2019二模数学参考答案

合集下载

上海市青浦区2019届高三数学二模试题(含解析)

上海市青浦区2019届高三数学二模试题(含解析)
向向量的夹角即可得出结果,属于常考题型.
18.如图,某沿海地域计划铺设一条电缆联通
A、B两地,A处位于东西方向的直线
MN上的陆
地处,B处位于海上一个灯塔处,在A处用测角器测得 ,在A处正西方向1km的点C处,用测角器测得 ,现有两种铺设方案:① 沿线段AB在水下铺设;② 在
岸MN上选一点P,先沿线段AP在地下铺设,再沿线段PB在水下铺设,估算地下、水下的电缆铺设花费分别为2万元/km,4万元/km.
所以,这样的直线只有2条.
应选B
【点睛】此题主要考察双曲线的特点以及直线与双曲线的地点关系,熟记双曲线的性质即可,属于常考题型.
16.等差数列,知足
,则(

A.的最大值为
50
B.的最小值为
50
C.的最大值为
51
D.的最小值为
51
【答案】A
【分析】
【剖析】
先依据题意可知
中的项有正有负,不如设
,依据题意可求得
中,若双曲线
经过抛物线
()的焦点,则
________
【答案】
【分析】
【剖析】
依据双曲线的几何意义获得双曲线与抛物线的共同焦点为(
,0),所以,

.
【详解】双曲线中,a=2,b=1,c=,
双曲线与抛物线的共同焦点为(,0),
所以,,
故答案为:
【点睛】这个题目考察了抛物线和双曲线的几何意义,较为简单.一般和抛物线相关的小题,
故答案为
.


【点睛】此题主要考察互斥事件的概率问题,熟记事件的性质即可求解,属于常考题型.
7.函数的最大值为________
【答案】

【分析】

西南大学附属中学2019年中考数学二模试卷及答案(解析版)

西南大学附属中学2019年中考数学二模试卷及答案(解析版)

2019年重庆市西南大学附属中学中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分)每个小题都给出了代号为A、B、C、D的四个答案,其中只有一个答案是正确的,请将正确答案的代号在答题卡上相应的空格中涂黑.1.(4分)(2019•南平模拟)的倒数是().解:根据题意得:﹣×可得﹣的倒数为﹣23B.数学试卷若甲组数据的方差,乙组数据的方差5.(4分)如图所示的由小立方体组成的几何体的俯视图是()B.6.(4分)如图,AB是⊙O的直径,∠CDB=40°,则∠ABC=()7.(4分)如图,己知AB ∥CD ,BE 平分∠ABC ,∠CBD=30°,则∠CDE 的度数是( )8.(4分)(2019•衢州)小亮同学骑车上学,路上要经过平路、下坡、上坡和平路(如图),若小亮上坡、平路、下坡的速度分别为v 1,v 2,v 3,v 1<v 2<v 3,则小亮同学骑车上学时,离家的路程s与所用时间t 的函数关系图象可能是( )B.数学试卷9.(4分)(2007•丽水)如图,直线y=﹣x+4与x轴,y轴分别交于A,B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是()10.(4分)搭建如图①的单顶帐篷需要17根钢管,这样的帐篷按图②,图③的方式串起来搭建,则串7顶这样的帐篷需要()根钢管.11.(4分)(2019•陕西)在平面直角坐标系中,将抛物线y=x2﹣x﹣6向上(下)或向左(右)平移m个12.(4分)二次函数y=ax2+bx+c的图象如图所示,则下列选项正确的是()数学试卷x=>二、填空题(本大题共6个小题,每小题4分,共24分)在每小题中,请把正确答案直接填在答题卡上相应的横线上.13.(4分)2019年重庆实现地区生产总值11460亿元,同比增长13.6%,增速跃居全国第一,将11460亿用科学记数法表示为 1.146×104亿.14.(4分)在我校今年中招体考模拟考试中,某小组6位同学掷实心球的成绩分别为11分,15分,14分,12分,15分,12分,则这6个数据的中位数为13分.15.(4分)已知扇形的半径为6cm,圆心角为y=45°,则这个扇形的弧长为cm.==π故答案为:.16.(4分)已知△ABC∽△DEF,BC边上的高与EF边上的高之比为2:3,则△ABC与△DEF的面积之比为4:9.17.(4分)(2019•泰安)甲、乙两人在5次体育测试中的成绩(成绩为整数,满分为100分)如下表,其则乙的平均成绩高于甲的平均成绩的概率是.数学试卷解:甲的平均成绩为:故答案为:.=18.(4分)重庆育才中学的生活教育实践农场种了一片草莓,现在正是草莓成熟的季节,农场的草莓每天都在匀速的成熟(即每天新成熟的草莓质量相等),现在准备把成熟的草莓包装成礼盒进行销售,且每只礼盒的草莓质量相等.如果每天销售24盒,则6天可以把成熟的草莓销售完毕;如果每天销售21盒,则8天可以把成熟的草莓销售完毕;如果每天销售14盒,则36天可以把成熟的草莓销售完毕.