正好楼梯灯亮的概率是:;(2)画树状图得:∵共有6种等可能的结果,正好客厅灯和走廊灯同时亮的有2种情况,∴正好客厅灯和走廊灯同时亮的概率是:=.19.解:根据题意得Δ=(﹣2)2﹣4×(﹣m)>0,解得m>﹣1.∵n+2m=4,∴m=>﹣1,解得n<6,即n的取值范围为n<6.20.解:如图,⊙O为所作.证明:连接OD,如图,∵BD平分∠ABC,∴∠CBD=∠ABD,∵OB=OD,∴∠OBD=∠ODB,∴∠CBD=∠ODB,∴OD∥BC,∴∠ODA=∠ACB,又∠ACB=90°,∴∠ODA=90°,即OD⊥AC,∵点D是半径OD的外端点,∴AC与⊙O相切.21.解:(1)旋转后的三角形ACP'如图所示:(2)由旋转可得,∠P AP'=∠BAC=50°,AP=AP',△ABP≌△ACP',∴∠APP'=∠AP'P=65°,∠AP'C=∠APB,∵∠BAC=50°,AB=AC,∴∠B=65°,又∵∠BAP=20°,∴∠APB=95°=∠AP'C,∴∠PP'C=∠AP'C﹣∠AP'P=95°﹣65°=30°.22.解:(1)设y与x之间的函数关系式为:y=kx+b,将点(1,110)、(3,130)代入一次函数关系式得:,解得:,故函数的关系式为:y=10x+100(0<x<20);(2)由题意得:(10x+100)×(55﹣x﹣35)=1760,整理,得x2﹣10x﹣24=0.解得x1=12,x2=﹣2(舍去).所以55﹣x=43.答:这种消毒液每桶实际售价43元.23.解:(1)如图1即为补全的图形.(2)直线DE是⊙O的切线.理由如下:证明:如图2,连接OD,交BC于F.∵AD平分∠BAC,∴∠BAD=∠CAD.∴.∴OD⊥BC于F.∵DE∥BC,∴OD⊥DE于D.∴直线DE是⊙O的切线.(3)∵AB是⊙O的直径,∴∠ACB=90°.∵AB=10,BC=8,∴AC=6.∵∠BFO=∠ACB=90°,∴OD∥AC.∵O是AB中点,∴OF==3.∵OD==5,∴DF=2.∵DE∥BC,OD∥AC,∴四边形CFDE是平行四边形.∵∠ODE=90°,∴平行四边形CFDE是矩形.∴CE=DF=2.答:CE的长为2.24.证明:(1)连接OC,∵BD⊥AC,∴∠AEB=90°,∴∠EAB+∠ABE=90°,∵,∴∠BOC=2∠BAC,∵OB=OC,∴∠OBC=∠OCB,∵∠OBC+∠OCB+∠BOC=180°,∴2∠OBC+2∠BAC=180°,∴∠OBC+∠BAC=90°,∴∠OBC=∠ABE,即∠OBC=∠ABD,(2)连接BG,AD,GC,AG交BC于点H,∵点D,F关于AC对称,∴EF=ED,∵BD⊥AC,∴∠AEF=∠AED=90°,又∵AE=AE,∴△AEF≌△AED(SAS),∴∠EAF=∠EAD,∠AFE=∠ADE,即∠GAC=∠DAC,∵,∴∠DAC=∠DBC,∵,∴∠GAC=∠GBC,∴∠DBC=∠GBC,∵∴∠ADB=∠BGA,∵∠AFD=∠BFG,∴∠BFG=∠AGB,∴△BHF≌△BHG(AAS),∴FH=GH,∠BHF=∠BHG=90°,∴点F,点G关于BC对称.25.解:(1)①∵抛物线y=x2+bx+c的顶点P的横坐标为1,∴﹣=1,解得:b=﹣2.∴y=x2﹣2x+c,∵抛物线y=x2﹣2x+c经过点B(3,6),∴6=32﹣2×3+c,解得:c=3.∴抛物线的解析式为y=x2﹣2x+3;②由y=x2﹣2x+3=(x﹣1)2+2知,P(1,2).∴点(3,6)关于对称轴x=1的对称点B′的坐标为(﹣1,6),如图1,∵当m≤x≤3时,y=x2+bx+c的最小值为2,最大值为6,∴﹣1≤m≤1;(2)如图2,由P A=PO,OA=c,可得PD=.∵抛物线y=x2+bx+c的顶点坐标为P(﹣,),∴=.∴b2=2c.∴抛物线y=x2+bx+b2,A(0,b2),P(﹣b,b2),D(﹣b,0).可得直线OP的解析式为y=﹣bx.∵点B是抛物线y=x2+bx+b2与直线y=﹣bx的图象的交点,令﹣bx=x2+bx+b2.解得x1=﹣b,x2=﹣.可得点B的坐标为(﹣b,b2).由平移后的抛物线经过点A,可设平移后的抛物线解析式为y=x2+mx+b2.将点D(﹣b,0)的坐标代入y=x2+mx+b2,得m=b.则平移后的抛物线解析式为y=x2+bx+b2.令y=0,即x2+bx+b2=0.解得x1=﹣b,x2=﹣b.依题意,点C的坐标为(﹣b,0).则BC=b2.则BC=OA.又∵BC∥OA,∴四边形OABC是平行四边形.∵∠AOC=90°,∴四边形OABC是矩形.。
沪科版2022-2023学年第一学期九年级数学第三次月考测试题(附答案)
![沪科版2022-2023学年第一学期九年级数学第三次月考测试题(附答案)](https://img.taocdn.com/s3/m/6c0f5735fd4ffe4733687e21af45b307e871f9de.png)
2022-2023学年第一学期九年级数学第三次月考测试题(附答案)一、选择题(满分40分)1.下列说法中正确的是()A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.“两边及其夹角对应相等的两个三角形全等”是必然事件C.“概率为0.0001的事件”是不可能事件D.“长度分别是3cm,3cm,6cm的三根木条能组成一个三角形”是必然事件2.抛物线y=x2﹣6x+9的顶点坐标是()A.(3,0)B.(﹣3,0)C.(﹣3,9)D.(3,9)3.在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“山”的概率为()A.B.C.D.4.从﹣1,1,2中任取两个不同的数,分别记为a和b,则a,b是方程x2﹣x﹣2=0的两个根的概率是()A.B.C.D.5.书架上有a本经济类书,7本数学书,b本小说,5本电脑游戏类书.现某人随意从架子上抽取一本书,若得知取到经济类或者数学书的机会为,则a,b的关系为()A.a=b﹣2B.a=b+12C.a+b=10D.a+b=126.如图,△OAB绕点O逆时针旋转85°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数是()A.35°B.45°C.55°D.65°7.如图,点AB和C、D分别在以点O为圆心的两个同心圆上,若∠AOB=∠COD,∠C =m°,则∠D=()A.m°B.m°C.m°D.2m°8.如图,正方形ABCD内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在黑色区域内的概率为()A.B.C.D.9.一个盒子里有完全相同的小球,球上分别标有数字1,2,3,从中摸出一个数字记为a,则摸出的数字使抛物线y=x2+ax+1与x轴没有交点的概率是()A.0B.C.D.110.如图,直角三角形的三边分别是a,b,c,且a<b<c,分别以三角形的三条边为边向外作正方形.若在该图形上做随机扎针试验,针头扎在三角形和三个正方形上的概率分别是P1,P2,P3,P4,则下列关系式一定成立的是()A.P3+P2=P4﹣P1B.P2+P3=P4C.P2+P3=P1+P4D.P1+P2+P3=P4二、填空题(满分20分)11.若点P(m﹣1,5)与点Q(3,2﹣n)关于原点成中心对称,则m+n的值是.12.如图,直线y=x+与y轴交于点P,将它绕着点P旋转90°所得的直线对应的函数解析式为.13.如图,AC是⊙O的直径,与弦BD交于E,连接BC,过点O作OF⊥BC于P,若BD =8cm,AE=2cm,则OF的长度是.14.有七张正面分别标有数字﹣3,﹣2,﹣1,0,1,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a.解答下列问题:(1)关于x的一元二次方程(a﹣3)x2﹣2(a﹣1)x+a=0有两个不等的实数根的概率是;(2)以x为自变量的二次函数y=ax2﹣(a2+2)x+2的图象经过点(1,0)的概率是.三、解答题(满分90分)15.如图,过⊙O内一点P画弦AB使P是AB的中点.16.随着信息化的发展,二维码已经走进我们的日常生活,其图案主要由黑、白两种小正方形组成,现对由三个小正方形组成的“□□□”进行涂色,每个小正方形随机涂成黑色或白色,求恰好是两个黑色小正方形和一个白色小正方形的概率.17.如图,AB是⊙O的直径,C、D是半⊙O的三等分点,CE⊥AB于点E,求∠ACE的度数并指出AC与OD的关系.18.如图,在4×4的正方形网格中,小正方形的边长为1,△PMN绕某点旋转一定的角度,得到△P1M1N1.(1)指出旋转中心及旋转角的度数;(2)求MN1的长.19.新冠病毒的传染性极强,某地因1人患了新冠病毒没有及时隔离治疗,经过两天的传染后共有9人患了新冠病毒,每天平均一个人传染了几人?如果按照这个传染速度,再经过3天的传染后,这个地区一共将会有多少人患新冠病毒?20.刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积.设半径为1的圆的面积与其内接正n边形的面积差为△n,如图①,图②,若用圆的内接正八边形和内接正十二边形逼近半径为1的圆,求△8﹣△12的值.21.已知,如图,△ABC的顶点A,C在⊙O上,⊙O与AB相交于点D,连接CD.(1)若⊙O半径为5,∠A=30°,求弦CD的长;(2)在(1)的条件下,求图中阴影部分的面积;(3)若∠ACB+∠ADC=180°,求证:BC是⊙O的切线.22.在一个不透明的口袋里装有颜色不同的红、白两种颜色的球共5只,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,如表是活动进行中的一组统计数据:摸球的次数n1001502005008001000摸到白球的次数m5996116295480601摸到白球的频率0.590.640.580.590.6050.601(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)(2)试估算口袋中红球有多少只?(3)请画树状图或列表计算:从中先摸出一球,不放回,再摸出一球,这两只球颜色不同的概率是多少?23.如图1,地面BD上两根等长立柱AB,CD之间悬挂一根近似成抛物线y=x2﹣x+3的绳子.解答下列问题:(1)两根等长立柱AB,CD的高度是米;并求出绳子最低点离地面的距离.(2)因实际需要,在离AB为3米的位置处用一根立柱MN撑起绳子(如图2),使左边抛物线F1的最低点距MN为1米,离地面2米,求MN的长.(3)将立柱MN的长度提升为3米,通过调整MN的位置,使抛物线F2对应函数的二次项系数始终为,设MN离AB的距离为m米,抛物线F2的顶点离地面距离为k米,当2≤k≤时,求m的取值范围.参考答案一、选择题(满分40分)1.解:A、“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误,不符合题意;B、“两边及其夹角对应相等的两个三角形全等”是必然事件,选项正确,符合题意;C、“概率为0.0001的事件”是随机事件,选项错误,不符合题意;D、不能构成三角形,选项错误,不符合题意.故选:B.2.解:∵抛物线y=x2﹣6x+9=(x﹣3)2,∴该抛物线的顶点坐标为(3,0),故选:A.3.解:∵在“绿水青山就是金山银山”这10个字中,“山”字有3个,∴这句话中任选一个汉字,这个字是“山”的概率是;故选:A.4.解:列表如下:﹣112﹣1(1,﹣1)(2,﹣1)1(﹣1,1)(2,1)2(﹣1,2)(1,2)由表知,共有6种等可能结果,其中a,b是方程x2﹣x﹣2=0的两个根的有(﹣1,2)、(2,﹣1)这两种结果,所以a,b是方程x2﹣x﹣2=0的两个根的概率为=,故选:D.5.解:由已知可得a+7=,解得a+2=b,即a=b﹣2.故选A.6.解:由题意可知:∠DOB=85°,由旋转得:△DCO≌△BAO,∴∠D=∠B=40°,∴∠AOB=180°﹣40°﹣110°=30°∴∠α=85°﹣30°=55°故选:C.7.解:∵∠AOB=∠COD,∴∠AOB+∠AOC=∠COD+∠AOC,即∠BOC=∠AOD,证明:在△COB和△DOA中,∴△COB≌DOA(SAS),∴∠C=∠D,∵∠C=m°,∴∠D=m°,故选:B.8.解:设正方形ABCD的边长为2a,针尖落在黑色区域内的概率==.故选:C.9.解:∵抛物线y=x2+ax+1与x轴没有交点,∴Δ=a2﹣4<0,而在1,2,3这3个数中,符合条件的只有1这1个数,∴摸出的数字使抛物线y=x2+ax+1与x轴没有交点的概率是.故选:C.10.解:∵直角三角形的三边分别是a,b,c,且a<b<c,∴a2+b2=c2,∴根据几何概率的定义可知P2+P3=P4.故选:B.二、填空题(满分20分)11.解:∵点P(m﹣1,5)与点Q(3,2﹣n)关于原点成中心对称,∴m﹣1=﹣3,2﹣n=﹣5,解得:m=﹣2,n=7,故m+n=5.故答案为:5.12.解:∵y=x+,∴函数y=x+与x轴的交点是(﹣1,0),与y轴的交点是(0,).∴OA=1,OP=.设函数与x轴交于点A,新函数与x轴交于点B,∵∠APO+∠BPO=90°=∠BPO+∠PBO,∴∠APO=∠PBO,∵∠AOP=∠POB=90°,∴△POA∽△BOP,∴=,即=,∴OB=3,∴点B(3,0).设新函数解析式为y=kx+,把点B代入求得,k=﹣.∴新函数解析式为y=﹣x+,故答案为:y=﹣x+.13.解:连接AB,∵BD⊥AC,∴BE=ED=BD=4(cm),由勾股定理得,AB==2(cm),∵OF⊥BC,∴CF=FB,又CO=OA,∴OF=AB=(cm),故答案为:.14.解:(1)令Δ=[﹣2(a﹣1)]2﹣4a(a﹣3)=4a+4>0,且a﹣3≠0,解得:a>﹣1且a≠3,∴a使关于x的一元二次方程(a﹣3)x2﹣2(a﹣1)x+a=0有两个不相等的实数根的数有0,1,2,则a使关于x的一元二次方程(a﹣3)x2﹣2(a﹣1)x+a=0有两个不相等的实数根的概率是,故答案为:;(2)∵二次函数y=ax2﹣(a2+2)x+2的图象经过点(1,0),∴a﹣(a2+2)+2=0,解得a=0或1,∵a≠0,∴a=1,∴以x为自变量的二次函数y=ax2﹣(a2+2)x+2的图象经过点(1,0)的概率是.故答案为:.三、解答题(满分90分)15.解:连接OP,过点P作AB⊥OP,则弦AB即为所求.16.解:画树状图如下:由树状图知,共有8种等可能结果,其中恰好是两个黑色小正方形和一个白色小正方形的有3种结果,所以恰好是两个黑色小正方形和一个白色小正方形的概率为.17.解:连接OC.∵AB是直径,弧AC=弧CD=弧BD,∴∠AOC=∠COD=∠DOB=60°,∵OA=OC,∴△AOC是等边三角形,∴∠A=60°,∵CE⊥OA,∴∠AEC=90°,∴∠ACE=90°﹣60°=30°.∵△AOC是等边三角形,∴AC=OC=OD.18.解:(1)如图,连接BM、BN、BP、BM1、BN1、BP1,则BP1=BP=1,根据勾股定理得BM1=BM=,BN1=BN=2,∴点B是旋转中心,取格点E,连接BE、NE、N1E,∵BE=NE=N1E,∠BEN=∠BEN1=90°,∴∠EBN1=∠EN1B=45°,∠EBN=∠ENB=45°,∴∠NBN1=∠EBN1+∠EBN=90°,∴旋转角等于90°,(2)根据勾股定理得MN1==,∴MN1的长是.19.解:设每天平均一个人传染了x人,由题意,得x(x+1)+x+1=9,解得:x1=2,x2=﹣4(舍去),三天后共有(x+1)3个人患病,(2+1)3=27(人).故每天平均一个人传染了2人,在经过3天的传染后,这个地区一共将会有27人患病.20.解:如图,由题意,△8﹣△12=(S圆﹣S八边形)﹣(S圆﹣S十二边形)=S十二边形﹣S八边形=12××1×1×sin30°﹣8××1×1×sin45°=3﹣2.21.(1)解:连接OC、OD,如图所示:则OC=OD=5,∵∠A=30°,∴∠DOC=60°,∴△OCD是等边三角形,∴CD=OC=5;(2)解:由(1)得S阴影=S扇形COD﹣S△COD=﹣=﹣.(3)证明:连接CO并延长交⊙O于点M,连AM,如图2所示:则∠MAC=90°,∠M+∠ADC=180°,∴∠M+∠ACM=90°,∵∠ACB+∠ADC=180°,∴∠M=∠ACB,∴∠ACB+∠ACM=90°,即∠BCM=90°,且CM是⊙O的直径,∴BC是⊙O的切线.22.解:(1)当n很大时,摸到白球的频率将会接近0.6;故答案为:0.6;(2)由(1)摸到白球的概率为0.6,则摸到红球的概率为1﹣0.6=0.4,所以可估计口袋中红球的个数为:5×0.4=2(只);(3)画树状图为:共有20种等可能的结果数,其中两只球颜色不同占12种,所以两只球颜色不同的概率==.23.解:(1)抛物线y=x2﹣x+3与y轴交与点A,∴A(0,3),∵两根等长立柱AB,CD,∴CD=3,∵a=>0,∴抛物线顶点为最低点,∵y=x2﹣x+3=(x﹣4)2+,∴绳子最低点离地面的距离为:米;故答案为:3;米;(2)由(1)可知,对称轴为x=4,则BD=8,令x=0得y=3,∴A(0,3),C(8,3),由题意可得:抛物线F1的顶点坐标为:(2,2),设F1的解析式为:y=a(x﹣2)2+2,将(0,3)代入得:4a+2=3,解得:a=0.25,∴抛物线F1为:y=0.25(x﹣2)2+2,当x=3时,y=0.25×1+2=2.25,∴MN的长度为:2.25米;(3)∵MN=DC=3,∴根据抛物线的对称性可知抛物线F2的顶点在ND的垂直平分线上,∴F2的横坐标为:(8﹣m)+m=m+4,∴抛物线F2的顶点坐标为:(m+4,k),∴抛物线F2的解析式为:y=(x﹣m﹣4)2+k,把C(8,3)代入得:(8﹣m﹣4)2+k=3,解得:k=﹣(4﹣m)2+3,∴k=﹣(m﹣8)2+3,∴k是关于m的二次函数,又∵由已知m<8,在对称轴的左侧,∴k随m的增大而增大,∴当k=2时,﹣(m﹣8)2+3=2,解得:m1=4,m2=12(不符合题意,舍去),当k=时,﹣(m﹣8)2+3=,解得:m1=8﹣2,m2=8+2(不符合题意,舍去),∴m的取值范围是:4≤m≤8﹣2.。