三、解答题(本大题共2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤.19.(7分)计算:.+3×﹣﹣+﹣﹣20.(7分)解不等式组:并把解集在数轴上表示出来.解不等式﹣>四、解答题(本大题共4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.(10分)先化简,再求值:,其中x满足方程x2﹣x﹣2=0.=[﹣分配律得到﹣,然后进行通分得到﹣=[﹣﹣﹣数学试卷.22.(10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函的图象交于第二象限内的A、B两点,与x轴交于点C.已知OA=5,tan∠AOC=,点B的纵坐标为6.(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)根据图象直接写出不等式的解集.)代入∴反比例函数的解析式为得解得∴一次函数的解析式为代入;)由图象得不等式的解集为﹣23.(10分)2019年4月2日我校召开了主题为“蓝色梦想,激情飞扬”的春季运动会,高老师为了了解学生对运动会的满意度,对部分学生进行了调查,并将调查结果分成四类,A:非常满意;B:满意;C:一般;D:较差;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,高老师一共调查了20名同学,其中C类女生有2名,D类男生有1名;(2)将上面的条形统计图补充完整;(3)为了明年运动会召开得更好,高老师想从被调查的A类和D类学生中分别选取一位同学来详细了解他们的看法,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.数学试卷故所选两位同学恰好是一位男同学和一位女同学的概率24.(10分)如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P是EF的中点.(1)求证:AE=AF;(2)若∠B=∠ADC=∠ADF=90°,求∠CPD的度数.AP=EF,CP=PF=AP=EF,五、解答题(本大题共2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.25.(12分)为推进节能减排,发展低碳经济,深化“宜居重庆”的建设,我市某“用电大户”用480万元购得“变频调速技术”后,进一步投入资金1520万元购买配套设备,以提高用电效率达到节约用电的目的.已知该“用电大户”生产的产品“草甘磷”每件成本费为40元.经过市场调研发现:该产品的销售单价,需定在100元到300元之间较为合理.当销售单价定为100元时,年销售量为20万件;当销售单价超过100元,但不超过200元时,每件新产品的销售价格每增加10元,年销售量将减少0.8万件;当销售单价超过200元,但不超过300元时,每件产品的销售价格在200元的基础上每增加10元,年销售量将减少1万件.设销售单价为x元),年销售量为y万件),年获利为w万元).数学试卷(年获利=年销售额﹣生产成本﹣节电投资)(1)直接写出y与x间的函数关系式;(2)求第一年的年获利w与x函数关系式,并说明投资的第一年,该“用电大户”是盈利还是亏损?若盈利,最大利润是多少?若亏损,最少亏损是多少?(3)若该“用电大户”把“草甘磷”的销售单价定在超过100元,但不超过200元的范围内,并希望到第二年底,除去第一年的最大盈利(或最小亏损)后,两年的总盈利为1842万元,请你确定此时销售单价.在此情况下,要使产品销售量最大,销售单价应定为多少元?×,x+28×,﹣,,,,∴当在万元时,依题意可得∵对26.(12分)如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8cm,BC=6cm.沿斜边AB的中线CD把这张纸片剪成△AC1D1和△BC2D2两个三角形(如图2所示).将纸片△AC1D1沿直线D2B(AB)方向平移(点A、D1、D2、B始终在同一直线上),当点A与点B重合时,停止平移.设平移的速度是1cm/秒,平移的时间为x(秒),△AC1D1与△BC2D2重叠部分面积为y(cm2).(1)求CD的长和斜边上的高CH;(2)在平移过程中(如图3),设C1D1与BC2交于点E,AC1与C2D2、BC2分别交于点F、P.那么四边形FD2D1E是否可能是菱形?为什么?如果可能,请求出相应的D1E=D2F的值;(3)请写出y与x的函数关系式,以及自变量的取值范围;(4)是否存在这样的x的值,使重叠部分面积为3cm2?若存在,求出相应的x的值;若不存在,请说明理由.数学试卷CD=AC AB×8=CDB=B=.h=B=,B=x PF=x=xS﹣x xPBA===,(y=PB=××(y=y=x x=3(=10+数学试卷。

山东省威海市2019届高三二模考试理科数学试题(解析版)

山东省威海市2019届高三二模考试理科数学试题(解析版)

2019年山东省威海市高考数学二模试卷(理科)一、选择题(本大题共12小题,共60.0分)1.已知复数z满足z(1+i)=(3+i)2,则|z|=()A. B. C. D. 82.已知集合,,,则A∩B=()A. B. C. D.3.如图所示茎叶图中数据的平均数为89,则x的值为()A. 6B. 7C. 8D. 94.已知角α的顶点在坐标原点,始边与x轴的正半轴重合,M,为其终边上一点,则cos2α=()A. B. C. D.5.若x,y满足约束条件,,,则z=3x-y的最大值为()A. 2B. 1C. 0D.6.函数的图象可由y=2cos2x的图象如何变换得到()A. 向左平移个单位B. 向右平移个单位C. 向左平移个单位D. 向右平移个单位7.若P为△ABC所在的平面内一点,且,则△ABC的形状为()A. 等边三角形B. 等腰三角形C. 直角三角形D. 等腰直角三角形8.已知函数f(x)=ln x+ln(a-x)的图象关于直线x=1对称,则函数f(x)的值域为()A. B. C. D.9.如图,网格纸上小正方形的边长为1,粗线画出的是某四棱锥的三视图,则该四棱锥的体积为()A. 6B. 8C.D.10.在△ABC中,AC=3,向量在向量的投影的数量为-2,S△ABC=3,则BC=()A. 5B.C.D.11.已知函数f(x)的定义域为R,,对任意的x∈R满足f'(x)>4x,当α∈[0,2π]时,不等式f(sinα)+cos2α>0的解集为()A. B. C. D.12.设F1,F2为双曲线>,>的左右焦点,点P(x0,2a)为双曲线上的一点,若△PF1F2的重心和内心的连线与x轴垂直,则双曲线的离心率为()A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.在的展开式中,x4的系数是______.14.已知抛物线y2=2px(p>0)上的一点M到x轴的距离为4,到焦点的距离为5,则p=______.15.在直三棱柱ABC-A1B1C1中,∠ABC=90°,AA1=2,设其外接球的球心为O,已知三棱锥O-ABC的体积为1,则球O表面积的最小值为______.16.“克拉茨猜想”又称“3n+1猜想”,是德国数学家洛萨•克拉茨在1950年世界数学家大会上公布的一个猜想:任给一个正整数n,如果n是偶数,就将它减半;如果n为奇数就将它乘3加1,不断重复这样的运算,经过有限步后,最终都能够得到1.已知正整数m经过6次运算后得到1.则m的值为______.三、解答题(本大题共7小题,共82.0分)17.已知{a n}是递增的等比数列,a5=48,4a2,3a3,2a4成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n}满足b1=a2,b n+1=b n+a n,求数列{b n}的前n项和S n.18.如图,四棱锥P-ABCD中,已知PA⊥平面ABCD,△ABC为等边三角形,PA=2AB=2,AC⊥CD,PD与平面PAC所成角的正切值为C2.(Ⅰ)证明:BC∥平面PAD;(Ⅱ)若M是BP的中点,求二面角P-CD-M的余弦值.19.某蔬菜批发商分别在甲、乙两市场销售某种蔬菜(两个市场的销售互不影响),已知该蔬菜每售出1吨获利500元,未售出的蔬菜低价处理,每吨亏损100元.现统计甲、乙两市场以往100个销售周期该蔬菜的市场需求量的频数分布,如表:甲市场以市场需求量的频率代替需求量的概率.设批发商在下个销售周期购进吨该蔬菜,在甲、乙两市场同时销售,以X(单位:吨)表示下个销售周期两市场的需求量,T(单位:元)表示下个销售周期两市场的销售总利润.(Ⅰ)当n=19时,求T与X的函数解析式,并估计销售利润不少于8900元的概率;(Ⅱ)以销售利润的期望为决策依据,判断n=17与n=18应选用哪一个.20.在直角坐标系xOy中,设椭圆:>>的左焦点为F1,短轴的两个端点分别为A,B,且∠AF1B=60°,点,在C上.(Ⅰ)求椭圆C的方程;(Ⅱ)若直线l:y=kx+m(k>0)与椭圆C和圆O分别相切于P,Q两点,当△OPQ 面积取得最大值时,求直线l的方程.21.已知函数>.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)证明:当m∈[0,1)时,函数>有最大值.设g(x)的最大值为h(m),求函数h(m)的值域.22.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为,且曲线C1与C2恰有一个公共点.(Ⅰ)求曲线C1的极坐标方程;(Ⅱ)已知曲C1上两点,A,B满足,求△AOB面积的最大值.23.已知正实数a,b满足a+b=2.(Ⅰ)求证:;(Ⅱ)若对任意正实数a,b,不等式|x+1|-|x-3|≥ab恒成立,求实数x的取值范围.答案和解析1.【答案】C【解析】解:由z(1+i)=(3+i)2,得z=,∴|z|=||=.故选:C.把已知等式变形,再由商的模等于模的商求解.本题考查复数模的求法,考查数学转化思想方法,是基础题.2.【答案】B【解析】解:∵集合,∴A={y|-1≤y≤2},B={x|0≤x≤4},∴A∩B={x|0≤x≤2}=[0,2].故选:B.先分别求出集合A和B,由此能求出A∩B.本题考查集合的运算及关系,考查交集定义、不等式性质等基础知识,考查运算求解能力,属于基础题.3.