中考社会模拟试卷:2020学年第一学期第三次月考九年级社会试卷
![中考社会模拟试卷:2020学年第一学期第三次月考九年级社会试卷](https://img.taocdn.com/s3/m/8e99b5ead05abe23482fb4daa58da0116c171f1a.png)
2020学年第一学期九年级社政学科阶段性检测试卷试题卷Ⅰ一、选择题(本大题有20小题,每小题1.5分,共30分。
请选出各题中一个符合题意的正确选项,不选、多选、错选均不给分)1.“女学生已经开始觉悟,抵制学校开设的‘列女传’(修身课)。
在操场的树荫下,在宿舍里,她们常常聚在一起,争得面红耳赤,后来由争论变成抗婚、逃婚,以实际行动反抗旧礼教,争取婚姻自由。
”这则材料反映的实质是()A.维新思想开始传播B.民主共和观念深入人心C.洋务运动兴办新式学校D.民主科学思想动摇了封建道德礼教的统治地位2.李大钊称赞它是一场爱国运动;历史学家把它视为分水岭,将“旧民主”时期和“新民主”时期分开。
材料中“它”指的是()A.五四运动B.中共诞生C.国民革命D.北伐战争3.“这是一声砸向旧世界的锤头撞击,和着十月革命的惊天霹雳。
从上海望志路到南湖的红船发力,锻造出一个民族驶向复兴彼岸的航迹。
”与材料描述有关的会议是()A.中共“一大”B.中共“二大”C.遵义会议D.中共七大4.作为“中国革命的摇篮”,井冈山光辉的斗争实践,生动诠释了中国的红色政权能够存在的原因。
井冈山光辉的斗争实践有()①创建了中国工农红军第四军②进行了北伐战争③创建了第一个农村革命根据地④发动了南昌起义A.①②B.①③C.②③D.①④5.某中学计划暑期组织学生游学,计划之一是“重走长征路”,请你为学校选择最合适的游学路线()A.上海—遵义—西安—吴起镇B.上海—瑞金—武汉—吴起镇C.瑞金—武汉—西安—会宁D.瑞金—遵义—吴起镇—会宁6.图表是学习历史的重要载体。
根据右图可知,人民军队兵力总数占据优势始于()A.全面内战爆发时B.战略反攻开始前C.三大战役进行中D.渡江战役结束后7.周恩来是中国共产党的创建人之一和核心领导成员。
请你选出他曾经参与的历史活动()①出席中共“一大”②任黄埔军校政治部主任③领导南昌起义④参与和平解决“西安事变”⑤指挥百团大战A.①③④B.②③④C.③④⑤D.②④⑤8.1941年罗斯福宣布“美国决心在可能的范围之内,全力援助苏联”。
2022-2023学年浙教版第一学期九年级数学第三次月考综合测试题(附答案)
![2022-2023学年浙教版第一学期九年级数学第三次月考综合测试题(附答案)](https://img.taocdn.com/s3/m/d91efeca5ff7ba0d4a7302768e9951e79b8969e3.png)
浙江省杭州市杭州公益中学2022-2023学年第一学期九年级数学第三次月考综合测试题(附答案)一、选择题(共40分)1.已知圆的半径为5cm,圆心到直线l的距离为5cm,那么直线l和这个圆的公共点有()A.0个B.1个C.2个D.1个或2个2.已知=(a≠0,b≠0),下列变形错误的是()A.=B.2a=3b C.=D.3a=2b3.对于抛物线y=(x﹣1)2+2,下列说法正确的是()A.开口向下B.顶点坐标是(1,2)C.与y轴交点坐标为(0,2)D.与x轴有两个交点4.某企业对其生产的产品进行抽检,抽检结果如下表:抽检件数1040100200300500不合格件数0123610若该企业生产该产品10000件,估计不合格产品的件数为()A.80件B.100件C.150件D.200件5.如图,一个小球由地面沿着坡度i=1:2的坡面向上前进了10m,此时小球距离地面的高度为()A.5 m B.2m C.4m D.m6.如图,在△ABC中,D、E分别为AB,AC上的点,若DE∥BC,=,则=()A.B.C.D.7.如图,⊙O的半径为5,弦AB=8,点C在弦AB上,且AC=6,过点C作CD⊥AB交OB于点D,则CD的长为()A.1B.2C.1.5D.2.58.如图所示,已知⊙I是△ABC的内切圆,点I是内心,若∠A=35°,则∠BIC等于()A.35°B.70°C.145°D.107.5°9.如图,已知:45°<∠A<90°,则下列各式成立的是()A.sin A=cos A B.sin A>cos A C.sin A>tan A D.sin A<cos A 10.如图,在平面直角坐标系中,⊙O的半径为1,点P在经过点A(﹣3,0)、B(0,4)的直线上,PQ切⊙O于点Q,则切线长PQ的最小值为()A.B.C.2.4D.3二、填空题(共30分)11.已知一纸箱中,装有5个只有颜色不同的球,其中2个白球,3个红球,从箱中随机取出一个球,这个球是白球的概率为.12.如图(1)为折叠椅,图(2)是折叠椅撑开后的侧面示意图,其中椅腿AB和CD的长度相等,O是它们的中点,为使折叠椅既舒适又牢固,厂家将撑开后的折叠椅高度设计为32cm,∠DOB=100°,那么椅腿AB的长应设计为cm(结果精确到0.1cm)13.如图,在△ABC中,AB=4,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,则阴影部分的面积为.14.小明从二次函数y=ax2+bx+c的图象(如图)中观察得出了下面五条信息:①c<0;②abc>0;③a﹣b+c>0;④2a﹣3b=0;⑤c﹣4b>0.你认为其中正确的信息是.(只填序号)15.如图,半径为5个单位的⊙A与x轴、y轴都相切;现将⊙A沿y轴向下平移个单位后圆与x轴交于点(2,0).16.如图,在矩形ABCD中,点E在边AB上,△BEC与△FEC关于直线EC对称,点B 的对称点F在边AD上,G为CD中点,连结BG分别与CE,CF交于M,N两点.若BM=BE,MG=2,则BN的长为,sin∠AFE的值为.三、解答题(共80分)17.计算:(1)4sin260°﹣3tan30°;(2)+cos245°+sin245°.18.某运动会期间,甲、乙、丙三位同学参加乒乓球单打比赛,用抽签的方式确定第一场比赛的人选.(1)若已确定甲参加第一次比赛,求另一位选手恰好是乙同学的概率;(2)用画树状图或列表的方法,写出参加第一场比赛选手的所有可能,并求选中乙、丙两位同学参加第一场比赛的概率.19.如图,已知四边形ABCD内接于圆O,且∠A=105°,BD=CD(1)求∠DBC的度数(2)若⊙O的半径为3,求的长.20.(10分)如图,二次函数y=(x﹣1)(x﹣a)(a为常数)的图象的对称轴为直线x=2.(1)求a的值.(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.21.如图,⊙O是△ABC的外接圆,BC是⊙O的直径,D是劣弧的中点,BD交AC于点E.(1)求证:AD2=DE•DB;(2)若BC=,CD=,求DE的长.22.如图所示,在△ABC中,以BC为直径的圆交AB于点D,∠ACD=∠ABC.(1)求证:CA是圆的切线.(2)若点E是BC上一点,已知BE=6,cos∠ABC=,tan∠AEC=,求圆的直径.23.若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.(1)已知△ABC是比例三角形,AB=2,BC=3,请直接写出所有满足条件的AC的长;(2)如图1,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC.求证:△ABC是比例三角形.(3)如图2,在(2)的条件下,当∠ADC=90°时,求的值.24.如图1,四边形ABCD内接于⊙O,BD为直径,上存在点E,满足=,连结BE并延长交CD的延长线于点F,BE与AD交于点G.(1)若∠DBC=α,请用含α的代数式表示∠AGB.(2)如图2,连结CE,CE=BG.求证:EF=DG.(3)如图3,在(2)的条件下,连结CG,AD=2.①若tan∠ADB=,求△FGD的周长.②求CG的最小值.参考答案一、选择题(共40分)1.解:∵圆的半径为5cm,圆心到直线l的距离为5cm,∴d=r,∴直线与圆相切,∴直线l和这个圆的公共点有1个,故选:B.2.解:由=得,3a=2b,A、由等式性质可得:3a=2b,正确;B、由等式性质可得2a=3b,错误;C、由等式性质可得:3a=2b,正确;D、由等式性质可得:3a=2b,正确;故选:B.3.解:A、a=1>0,抛物线开口向上,所以A选项错误;B、y=(x﹣1)2+2,抛物线顶点坐标为(1,2),B选项错正确.C、抛物线与y轴的交点坐标为(0,3),所以C选项错误;D、△=(﹣2)2﹣4×1×3=﹣8<0,则抛物线与x轴没有交点,所以D选项错误;故选:B.4.解:抽查总体数:10+40+100+200+300+500=1150,次品件数:0+1+2+3+6+10=22,P(抽到不合格产品)=≈0.02.则10000×0.02=200(件).∴估计不合格产品的件数为200件,故选:D.5.解:∵AB=10米,tan A==.∴设BC=x,AC=2x,由勾股定理得,AB2=AC2+BC2,即100=x2+4x2,解得x=2,∴AC=4,BC=2米.故选:B.6.解:∵DE∥BC,∴△ADE∽△ABC,∴,故选:B.7.解:过点O作OE⊥AB于点E,∵OE⊥AB,∴AE=BE=AB=4,∵BO=5,∴EO==3,∵AC=6,∴BC=EC=2,∵CD⊥BE,OE⊥AB,∴CD∥EO,且CD是△BEO的中位线,∴CD=EO=1.5.故选:C.8.解:∵∠A=35°,∴∠ABC+∠ACB=180°﹣∠A=145°,∵⊙I是△ABC的内切圆,点I是内心,∴BI平分∠ABC,CI平分∠ACB,∴∠IBC=∠ABC,∠ICB=∠ACB,∴∠IBC+∠ICB=∠ABC+∠ACB=(∠ABC+∠ACB)=72.5°,∴∠BIC=180°﹣(∠IBC+∠ICB)=180°﹣72.5°=107.5°,故选:D.9.解:∵45°<A<90°,∴根据sin45°=cos45°,sin A随角度的增大而增大,cos A随角度的增大而减小,当∠A>45°时,sin A>cos A.故选:B.10.解:如图所示:连接OP,OQ,过点O作OP′⊥AB,垂足为P′.∵A(﹣3,0)、B(0,4),∴OA=3,OB=4.由勾股定理可知AB=5.∵OP′•AB=OA•OB,∴OP′=.∵PQ是圆O的切线,∴OQ⊥QP.∴PQ=.∴当OP有最小值时,PQ有最小值.∵由垂线段最短可知PO的最小值=OP′=,∴PQ的最小值==.故选:B.二、填空题(共30分)11.解:从箱中随机取出一个球,这个球是白球的概率为,故答案为:.12.解:连接BD.由题意,OA=OB=OC=OD.∵∠DOB=100°,∴∠ADO=50°,∠OAD=∠ODB=40°,∴∠ADB=90°.又∵BD=32,∴AB=32÷sin50°≈41.8(cm).13.解:如图,过点A1作A1H⊥AB于H,∵在△ABC中,AB=4,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,∴△ABC≌△A1BC1,∴A1B=AB=4,∴△A1BA是等腰三角形,∠A1BA=30°,∴A1H=A1B=2,∴S△A1BA=×4×2=4,又∵S阴影=S△A1BA+S△A1BC1﹣S△ABC,S△A1BC1=S△ABC,∴S阴影=S△A1BA=4.故答案为:4.14.解:∵开口向上,∴a>0,∵对称轴为x=>0,∴b<0,﹣=,∴2a=﹣3b,∴2a﹣3b=﹣6b<0,故④错误,不符合题意;∵函数图象与y轴的交点在y轴负半轴上,∴c<0,故①正确,符合题意;∴abc>0,故②正确,符合题意;由图象可知,当x=﹣1时,y>0,∴a﹣b+c>0,故③正确,符合题意;∵3b=﹣2a,∴c﹣4b=c﹣3b﹣b=c﹣(﹣2a)﹣b=a﹣b+c+a>0,故⑤正确,符合题意,故答案为:①②③⑤.15.解:设点A向下平移x个单位后经过(2,0),则(5﹣x)2+32=52,解得x=1或9,∴将⊙A沿y轴向下平移1或9个单位后圆与x轴交于点(2,0),故答案为:1或9.16.解:∵BM=BE,∴∠BEM=∠BME,∵AB∥CD,∴∠BEM=∠GCM,又∵∠BME=∠GMC,∴MG=GC=2,∵G为CD中点,∴CD=AB=4.连接BF,FM,由翻折可得∠FEM=∠BEM,BE=EF,∴BM=EF,∵∠BEM=∠BME,∴∠FEM=∠BME,∴EF∥BM,∴四边形BEFM为平行四边形,∵BM=BE,∴四边形BEFM为菱形,∵∠EBC=∠EFC=90°,EF∥BG,∴∠BNF=90°,∵BF平分∠ABN,∴F A=FN,∴Rt△ABF≌Rt△NBF(HL),∴BN=AB=4.∵FE=FM,F A=FN,∠A=∠BNF=90°,∴Rt△AEF≌Rt△NMF(HL),∴AE=NM,设AE=NM=x,则BE=FM=4﹣x,NG=MG﹣NM=2﹣x,∵FM∥GC,∴=,即,解得x=4+2(舍)或x=4﹣,∴EF=BE=4﹣x=,∴sin∠AFE===2﹣1.故答案为:4;2﹣1.三、解答题(共80分)17.解:(1)4sin260°﹣3tan30°=4×=3﹣;(2)+cos245°+sin245°==4+1=5.18.解:(1)根据题意,甲参加第一场比赛时,有(甲,乙)、(甲,丙)两种可能,∴另一位选手恰好是乙同学的概率;(2)画树状图如下:由树状图知共有6种等可能结果,其中乙、丙两位同学参加第一场比赛的情况有2种,∴选中乙、丙两位同学参加第一场比赛的概率为=.19.解:(1)∵四边形ABCD内接于圆O,∴∠DCB+∠BAD=180°,∵∠A=105°,∴∠C=180°﹣105°=75°,∵BD=CD,∴∠DBC=∠C=75°;(2)连接BO、CO,∵∠C=∠DBC=75°,∴∠BDC=30°,∴∠BOC=60°,故的长l==π.20.解:(1)由二次函数y=(x﹣1)(x﹣a)(a为常数)知,该抛物线与x轴的交点坐标是(1,0)和(a,0).∵对称轴为直线x=2,∴=2.解得a=3;(2)由(1)知,a=3,则该抛物线解析式是:y=x²﹣4x+3.∴抛物线向下平移3个单位后经过原点.∴平移后图象所对应的二次函数的表达式是y=x²﹣4x.21.(1)证明:由D是劣弧的中点,得⇒∠ABD=∠DAC,又∵∠ADB=∠EDA,∴△ABD∽△EAD,∴,∴AD2=DE•DB;(2)解:由D是劣弧的中点,得AD=DC,则DC2=DE•DB∵CB是直径,∴△BCD是直角三角形.∴BD===由DC2=DE•DB得,DE,解得DE=.22.(1)证明:∵BC是直径,∴∠BDC=90°,∴∠B+∠BCD=90°,∵∠ACD=∠ABC,∴∠ACD+∠BCD=90°,即∠ACB=90°,∴CA是圆的切线;(2)解:∵cos∠ABC===,tan∠AEC==,∴设CB=3y,AC=5x,则EC=3x,AB=y,由勾股定理得:AC=2y,∴,解得:,∴BC=BE+CE=6+3x=10.23.解:(1)∵△ABC是比例三角形,且AB=2、BC=3,①当AB2=BC•AC时,得:4=3AC,解得:AC=;②当BC2=AB•AC时,得:9=2AC,解得:AC=;③当AC2=AB•BC时,得:AC2=6,解得:AC=(负值舍去);所以当AC=或或时,△ABC是比例三角形;(2)∵AD∥BC,∴∠ACB=∠CAD,又∵∠BAC=∠ADC,∴△ABC∽△DCA,∴=,即CA2=BC•AD,∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AB=AD,∴CA2=BC•AB,∴△ABC是比例三角形;(3)如图,过点A作AH⊥BD于点H,∵AB=AD,∴BH=BD,∵AD∥BC,∠ADC=90°,∴∠BCD=90°,∴∠BHA=∠BCD=90°,又∵∠ABH=∠DBC,∴△ABH∽△DBC,∴=,即AB•BC=BH•DB,∴AB•BC=BD2,又∵AB•BC=AC2,∴BD2=AC2,∴=.24.解:(1)∵BD为⊙O的直径,∴∠BAD=90°,∵=,∴∠ABG=∠DBC=α,∴∠AGB=90°﹣α;(2)∵BD为⊙O的直径,∴∠BCD=90°,∴∠BEC=∠BDC=90°﹣α,∴∠BEC=∠AGB,∵∠CEF=180°﹣∠BEC,∠BGD=180°﹣∠AGB,∴∠CEF=∠BGD,又∵CE=BG,∠ECF=∠GBD,∴△CFE≌△BDG(ASA),∴EF=DG;(3)①如图,连接DE,∵BD为⊙O的直径,∴∠A=∠BED=90°,在Rt△ABD中,tan∠ADB=,AD=2,∴AB=×AD=,∵=,∴+=+,即=,∴AD=CE,∵CE=BG,∴BG=AD=2,∵在Rt△ABG中,sin∠AGB==,∴∠AGB=60°,AG=BG=1,∴EF=DG=AD﹣AG=1,∵在Rt△DEG中,∠EGD=60°,∴EG=DG=,DE=DG=,在Rt△FED中,DF==,∴FG+DG+DF=,∴△FGD的周长为;②如图,过点C作CH⊥BF于H,∵△BDG≌△CFE,∴BD=CF,∠CFH=∠BDA,∵∠BAD=∠CHF=90°,∴△BAD≌△CHF(AAS),∴FH=AD,∵AD=BG,∴FH=BG,∵∠BCF=90°,∴∠BCH+∠HCF=90°,∵∠BCH+∠HBC=90°,∴∠HCF=∠HBC,∵∠BHC=∠CHF=90°,∴△BHC∽△CHF,∴=,设GH=x,∴BH=2﹣x,∴CH2=2(2﹣x),在Rt△GHC中,CG2=GH2+CH2,∴CG2=x2+2(2﹣x)=(x﹣1)2+3,当x=1时,CG2的最小值为3,∴CG的最小值为.。
九年级化学(上)第三次月考化学试卷【附答案】
![九年级化学(上)第三次月考化学试卷【附答案】](https://img.taocdn.com/s3/m/cfed40327cd184254a353533.png)
九年级化学(上)第三次月考化学试卷【附答案】一、单选题(本大题共8小题,共24.0分)1.下列选项中前者是物理变化,后者是化学变化的是A. 冰融化成水、分离空气制取氧气B. 矿石粉碎、锅炉爆炸C. 汽油挥发、剩饭变馊D. 粮食酿酒、灯泡发光2.下列实验基本操作中不正确的是A. 量取液体B. 加热液体C. 倾倒液体D. 闻气味3.下列说法正确的是A. 氯化氢是由氢、氯两种元素组成的B. 氯化氢是由氢气和氯气混合而成的C. 氯化氢是由一个氢原子和一个氯原子构成的D. 一个氯化氢分子是由两个氢元素和一个氧元素组成的4.下列各物质按照单质、氧化物、混合物的顺序排列的是A. 冰、干冰、食醋B. 氮气、氧气、空气C. 水银、水、大理石D. 金刚石、高锰酸钾、盐酸5.某气体既能用排水法收集,又能用向上排空气法收集,该气体一定是A. 氮气B. 难溶于水,比空气轻C. 氧气D. 难溶于水,比空气重6.如图表示三种物质在密闭容器中反应前后质量比例的变化,下列说法正确的是A. 该反应是分解反应B. 该反应中是生成物C. 该反应是化合反应D. 该反应中 CaO 起催化作用7.通过对CO和的学习,你认为下列观点中不正确的是A. 物质的结构决定物质的性质B. 物质的性质决定物质的用途C. 气体的性质决定气体的收集方法D. 物质的组成元素相同,则化学性质一定相同8.某黑色固体粉末放在试管中加强热后,发现有红色固体生成,同时产生能使澄清石灰水变浑浊的气体,试管中的黑色粉末可能是A. 氧化铜B. 二氧化锰C. 木炭粉D. 氧化铜和木炭粉的混合物二、填空题(本大题共1小题,共3.0分)9.用化学用语填空:个氮气分子______;氢氧根离子______;个硫原子______;氧化铁中铁的化合价______.三、计算题(本大题共1小题,共4.0分)10.我国最新版《生活饮用水卫生标准》规定:饮用水质消毒可用二氧化氯、臭氧替代氯气等传统消毒剂,二氧化氯是一种黄红色、有刺激性气味气体,二氧化氯常用硫酸双氧水法制备,该反应的化学方程式为:,现需要135kg 氯气用于自来水消毒,二氧化氯的相对分子质量是______ .理论上需要含的工业级过氧化氢多少千克?四、推断题(本大题共1小题,共5.0分)11.推断题:如图是九年级化学中常见物质间的相互转化关系,A与C都是由相同两种元素组成的液体,A、C、E、G也为化合物,G为红棕色粉末,F为金属单质,其余反应条件、反应物和生成物均已省略。
高考政治二轮复习专题14唯物辩证法的联系观与发展观(测)(含解析)
![高考政治二轮复习专题14唯物辩证法的联系观与发展观(测)(含解析)](https://img.taocdn.com/s3/m/bfcaee356ad97f192279168884868762caaebba3.png)
专题十四唯物辩证法的联系观与发展观总分 100分时间 45分钟班级 _______ 学号 _______ 得分_______一、选择题(本题包括12小题,每小题只有一个选项符合题意,每小题4分,共48分)1.【湖北宜昌示范高中协作体2019届高三第一学期期中】研究人员发现,一个人的音乐品味可以透露出大量个人信息。
喜欢简单的原声音乐的人,可能健谈又精力旺盛;热爱歌剧的人,可能富有洞察力和想象力;喜欢蓝调音乐、古典音乐和爵士乐等复杂音乐的人,在“经验开放性方面得分很高,但不善于运动;喜欢乡村音乐流行音乐和配乐等欢快音乐的人,一般在经验开放性和智商方面的得分都较低。
这表明①人们可以透过事物的表面联系把握其内在的联系②人们可以从事物的固有联系中去把握事物③认识事物的本质联系能引导事物朝有利的方向转化④人们建立人为联系的活动都是有条件的A.①②B.①③C.②④D.③④【答案】A【解析】“研究人员发现,一个人的音乐品味可以透露出大量个人信息”,体现了人们可以透过事物的表面联系把握其内在的联系,人们可以从事物的固有联系中去把握事物,①②符合题意。
材料不能体现认识事物的本质联系能引导事物朝有利的方向转化,③不符合题意。
材料没有涉及人为事物的联系,④不符合题意。
故本题选A。
2.【鄂州、黄冈2019届高三上学期元月调研】2018年“退群”当选为年度高频热词,美国总统特朗普宣布退出伊核协议,并重启对伊朗的制裁,后又扬言退出《中导条约》,加剧了与俄罗斯的矛盾和纷争,美国一系列的“退群”行为将会给世界局势带来不确定的因素。
这启示我们①矛盾具有统一性,重视同一性推动事物变化发展②调整事物的关键部分,会制约事物整体功能发挥③发挥主观能动性必须以尊重联系的客观性为前提④整体和部分是辩证统一的,必须坚持二者的统一A.①③B.①②C.③④D.②④【解析】矛盾双方既对立又统一,由此推动事物变化发展,①错误;材料体现了部分对整体的影响,但没体现关键部分的调整制约事物整体功能发挥,②排除;美国一系列的“退群”行为,加剧了与俄罗斯的矛盾和纷争,将会给世界局势带来不确定的因素,这启示我们发挥主观能动性必须以尊重联系的客观性为前提,故③正确;美国是世界的一部分,美国一系列的“退群”行为将会给世界局势带来不确定的因素,这启示我们整体和部分是辩证统一的,必须坚持二者的统一,故④正确。
2022-2023学年北京市北京一零一中学九年级9月月考道德与法治试卷含详解
![2022-2023学年北京市北京一零一中学九年级9月月考道德与法治试卷含详解](https://img.taocdn.com/s3/m/1fff2f55a55177232f60ddccda38376bae1fe041.png)
北京101中学2023届上学期初中九年级9月月考试卷道德与法治一、单项选择题1.2021年10月,中央人大工作会议在北京召开。
这是在党的历史上、人民代表大会制度历史上第一次以“中央人大工作会议”为名召开的会议。
这次会议为加强和改进新时代人大工作指明了方向。
加强和改进新时代人大工作()①要加强中国共产党对人大工作的全面领导②要充分发挥人大代表作用,密切与人民群众的联系③要求人民代表大会履行政治协商、民主监督和参政议政的职能④要求人民代表大会作为最高国家权力机关,统一行使国家权力A.①②B.①③C.②④D.③④2.1980年,中国第一家个体餐馆在北京开张。
那时,中国的个体工商户还不到1万户,占市场主体比重不足1%。
此后,个体工商户如雨后春笋一般出现在全国各地。
截至2021年底,全国登记在册个体工商户已达1.03亿户,约占市场主体总量的2/3。
由此可以推断出()A.个体经济体现生产资料属于一部分劳动者所有B.在我国,个体经济是国民经济的主导力量C.非公有制经济实行按劳分配,体现了多劳多得D.国家鼓励、支持、引导非公有制经济发展3.随着人们健康饮食意识的增强,低热量、低脂肪、高纤维的轻食越来越受到年轻消费者的青睐。
但由于轻食行业现阶段存在标准化程度低、食品安全隐患、商家夸大宣传等问题,亟待多方携手予以改善。
解决上述问题需要()①充分发挥市场在资源配置中的决定性作用②完善相关法律法规和行业规定,助力行业健康发展③监察委切实履行市场监管职责,筑牢食品安全防线④商家懂规则、明底线,不断提高法律意识和诚信意识A.①②B.①③C.②④D.③④4.张夏同学收看新闻,关注到了如下信息:第十三届全国人民代表大会第五次会议议程一、审议政府工作报告二、审查2021年国民经济和社会发展计划执行情况与2022年国民经济和社会发展计划草案的报告、2022年国民经济和社会发展计划草案三、审查2021年中央和地方预算执行情况与2022年中央和地方预算草案的报告、2022年中央和地方预算草案……九、审议最高人民法院工作报告十、审议最高人民检察院工作报告;针对上述议程,正确认识是()①全国人民代表大会作为最高国家权力机关,代表人民统一行使国家权力②政府的各项权力来自人民,对人民负责,受人民监督,要依法行使权力③国家行政机关是国家权力机关的执行机关,受权力机关监督,对其负责④人民法院依法独立行使审判权,惩办违法犯罪分子,捍卫社会公平正义A.①②B.①③C.②④D.②③5.中国在一穷二白的基础上,在不到70年的时间里建成了世界最大规模的教育体系,保障了亿万人民群众受教育的权利,推动教育总体发展水平进入世界中上行列,支撑中国成为世界第二大经济体。
北师大版2022-2023学年九年级数学上册第三次月考测试题(附答案) (2)
![北师大版2022-2023学年九年级数学上册第三次月考测试题(附答案) (2)](https://img.taocdn.com/s3/m/371a9da2d1d233d4b14e852458fb770bf78a3be9.png)
2022-2023学年九年级数学上册第三次月考测试题(附答案)一、选择题(共30分)1.估计+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间2.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为()A.1.2×109个B.12×109个C.1.2×1010个D.1.2×1011个3.如图是由10个同样大小的小正方体摆成的几何体.将小正方体①移走后,则关于新几何体的三视图描述正确的是()A.俯视图不变,左视图不变B.主视图改变,左视图改变C.俯视图不变,主视图不变D.主视图改变,俯视图改变4.如果a>b,c<0,那么下列不等式成立的是()A.a+c>b B.a+c>b﹣cC.ac﹣1>bc﹣1D.a(c﹣1)<b(c﹣1)5.李老师为了了解本班学生每周课外阅读文章的数量,抽取了7名同学进行调查,调查结果如下(单位:篇/周):,其中有一个数据不小心被墨迹污损.已知这组数据的平均数为4,那么这组数据的众数与中位数分别为()A.5,4B.3,5C.4,4D.4,56.如图,四边形AOEF是平行四边形,点B为OE的中点,延长FO至点C,使FO=3OC,连接AB、AC、BC,则在△ABC中,S△ABO:S△AOC:S△BOC=()A.6:2:1B.3:2:1C.6:3:2D.4:3:27.若数a使关于x的不等式组有且仅有三个整数解,且使关于y的分式方程﹣=﹣3的解为正数,则所有满足条件的整数a的值之和是()A.﹣3B.﹣2C.﹣1D.18.如图,在Rt△ABC中,∠C=90°,AB=5,BC=4.点P是边AC上一动点,过点P 作PQ∥AB交BC于点Q,D为线段PQ的中点,当BD平分∠ABC时,AP的长度为()A.B.C.D.9.如图,抛物线y=x2﹣7x+与x轴交于点A、B,把抛物线在x轴及其下方的部分记作C1,将C1向左平移得到C2,C2与x轴交于点B、D,若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是()A.﹣<m<﹣B.﹣<m<﹣C.﹣<m<﹣D.﹣<m<﹣10.如图,在正方形ABCD的对角线AC上取一点E.使得∠CDE=15°,连接BE并延长BE到F,使CF=CB,BF与CD相交于点H,若AB=1,有下列结论:①BE=DE;②CE+DE=EF;③S△DEC=﹣;④=2﹣1.则其中正确的结论有()A.①②③B.①②③④C.①②④D.①③④二、填空题(共24分)11.分解因式:3a3﹣6a2+3a=.12.计算﹣的结果是.13.已知关于x的一元二次方程(a﹣1)x2+3x+a2﹣a=0的一个解为0,则a=.14.如图,在Rt△ABC中,∠C=90°,以顶点B为圆心,适当长度为半径画弧,分别交AB,BC于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D.若∠A=30°,则=.15.若a是不为2的有理数我们把称为a的“哈利数”.如3的“哈利数”是=﹣2;﹣2的“哈利数”是,已知a1=3,a2是a1的“哈利数”,a3是a2的“哈利数”,a4是a3的“哈利数”,以此类推,a2023=.16.如图,以扇形AOB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),∠AOB=45°.现从中随机选取一个数记为a,则a的值既使得抛物线与扇形AOB的边界有公共点,又使得关于x的方程的解是正数的概率是.17.如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB ′C ′D ′,其中点C 的运动路径为,则图中阴影部分的面积为 .18.如图,函数y =(k 为常数,k >0)的图象与过原点的O 的直线相交于A ,B 两点,点M 是第一象限内双曲线上的动点(点M 在点A 的左侧),直线AM 分别交x 轴,y 轴于C ,D 两点,连接BM 分别交x 轴,y 轴于点E ,F .现有以下四个结论: ①△ODM 与△OCA 的面积相等; ②若BM ⊥AM 于点M ,则∠MBA =30°;③若M 点的横坐标为1,△OAM 为等边三角形,则k =2+;④若MF =MB ,则MD =2MA .其中正确的结论的序号是 .(只填序号)三、解答题(共66分) 19.计算:(20231)﹣1+(3.14﹣π)0+|2|+2sin45.20.为了提高学生的阅读能力,宿迁市某校开展了“读好书,助成长”的活动,并计划购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,请根据统计图回答下列问题:(1)本次调查共抽取了 名学生,两幅统计图中的m = ,n = . (2)已知该校共有5000名学生,请你估计该校喜欢阅读“A ”类图书的学生约有多少人?(3)学校将举办读书知识竞赛,九年级1班要在本班3名优胜者(2男1女)中随机选送2人参赛,请用列表或画树状图的方法求被选送的两名参赛者为一男一女的概率.21.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.22.为拓展学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生,现有甲、乙两种大型客车,它们的载客量和租金如下表所示:甲型客车乙型客车载客量(人/辆)3530租金(元/辆)400320学校计划此次研学活动的租金总费用不超过3000元,为安全起见,每辆客车上至少要有2名老师.(1)参加此次研学活动的老师和学生各有多少人?(2)学校共有几种租车方案?最少租车费用是多少?23.如图,P A是⊙O的切线,切点为A,AC是⊙O的直径,连接OP交⊙O于E.过A点作AB⊥PO于点D,交⊙O于B,连接BC,PB.(1)求证:PB是⊙O的切线;(2)求证:E为△P AB的内心;(3)若cos∠P AB=,BC=1,求PO的长.24.如图,平面直角坐标系中,菱形OABC的边OA在x轴正半轴上,OA=10,cos∠COA=.一个动点P从点O出发,以每秒1个单位长度的速度沿线段OA方向运动,过点P作PQ⊥OA,交折线段OC﹣CB于点Q,以PQ为边向右作正方形PQMN,点N在射线OA上,当P点到达A点时,运动结束.设点P的运动时间为t秒(t>0).(1)C点的坐标为,当t=时N点与A点重合;(2)在整个运动过程中,设正方形PQMN与菱形OABC的重合部分面积为S,直接写出S与t之间的函数关系式和相应的自变量t的取值范围;(3)如图2,在运动过程中,过点O和点B的直线将正方形PQMN分成了两部分,请问是否存在某一时刻,使得被分成的两部分中有一部分的面积是菱形面积的?若存在,请求出对应的t的值;若不存在,请说明理由.25.在一堂数学实践课上,赵老师给出了下列问题:【提出问题】(1)如图1,在△ABC中,E是BC的中点,P是AE的中点,就称CP是△ABC的“双中线”,∠ACB=90°,AC=3,AB=5.则CP=.【探究规律】(2)在图2中,E是正方形ABCD一边上的中点,P是BE上的中点,则称AP是正方形ABCD的“双中线”,若AB=4.