【答案】B【解析】解:根据茎叶图中数据,计算平均数为×(86+80+x+90+91+91)=89,解得x=7.故选:B.根据茎叶图中数据计算平均数即可.本题考查了利用茎叶图中数据计算平均数的应用问题,是基础题.4.【答案】D【解析】解:∵M,∴OM==.∴sinα==.∴cos2α=1-2sin2α=1-2×()2=.故选:D.易得OM的长度,利用二倍角的三角函数,任意角的三角函数的定义即可求解.本题主要考查了二倍角的三角函数,任意角的三角函数的定义,考查了转化思想,属于基础题.5.【答案】A【解析】解:作出x,y满足约束条件对应的平面区域如图:z=3x-y,得y=3x-z,平移直线y=3x-z,由图象可知当直线y=3x-z经过点B(1,1)时,直线y=3x-z的截距最大,此时z最大,z max=3×1-1=2.即z的最大值是2.故选:A.作出不等式组对应的平面区域,通过目标函数的几何意义,利用数形结合即可的得到结论.本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.6.【答案】B【解析】解:函数=2,把函数的图象向左平移个单位,得到:y=2sin(2x+)=2cos2x的图象,故:要得到y=2sin()的图象,只需将y=2cos2x的图象向右平移个单位即可.故选:B.直接利用三角函数关系式的平移变换和伸缩变换的应用求出结果.本题考查的知识要点:三角函数关系式的恒等变换,函数图象的平移变换和伸缩变换的应用,主要考查学生的运算能力和转换能力,属于基础题型.7.【答案】C【解析】,解:∵,∴||=||∴y根据向量加法及减法的平行四边形法则可知,以为邻边所作的平行四边形的对角线相等即ABCD为矩形,C=则△ABC的形状为直角三角形故选:C.由已知可得||=||,根据向量加法及减法的平行四边形法则可知,以为邻边所作的平行四边形的对角线相等,可判断本题主要考查了向量加法及减法的平行四边形法则的简单应用,属于基础试题8.【答案】D【解析】解:根据题意,对于函数f(x)=lnx+ln(a-x),有f(a-x)=ln(a-x)+ln[a-(a-x)]=lnx+ln(a-x)=f(x),则函数f(x)的图象关于直线x=对称,若函数f (x )=lnx+ln (a-x )的图象关于直线x=1对称,则有=1,则a=2, 则f (x )=lnx+ln (2-x )=ln (2x-x 2),其定义域为(0,2), 设t=2x-x 2,则y=lnt ,又由t=-(x-1)2+1,0<x <2,则有0<t≤1,则y=lnt≤0,即函数f (x )的值域为(-∞,0]; 故选:D .根据题意,分析可得f (a-x )=f (x ),即可得函数f (x )的图象关于直线x=对称,据此可得a 的值,进而可得f (x )=lnx+ln (2-x )=ln (2x-x 2),设t=2x-x 2,则y=lnt ,由换元法分析可得答案.本题考查函数的对称性,涉及换元法求函数的值域,关键是求出a 的值,属于基础题. 9.【答案】B【解析】解:根据三视图知,该几何体是镶嵌在长方体中的四棱锥P-ABCD , 且长方体的长、宽、高分别为4、2、3,如图所示;结合图中数据,计算该四棱锥的体积为:V 四棱锥P-ABCD =V 三棱锥C-BDP +V 三棱锥D-ABP =××4×2×3+××4×3×2=8. 故选:B .根据三视图知该几何体是镶嵌在长方体中的四棱锥,结合图中数据求出该四棱锥的体积.本题考查了利用三视图求几何体体积的应用问题,是基础题.10.【答案】C【解析】解:AC=3,向量在向量的投影的数量为-2,S△ABC=3,可得|AB|cosA=-2,|AB|•|AC|•sinA=3,即|AB|sinA=2,即tanA==-1,内角A=135°,|AB|==2,|BC|2=|AB|2+|AC|2-2|AB|•|AC|•cosA=8+9-2•2•3•(-)=29,即|BC|=,故选:C.由向量的投影和三角形的面积公式,可得A,|AB|,再由余弦定理可得所求值.本题考查三角形的余弦定理和面积公式的运用,考查向量的投影的定义,以及化简运算能力,属于基础题.11.【答案】A【解析】解:令g(x)=f(x)+1-2x2,则g′(x)=f′(x)-4x>0,故g(x)在R上单调递增,又g()=f()+1-2×=-+1-=0,∴g(x)>0的解集为x>,∵cos2α=1-2sin2α,故不等式f(sinα)+cos2α>0等价于f(sinα)+1-2sin2α>0,即g(sinα)>0,∴sinα>,又α∈[0,2π],∴<α<.故选:A.令g(x)=f(x)+1-2x2,求导可得g(x)单调递增,且g()=0,故不等式f(sinα)+cos2α>0的解集为g(sinα)>0的解集.本题考查了导数与函数单调性的关系,考查函数单调性的应用,根据所求不等式构造函数是解题关键,属于中档题.12.【答案】A【解析】解:如图设P在第一象限,内切圆的圆心为I,内切圆与PF1,PF2,F1F2分别切与点E,F,G,根据圆的切线的性质得:PE=PF,F1E=F1G,F2F=F2G,根据双曲线的定义知:PF1-PF2=2a,即(PE+F1E)-(PF-F2F)=2a,∴F1G-F2G=2a,①又F1G+F2G=2c,②,联立①②解得F1G=a+c,F2G=c-a,∴G(a,0),∴内心I的横坐标为a,∵△PF1F2的重心和内心的连线与x轴垂直,∴△PF1F2的重心的横坐标为a,由三角形的重心坐标公式可得a=,解得x0=3a,∴P(3a.2a),将P的坐标代入双曲线可得:-=1,即9-=1,化简得3a2=2c2,所以离心率e==.故选:A.