则AP的长为(按图示辅助线求解);(3)在图3中,AP是矩形ABCD的“双中线”,若AB=4,BC=6,请仿照(2)中的方法求出AP的长,并说明理由;【拓展应用】(4)在图4中,AP是平行四边形ABCD的“双中线”,若AB=4,BC=10,∠BAD=120°.求出△ABP的周长,并说明理由?26.如果抛物线C1的顶点在抛物线C2上,抛物线C2的顶点也在抛物线C1上时,那么我们称抛物线C1与C2“互为关联”的抛物线.如图1,已知抛物线C1:y1=x2+x与C2:y2=ax2+x+c是“互为关联”的抛物线,点A,B分别是抛物线C1,C2的顶点,抛物线C2经过点D(6,﹣1).(1)直接写出A,B的坐标和抛物线C2的解析式;(2)抛物线C2上是否存在点E,使得△ABE是直角三角形?如果存在,请求出点E的坐标;如果不存在,请说明理由;(3)如图2,点F(﹣6,3)在抛物线C1上,点M,N分别是抛物线C1,C2上的动点,且点M,N的横坐标相同,记△AFM面积为S1(当点M与点A,F重合时S1=0),△ABN 的面积为S2(当点N与点A,B重合时,S2=0),令S=S1+S2,观察图象,当y1≤y2时,写出x的取值范围,并求出在此范围内S的最大值.参考答案一、选择题(共30分)1.解:∵2<<3,∴3<+1<4,∴+1在3和4之间.故选:C.2.解:120亿个用科学记数法可表示为:1.2×1010个.故选:C.3.解:将正方体①移走后,新几何体的三视图与原几何体的三视图相比,俯视图和左视图没有发生改变;故选:A.4.解:∵c<0,∴c﹣1<﹣1,∵a>b,∴a(c﹣1)<b(c﹣1),故选:D.5.解:设被污损的数据为x,则4+x+2+5+5+4+3=4×7,解得x=5,∴这组数据中出现次数最多的是5,即众数为5篇/周,将这7个数据从小到大排列为2、3、4、4、5、5、5,∴这组数据的中位数为4篇/周,故选:A.6.解:连接BF.设平行四边形AFEO的面积为4m.∵FO:OC=3:1,BE=OB,AF∥OE∴S△OBF=S△AOB=m,S△OBC=m,S△AOC=,∴S△AOB:S△AOC:S△BOC=m::m=3:2:1故选:B.7.解:由关于x的不等式组得∵有且仅有三个整数解,∴<x≤3,x=1,2,或3.∴,∴﹣≤a<3;由关于y的分式方程﹣=﹣3得1﹣2y+a=﹣3(y﹣1),∴y=2﹣a,∵解为正数,且y=1为增根,∴a<2,且a≠1,∴﹣≤a<2,且a≠1,∴所有满足条件的整数a的值为:﹣2,﹣1,0,其和为﹣3.故选:A.8.解:∵∠C=90°,AB=5,BC=4,∴AC==3,∵PQ∥AB,∴∠ABD=∠BDQ,又∠ABD=∠QBD,∴∠QBD=∠BDQ,∴QB=QD,∴QP=2QB,∵PQ∥AB,∴△CPQ∽△CAB,∴==,即==,解得:QB=,CP=,∴AP=CA﹣CP=,故选:B.9.解:∵抛物线y=x2﹣7x+与x轴交于点A、B∴B(5,0),A(9,0)∴抛物线向左平移4个单位长度∴平移后解析式y=(x﹣3)2﹣2当直线y=x+m过B点,有2个交点∴0=+mm=﹣当直线y=x+m与抛物线C2相切时,有2个交点∴x+m=(x﹣3)2﹣2x2﹣7x+5﹣2m=0∵相切∴△=49﹣20+8m=0∴m=﹣如图∵若直线y=x+m与C1、C2共有3个不同的交点,∴﹣<m<﹣故选:C.10.证明:①∵四边形ABCD是正方形,∴AB=AD,∠ABC=∠ADC=90°,∠BAC=∠DAC=∠ACB=∠ACD=45°.在△ABE和△ADE中,,∴△ABE≌△ADE(SAS),∴BE=DE,故①正确;②在EF上取一点G,使EG=EC,连接CG,∵△ABE≌△ADE,∴∠ABE=∠ADE.∴∠CBE=∠CDE,∵BC=CF,∴∠CBE=∠F,∴∠CBE=∠CDE=∠F.∵∠CDE=15°,∴∠CBE=15°,∴∠CEG=60°.∵CE=GE,∴△CEG是等边三角形.∴∠CGE=60°,CE=GC,∴∠GCF=45°,∴∠ECD=GCF.在△DEC和△FGC中,,∴△DEC≌△FGC(SAS),∴DE=GF.∵EF=EG+GF,∴EF=CE+ED,故②正确;③过D作DM⊥AC交于M,根据勾股定理求出AC=,由面积公式得:AD×DC=AC×DM,∴DM=,∵∠DCA=45°,∠AED=60°,∴CM=,EM=,∴CE=CM﹣EM=﹣∴S△DEC=CE×DM=﹣,故③正确;④在Rt△DEM中,DE=2ME=,∵△ECG是等边三角形,∴CG=CE=﹣,∵∠DEF=∠EGC=60°,∴DE∥CG,∴△DEH∽△CGH,∴===+1,故④错误;综上,正确的结论有①②③,故选:A.二、填空题(共24分)11.解:3a3﹣6a2+3a=3a(a2﹣2a+1)=3a(a﹣1)2.故答案为:3a(a﹣1)2.12.解:原式====.故答案为:13.解:把x=0代入方程(a﹣1)x2+3x+a2﹣a=0中,得a2﹣a=0,解得a=1或0,当a=1时,原方程二次项系数a﹣1=0,舍去,故答案为:0.14.解:由作法得BD平分∠ABC,∵∠C=90°,∠A=30°,∴∠ABC=60°,∴∠ABD=∠CBD=30°,∴DA=DB,在Rt△BCD中,BD=2CD,∴AD=2CD,∴=.故答案为.15.解:∵a1=3,∴a2==﹣2,a3=,a4==,a5==3,∴该数列每4个数为1周期循环,∵2023÷4=505…3,∴a2023=a3=.故答案为.16.解:由已知可得,OB=2,OA=2,∠AOB=45°,则点A的横坐标为:OA•cos45°=2×,纵坐标为:OA•sin45°=2×,即点A的坐标为:(),设直线OA的解析式为y=kx,=k,解得k=1,∴直线OA的解析式为y=x,当x=x2+a时且该方程有两个相等的实数根,a>0,解得a=,∵,解得x=,∴方程的解是正数时,且,得a>﹣1且a,又∵抛物线与扇形AOB的边界有公共点,∴解得a≥﹣2,∴a的值既使得抛物线与扇形AOB的边界有公共点,又使得关于x的方程的解是正数时满足的条件是:﹣1<a≤且a,∴从中随机选取一个数记为a,符合要求的有0和,∴从中随机选取一个数记为a,则a的值既使得抛物线与扇形AOB的边界有公共点,又使得关于x的方程的解是正数的概率是:.故答案为:.17.解:连接CD′和BC′,∵∠DAB=60°,∴∠DAC=∠CAB=30°,∵∠C′AB′=30°,∴A、D′、C及A、B、C′分别共线.∴AC=∴扇形ACC′的面积为:=,∵AC=AC′,AD′=AB∴在△OCD′和△OC'B中,∴△OCD′≌△OC′B(AAS).∴OB=OD′,CO=C′O∵∠CBC′=60°,∠BC′O=30°∴∠COD′=90°∵CD′=AC﹣AD′=﹣1OB+C′O=1∴在Rt△BOC′中,BO2+(1﹣BO)2=(﹣1)2解得BO=,C′O=﹣,∴S△OC′B=•BO•C′O=﹣∴图中阴影部分的面积为:S扇形ACC′﹣2S△OC′B=+﹣.故答案为:+﹣.18.解:①设点A(m,),M(n,),则直线AC的解析式为y=﹣x++,∴C(m+n,0),D(0,),∴S△ODM=n×=,S△OCA=(m+n)×=,∴△ODM与△OCA的面积相等,故①正确;∵反比例函数与正比例函数关于原点对称,∴O是AB的中点,∵BM⊥AM,∴OM=OA,∴k=mn,∴A(m,n),M(n,m),∴AM=(m﹣n),OM=,∴AM不一定等于OM,∴∠BAM不一定是60°,∴∠MBA不一定是30°.故②错误,∵M点的横坐标为1,∴可以假设M(1,k),∵△OAM为等边三角形,∴OA=OM=AM,1+k2=m2+,∵m>0,k>0,∴m=k,∵OM=AM,∴(1﹣m)2+=1+k2,∴k2﹣4k+1=0,∴k=2,∵m>1,∴k=2+,故③正确,如图,作MK∥OD交OA于K.∵OF∥MK,∴==,∴=,∵OA=OB,∴=,∴=,∵KM∥OD,∴==2,∴DM=2AM,故④正确.故答案为①③④.三、解答题(共66分)19.解:原式=2023+1+2﹣+2×﹣2=2023+1+2﹣+﹣2=2024.20.解:(1)68÷34%=200(名),所以本次调查共抽取了200名学生;m=200×42%=84;n%=×100%=15%,n=15;故答案为200;84,15;(2)5000×34%=1700(人),所以估计该校喜欢阅读“A”类图书的学生约有1700人;(3)画树状图为:共有6种等可能的结果,被选送的两名参赛者为一男一女的结果数为4,所以被选送的两名参赛者为一男一女的概率==.21.解:(1)∵四边形EFGH是矩形,∴EH=FG,EH∥FG,∴∠GFH=∠EHF,∵∠BFG=180°﹣∠GFH,∠DHE=180°﹣∠EHF,∴∠BFG=∠DHE,∵四边形ABCD是菱形,∴AD∥BC,∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),∴BG=DE;(2)连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∵E为AD中点,∴AE=ED,∵BG=DE,∴AE=BG,AE∥BG,∴四边形ABGE是平行四边形,∴AB=EG,∵EG=FH=2,∴AB=2,∴菱形ABCD的周长=8.22.解:(1)设参加此次研学活动的老师有x人,学生有y人,依题意,得:,解得:,答:参加此次研学活动的老师有16人,学生有234人.(2)∵(234+16)÷35=7(辆)……5(人),16÷2=8(辆),∴租车总辆数为8辆.设租35座客车m辆,则需租30座的客车(8﹣m)辆,依题意,得:,解得:,∵m为正整数,∴m=2,3,4,5,∴共有4种租车方案.设租车总费用为w元,则w=400m+320(8﹣m)=80m+2560,∵80>0,∴w的值随m值的增大而增大,∴当m=2时,w取得最小值,最小值为2720.∴学校共有4种租车方案,最少租车费用是2720元.23.(1)证明:连接OB,∵AC为⊙O的直径,∴∠ABC=90°,∵AB⊥PO,∴PO∥BC∴∠AOP=∠C,∠POB=∠OBC,OB=OC,∴∠OBC=∠C,∴∠AOP=∠POB,在△AOP和△BOP中,,∴△AOP≌△BOP(SAS),∴∠OBP=∠OAP,∵P A为⊙O的切线,∴∠OAP=90°,∴∠OBP=90°,∴PB是⊙O的切线;(2)证明:连接AE,∵P A为⊙O的切线,∴∠P AE+∠OAE=90°,∵AD⊥ED,∴∠EAD+∠AED=90°,∵OE=OA,∴∠OAE=∠AED,∴∠P AE=∠DAE,即EA平分∠P AD,∵P A、PB为⊙O的切线,∴PD平分∠APB∴E为△P AB的内心;(3)解:∵∠P AB+∠BAC=90°,∠C+∠BAC=90°,∴∠P AB=∠C,∴cos∠C=cos∠P AB=,在Rt△ABC中,cos∠C===,∴AC=,AO=,∵△P AO∽△ABC,∴,∴PO===5.24.解:(1)∵菱形OABC中,OA=10,∴OC=10,∵cos∠COA=,∴点C的坐标为:(6,8),∵动点P从点O出发,以每秒1个单位长度的速度沿线段OA方向运动,∵cos∠COA==,OP=t,∴OQ=t,∴QP=t,∵OA=10,N点与A点重合,∴t+t=10,∴t=∴t=时,N点与A点重合;(2)①,②,③,④8<t≤10,S=104﹣8t;(3)S菱形=80,直线OB过原点(0,0),B点(16,8),故直线OB解析式为,直线OB与PQ、MN分别交于E、F点,如图:①当0<t≤6,,,,,若,则,,若,则,,②当6<t≤8,,,,,若则,t=0(舍),若,则,t3=8;③8<t≤10,不存在符合条件的t值.25.解:(1)如图1中,在Rt△ABC中,∵∠ACB=90°,AB=5,AC=3,∴BC===4,∵E是BC的中点,∴EC=EB=2,∴AE===,∵P是AE的中点,∴PC=AE=.故答案为.(2)如图2中,连接DP,延长DP交AB的延长线于F.∵四边形ABCD是正方形,∴AB=CD=4,AB∥CD,∠F AD=90°,∴∠F=∠PDE,∵PB=PE,∠FPB=∠EPD,∴△FPB≌△DPE(AAS),∴DP=PF,BF=DE=CD=2,AF=AB+B4=2=6,在Rt△ADF中,DF===2,∵DP=PF,∴AP=DF=,故答案为.(3)如图3中,连接DP,延长DP交AB的延长线于H.同法可证:∠DAB=90°,△HPB≌△DPE,∴DE=BH=CD=2,DP=PH,AHAB+BH=6,在Rt△ADH中,DH===6,∵DP=PH,∴P A=DH=3.(4)如图4中,连接DP,延长DP交AB的延长线于H,作DK⊥BA交BA的延长线于K,AN⊥DH于N,EM⊥BC交BC的延长线于M.∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=120°,AB=CD=4,AD=BC=10,在Rt△ADK中,∵∠KAD=60°,∠K=90°,AD=10,∴AK=AD=5,KD=AK=5,在Rt△ECM中,∵∠M=90°,∠ECM=60°,EC=CD=2,∴CM=EC=1,EM=,在Rt△BEM中,BE===2,∵P是BE的中点,∴PB=EB=,∵△PBH≌△PED,∴DP=PH,DE=BH=2,HK=BH+AB+AK=2+4+5=11,∴DH===14,∴PH=PD=7,∵∠AHN=∠DHE,∠ANH=∠K=90°,∴△HAN∽△HDK,∴==,∴==,∴AN=,HN=,∴PN=PH﹣HN=7﹣=,∵AN⊥DH,∴P A===,∴△ABP的周长=AB+P A+PB=4++.26.解:由抛物线C1:y1=x2+x可得A(﹣2,﹣1),将A(﹣2,﹣1),D(6,﹣1)代入y2=ax2+x+c得,解得,∴y2=﹣+x+2,∴B(2,3);(2)易得直线AB的解析式:y=x+1,①若B为直角顶点,BE⊥AB,k BE•k AB=﹣1,∴k BE=﹣1,直线BE解析式为y=﹣x+5联立,解得x=2,y=3或x=6,y=﹣1,∴E(6,﹣1);②若A为直角顶点,AE⊥AB,同理得AE解析式:y=﹣x﹣3,联立,解得x=﹣2,y=﹣1或x=10,y=﹣13,∴E(10,﹣13);③若E为直角顶点,设E(m,﹣m2+m+2)由AE⊥BE得k BE•k AE=﹣1,即,,,(m﹣2)2(m﹣6)(m+2)=﹣16(m+2)(m﹣2),(m+2)(m﹣2)[(m﹣2)(m﹣6)+16]=0,∴m+2=0或m﹣2=0,或(m﹣2)(m﹣6)+16=0(无解)解得m=2或﹣2(不符合题意舍去),∴点E的坐标E(6,﹣1)或E(10,﹣13);(3)∵y1≤y2,∴﹣2≤x≤2,设M(t,),N(t,),且﹣2≤t≤2,易求直线AF的解析式:y=﹣x﹣3,过M作x轴的平行线MQ交AF于Q,则Q(﹣),S1=QM•|y F﹣y A|=设AB交MN于点P,易知P(t,t+1),S2=PN•|x A﹣x B|=2﹣S=S1+S2=4t+8,当t=2时,S的最大值为16.。
北师大版2022-2023学年九年级数学上册第三次月考测试题(附答案)
![北师大版2022-2023学年九年级数学上册第三次月考测试题(附答案)](https://img.taocdn.com/s3/m/6a21c303cec789eb172ded630b1c59eef8c79a1a.png)
2022-2023学年九年级数学上册第三次月考测试题(附答案)一、选择题(共36分)1.如图,l1∥l2∥l3,直线a,b与l1,l2,l3分别交于点A,B,C和点D,E,F.若,DE=4,则DF的长是()A.B.C.6D.102.已知点A(0,3),B(﹣4,8),以原点O为位似中心,把线段AB缩短为原来的,点D与点B对应.则点D的坐标为()A.(﹣1,2)B.(1,﹣2)C.(﹣1,2)或(1,﹣2)D.(2,﹣1)或(﹣2,1)3.若反比例函数的图象经过点,且m≠0,则下列说法不正确的是()A.图象位于第一、三象限B.图象经过点P(2,3)C.y随x的增大而减小D.图象关于原点对称4.如图,在平行四边形ABCD中,∠ABC的平分线交AC于点E,交AD于点F,交CD的延长线于点G,若AF=2FD,则的值为()A.B.C.D.5.如图,一次函数y=ax+b与反比例函数y=(k>0)的图象交于点A(1,2),B(m,﹣1).则关于x的不等式ax+b>的解集是()A.x<﹣2或0<x<1B.x<﹣1或0<x<2C.﹣2<x<0或x>1D.﹣1<x<0或x>26.如图,AB∥EF∥CD,FG∥BH,下列结论一定正确的是()A.B.C.D.7.下列命题中,正确的是()A.两个相似三角形的面积之比等于它们周长之比B.两边成比例且一角相等的两个三角形相似C.反比例函数y=(k>0)中,y随x的增大而减小D.位似图形的位似中心不一定是唯一的8.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b和反比例函数y=在同一平面直角坐标系中的图象可能是()A.B.C.D.9.广场上有旗杆如图1所示,某学校兴趣小组测量了该旗杆的高度,如图2,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为16米,落在斜坡上的影长CD为8米,AB⊥BC;同一时刻,太阳光线与水平面的夹角为45°,1米的标杆EF竖立在斜坡上的影长FG为2米,则旗杆的高度为()A.18B.20C.22D.2410.如图,△AOB和△ACD均为正三角形,且顶点B、D均在双曲线(x>0)上,则图中S△OBP=()A.B.C.D.411.如图,△ABC中,∠B=90°,点E在AC上,EF⊥AB于点F,EG⊥BC,已知△AFE 的面积为a,△EGC的面积为b,则矩形BFEG的面积为()A.a+b B.ab C.D.12.如图,在平面直角坐标系中,平行四边形ABCD的边AB交x轴于点E,反比例函数的图象经过CD上的两点D,F,若DF=2CF,EO:OC=1:3,平行四边形ABCD的面积为7,则k的值为()A.B.C.2D.二、填空题(共16分)13.如图,P是反比例函数y=图象上的一点,过点P向x轴作垂线交于点A,连接OP.若图中阴影部分的面积是1,则此反比例函数的解析式为.14.如图,在△ABC中,点D是AB边上的一点,若∠ACD=∠B,AD=2,AC=4,则BD =.15.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象和矩形ABCD在第一象限,AD平行于x轴,且AB=3,AD=6,点A的坐标为(3,8).将矩形向下平移a,若矩形的两个顶点恰好同时落在反比例函数的图象上,则矩形的平移距离a的值为.16.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.在△ABC内并排放入(不重叠)边长为1的小正方形纸片,第一层小纸片的一条边都在AB上,首尾两个正方形各有一个顶点分别在AC、BC上,依次这样摆放上去,则最多能摆放个小正方形纸片.三、解答题(共68分)17.如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(4,1),B(2,3),C(1,2).(1)画出与△ABC关于y轴对称的△A1B1C1;(2)以原点O为位似中心,在第三象限内画一个△A2B2C2,使它与△ABC的相似比为2:1,并写出点B2的坐标.(3)求出△A2B2C2的面积.18.已知AD为⊙O的直径,BC为⊙O的切线,切点为M,分别过A,D两点作BC的垂线,垂足分别为B,C,AD的延长线与BC延长线相交于点E.(1)求证:△ABM∽△MCD;(2)若AM=2,AB=5,求⊙O半径.19.直线y=kx+b与反比例函数y=(x>0)的图象分别交于点A(m,3)和点B(6,n),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;(2)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.20.某科技有限公司成功研制出一种市场急需的电子产品,已于当年投入生产并进行销售,已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量y(万件)与销售价格x(元/件)的关系如图,其中AB段为反比例函数图象的一部分,设公司销售这种电子产品的年利润为w(万元).(1)请求出y(万件)与x(元/件)之间的函数关系式;①求出当4≤x≤8时的函数关系式;②求出当8<x≤28时的函数关系式.(2)求出这种电子产品的年利润w(万元)与x(元/件)之间的函数关系式;21.已知点E在正方形ABCD的对角线AC上,正方形AFEG与正方形ABCD有公共点A.(1)如图1,当点G在AD上,F在上,求的值;(2)将正方形AFEG绕A点逆时针方向旋转α(0°<α<180°),如图2,求:的值;(3)AB=8,AG=AD,将正方形AFEG绕A逆时针方向旋转α(0°<α<180°),当C,G,E三点共线时,请直接写出DG的长度.22.如图1,点P为∠MON的平分线上一点,以P为顶点的角的两边分别与射线OM,ON 交于A,B两点,如果∠APB绕点P旋转时始终满足OA⋅OB=OP2,我们就把∠APB叫做∠MON的智慧角.(1)如图1,已知∠MON=α,若∠APB是∠MON的智慧角,写出∠APB的度数(用含α的式子表示);(2)如图2,已知∠MON=90°,点P为∠MON的平分线上一点,以点P为顶点的角的两边分别与射线OM,ON交于A,B两点,且∠APB=135°.求证:∠APB叫做∠MON的智慧角;(3)如图3,C是函数y=图象上的一个动点,过点C的直线CD分别交x 轴和y轴于点A,B两点,且满足BC=2CA,请求出∠AOB的智慧角∠APB的顶点P的坐标.参考答案一、选择题(共36分)1.解:∵l1∥l2∥l3,∴==,又DE=4,∴EF=6,∴DF=DE+EF=10,故选:D.2.解:∵以原点O为位似中心,把线段AB缩短为原来的,点B的坐标为(﹣4,8),∴点D的坐标为(﹣4×,8×)或,即(﹣1,2)或(1,﹣2).故选:C.3.解:把代入得,k=6,∴,当x=2,y=3,∴经过P(2,3),当k=6>0,反比例函数图像位于一、三象限;在每一项内y随x的增大而减小;图像关于原点对称.故选:C.4.解:由AF=2DF,可以假设DF=k,则AF=2k,AD=3k,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠AFB=∠FBC=∠DFG,∠ABF=∠G,∵BE平分∠ABC,∴∠ABF=∠CBG,∴∠ABF=∠AFB=∠DFG=∠G,∴AB=CD=2k,DF=DG=k,∴CG=CD+DG=3k,∵AB∥DG,∴△ABE∽△CGE,∴===,故选:C.5.解:∵A(1,2)在反比例函数图象上,∴k=1×2=2,∴反比例函数解析式为,∵B(m,﹣1)在反比例函数图象上,∴,∴B(﹣2,﹣1),由题意得关于x的不等式的解集即为一次函数图象在反比例函数图象上方时自变量的取值范围,∴关于x的不等式的解集为﹣2<x<0或x>1,故选:C.6.解:∵AB∥EF∥CD,∴,故A不符合题意;∵FG∥BH,∴△DFG∽△DBH,∴,∴故C符合题意,D不符合题意;根据现有条件无法证明,故B不符合题意;故选:C.7.解:A、两个相似三角形的面积之比等于它们周长之比的平方,说法错误,不符合题意;B、两边成比例且这两边的夹角相等的两个三角形相似,说法错误,不符合题意;C、反比例函数中,在每个象限内y随x的增大而减小,说法错误,不符合题意;D、位似图形的位似中心不一定是唯一的,说法正确,符合题意;故选:D.8.解:因为二次函数y=ax2+bx+c的图象开口向上,得出a>0,与y轴交点在y轴的负半轴,得出c<0,利用对称轴x=﹣<0,得出b>0,所以一次函数y=ax+b经过一、二、三象限,反比例函数y=经过二、四象限,故选:A.9.解:如图作CM∥AB交AD于M,MN⊥AB于N.由题意得△MCD∽△EFG,∴,即,∴CM=4米,又∵∥BC,AB∥CM,AB⊥BC,∴四边形MNBC是矩形,∴MN=BC=16米,BN=CM=4米.在直角△AMN中,∠AMN=45°,∴AN=MN=16米,∴AB=AN+BN=20米.故选:B.10.解:∵△AOB和△ACD均为正三角形,∴∠AOB=∠CAD=60°,∴AD∥OB,∴S△ABP=S△AOP,∴S△OBP=S△AOB,过点B作BE⊥OA于点E,则S△OBE=S△ABE=S△AOB,∵点B在反比例函数y=的图象上,∴S△OBE=×4=2,∴S△OBP=S△AOB=2S△OBE=4.故选:D.11.解:∵∠B=90°,EF⊥AB,EG⊥BC,∴四边形BFEG是矩形,∴EF∥CG,BF∥EG,∴∠A=∠CEG,∠AEF=∠C,∴△AEF∽△ECG,∴,∴EF⋅EG=AF⋅CG,∵△AFE的面积为a,△EGC的面积为b,∴,∴,∴,∴(EF⋅EG)2=4ab,∴,故选:D.12.解:如图,分别过点D,点F作x轴的垂线,垂足分别为G,H,连接DE,∴DG∥FH,∴FH:DG=CF:CD=CH:CG,∵DF=2CF,∴CF:CD=1:3,设点F的横坐标为m,则F(m,),∴FH=,∴DG=3FH=,∴D(m,),∴OG=m,OH=m,∴GH=m,CH=m,∴OC=m,∵EO:OC=1:3,∴OE=m,∴CE=m.∵平行四边形ABCD的面积为7,∴△CDE的面积为,∴•m•=,整理得k=.故选:A.二、填空题(共16分)13.解:依据比例系数k的几何意义可得,△P AO面积等于|k|,即|k|=1,k=±2,由于函数图象位于第一、三象限,则k=2,∴反比例函数的解析式为y=;故答案为:y=.14.解:∵∠A=∠A,∠ACD=∠B,∴△ACD∽△ABC,∴,即,∴BD=6,故答案为:6.15.解:∵四边形ABCD是矩形,AD平行于x轴,且AB=3,AD=6,点A的坐标为(3,8),∴AB=CD=3,AD=BC=6,∴B(3,5),C(9,5),∴矩形平移后A的坐标是(3,8﹣a),C的坐标是(9,5﹣a),∵A、C落在反比例函数的图象上,∴k=3(8﹣a)=9(5﹣a),解得a=3.5,故答案为:3.5.16.解:如解图,过点C作CF⊥AB于点F.在Rt△ABC中,∠C=90°,AC=6,BC=8,则由勾股定理,得;∴,∴.∴小正方形最多可以排4排.设最下边的一排小正方形的上边的边所在的直线与△ABC的边交于D、E.∵DE∥AB,∴△CED∽△CAB,∴,∴,∴最下边一排是7个正方形.设第二排正方形的上边的边所在的直线与△ABC的边交于点G、H,同理可得,∴,∴第二排是5个正方形;同理,第三排是3个;第四排是1个,∴正方形的个数是7+5+3+1=16,故答案为:16.三、解答题(共68分)17.解:(1)如图所示,△A1B1C1为所作;(2)如图所示,△A2B2C2为所作,点B2的坐标为(﹣4,﹣6);(3)△A2B2C2面积=6×4﹣×4×4﹣﹣=8.18.(1)证明:∵AD为⊙O的直径,∴∠AMD=90°,∴∠AMB+∠DMC=90°,∵AB⊥BC,CD⊥BC,∴∠ABM=∠MCD=90°,∴∠BMA+∠BAM=90°,∴∠BAM=∠CMD,∴△ABM∽△MCD;(2)解:如图所示,连接OM,∵BC为⊙O的切线,切点为M,∴OM⊥BC,又∵AB⊥BC,∴AB∥OM,∴∠BAM=∠AMO,∵OA=OM,∴∠OAM=∠OMA,∴∠OAM=∠BAM,又∵∠ABM=∠AMD=90°,∴△ABM∽△AMD,∴=,即=,∴AD=8,∴⊙O半径为4.19.解:(1)∵y=kx+b与反比例函数y=(x>0)的图象分别交于点A(m,3)和点B (6,n),∴m=2,n=1,∴A(2,3),B(6,1),则有,解得,∴直线AB的解析式为y=﹣x+4(2)如图,当P A⊥OD时,∵P A∥OC,∴△ADP∽△CDO,此时P(2,0).②当AP′⊥CD时,易知△P′DA∽△CDO,∵直线AB的解析式为y=﹣x+4,∴D(8,0),C(0,4),∴CD==4,AD=2,∵DP′:CD=AD:OD,∴DP′:4=3:8,∴DP′=,∴OP′=,∴P′(3,0),∴直线P′A的解析式为y=2x﹣1,令y=0,解得x=,∴P′(,0),综上所述,满足条件的点P坐标为(2,0)或(,0).20.(1)解:①4≤x≤8时,设,将点A(4,40)的坐标代入,得k=4×40=160,②8<x≤28时,设y=k'x+b(k'≠0),分别将点B(8,20),C(28,0)的坐标代入y=k'x+b,得,解得,∴y=﹣x+28;(2)解:当4≤x≤8时,;y=﹣x+28时,20≤y≤24;综上可知,w(万元)与x(元/件)之间的函数关系式为w=.21.解:(1)∵四边形ABCD是正方形,四边形AFEG是正方形,∴∠AGE=∠D=90°,∠DAC=45°,∴=,GE∥CD,∴==;(2)连接AE,由旋转性质知∠CAE=∠DAG=α,在Rt△AEG和Rt△ACD中,=cos45°=,=cos45°=,∴=,∴△ADG∽△ACE,∴==,(3)①如图:由(2)知△ADG∽△ACE,∴==,∴DG=CE,∵四边形ABCD是正方形,∴AD=BC=8,AC==16,∵AG=AD,∴AG=AD=8,∵四边形AFEG是正方形,∴∠AGE=90°,GE=AG=8,∵C,G,E三点共线.∴CG===8,∴CE=CG﹣EG=8﹣8,∴DG=CE=4﹣4;②如图:由(2)知△ADG∽△ACE,∴==,∴DG=CE,∵四边形ABCD是正方形,∴AD=BC=8,AC=16,∵AG=AD∴AG=AD=8,∵四边形AFEG是正方形,∴∠AGE=90°,GE=AG=8,∵C,G,E三点共线.∴∠AGC=90°∴CG===8,∴CE=CG+EG=8+8,∴DG=CE=4+4.综上,当C,G,E三点共线时,DG的长度为4﹣4或4+4.22.(1)解:∵∠APB是∠MON的智慧角,∴OA•OB=OP2,∴=,∵P为∠MON的平分线上一点,∴∠AOP=∠BOP=∠MON=α,∴△AOP∽△POB,∴∠OAP=∠OPB,∴∠APB=∠OPB+∠OP A=∠OAP+∠OP A=180°﹣∠AOP=180°﹣α;(2)证明:∵∠MON=90°,P为∠MON的平分线上一点,∴∠AOP=∠BOP=∠MON=45°,∵∠AOP+∠OAP+∠APO=180°,∴∠OAP+∠APO=135°,∵∠APB=135°,∴∠APO+∠OPB=135°,∴∠OAP=∠OPB,∴△AOP∽△POB,∴,∴OP2=OA•OB,∴∠APB是∠MON的智慧角;(3)解:设点C(a,b),则ab=3,过点C作CH⊥OA于H;分两种情况:①当点B在y轴正半轴上时;当点A在x轴的负半轴上时,如图2:BC=2CA不可能;当点A在x轴的正半轴上时,如图3:∵BC=2CA,∴,∵CH∥OB,∴△ACH∽△ABO,∴,∴OB=3b,OA=a,∴OA•OB=a•3b==,∵∠APB是∠AOB的智慧角,∴OP==,∵∠AOB=90°,OP平分∠AOB,∴点P到x,y轴的距离相等为∴点P的坐标为:(,);②当点B在y轴的负半轴上时,如图4,∵BC=2CA,∴AB=CA,在△ACH和△ABO中,,∴△ACH≌△ABO(AAS),∴OB=CH=b,OA=AH=a,∴OA•OB=a•b=,∵∠APB是∠AOB的智慧角,∴OP==,∵∠AOB=90°,OP平分∠AOB,∴点P到x,y轴的距离相等为,∴点P的坐标为:(,﹣);综上所述:点P的坐标为:(,)或(,﹣).。
沪科版2022-2023学年第一学期九年级数学第三次月考测试题(附答案)
![沪科版2022-2023学年第一学期九年级数学第三次月考测试题(附答案)](https://img.taocdn.com/s3/m/08aecd1642323968011ca300a6c30c225901f02e.png)
沪科版2022-2023学年第一学期九年级数学第三次月考测试题(附答案)一、选择题(本大题共10小题,满分40分)1.下列汽车标志中既是轴对称图形又是中心对称图形的是()A.B.C.D.2.已知锐角α满足tan(α+20°)=1,则锐角α的度数为()A.10°B.25°C.40°D.45°3.已知点A(1,﹣3)关于x轴的对称点A'在反比例函数y=的图象上,则实数k的值为()A.3B.C.﹣3D.﹣4.若(2,m)、(4,m)是抛物线y=ax2+bx+c上的两个点,则它的对称轴是直线()A.x=5B.x=1C.x=2D.x=35.如图,AB为⊙O的直径,C、D为⊙O上两点,若∠CAB=35°,则∠D等于()A.35°B.55°C.65°D.70°6.如图,在▱ABCD中,F是BC边上一点,延长DF交AB的延长线于点E,若AB=3BE,则BF:CF等于()A.1:2B.1:3C.2:3D.2:57.如图,Rt△ABC中,∠BAC=90°,AD⊥BC于点D,若AB=4,AC=3,则BD为()A.1.8B.3.2C.2.4D.58.点A(m,n)在二次函数y=x2﹣4的图象上,则2m﹣n的最大值是()A.4B.5C.﹣4D.﹣59.如图,在△ABC中,∠ACB=90°,D点在BC边上,,P为AB边上一点,当PC=PD时,的值为()A.B.C.D.10.如图,直线l为抛物线y=﹣x2+2x+3的对称轴,点P为抛物线上一动点(在顶点或顶点的右侧),过点P作P A⊥x轴于点A,作PB∥x轴交抛物线于点B,设P A=h,PB=m,则h与m的函数图象大致为()A.B.C.D.二、填空题(本大题共4小题,满分20分)11.已知=,则=.12.如图,⊙O的弦AB=6,半径OD⊥AB交AB于点D、交弧AB于点C.若CD=1,则⊙O的半径为.13.如图,点A在双曲线y=上,点B在双曲线y=上,AB∥x轴,过点A作AD⊥x 轴于D,连接OB,与AD相交于点C,若AB=2OD,则k的值为.14.在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点Q处.折痕为AP;再将△PCQ,△ADQ分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R处.请完成下列探究:(1)∠P AQ的大小为°;(2)当四边形APCD是平行四边形时,的值为.三、解答题(本大题共9小题,总计90分)15.计算:cos245°+sin60°•tan30°﹣tan45°.16.已知当x=1时,二次函数有最大值5,且图象过点(0,﹣3),求此函数关系式.17.已知,如图,一次函数y=﹣2x+1,与反比例函数y=的图象有两个交点A点、B点,过点A作AE⊥x轴于点E,点E坐标为(﹣1,0),过点B作BD⊥y轴于点D,直线AB 交y轴于点C.(1)求k的值;(2)求tan∠CBD.18.