根据双曲线的定义和切线长定理可得内心的横坐标,从而可得重心的横坐标,再根据重心的坐标公式可得x0=3a,再将P的坐标代入双曲线可得.本题考查了双曲线的性质,属难题.13.【答案】80【解析】解:在的展开式的通项公式为T r+1=•25-r•,令5-=4,可得r=2,可得x4的系数是•23=80,故答案为:80.在二项展开式的通项公式中,令x的幂指数等于4,求出r的值,即可求得x4的系数.本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.14.【答案】2或8【解析】解:抛物线y2=2px(p>0)上的一点M到x轴的距离为4,到焦点的距离为5,如图:可得|FQ|=3,所以p=5±|FQ|,所以P=2或8.故答案为:2或8.画出图形,利用抛物线的性质转化求解即可.本题考查抛物线的简单性质的应用,是基本知识的考查.15.【答案】16π【解析】解:如图,因为三棱柱ABC-A1B1C1是直三棱柱,且∠ABC=90°,设AB=a,BC=b,球的半径为r.连接AC1∩A1C=O,取AC的中点D,连接BD,则O到三棱柱六个顶点的距离相等,即O为三棱柱外接球的球心.OD=,又因为三棱锥O-ABC的体积为1,即,即,所以r==≥=2,当且仅当a=b时等号成立,所以球O表面积的最小值为S=4πr2=16π.故填:16π.设AB=a,BC=b,球的半径为r.连接AC1∩A1C=O,取AC的中点D,连接BD,则O到三棱柱六个顶点的距离相等,即O为三棱柱外接球的球心.OD=,三棱锥O-ABC的体积为1,即,即,表示出r,根据基本不等式可得r的最小值,从而得到球的表面积的最小值.本题借助直三棱柱的外接球,考查了基本不等式、球的表面积等.属于中档题.16.【答案】64、10、1、8.【解析】解:根据题意,正整数m经过6次运算后得到1,则正整数m经过5次运算后得到2,经过4次运算后得到4,经过3次运算后得到8或者1,分2种情况讨论:①,当经过3次运算后得到8时,经过2次运算后得到16,则经过1次运算后得到32或5,则m的值为64或10,②,当经过3次运算后得到1时,经过2次运算后得到2,则经过1次运算后得到4,则m的值为1或8;综合可得:m的值可能为64、10、1、8.故答案为:64、10、1、8.根据题意,利用正整数m经过6次运算后得到1,结合变化的规则,进行逐项逆推即可得答案.本题考查数列的应用,涉及归纳推理的应用,利用变换规则,进行逆向验证是解决本题的关键.17.【答案】解:(Ⅰ)设首项为a1,公比为q的递增的等比数列,a5=48,4a2,3a3,2a4成等差数列.故:,解得:q=2或1(舍去),整理得:a1=3,所以:,(Ⅱ)数列{b n}满足b1=a2,b n+1=b n+a n,所以:b1=6.则:b n=(b n-b n-1)+(b n-1-b n-2)+…+(b2-b1)+b1,=a n-1+a n-2+…+a2+a1+b1,=,=3•2n-1+3所以:S n=b1+b2+…+b n=.【解析】(Ⅰ)利用已知条件求出数列的通项公式.(Ⅱ)利用叠加法求出数列的通项公式,进一步求出数列的和.本题考查的知识要点:数列的通项公式的求法及应用,叠加法在数列通项公式的求法中的应用,数列的求和的应用,主要考察学生的运算能力和转换能力,属于基础题型.18.【答案】证明:(Ⅰ)∵PA⊥平面ABCVD,∴PA⊥CD,又AC⊥CD,CA∩PA=A,∴CD⊥平面PAC,∴∠DPC为PD与平面PAC所成角,在Rt△PAC中,tan∠DPC==,在Rt△PAC中,PC=,∴CD=,在Rt△ACD中,AD=2,∠CAD=60°,∵∠BCA=60°,∴在底面ABCD中,BC∥AD,AD⊂平面PAD,BC⊄平面PAD,∴BC∥平面PAD.解:(Ⅱ)设BC的中点为N,连结AN,则AN⊥BC,由(Ⅰ)知BC∥AD,∴AN⊥AD,分别以AN,AD,AP为x,y,z轴,建立空间直角坐标系,则P(0,0,2),C(,,0),D(0,2,0),M(,-,1),则=(-,,0),=(0,2,-2),=(,,),设平面PCD的法向量为=(x,y,z),则,令y=1,=(,,),设平面CDM的法向量为=(x,y,z),则,令y=1,得=(,,),设二面角P-CD-M的平面角为θ,则cosθ===.故二面角P-CD-M的余弦值为.【解析】(Ⅰ)推导出PA⊥CD,CD⊥平面PAC,∠DPC为PD与平面PAC所成角,由此能证明BC∥平面PAD.(Ⅱ)设BC的中点为N,连结AN,则AN⊥BC,分别以AN,AD,AP为x,y,z 轴,建立空间直角坐标系,利用向时法能求出二面角P-CD-M的余弦值.本题考查线面平行的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,意在考查学生的转化能力和计算求解能力,是中档题.19.【答案】解:(Ⅰ)由题意可知,当X≥19,T=500×19=9500;当X<19,T=500×X-(19-X)×100=600X-1900,所以T与X的函数解析式为T=,,<,由题意可知,一个销售周期内甲市场需求量为8,9,10的概率分别为0.3,0.4,0.3;乙市场需求量为8,9,10的概率分别为0.2,0.5,0.3,设销售的利润不少于8900元的事件记为A,当X≥19,T=500×19=9500>8900,当X<19,600X-1900≥8900,解得X≥18,由题意可知,P(X=16)=0.3×0.2=0.06;P(X=17)=0.3×0.5+0.4×0.2=0.23;所以P(A)=P(X≥18)=1-0.06-0.23=0.71.