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度)﹒(1)画出△ABC以点O为中心,顺时针方向旋转90°,得到的A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是.19.学生到工厂劳动实践,学习制作机械零件.零件的截面如图阴影部分所示,已知四边形AEFD为矩形,点B、C分别在EF、DF上,∠ABC=90°,∠BAD=53°,AB=10cm,BC=6cm.求零件的截面面积.参考数据:sin53°≈0.80,cos53°≈0.60.20.如图,在△ABC中,BE平分∠ABC交AC于点E,过点E作ED∥BC交AB于点D.(1)求证:AE•BC=BD•AC;(2)如果S△ADE=3,S△BDE=2,DE=6,求BC的长.21.如图,圆O中两条互相垂直的弦AB,CD交于点E.(1)M是CD的中点,OM=3,CD=12,求圆O的半径长;(2)点F在CD上,且CE=EF,求证:AF⊥BD.22.规定:不相交的两个函数图象在竖直方向上的最短距离为这两个函数的“亲近距离”(1)求抛物线y=x2﹣2x+3与x轴的“亲近距离”;(2)在探究问题:求抛物线y=x2﹣2x+3与直线y=x﹣1的“亲近距离”的过程中,有人提出:过抛物线的顶点向x轴作垂线与直线相交,则该问题的“亲近距离”一定是抛物线顶点与交点之间的距离,你同意他的看法吗?请说明理由.(3)若抛物线y=x2﹣2x+3与抛物线y=+c的“亲近距离”为,求c的值.23.如图1,△ABC中,∠ACB=90°,AC=BC,E为△ABC的中线BD上的一点,将线段AE以E点为中心逆时针旋转90度得到线段EF,EF恰好经过点C.如图1.(1)若∠CAF=α,则∠CBE=(用含α的代数式表示);(2)若BH平分∠EBC,交EC于点G,交AF于点H,如图2.①求证:△BEG∽△ACF;②若EG=1,求CF的长.参考答案一、选择题(本大题共10小题,满分40分)1.解:A.不是中心对称图形,是轴对称图形,故此选项不符合题意;B.不是中心对称图形,是轴对称图形,故此选项不符合题意;C.不是中心对称图形,是轴对称图形,故此选项不符合题意;D.既是中心对称图形,又是轴对称图形,故此选项符合题意;故选:D.2.解:∵tan45°=1,∴a+20°=45°,则a=25°.故选:B.3.解:点A(1,﹣3)关于x轴的对称点A'的坐标为(1,3),把A′(1,3)代入y=得k=1×3=3.故选:A.4.解:∵(2,m)、(4,m)是抛物线y=ax2+bx+c上的两个点,且(2,m)、(4,m)关于直线x=3对称,∴抛物线对称轴为直线x=3.故选:D.5.解:∵AB为⊙O的直径,∴∠ACB=90°,∴∠B=90°﹣∠CAB=90°﹣35°=55°,∴∠D=∠B=55°.故选:B.6.解:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴△DCF∽△EBF,∴,且AB=CD=3BE,∴BF:CF=1:3,故选:B.7.解:由勾股定理得,BC===5,由射影定理得,AB2=BD•BC,则BD==3.2,故选:B.8.解:把(m,n)代入y=x2﹣4得n=m2﹣4,∴2m﹣n=2m﹣(m2﹣4)=﹣m2+2m+4=﹣(m﹣1)2+5,∴m=1时,2m﹣n的最大值是5,故选:B.9.解:过P作PE⊥AC于E,PF⊥BC于F,∴四边形PECF为矩形,PE=CF,∵PF⊥BC,∴CF=DF,∴△APE∽△ABC,∴,∴,故选:A.10.解:∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线y=﹣x2+2x+3的对称轴为直线x=1.令y=0,则﹣x2+2x+3=0,解得:x=﹣1或x=3.∴抛物线y=﹣x2+2x+3与x轴交于(﹣1,0)和(3,0).设直线l与PB交于点C,与x轴交于点D,与y轴交于点E,如图,则OD=CE=1.∵PB∥x轴,抛物线y=﹣x2+2x+3关于直线x=1对称,∴PC=PB.∵PB=m,∴PC=.∴PE=OA=PC+CE=+1.∴点P的横坐标为+1.∵点P为抛物线上一动点(在顶点或顶点的右侧),∴+1≥1.∴m≥0.①当点P在x轴及x轴上方时,1≤+1≤3,即当0≤m≤4时,∵点P为抛物线上一动点,∴P点的纵坐标为:﹣+3=﹣+4,∴P A=h=﹣+4;②当点P在x轴的下方时,+1>3,即m>4时,∵P点的纵坐标为:﹣+3=﹣+4,∴P A=h=﹣(﹣+4)=﹣4;∴h与m的函数关系式为:h=.∵函数h=﹣+4和h=﹣4是抛物线的一部分,∴正确的选项是:A.故选:A.二、填空题(本大题共4小题,满分20分)11.解:∵=,∴5(a﹣b)=3(a+b),∴5a﹣5b=3a+3b,∴a=4b,∴==.故答案为:.12.解:∵⊙O的弦AB=6,半径OD⊥AB,∴AD=AB=×6=3,设⊙O的半径为r,则OD=r﹣CD=r﹣1,连接OA,在Rt△OAD中,OA2=OD2+AD2,即r2=(r﹣1)2+32,解得r=5.故选:5.13.解:过点B作BE⊥x轴于E,延长线段BA,交y轴于F,∵AB∥x轴,∴AF⊥y轴,∴四边形AFOD是矩形,四边形OEBF是矩形,∴AF=OD,BF=OE,∴AB=DE,∵点A在双曲线y=上,∴S矩形AFOD=6,同理S矩形OEBF=k,∵AB=2OD,∴DE=2OD,∴S矩形OEBF=3S矩形AFOD=18,∴k=18,故答案是:18.14.解:(1)由折叠的性质可得:∠B=∠AQP,∠DAQ=∠QAP=∠P AB,∠DQA=∠AQR,∠CQP=∠PQR,∠D=∠ARQ,∠C=∠QRP,∵∠QRA+∠QRP=180°,∴∠D+∠C=180°,∴AD∥BC,∴∠B+∠DAB=180°,∵∠DQR+∠CQR=180°,∴∠DQA+∠CQP=90°,∴∠AQP=90°,∴∠B=∠AQP=90°,∴∠DAB=90°,∴∠DAQ=∠QAP=∠P AB=30°,故答案为:30;(2)由折叠的性质可得:AD=AR,CP=PR,∵四边形APCD是平行四边形,∴AD=PC,∴AR=PR,又∵∠AQP=90°,∴QR=AP,∵∠P AB=30°,∠B=90°,∴AP=2PB,AB=PB,∴PB=QR,∴=,故答案为:.三、解答题(本大题共9小题,总计90分)15.解:原式=()2+×﹣1=+﹣1=0.16.解:根据题意,设二次函数的解析式为y=a(x﹣1)2+5,把(0,﹣3)代入得a(0﹣1)2+5=﹣3,解得a=﹣8,所以二次函数的解析式为y=﹣8(x﹣1)2+5.17.解:(1)∵一次函数y=﹣2x+1的图象经过点A,∴y=2+1=3,∴A(﹣1,3),∵反比例函数y=的图象经过A(﹣1,3),∴k=﹣1×3=﹣3;(2)∵一次函数y=﹣2x+1的图象经过点C,∴y=0+1=1,∴C(0,1),联立一次函数与反比例函数得,解得,;∴B(,﹣2),D(0,﹣2),∴BD=,CD=3,∴tan∠CBD===2.18.解:(1)如图,△A1B1C1为所作,点C1的坐标是(2,﹣2);故答案为:(2,﹣2);(2)如图,△A2B2C2为所作,点C2的坐标是(1,0);故答案为:(1,0).19.解:法一、如图,∵四边形AEFD为矩形,∠BAD=53°,∴AD∥EF,∠E=∠F=90°,∴∠BAD=∠EBA=53°,在Rt△ABE中,∠E=90°,AB=10cm,∠EBA=53°,∴sin∠EBA=≈0.80,cos∠EBA=≈0.60,∴AE=8cm,BE=6cm,∴∠FBC=90°﹣∠EBA=37°,∴∠BCF=90°﹣∠FBC=53°,在Rt△BCF中,∠F=90°,BC=6cm,∴sin∠BCF=≈0.80,cos∠BCF=≈0.60,∴BF=4.8cm,FC=3.6cm,∴EF=6+4.8=10.8cm,∴S四边形EFDA=AE•EF=8×10.8=86.4(cm2),S△ABE==×8×6=24(cm2),S△BCF=•BF•CF=×4.8×3.6=8.64(cm2),∴截面的面积=S四边形EFDA﹣S△ABE﹣S△BCF=86.4﹣24﹣8.64=53.76(cm2).法二、如图,延长AB交DC的延长线于点M,∴∠BCM=∠A=53°,∴cos53°=≈0.6,∴CM=10,∴BM=8,∴AM=AB+BM=18,∵AD=AM•sin A=14.4,DM=AM•cos A=10.8,∴截面的面积=S△ADM﹣S△BCM==AD•DM﹣BC•BM=53.76(cm2).20.(1)证明:∵BE平分∠ABC,∵DE∥BC,∴∠DEB=∠CBE∴∠ABE=∠DEB.∴BD=DE,∵DE∥BC,∴△ADE∽△ABC,∴∴,∴AE•BC=BD•AC;(2)解:设△ABE中边AB上的高为h.∴,∵DE∥BC,∴.∴,∴BC=10.21.解:(1)连接OD,如图:∵M是CD的中点,CD=12,∴DM=CD=6,OM⊥CD,∠OMD=90°,Rt△OMD中,OD=,且OM=3,∴OD==3,即圆O的半径长为3;(2)连接AC,延长AF交BD于G,如图:∵AB⊥CD,CE=EF,∴AB是CF的垂直平分线,∴AF=AC,即△ACF是等腰三角形,∵CE=EF,∴∠F AE=∠CAE,∵=,∴∠CAE=∠CDB,∴∠F AE=∠CDB,Rt△BDE中,∠CDB+∠B=90°,∴∠F AE+∠B=90°,∴∠AGB=90°,∴AG⊥BD,即AF⊥BD.22.解:(1)∵y=(x﹣1)2+2,∴抛物线上的点到x轴的最短距离为2,∴抛物线y=x2﹣2x+3与x轴的“亲近距离”为2;(2)不同意他的看法.理由如下:如图,P点为抛物线y=x2﹣2x+3任意一点,作PQ∥y轴交直线y=x﹣1于Q,设P(t,t2﹣2t+3),则Q(t,t﹣1),∴PQ=t2﹣2t+3﹣(t﹣1)=t2﹣3t+4=(t﹣)2+,当t=时,PQ有最小值,最小值为,∴抛物线y=x2﹣2x+3与直线y=x﹣1的“亲近距离”为,而过抛物线的顶点向x轴作垂线与直线相交,抛物线顶点与交点之间的距离为2,∴不同意他的看法;(3)M点为抛物线y=x2﹣2x+3任意一点,作MN∥y轴交抛物线y=+c于N,设M(t,t2﹣2t+3),则N(t,t2+c),∴MN=t2﹣2t+3﹣(t2+c)=t2﹣2t+3﹣c=(t﹣)2+﹣c,当t=时,MN有最小值,最小值为﹣c,∴抛物线y=x2﹣2x+3与抛物线y=+c的“亲近距离”为﹣c,∴﹣c=,∴c=1.23.解:(1)∵D为AC的中点,∠AEC=90°,∴AD=DE=DC,∴∠DAE=∠AED,∵AE=EF,∴∠EAF=45°,∴∠EAD=45°﹣α,∴∠DEA=∠EAD=45°﹣α,∴∠BCA=90°,∵∠EDC=90°﹣2α,∴∠CBE=2α;故答案为:2α;(2)①由(1)可知,∠CBE=2α,∠CAF=α,∵BH平分∠EBC,∴∠EBG=α,即∠EBG=∠CAF=α,∵DE=EC,∴∠DEC=∠DCE,则∠DEC+∠GEB=∠DCE+∠ACF=180°,∴∠GEB=∠ACF,∴△BEG∽△ACF;②设ED=x,则AD=DC=x,BC=2x,∴BD=,∴BE=(﹣1)x,即,∴EG=CF,∵EG=1,∴CF=.。
人教版2022-2023学年第一学期九年级数学第三次月考测试题(附答案) (2)
![人教版2022-2023学年第一学期九年级数学第三次月考测试题(附答案) (2)](https://img.taocdn.com/s3/m/9f95be244b7302768e9951e79b89680203d86bda.png)
河南省信阳市浉河区吴家店中学2022-2023学年第一学期九年级数学第三次月考测试题(附答案)一.选择题(满分30分)1.下列是部分星座的符号,其中是中心对称图形的是()A.B.C.D.2.一元二次方程2x2﹣6x﹣5=0的一次项系数是()A.2B.6C.﹣6D.﹣53.如图,AB是⊙O的直径,C为圆内一点,则下列说法正确的是()A.∠BOC是圆心角B.AC是⊙O的弦C.∠C是圆周角D.4.某种商品每天的销售利润y(元)与单价x(元)之间的函数关系式为y=﹣0.1(x﹣3)2+25.则这种商品每天的最大利润为()A.0.1元B.3元C.25元D.75元5.某厂1月份生产口罩60万箱,第一季度生产口罩共200万箱,一位同学根据题意列出了方程60+60(1+x)+60(1+x)2=200,则x表示的意义是()A.该厂二月份的增长率B.该厂三月份的增长率C.该厂一、二月份平均每月的增长率D.该厂二、三月份平均每月的增长率6.将抛物线y=2x2+3向右平移3个单位长度.再向上平移2个单位长度,得到的抛物线的解析式为()A.y=2(x﹣3)2+5B.y=2(x﹣3)2﹣1C.y=2(x+3)2+5D.y=2(x+3)2﹣17.在如图所示的方格纸(1格长为1个单位长度)中,△ABC的顶点都在格点上,将△ABC 绕点O按顺时针方向旋转得到△A'B'C',使各顶点仍在格点上,则其旋转角的度数是()A.45°B.60°C.75°D.90°8.如图,O为线段BC的中点,点A,C,D到点O的距离相等.则∠A与∠C的数量关系为()A.∠A=∠C B.∠A=2∠C C.∠A﹣∠C=90°D.∠A+∠C=180°9.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO 绕点B逆时针旋转60°,得到△CBD,若点B的坐标为(4,0),则点C的坐标为()A.(﹣2,2)B.(﹣4,2)C.(﹣2,2)D.(﹣2,4)10.小明周末前往游乐园游玩,他乘坐了摩天轮,摩天轮转一圈,他离地面高度y(m)与旋转时x(s)之间的关系可以近似地用y=﹣x2+bx+c来刻画.如图记录了该摩天轮旋转时x(s)和离地面高度y(m)的三组数据,根据上述函数模型和数据,可以推断出:当小明乘坐此摩天轮离地面最高时,需要的时间为()A.172s B.175s C.180s D.186s二.填空题(满分15分)11.一个不透明的袋子里装有3个红球和5个黑球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为.12.在平面直角坐标系内,若点P(﹣1,p)和点Q(q,3)关于原点O对称,则pq的值为.13.已知点A(﹣2,m)在一个反比例函数的图象上,点A'与点A关于y轴对称.若点A'在正比例函数y=x的图象上,则这个反比例函数的表达式为.14.如图,在矩形ABCD中,AB=1,BC=2,以B为圆心,BC的长为半径画弧,交AD 于点E.则图中阴影部分的面积为.(结果保留π)15.如图,在△ABC中,∠ACB=90°,AC=3,CB=5,点D是CB边上的一个动点,将线段AD绕着点D顺时针旋转90°,得到线段DE,连接BE,则线段BE的最小值等于.三.解答题(满分75分)16.用恰当的方法解下列方程:(1)x2+2x﹣3=0;(2)3(x﹣1)2=2(x﹣1).17.某校有A、B两个餐厅,甲、乙、丙三名学生各自随机选择其中的一个餐厅用餐.(1)请用列表或画树形图的方法求甲、乙、丙三名学生在同一个餐厅用餐的概率;(2)求甲、乙、丙三名学生中至少有一人在B餐厅用餐的概率.18.在学完圆的相关知识后,某数学兴趣小组利用课余时间探究过圆外一点作已知圆的切线,下面记录了部分探究过,组员小杜用尺规作图过一点作已知圆的切线.如图,已知⊙O 及⊙O外一点P,求作:过点P的⊙O的切线.①连接OP,作OP的垂直平分线MN交OP于点A;②以A为圆心,OA为半径作⊙A,交⊙O于点B、C;③作射线PB、PC;则射线PB、PC即为所求.请完成以下问题:(1)根据上述步骤,利用尺规作图(保留作图痕迹、不写作法),将图形补充完整;(2)细心的小马同学通过认真观察,发现线段PB和PC满足一定的数量关系,请你将他的“已知”和“求证”补充完整,并证明.已知:如图,PB、PC与⊙O相切于点B、C,求证:19.掷实心球是兰州市高中阶段学校招生体育考试的选考项目.如图1是一名女生投实心球,实心球行进路线是一条抛物线,行进高度y(m)与水平距离x(m)之间的函数关系如图2所示,掷出时起点处高度为m,当水平距离为3m时,实心球行进至最高点3m处.(1)求y关于x的函数表达式;(2)根据兰州市高中阶段学校招生体育考试评分标准(女生),投掷过程中,实心球从起点到落地点的水平距离大于等于6.70m,此项考试得分为满分10分.该女生在此项考试中是否得满分,请说明理由.图1来源:《2022年兰州市高中阶段学校招生体育考试规则与测试要求》20.已知:二次函数y=x2﹣4x+3a+2(a为常数).(1)请写出该二次函数图象的对称轴;(2)若这个二次函数的最小值是7,求a的值;(3)直角坐标系中,若该二次函数的图象在x≤4的部分与一次函数y=2x﹣1的图象有两个交点,求a的取值范围.21.建设美丽城市,改造老旧小区.某市2019年投入资金1000万元,2021年投入资金1440万元,现假定每年投入资金的增长率相同.(1)求该市改造老旧小区投入资金的年平均增长率;(2)2021年老旧小区改造的平均费用为每个80万元.2022年为提高老旧小区品质,每个小区改造费用增加15%.如果投入资金年增长率保持不变,求该市在2022年最多可以改造多少个老旧小区?22.