(Ⅱ)当n=17时,E(T)=(500×16-1×100)×0.06+500×17×0.94=8464;当n=18时,E(T)=(500×16-2×100)×0.06+(500×17-1×100)×0.23+18×500×0.71=8790;因为8464<8790,所以应选n=18.【解析】(Ⅰ)先分2段求出T与X的函数关系式,再利用函数的解析式求得概率;(Ⅱ)计算两个期望比较大小,作出决策.本题考查了离散型随机变量的期望与方差,属中档题.20.【答案】解:(Ⅰ)由∠AF1B=60°,可得a=2b,由点,在C上,可得+=1,∴b2=1,a2=4,∴椭圆C的方程为+y2=1,(Ⅱ)联立,可得(1+4k2)x2+8kmx+4m2-4=0,∵直线l与椭圆相切,∴△=16(4k2+1-m2)=0,即4k2+1=m2,设P(x1,y1),可得x1==-,则y1==,∴|OP|2=+===4-又直线l与圆O相切,可得|OQ|=,则|OQ|2===4-∴|PQ|===,∴S△OPQ=|PQ|•|OP|=•=•=•≤,当且仅当k=1时取等号,此时m2=1+4=5,则m=±,故直线l的方程为y=x+或y=x-.【解析】(Ⅰ)由∠AF1B=60°,可得a=2b,由点在C上,可得+=1,解得b2=1,a2=4,即可求出椭圆方程,(Ⅱ)联立,根据判别式求出4k2+1=m2,即可求出点P的坐标,可得|OP|,再求出|OQ|,表示出三角形的面积,根据基本不等式即可求出.本题考查椭圆的标准方程,考查直线与椭圆的位置关系,三角形面积公式与基本不等式的综合应用,考查计算能力,属于中档题.21.【答案】解:(Ⅰ)f′(x)=e2x+2×e2x=e2x,x>-1,令h(x)=-2x2+(2a-2)x+a-1,△=4(a2-1),当-1≤a≤1时,△≤0,则h(x)≤0,即f′(x)≤0,∴f(x)在(-1,+∞)上单调递增,当a<-1或a>1时,此时△>0,设h(x)=0的两根为x1,x2,且x1<x2,则x1=,x2=,若a<-1,可知x1<-1<x2,则x∈(x2,+∞),f′(x)<0,x∈(-1,x2),f′(x)>0,若a>1,可知-1<x1<x2,则x∈(-1,x1),(x2,+∞),f′(x)<0,x∈(x1,x2),f′(x)>0,综上所述,当a<-1时,f(x)在(,+∞)上单调递减,在(-1,)上单调递增,(,+∞)上单调递减,在(,)当a>1时,f(x)在(-1,),上单调递增,证明:(Ⅱ)>,∴g′(x)====,由(Ⅰ)可知当a=1时,f(x)=e2x在(0,+∞)单调递减,且f(0)=1,f(1)=0,∴对任意m∈[0,1),存在唯一x m∈(0,1],使f(x m)=m,(反之对任意x m(0,1]存在唯一m∈[0,1),f(x m)=m),∴当x∈(0,x m)时,f(x)>m,此时g′(x)>0,函数g(x)在(0,x m)上单调递增,当x∈(x m,+∞)时,f(x)<m,此时g′(x)<0,函数g(x)在(x m,+∞)上单调递减,∴当x=x m时,g(x)取得最大值,即最大值h(m)=g(x m)====令p(x)=e2x,p′(x)=-e2x≤0,(0<x≤1),∴p(x)在(0,1]上单调递减,∴p(1)≤h(m)<p(0),即-e2≤h(m)<-2,∴h(m)的值域为[-e2,-2).【解析】(Ⅰ)先求导,再分类讨论,根据导数和函数单调的关系即可求出,(Ⅱ)先求导,g′(x)=,由(Ⅰ)可知当a=1时,构造函数,再根据导数和函数最值的关系即可证明.本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、分类讨论方法、等价转化方法,考查了推理能力与计算能力,属于难题.22.【答案】解:(Ⅰ)曲线C2的极坐标方程为ρsin(θ+)=3,可得C2的直角坐标方程为:x+-6=0,即曲线C2为直线.曲线C1是圆心为(2,0),半径为|r|的圆.因为圆C1与直线C2恰有一个公共点,可得|r|==2,圆C1的普通方程为x2+y2-4x=0,所以C1的极坐标方程为ρ=4cosθ.(Ⅱ)由题意可设A(ρ1,θ),B(ρ2,θ+),(ρ1>0,ρ2>0),S△AOB=|OA||OB|sin=ρ1ρ2=4cosθcos(θ+)=4(cos2θ-sinθcosθ)=4(-)=2+2cos(2θ+),所以△AOB面积的最大值为2+2.【解析】(Ⅰ)消参可得C1的普通方程,再根据互化公式可得C1的极坐标方程.(Ⅱ)根据极径的几何意义和三角形面积公式可得面积,再根据三角函数的性质可得最大值.本题考查了简单曲线的极坐标方程,属中档题.23.【答案】(Ⅰ)证明:正实数a,b满足a+b=2,则=2(a+b)+2+2•≤6+2(a+b)+2=12,∴;(Ⅱ)解:对任意正实数a,b,有a+b≥2,所以2≤2,即ab≤1,当且仅当a=b 时取“=”;所以对任意a、b∈R+,不等式|x+1|-|x-3|≥ab恒成立,即|x+1|-|x-3|≥1恒成立;若x≤-1,则不等式化为-x-1-(3-x)≥1,即-4≥1,不等式无解;若-1<x<3,则不等式化为x+1-(3-x)≥1,解得≤x≤3;若x≥3,则不等式化为x+1-(x-3)≥1,即4≥1,不等式恒成立;综上,实数x的取值范围是[,+∞).【解析】(Ⅰ)根据题意,利用完全平方公式和基本不等式,即可证明;(Ⅱ)利用基本不等式得出ab≤1,把问题转化为|x+1|-|x-3|≥1恒成立,再利用分段讨论法求出不等式的解集.本题考查了基本不等式应用问题,也考查了不等式恒成立应用问题,是中档题.。

2019年山东省济南市历城区中考数学二模试卷(解析版)

2019年山东省济南市历城区中考数学二模试卷(解析版)

2019年山东省济南市历城区中考数学二模试卷一、选择题(本大题共12小题,共48.0分) 1. 下列各数中,最小的数是( )A. 0B.C.D.2. 下列几何体中,俯视图为三角形的是( )A.B.C.D.3. 将数据8330用科学记数法表示为( )A. B.C.D.4. 下列图形中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.5. 下列运算正确的是( )A. B. C. D.6. 如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( ) A. B. C. D.7. 方程组的解为( )A.B.C.D.8. 如图,反比例函数(x >0)的图象与一次函数y =ax +b 的图象交于点A (1,6)和点B (3,2).当 <时,则x 的取值范围是( )A. B. 或 C.D. 或9. 如图,菱形OABC 的一条边OA 在x 轴上,将菱形OABC 绕原点O 顺时针旋转75°至OA ′B ′C ′的位置,若OA =2,∠C =120°,则点B ′的坐标为( )A. B. C. D.10. 某地近年来持续干旱,为了倡导节约用水,该地一家庭记录了去年12个月的月用水量如表,m 取1≤m ≤3的整数,A. 平均数、中位数B. 众数、中位数C. 平均数、方差D. 众数、方差 11. 如图,正方形ABCD 的边长为1,分别以顶点A 、B 、C 、D 为圆心,1为半径画弧,四条弧交于点E 、F 、G 、H ,则图中阴影部分的外围周长为( )A.B.C.D.12. 当-2≤x ≤1时,关于x 的二次函数y =-(x -m )2+m 2+1有最大值4,则实数m 的值为( )A. 2B. 2或C. 2或 或D. 2或 或二、填空题(本大题共6小题,共24.0分)13. 分解因式:ax 2-ay 2=______.14. 随意的抛一粒豆子,恰好落在图中的方格中(每个方格除颜色外完全相同),那么这粒豆子落在黑色方格中的可能性是______.15. 如图,河堤横断面迎水坡AB 的坡度是1:2,堤高BC =5m ,则坡面AB 的长度是______.16. 若方程x 2+x -2019=0的一个根是a ,则a 2+a +1的值为______.17. 如图△ABC ,AC =BC =13,把△ABC 放在平面直角坐标系中,且点A 、B 的坐标分别为(2,0)、(12,0),将△ABC 沿x 轴向左平移,当点C 落在直线y =-x +8上时,线段AC 扫过的面积为______.18. 如图,在▱ABCD 中,AD =2AB,点F 是BC的中点,作AE⊥CD 于点E ,点E 在线段CD 上,连接EF 、AF ,下列结论:①2∠BAF =∠C ;②EF =AF ;③S △ABF =S △AEF ;④∠BFE =3∠CEF .其中一定正确的是______.三、解答题(本大题共9小题,共80.0分)19. 计算:2-1+ sin45°- +( -4)0;20.解不等式组<.21.如图,四边形ABCD为平行四边形,E,F是直线BD上两点,且BE=DF,连接AF,CE求证:AF=CE.22.A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运60kg.A型机器人搬运1200kg所用时间与B型机器人搬运900kg所用时间相等,两种机器人每小时分别搬运多少化工原料.23.如图,AB是⊙O的直径,AD是⊙O的切线,点C在⊙O上,BC∥OD,AB=2,OD=3.(1)求证:△ACB∽△DAO;(2)求BC的长.24.某小学决定开设A舞蹈、B音乐、C绘画、D书法四个兴趣班,为了了解学生对这四个项目的兴趣爱好,随机抽查了部分学生进行调查,并将调查结果绘制成如图1、2所示的统计图,请结合图中详细解答下列问题.(1)求在这次调查中,共调查了多少名学生?(2)求在扇形图中,B所得的圆心角的度数;(3)请补全条形统计图;(4)若本校一共有2000名学生,请估计全校喜欢“音乐”的有多少人;(5)从4名学生(2名男生,2名女生)任意选取2名学生,请用列表或画树状图的方法,求出抽到的2名学生恰好性别相同的概率.25.如图,矩形OABC中,OC=4,OA=3,分别以OC、OA所在的直线为x轴、y轴,建立如图所示的坐标系,反比例函数y=(x>0)的图象经过点B.(1)求反比例函数的解析式;(2)一次函数y=ax-1的图象与y轴交于点D,与反比例函数y=(x>0)的图象交于点E,且△ADE的面积为6,求一次函数的解析式;(3)将线段OE沿x轴以每秒1个单位长度的速度向右平移,设运动时间为t,平移后的线段与反比例函数y=(x>0)的图象交于点F,与x轴交于点G,t为何值时,GF=OE?26.如图1,在矩形ABCD中,AB=6,AD=8,E、F分别为AB、AD边的中点,四边形AEGF为矩形,连接CG.(1)如图1,请直接写出=______;如图2,当矩形AEGF绕点A顺时针旋转至点G落在AB上时,=______;(2)当矩形AEGF绕点A旋转至图3的位置时,图2中DF与CG之间的数量关系是否还成立?说明理由.(3)如图4,在▱ABCD中,∠B=60°,AB=6,AD=8,E、F分别为AB、AD边的中点,四边形AEGF 为平行四边形,连接CG,当▱AEGF绕点A顺时针旋转60°时(如图5),请直接写出CG的长度.27.在平面直角坐标系中,抛物线y=-x2+bx+c经过点A、B、C,已知A(-1,0),C(0,3).(1)求抛物线的解析式;(2)如图1,P为线段BC上一点,过点P作y轴的平行线,交抛物线于点D,当△CDP为等腰三角形时,求点P的坐标;(3)如图2,抛物线的顶点为E,EF⊥x轴于点F,N是线段EF上一动点,M(m,0)是x轴一个动点,若∠MNC=90°,请求出m的取值范围.答案和解析1.【答案】C【解析】解:|-3|=3,|-|=,∵3>,∴-3<-,即:-3<-<0<故选:C.直接用比较大小的方法比较即可.此题是有理数大小比较,主要考查了正数与负数的大小比较,两个负数的大小比较,解本题的关键是两个负数比较大小.2.【答案】D【解析】解:A、的俯视图是圆,故A不符合题意;B、俯视图是矩形,故B不符合题意;C、俯视图是圆,故C不符合题意;D、俯视图是三角形,故D符合题意;故选:D.根据从上边看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.3.【答案】C【解析】解:8330=8.33×103,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于8330有4位,所以可以确定n=4-1=3.本题考查了科学记数法表示较大的数,正确移动小数点位数是解题的关键4.【答案】A【解析】解:A、是轴对称图形,是中心对称图形,符合题意;B、是轴对称图形,不是中心对称图形,不合题意;C、不是轴对称图形,是中心对称图形,不合题意;D、不是轴对称图形,是中心对称图形,不合题意.故选:A.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.