九年级某数学兴趣小组在学习了反比例函数的图象与性质后,进一步研究了函数y=的图象与性质,其探究过程如下:(1)绘制函数图象,如图1.列表:下表是x与y的几组对应值;x…﹣3﹣2﹣1﹣123…y…124421…描点:根据表中各组对应值(x,y),在平面直角坐标系中描出了各点;连线:用平滑的曲线顺次连接各点,画出了部分图象.请你把图象补充完整;(2)通过观察图1,写出该函数的两条性质;①;②;(3)①观察发现:如图2.若直线y=2交函数y=的图象于A,B两点,连接OA,过点B作BC∥OA交x轴于C.则S四边形OABC=;②探究思考:将①中“直线y=2”改为“直线y=a(a>0)”,其他条件不变,则S四边形OABC=;③类比猜想:若直线y=a(a>0)交函数y=(k>0)的图象于A,B两点,连接OA,过点B作BC∥OA交x轴于C,则S四边形OABC=.23.如图①,现有三张形状大小完全相同的三角形纸片叠合到一起,其中AB=AC,∠B=∠C=α.老师让同学们以“三角形的旋转”为主题,通过小组合作探究,提出问题一展示一集体谈论,解决问题.(1)“希望”小组提出问题:将图1中的△ABC以点C为旋转中心,顺时针旋转角度α,得到△DEC,再将△ABC以点A为旋转中心,逆时针旋转角度α,得到△AFG,连接DG,得到图②,请判断四边形AEDG的形状,并说明理由;(2)“善学”小组提出问题:将图①中的△ABC以点C为旋转中心,顺时针旋转90°,得到△DEC,再将△ABC以点A为旋转中心,逆时针旋转90°,得到△AFG,连接AE,DF,DG,得到图③请判断四边形ACDG的形状,并说明理由;老师根据上面小组的探究提出:(3)若α=75°,则图③中,∠EDF=.参考答案一.选择题(满分30分)1.解:A.不是中心对称图形,故本选项不符合题意;B.是中心对称图形,故本选项符合题意;C.不是中心对称图形,故本选项不符合题意;D.不是中心对称图形,故本选项不符合题意.故选:B.2.解:一元二次方程2x2﹣6x﹣5=0的一次项系数是﹣6.故选:C.3.解:A、顶点在圆心的角叫圆心角,故∠BOC是圆心角,故A选项符合题意;B、弦是连接圆上任意两点的线段,故AC不是⊙O的弦,故B选项不符合题意;C、顶点在圆上,两边与圆相交的角叫圆周角,故∠C不是圆周角,故C不符合题意;D、根据三角形的三边关系可得AC+OC>AO=AB,故D不符合题意.故选:A.4.解:∵﹣0.1<0,∴当x=3时,y有最大值,最大值为25,故选:C.5.解:依题意可知:该厂2月份生产口罩60(1+x)万箱,3月份生产口罩60(1+x)2万箱,∴x表示该厂二、三月份平均每月的增长率.故选:D.6.解:将抛物线y=2x2+3向右平移3个单位长度.再向上平移2个单位长度,得到的抛物线的解析式为:y=2(x﹣3)2+3+2.即y=2(x﹣3)2+5.故选:A.7.解:根据旋转角的概念:对应点与旋转中心连线的夹角,可知∠BOB′是旋转角,且∠BOB′=90°,故选:D.8.解:由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD为圆O的内接四边形,∴∠A+∠C=180°,故选:D.9.解:作CH⊥x轴于H点,如图,当x=4时,y=x=4,则A(4,4),∴AB=4,∵△ABO绕点B逆时针旋转60°,得到△CBD,∴BC=BA=4,∠ABC=60°,∴∠CBH=30°,在Rt△CBH中,CH=BC=2,BH=CH=6,∴OH=BH﹣OB=6﹣4=2,∴C点坐标为(﹣2,2).故选:A.10.解:把(160,60),(190,67.5)分别代入y=﹣x2+bx+c得,,解得,∴抛物线的解析式为y=﹣x2+9x﹣740,∴该铅球飞行到最高点时,需要的时间为﹣=180(s),故选:C.二.填空题(满分15分)11.解:∵一个不透明的袋子里装有3个红球和5个黑球,∴共有8个球,∴从袋中任意摸出一个球是红球的概率为.故答案为:.12.解:∵点P(﹣1,p)和点Q(q,3)关于原点O对称,∴q=1,p=﹣3,则pq的值为:﹣3.故答案为:﹣3.13.解:∵点A'与点A关于y轴对称,点A(﹣2,m),∴点A'(2,m),∵点A'在正比例函数y=x的图象上,∴m==1,∴A(﹣2,1),∵点A(﹣2,1)在一个反比例函数的图象上,∴反比例函数的表达式为y=﹣,故答案为:y=﹣.14.解:∵以B为圆心,BC的长为半径画弧,交AD于点E,∴BE=BC=2,在矩形ABCD中,∠A=∠ABC=90°,AB=1,BC=2,∴sin∠AEB==,∴∠AEB=30°,∴∠EBA=60°,∴∠EBC=30°,∴阴影部分的面积:S==π,故答案为:π.15.解:过E作EF⊥BC于F,∵∠C=∠ADE=90°,∴∠EFD=∠C=90°,∠FED+∠EDF=90°,∠EDF+∠ADC=90°,∴∠DEF=∠ADC,在△EDF和△DAC中,,∴△EDF≌△DAC(AAS),∴DF=AC=3,EF=CD,设CD=x,则BE2=x2+(2﹣x)2=2(x﹣1)2+2,∴BE2的最小值是2,∴BE的最小值是,故答案为:.三.解答题(满分75分)16.解:(1)∵x2+2x﹣3=0,∴(x+3)(x﹣1)=0,则x+3=0或x﹣1=0,解得x1=﹣3,x2=1;(2)∵3(x﹣1)2=2(x﹣1),∴3(x﹣1)2﹣2(x﹣1)=0,则(x﹣1)(3x﹣5)=0,∴x﹣1=0或3x﹣5=0,解得x1=1,x2=.17.解:(1)画树形图为:共有8种等可能的结果数,其中甲、乙、丙三名学生在同一个餐厅用餐的结果数为2,所以甲、乙、丙三名学生在同一个餐厅用餐的概率==;(2)甲、乙、丙三名学生中至少有一人在B餐厅用餐的结果数为7,所以甲、乙、丙三名学生中至少有一人在B餐厅用餐的概率=.18.解:(1)作图如下:(2)已知:如图,PB、PC与⊙O相切于点B、C,OC、OB是⊙O的半径,求证:PB=PC.证明:∵PB、PC与⊙O相切于点B、C,OC、OB是⊙O的半径,∴OC=OB,∠OCP=∠OBP=90°,∵OP=OP,∴Rt△OCP≌Rt△OBP(HL),∴PC=PB.故答案为:OC、OB是⊙O的半径,PC=PB.19.解:(1)根据题意设y关于x的函数表达式为y=a(x﹣3)2+3,把(0,)代入解析式得:=a(0﹣3)2+3,解得:a=﹣,∴y关于x的函数表达式为y=﹣(x﹣3)2+3;(2)该女生在此项考试中是得满分,理由:令y=0,则﹣(x﹣3)2+3=0,解得:x1=7.5,x2=﹣1.5(舍去),∵7.5>6.70,∴该女生在此项考试中是得满分.20.解:(1)对称轴为直线x=﹣==2.(2)当x=2时,y最小值=22﹣4×2+3a+2=4﹣8+3a+2=3a﹣2,∵最小值是7,∴3a﹣2=7,解得:a=3.(3)∵该二次函数的图象在x≤4的部分与一次函数y=2x﹣1的图象有两个交点,∴x2﹣4x+3a+2=2x﹣1在x≤4的范围内有两个不同的实数根,化简得:x2﹣6x+3a+3=0,Δ=36﹣4(3a+3)>0,解得:a<2,∵x2﹣6x+3a+3=0在x≤4的范围内有两个不同的实数根,∴x=4时,y=16﹣24+3a+3≥0,∴a≥,∴≤a<2.21.解:(1)设该市改造老旧小区投入资金的年平均增长率为x,依题意得:1000(1+x)2=1440,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市改造老旧小区投入资金的年平均增长率为20%.(2)设该市在2022年可以改造y个老旧小区,依题意得:80×(1+15%)y≤1440×(1+20%),解得:y≤,又∵y为整数,∴y的最大值为18.答:该市在2022年最多可以改造18个老旧小区.22.解:(1)补全图象如图所示:(2)①函数的图象关于y轴对称;②当x<0时,y随x的增大而增大,当x>0时,y随x的增大而减小(答案不唯一);(3)①如图2,∵A、B的纵坐标相同,故AB∥OC,而BC∥OA,则四边形OABC为平行四边形,当y=2时,即2=,解得x=±1,故点A、B的坐标分别为(﹣1,2)、(1,2),则AB=1+1=2=OC,则S四边形OABC=CO•y A=2×2=4,②当y=a时,同理可得:点A、B的坐标分别为(﹣,a)、(,2),则AB==OC,则S四边形OABC=CO•y A=•a=4,③当函数表达式为y=时,同理可得:点A、B的坐标分别为(﹣,a)、(,2),则AB==OC,则S四边形OABC=CO•y A=•a=2k;故答案为:①4;②4;③2k.23.解:(1)四边形AEDG是平行四边形,理由如下:∵旋转,∴AC=CD=AG,AB=DE,∠GAC=α,∠DEC=∠B=α,∴∠DEC=∠GAC,∴AG∥DE,∵AB=AC,∴AG=DE,∴四边形AEDG是平行四边形;(2)四边形ACDG是正方形,理由如下:∵旋转,∴AC=CD=AG,AB=DE,∠GAC=90°=∠ACD,∴AG∥CD,∴四边形ACDG是平行四边形,∵∠GAC=90°,∴四边形ACDG是矩形,∵AC=CD=AG,∴四边形ACDG是正方形;(3)连接GE,∵∠B=∠ACB=α=75°,∴∠BAC=30°,∵旋转,∴∠CDE=∠GAF=30°,AB=DE=AC=CD,∵四边形ACDG是正方形,∴GD=CD=AC=AG,∠GDC=∠AGD=90°,∴∠GDE=60°,DG=DE,∴△GDE是等边三角形,∴GE=GD=AG,∠GDE=60°,∴∠AGE=30°,∴∠GAE=∠GEA=75°,∴∠F AE=45°,∵四边形AEDF是平行四边形,∴∠EAF=∠EDF=45°,故答案为:45°.。
人教版2022-2023学年第一学期九年级数学第三次月考测试题(附答案)
![人教版2022-2023学年第一学期九年级数学第三次月考测试题(附答案)](https://img.taocdn.com/s3/m/a54162aced3a87c24028915f804d2b160b4e8624.png)
2022-2023学年第一学期九年级数学第三次月考测试题(附答案)一、单选题(共30分)1.点P(2,﹣3)关于原点对称的点的坐标是()A.(3,﹣2)B.(﹣2,﹣3)C.(﹣2,3)D.(3,2)2.如图,A,B,C为⊙O上的三个点,∠AOB=72°,则∠ACB的度数为()A.36°B.24°C.48°D.144°3.用配方法解方程x2﹣6x﹣2=0的过程中,应将此方程化为()A.(x﹣3)2=11B.(x﹣3)2=7C.(x﹣6)2=38D.(x﹣6)2=34 4.如图,⊙O的半径为4,弦心距OC=2,则弦AB的长为()A.3B.C.6D.5.下列事件中是必然事件的是()A.打开电视机,正在播放中央电视台的《开学第一课》B.经过有交通信号灯的路口,遇到红灯C.任意画一个三角形,其内角和是180°D.同位角相等6.新冠疫情牵动人心,若有一人感染了新冠,在每轮传染中平均一个人可以传染x个人,经过两轮传染后共有169人感染,若不加以控制,第三轮传染后感染人数为()A.338B.256C.2197D.20287.如图,AB、AC是⊙O的两条弦,∠BAC=25°,过点C的切线与OB的延长线交于点D,则∠D的度数为()A.25°B.30°C.35°D.40°8.如图,抛物线y1=﹣x2+4x和直线y2=2x,当y1<y2时,x的取值范围是()A.0<x<2B.x<0或x>2C.x<0或x>4D.0<x<49.如图,在△ABC中,∠BAC=135°,将△ABC绕点C逆时针旋转得到△DEC,点A,B 的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,下列结论不正确的是()A.△ABC≌△DEC B.∠ADC=45°C.AD=AC D.AE=AB+CD 10.如图,在边长为2的正方形ABCD中,点M在AD边上自A至D运动,点N在BA边上自B至A运动,M,N速度相同,当N运动至A时,运动停止,连接CN,BM交于点P,则AP的最小值为()A.1B.2C.D.二、填空题(共18分)11.抛物线的解析式为y=(x﹣2)2+1,则抛物线的顶点坐标是.12.若关于x的一元二次方程x2+ax=0有两个相等的实数根,则a的值为.13.如图,已知圆锥的底面半径为3,圆锥的母线与高的夹角θ为30°,则圆锥的侧面展开图的面积是.14.如图,两块相同的三角板完全重合在一起,∠A=30°,AC=10,把上面一块绕直角顶点B逆时针旋转到△A'BC'的位置,点C'在AC上,A'C'与AB相交于点D,则C'D=.15.已知⊙O半径为1,AB是⊙O的一条弦,且AB=,则弦AB所对的圆周角度数是.16.商店销售一种进价为20元/个的帽子,经调查发现,该种帽子每天的销售量w(个)与销售单价x(元)满足w=﹣2x+80(20≤x≤40),设销售这种帽子每天的利润为y(元),则y与x之间的函数关系式为;当销售单价定为元时,每天的利润最大.三、解答题(共72分)17.解一元二次方程:x2﹣2x﹣8=0.18.为了更好地宣传垃圾分类,某校九(1)班学生成立了一个“垃圾分类”宣传小组,其中男生2人,女生3人.(1)若从这5人中选1人进社区宣传,恰好选中女生的概率是;(2)若从这5人中选2人进社区宣传,请用树状图或列表法求恰好选中一男一女的概率.19.如图,AB为⊙O的一条弦.(1)用尺规作图:过点O作OC⊥AB,垂足为点C,交于点D(保留作图痕迹,不写作法);(2)若(1)中的CD的长为2,AB的长为8,求⊙O的半径.20.在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,△ABC 的三个顶点都在格点上.(1)在图中画出将△ABC绕点C按逆时针方向旋转90°后得到的△A1B1C1;(2)在(1)所画的图中,计算线段AC在旋转过程中扫过的图形面积(结果保留π).21.如图1,斜坡与水平面夹角α=30°.为了对这个斜坡上的绿地进行喷灌,在斜坡底端安装了一个喷头A,喷头A喷出的水柱在空中走过的曲线可以看成抛物线的一部分.如图2,当水柱与A水平距离为4米时,达到最高点D,D与水平线AC的距离为4米.(1)在图2中建立平面直角坐标系,求水柱所在的抛物线的解析式(不需要写出自变量取值的范围);(2)若斜坡上有一棵高2.5米的树,它与喷头A的水平距离为2米,通过计算判断从A 喷出的水柱能否越过这棵树.22.点P是正方形ABCD所在平面内一点,连接CP,将线段CP绕点C顺时针旋转90°,得线段CQ,连接BP,DQ.(1)如图①,当P在CD边上时,直接写出BP与DQ之间的关系是;(2)如图②,当P在正方形内部时,BP与DQ之间有怎样的关系?请说明理由;(3)射线BP交DQ于E,若四边形PCQE是正方形,BC=2,CP=1,直接写出BE=.23.如图所示,以Rt△ABC的直角边AB为直径作圆O,与斜边交于点D,E为BC边上的中点,连接DE.(1)求证:DE是⊙O的切线;(2)连接OE,AE,当∠CAB为何值时,四边形AOED是平行四边形?24.如图,半径为1的⊙M经过直角坐标系的原点O,且分别与x轴正半轴、y轴正半轴交于点A、B,∠OMA=60°,过点B的切线交x轴负半轴于点C,抛物线过点A、B、C.(1)求点A、B的坐标;(2)求抛物线的函数关系式;(3)若点D为抛物线对称轴上的一个动点,问是否存在这样的点D,使得△BCD是等腰三角形?若存在,求出符合条件的点D的坐标;若不存在,请说明理由.25.已知:⊙O是△ABC的外接圆,且,∠ABC=60°,D为⊙O上一动点.(1)如图1,若点D是的中点,求∠DBA的度数.(2)过点B作直线AD的垂线,垂足为点E.①如图2,若点D在上,求证:CD=DE+AE.②若点D在上,当它从点A向点C运动且满足CD=DE+AE时,求∠ABD的最大值.参考答案一、单选题(共30分)1.解:点P(2,﹣3)关于原点对称的点的坐标是(﹣2,3).故选:C.2.解:∵∠AOB=72°,∴∠ACB=∠AOB=36°,故选:A.3.解:x2﹣6x﹣2=0,x2﹣6x=2,x2﹣6x+9=2+9,(x﹣3)2=11,故选:A.4.解:连接OA,如图所示,∵OC⊥AB,OC=2,OA=4,∴AB=2AC,∵AC===2,∴AB=2AC=4.故选:D.5.解:A、打开电视机,正在播放中央电视台的《开学第一课》,是随机事件;B、经过有交通信号灯的路口,遇到红灯,是随机事件;C、任意画一个三角形,其内角和是180°,是必然事件;D、同位角相等,是随机事件;故选:C.6.解:设在每轮传染中平均一个人可以传染x个人,[x(x+1)+x+1]=169,即(1+x)2=169,解得x1=12,x2=﹣14(舍),∴每轮传染中平均一个人可以传染12个人,∴第三轮传染后感染人数为169+169×12=2197,故选:C.7.解:连接OC,∵CD是⊙O的切线,点C是切点,∴∠OCD=90°.∵∠BAC=25°,∴∠COD=50°,∴∠D=180°﹣90°﹣50°=40°.故选:D.8.解:联立,解得,,∴两函数图象交点坐标为(0,0),(2,4),由图可知,y1<y2时x的取值范围是x<0或x>2.故选:B.9.解:由旋转的性质得出CD=CA,∠EDC=∠BAC=135°,AB=DE,∵点A,D,E在同一条直线上,∴∠ADC=45°=∠DAC,△ABC≌△DEC,AD=AC,∴AE=AD+DE=CD+AB,故选项A,B,C正确,D错误,故选:D.10.解:∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠A=∠ABC=90°,∴∠BCN+∠BNC=90°,又BN=AM,∴△ABM≌△BCN(SAS),∴∠ABM=∠BCN,∴∠ABM+∠BNC=90°,∴∠BPC=∠BPN=90°,∴点P的运动轨迹为以BC为直径的一段弧,如图所示,连接AO1交弧于点P,此时,AP的值最小,在Rt△ABO1中,,由勾股定理得,,∴,故选:C.二、填空题(共18分)11.解:∵y=(x﹣2)2+1∴抛物线的顶点坐标是(2,1)故答案为:(2,1).12.解:根据题意得Δ=a2﹣4×0=0,解得a1=a2=0,即a的值为0.故答案为:013.解:∵圆锥的母线与高的夹角θ为30°,底面半径为3,∴圆锥的母线长为6,∴圆锥的侧面展开图的面积=×2π×3×6=18π.故答案为18π.14.解:∵∠A=30°,∴BC=AC=×10=5,∠C=90°﹣30°=60°,由旋转的性质,BC=BC′=5,∠C=∠BC'A'=60°,∴△BCC′是等边三角形,∴CC′=BC,∠CBC′=60°,∵∠CBC′=∠A′C′B=60°,∴A′C′∥BC,∴∠ADC'=∠ABC=90°,∴∠ABC'=30°,∴C′D=BC'=×5=2.5,故答案为:2.5.15.解:如图所示,∵OC⊥AB,∴C为AB的中点,即AC=BC=AB=,在Rt△AOC中,OA=1,AC=,根据勾股定理得:OC===,即OC=AC,∴△AOC为等腰直角三角形,∴∠AOC=45°,同理∠BOC=45°,∴∠AOB=∠AOC+∠BOC=90°,∵∠AOB与∠ADB都对,∴∠ADB=∠AOB=45°,∵大角∠AOB=270°,∴∠AEB=135°,∴弦AB所对的圆周角为45°或135°.故答案为:45°或135°.16.解:∵帽子的进价为20元/个,销售单价x(元),∴每件帽子的利润为(x﹣20)元;∴销售这种帽子每天的利润为:y=(x﹣20)(﹣2x+80),(20≤x≤40),∴y=﹣2x2+120x﹣1600(20≤x≤40);配方,得:y=﹣2(x﹣30)2+200,∵a=﹣2<0,∴当x=30时,函数y有最大值200;故答案为:y=﹣2x2+120x﹣1600(20≤x≤40);30.三、解答题(共72分)17.解:x2﹣2x﹣8=0,(x﹣4)(x+2)=0,∴x﹣4=0或x+2=0,∴x1=4,x2=﹣2.18.解:(1)∵共有5人,其中男生2人,女生3人,∴从这5人中选1人进社区宣传,恰好选中女生的概率是;(2)设男生用A表示,女生用B表示,树状图如下所示:由上可得,一共有20种可能性,其中恰好选中一男一女的有12种,所以恰好选中一男一女的概率是=.19.解:(1)图形如图所示.(2)∵OC⊥AB,∴∠DCB=∠OCB=90°,∴BC==4,设OB=OD=r,则有r2=(r﹣2)2+42,∴r=5,∴⊙O的半径为5.20.解:(1)如图,△A1B1C1即为所求;(2)∵AC==,∴线段AC在旋转过程中扫过的图形面积==.21.解:(1)以点A坐标原点,以AC所在的直线为x轴建立平面直角坐标系,如图,依题,A(0,0),最高点即抛物线的顶点D(4,4),设此抛物线的解析式为:y=a(x﹣4)2+4,将A(0,0)代入上式,得0=16a+4,∴,抛物线的解析式为:;(2)∵斜坡上有一棵高2.5米的树,它与喷头A的水平距离为2米,如图,∴AE=2,GF=2.5,在Rt△AEF中,∠AEF=90°,∠BAC=α=30°,设EF=m,则AF=2m,∴(2m)2=m2+22,∴,∴,又当x=2时,y=﹣×(2﹣4)2+4=3<3.5,故从A喷出的水柱不能越过这棵树.22.解:(1)如图①,延长BP交DQ于点E,∵四边形ABCD是正方形,∴BC=DC,∠BCD=90°,由旋转得CP=CQ,∠PCQ=90°,∵点P在CD边上,∴∠DCQ=∠PCQ=90°,∴∠BCD+∠DCQ=180°,∴B、C、Q三点在同一条直线上,在△BCP和△DCQ中,,∴△BCP≌△DCQ(SAS),∴BP=DQ,∠CBP=∠CDQ,∴∠CBP+∠Q=∠CDQ+∠Q=90°,∴∠BEQ=90°,∴BP⊥DQ,故答案为:BP=DQ,BP⊥DQ.(2)BP=DQ,BP⊥DQ,理由:如图②,点P在正方形ABCD内部,延长BP分别交DQ、DC于点E、点F,∵四边形ABCD是正方形,∴BC=DC,∠BCD=90°,由旋转得CP=CQ,∠PCQ=90°,∴∠BCP=∠DCQ=90°﹣∠PCD,在△BCP和△DCQ中,,∴△BCP≌△DCQ(SAS),∴BP=DQ,∠CBP=∠CDQ,∵∠BFC=∠DFE,∴∠CDQ+∠DFE=∠CBP+∠BFC=90°,∴∠DFE=90°,∴BP⊥DQ.(3)如图③,四边形PCQE是正方形,且点P在正方形ABCD内部,∵BC=2,EP=CP=1,∠CPE=90°,∴∠BPC=180°﹣∠CPE=90°,∴BP===,∴BE=BP+EP=+1;如图④,四边形PCQE是正方形,且点P在正方形ABCD外部,∵BC=2,EP=CP=1,∠P=90°,∴BP===,∴BE=BP﹣EP=﹣1,综上所述,BE=+1或BE=﹣1,故答案为:+1或﹣1.23.(1)证明:连接OD,BD.∵D是圆上一点∴∠ADB=90°,∠BDC=90°则△BDC是Rt△,且已知E为BC中点,∴∠EDB=∠EBD.又∵OD=OB且∠EBD+∠DBO=90°,∴∠EDB+∠ODB=90°.∴DE是⊙O的切线.(2)解:连接OD,BD,AE,OE,∵∠EDO=∠ABC=90°,若要AOED是平行四边形,则DE∥AB,D为AC中点,又∵BD⊥AC,∴△ABC为等腰直角三角形,∴∠CAB=45°,所以当∠CAB为45°时,四边形AOED是平行四边形.24.解:(1)∵MO=MA=1,∠OMA=60°,∴∠ABO=30°,∴OB=,∴A(1,0),B(0,);(2)∵BC是切线,∴∠ABC=90°,∴∠ACB=30°,∴AC=4,∴C(﹣3,0),设抛物线的解析式为y=ax2+bx+c,将点A、B、C代入得,,解得∴抛物线的解析式为y=﹣x2﹣x+;(3)设在对称轴上存在点D,使△BCD是等腰三角形,对称轴为直线x=﹣1,设点D(﹣1,m),分3种情况讨论:①BC=BD;=2,解得m=±+;②BC=CD;=2,解得m=±2;③BD=CD;=,解得:m=0,∴符合条件的点D的坐标为,(﹣1,+),(﹣1,﹣+),(﹣1,2),(﹣1,﹣2),(﹣1,0).25.解:(1)如图1中,连接BD.∵=,∴∠BCA=∠BAC,∵∠ABC=60°,∴∠BCA=60°,∵D是的中点,∴∠DCA=30°,∵,∴∠DBA=∠DCA=30°.(2)①过B作BH⊥CD于点H,则∠BHC=∠BHD=90°.又∵BE⊥AD于点E,∴∠BED=90°,∴∠BED=∠BHC=∠BHD,又∵,∴∠BAE=∠BCH,∵,∴BA=BC,∴△BEA≌△BHC(AAS),∴EA=CH,又∵四边形ACBD是⊙O的内接四边形,∴∠BDE=∠BCA,又∵,∴∠BCA=∠BDC,∴∠BDE=∠BDC,又∠BED=∠BHD=90°,BD=BD,∴Rt△BED≌Rt△BDH(HL),∴DE=DH,∴DC=DH+HC=DE+AE.(2)②连接BO并延长⊙O交于点I,则点D在上.如图:过B作BH⊥CD于点H,则∠BHC=90°,∠BHD=90°,又∵BE⊥AD于点E,∴∠BED=90°,∴∠BED=∠BHC=∠BHD,又∵四边形ABCD是⊙O的内接四边形,∴∠BAE=∠BCD,又∵,∴BA=BC,∴△BEA≌△BCH(AAS)∴EA=EH,∵,∴∠BDA=∠BDC,又BD=BD.∠BED=∠BHD=90°,∴Rt△BED≌Rt△BHD(HL)∴ED=HD,∴CD=HD+HC=DE+AE,∵BI是⊙O直径,,∴BI垂直平分AC,∴,∴2∠ABI=∠ABC=60°,∴当点D运动到点I时∠ABI取得最大值,此时∠ABD=30°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南通市八一中学2018-2019学年第一学期第三次阶段测试九年级道德与法治一、选择题(每题2分,共30分)1、王仕花辞掉工作,陪伴丈夫王继才一同守卫海岛30年。
每天清晨5点,一人升旗,一人敬礼,没有国歌,没有奏乐,却庄严肃穆。
王继才说:“开山岛虽小,却是祖国的东门,我必须升起中华人民共和国的国旗。
”下列选项中对此理解错误的是()A、守岛是王仕花必须履行的法定义务B、国旗是一个国家主权的象征和标志C、爱国奉献精神是新时代的价值追求D、捍卫领土完整是每个公民的神圣职责2、以往,在私企工作的老李扣除“五险一金”后工资为7600元,缴个税305元,从今年10月份开始应纳税额78元,税负下降明显。
新个人所得税法过渡期政策()A、体现了按劳分配的原则B、旨在增加低收入者收入C、有利于激发人们工作的积极性D、能促使人民生活水平显著提高3、没事,反正晚上不干活的时候,不吃饭都可以”,邢万强的这句话戳中了千万农民工的泪点。
今年春节从新疆回家,路途长达40多小时,邢万强没有正常的吃饭,只是泡了桶面。
不少企业和网友知情后,纷纷表示要资助他。
这反映出()①完善落实社会优抚政策刻不容缓②人人尽力是推动社会进步的源泉③确保人民共享发展成果十分必要④共同富裕才能解决当前主要矛盾A、①④B、②③C、②④D、①③4、李某在互联网上编造、传播虚假信息,骗人钱财,被人民法院判处有期徒刑三年,并处罚金5000元。
据此可以判断()①李某的行为具有严重的社会危害性②5000元作为赔偿是承担的民事责任③人民法院依据刑法对李某作出判决④有期徒刑三年属于主刑,是行政处罚A、①④B、③④C、①③D、②④5、家住南通市开发区一家长带半岁宝宝打疫苗,发现疫苗过期4个月。
事后当地药监、公安等部门成立工作组对涉事接种医生作停职检查处理,并将在进一步调查的基础上,对当事单位和当事人依法依规严肃处理。
这是因为()A、生命健康权是公民人身权利中最基本、最重要的权利B、任何违法行为都将受到法律的追究,要承担刑事责任C、敬畏生命就要尊重和维护其他人的生命健康权D、一切侵害公民生命安全的行为都应承担行政责任6、某化收品公司的六小龄童商标注册申请被国家工商行政管理总局商标局驳回,主要原因是“六小龄童作为章金莱先生的艺名在我国享有很高的知名度”。
可见,该公司侵犯了章金莱先生的()A、商标权B、名誉权C、肖像权D、姓名权7、《道路交通安全法》规定:“机动车行经人行横道应当减速行驶,遇行人通过人行横道,应当停车让行。
机动车行经没有交通信号的道路上,遇行人横过道路,应当避让。
”除此之外,该法中还包括对交通执法人员滥用职权的惩戒的规定。
这些规定()①说明我国法律是公民意志的体现,维护公民合法权益②体现了我国法律对公民人权的尊重和保障③有利于指导国家工作人员工作中尊重和保障人权④体现了法律是由国家制定和认可的A、①②B、③④C、①③D、②③8、刑法+民法+义务教育法+未成年人保护法+……=宪法。
这种观点()A、正确,因为宪法是普通法律制定的依据和基础B、错误,因为宪法具有最高的法律效力C、正确,因为宪法是国家的根本大法D、错误,因为宪法和普通法律规定的内容不同9、2018年3月5日至20日,十三届全国人大一次会议在北京召开,会议审议通过了政府工作报告、国务院机构改革方案。
这表明全国人大具有()①立法权②任免权③监督权④决定权A、①②B、①③C、②④D、③④10、我国某著名私营企业有17万多名员工。
在申请专利数量方面,该企业以4024件位居全球企业榜首。
2017年实现全球销售收入6036亿元,同比增长15.7%;净利润475亿元,同比增长28.1%。
这表明()①我国鼓励、支持和引导非公有制经济的发展②非公有制经济促进了经济增长、扩大了就业③非公有制经济促进了大众创业和万众创新④非公有制经济是社会主义经济的重要组成部分A、①③B、②③C、②④D、①④11、在我国,人民与人大代表之间、人民代表大会与其他国家机关之间是监督和被监督的关系。
这种关系()①突出反映了我国一切权力属于人民②体现了民主集中制原则③体现了人民代表大会是我国最高权力机关④决定了人民民主专政的国家性质A、①②B、②④C、①③D、①④12、根据国资委提供的数据,中央企业60%的资产分布在电力、石油石化、建筑、军工和通信五大行业,其中9家电力企业总资产8.8万亿元,3家石油企业总资产7.2万亿元。
央企对国家经济起到了重要的支撑作用。
上述材料表明()①国有经济是国民经济的主导力量②国有经济是社会主义经济制度的基础③国有经济提高了人民生活水平④国有经济促进了生产力的发展A、①②B、③④C、②③D、①④13、市民李某因在禁烟区吸烟,被依法行政拘留5日。
对此有些人不理解:“吸烟是他们的自由,为什么要处罚他们呢?”从法律角度,你会这样告诉这些人()A、吸烟有害身体健康,公民要对自己的生命健康负责B、在禁烟区吸烟是一种违法行为,将要承担刑事责任C、“己所不欲,勿施于人”是处理公共关系的重要原则D、公民在行使权利时不得超越宪法和法律许可的范围14、某区检察院对挪用公款的刘某依法提起公诉,经法院审理后,以挪用公款罪判处刘某有期徒刑4年。
该案系监察体制改革以来,该市监察机关提起公诉的首起由监察委移送的职务犯罪案件。
这表明()A、司法机关、监察机关各尽其职,共同打击违法犯罪B、监察机关、法律监督机关和公安机关相互配合打击职务犯罪C、行政机关、法律监督机关和审判机关工作中协调一致D、刘某触犯了我国宪法,其行为要受刑罚处罚15、我国实行民族区域自治制度。
民族自治地方的自治机关包括自治地方的()①人民代表大会②共产党委员会③人民政府④武装部队A、①②B、③④C、①③D、②④二、问答题16、从济南开往北京的G334次高铁上,一名孙姓男乘客前占了女乘客的座位,并称“站不起来”,经列车长劝解,孙某仍拒绝坐回自己的座位,这一情景被拍成视频传到网上后引发了众怒。
随后,同友们深扒孙某的个人信息,通过打电话、发短信,添加微信号等,对其进行辱骂。
网皮们的“讨伐”行为一度让孙某及其家人不敢出门。
结合上述材料,运用所学相关知识,回答下列问题。
(1)网友们为什么会感到愤怒?(4分)(2)请你评析网友们的行为。
(4分)17、明星本是公众人物,一言一行的示范效应极大。
但遗憾的是,有些明星不仅没有作出表率,甚至铤而走险,视公序良俗为无物,将法律法规当儿戏,把自己当成了法外人物。
材料一:经有关部门调查,在电影《大轰炸》中,范冰冰个人片酬所得3000万元人民币,其中1000万元已缴纳税款,其余2000万元通过拆分合同方式逃避个人所得税618万元,少缴营业税及附加112万元。
此外还查出范冰冰为法人的企业逃税2.48亿元人民币。
对于偷税行为,范冰冰在致歉信中对自己的行为深感羞愧、内疚,她表示辜负了国家对自己的培养,辜负了社会对她的信任。
(1)结合权利和义务的关系,谈谈你获得的启示。
(4分)材料二:江苏省税务局依法向范冰冰下达处罚通知书,追缴逃税款项2.55亿元,加收滞纳金0.33亿元,并罚款5.95亿元,如规定期限内未缴清,将移送公安机关。
同时无锡税务局有关人员被依法追责。
(2)江苏省税务局作出上述处罚,有哪些重要意义?(4分)材料三:经过税务机关3个多月的依法调查核实,群众举报范冰冰“阴阳合同”涉税问题有了上述明确结果。
目前,国家税务总局将开展专项行动,规范影视行业税收秩序,对在2018年12月31日前自查自纠并到主管税务机关补缴税款的影视企业及相关人员,免于行政处罚,不予罚款;对个别拒不纠正的依法严肃处理。
(3)结合上述材料,谈谈如何才能解决类似逃税、偷税行为。
(4分)参考答案一、选择题二、问答题15、(1)因为孙某公然践踏规则,(1分)扰乱社会公共秩序;(1分)举止不文明、没有教16、合法权。
(。
权利义务具有一致性,有自己权利的同时要尊重他人的合法权利)(1分)17、(2)网友们主动参与公共生活,亲近社会,这值得肯定,(1分)但是网友的行为侵犯18、了孙某的隐私权(或:人格尊严权)(1分)19、网友们应该合理控制自己的情绪和行为,理智认识和对待社会矛盾,(1分)要学会合20、理表达诉求,在法律、道德允许的范围内行使权利,解决问题和矛盾,自觉维护公平正义和21、社会稳定,(1分)22、17、(1)权利和义务是统一的,公民在行使自由和权利时不得损害国家、社会和集体的利益及其他公民的合法权益。
(1分)范冰冰作为公众人物,依法享有为学艺术创造和其他文化活动的自由。
(1分)但是她逃税、偷税,损害了国家利益,没有履行义务,是违法行为,必须受到法律的惩罚。
(1分)我们不仅要增强权利意识,依法行使权利,还要增强义务观念,自觉履行义务。
(1分)(2)税务部门依法作出的处罚,有利于维护我国税法的权威性、严肃性,有利于促进影视行业持续健康发展,有利于增强全社会依法纳税的意识。
(1分)有利于引导公民树立法治观念,自觉履行宪法和法律规定的义务。
(1分)有利于引导公民践行诚信的社会主义核心价值观。
(1分)有利于促进行政机关依法行政,敢于负责,勇于担当。
(1分)(3)需要国家机关及其工作人员依法行使权力,履行职责,不得懈怠、推诿。
(1分)需要群众积极行使监督权,与逃税、偷税行为做斗争。
(1分)需要影视企业及相关人员自觉遵守国家法律,依法经营,诚信经营。
(1分)需要全社会加强普法教育,提高全民纳税意识。
(1分)。