【答案】C【解析】解:A、(2a2)3=8a6,故此选项错误;B、2a2+4a2=6a2,故此选项错误;C、a3•a2=a5,故此选项正确;D、(a+2b)2=a2+4ab+4b2,故此选项错误;故选:C.直接利用积的乘方运算法则以及同底数幂的乘法运算法则和完全平方公式分别化简得出答案.此题主要考查了积的乘方运算以及同底数幂的乘法运算和完全平方公式,正确掌握相关运算法则是解题关键.6.【答案】C【解析】解:如图,∠2=30°,∠1=∠3-∠2=45°-30°=15°.故选:C.延长两三角板重合的边与直尺相交,根据两直线平行,内错角相等求出∠2,再利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.本题考查了平行线的性质,三角板的知识,熟记平行线的性质,三角板的度数是解题的关键.7.【答案】D【解析】解:,①×3-②得:5y=-5,即y=-1,将y=-1代入①得:x=2,则方程组的解为;故选:D.方程组利用加减消元法求出解即可;此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.8.【答案】D【解析】解:由两函数图象交点可知,当x=1或3时,ax+b=,当0<x<1或x>3时,ax+b <.故选:D.依题意可知,问题转化为:当一次函数值小于反比例函数值时,x的取值范围.本题综合考查一次函数与反比例函数的图象与性质.关键是根据图象求出ax+b <时,对应的x的值.9.【答案】A【解析】解:连接AC交OB于G,过点B作BE⊥OA于E,过点B′作B′F⊥OA于F,∴∠BE0=∠B′FO=90°,∵四边形OABC是菱形,∴OA∥BC,∠AOB=∠AOC,OG=BG,∴∠AOC+∠C=180°,∵∠C=120°,∴∠AOC=60°,∴∠AOB=30°,∴AG=OA=1,∴OG=AG=,∴OB=2,∵菱形OABC绕原点O顺时针旋转75°至OA′B′C′的位置,∴∠BOB′=75°,OB′=OB=2,∴∠B′OF=45°,在Rt△B′OF中,OF=OB′•cos45°=2×=,∴B′F=,∴点B′的坐标为:(,-).故选:A.首先根据菱形的性质,即可求得∠AOB的度数,求出OB的长,又由将菱形OABC绕原点O顺时针旋转75°至OA′B′C′的位置,可求得∠B′OA的度数,然后在Rt△B′OF中,利用三角函数即可求得OF与B′F的长,则可得点B′的坐标.此题考查了平行四边形的性质,旋转的性质以及直角三角形的性质与三角函数的性质等知识.此题综合性较强,难度适中,解题的关键是注意数形结合思想的应用.10.【答案】B【解析】解:∵6吨和7吨的和是4,∴频率之和是1+2+5+4=12,则这组数据的中位数是第6、7个数据的平均数,即=5吨,∴对于不同的正整数x,中位数不会发生改变;∵5出现的次数最多,出现了5次,∴众数是5吨,∴众数也不会发生改变;故选:B.根据图标给出的数据得出6吨和7吨的和是4,再根据中位数和众数的定义进行解答即可.此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.11.【答案】B【解析】解:如图,连接AF、DF,由圆的定义,AD=AF=DF,所以,△ADF是等边三角形,∵∠BAD=90°,∠FAD=60°,∴∠BAF=90°-60°=30°,同理,弧DE的圆心角是30°,∴弧EF的圆心角是90°-30°×2=30°,∴==,由对称性知,图中阴影部分的外围四条弧都相等,所以,图中阴影部分的外围周长=×4=π.故选:B.连接AF、DF,根据圆的定义判断出△ADF是等边三角形,根据正方形和等边三角形的性质求出∠BAF=30°,同理可得弧DE的圆心角是30°,然后求出弧EF的圆心角是30°,再根据弧长公式求出弧EF的长,然后根据对称性,图中阴影部分的外围四条弧都相等列式计算即可得解.本题考查了正方形的性质,等边三角形的判定,弧长的计算,作辅助线构造成等边三角形是解题的关键,难点在于熟练掌握图形的对称性.12.【答案】B【解析】解:当m<-2,x=-2时,y最大=-(-2-m)2+m2+1=4,解得m=-(舍),当-2≤m≤1,x=m时,y最大=m2+1=4,解得m=-;当m>1,x=1时,y最大=-(1-m)2+m2+1=4,解得m=2,综上所述:m的值为-或2,故选:B.分类讨论:m<-2,-2≤m≤1,m>1,根据函数的增减性,可得答案.本题考查了二次函数的最值,函数的顶点坐标是最大值,利用函数的增减性得出函数的最值,分类讨论是解题关键.13.【答案】a(x+y)(x-y)【解析】解:ax2-ay2,=a(x2-y2),=a(x+y)(x-y).故答案为:a(x+y)(x-y).应先提取公因式a,再对余下的多项式利用平方差公式继续分解.本题主要考查提公因式法分解因式和平方差公式分解因式,需要注意分解因式一定要彻底.14.【答案】【解析】解:∵共有15个方格,其中黑色方格占5个,∴这粒豆子落在黑色方格中的概率是=,故答案为:.根据面积法:求出豆子落在黑色方格的面积与总面积的比即可解答.此题考查了几何概率的求法,利用概率=相应的面积与总面积之比求出是解题关键.15.【答案】5m【解析】解:Rt△ABC中,BC=5m,tanA=1:2;∴AC=BC÷tanA=10m,∴AB==5m.故答案为:5m.在Rt△ABC中,已知了坡面AB的坡比以及铅直高度BC的值,通过解直角三角形即可求出斜面AB的长.此题主要考查学生对坡度坡角的掌握及三角函数的运用能力,熟练运用勾股定理是解答本题的关键.16.【答案】2020【解析】解:∵x=a是方程x2+x-2019=0的一个根,∴a2+a-2019=0,即a2+a=2019,∴a2+a+1=2019+1=2020.故答案为:2020.先利用一元二次方程根的定义得到a2+a=1,然后把a(a+1)展开即可得到它的值.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.17.【答案】132【解析】解:∵A、B的坐标分别为(2,0)、(12,0),AC=BC=13,∴C(7,12),当C移动到C'(-4,12)时,点C'在y=-x+8上,∴AC扫过的图形为平行四边形,∴S=12×11=132;故答案为132;AC扫过的图形为平行四边形,平移前C(7,12),平移后C'(-4,12)即可求解;本题考查一次函数的图象及性质,直线的运动轨迹;能够准确判断AC的运动轨迹和点C平移前后的坐标是解题的关键.18.【答案】①②④【解析】解:①∵F是BC的中点,∴BF=FC,∵在▱ABCD中,AD=2AB,∴BC=2AB=2CD,∴BF=FC=AB,∴∠AFB=∠BAF,∵AD∥BC,∴∠AFB=∠DAF,∴∠BAF=∠DAF,∴2∠BAF=∠BAD,∵∠BAD=∠C,∴∠BAF=2∠C故①正确;②延长EF,交AB延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠MBF=∠C,∵F为BC中点,∴BF=CF,在△MBF和△ECF中,,∴△MBF≌△ECF(ASA),∴FE=MF,∠CEF=∠M,∵CE⊥AE,∴∠AEC=90°,∴∠AEC=∠BAE=90°,∵FM=EF,∴EF=AF,故②正确;③∵EF=FM,∴S△AEF=S△AFM,∴S△ABF<S△AEF,故③错误;④设∠FEA=x,则∠FAE=x,∴∠BAF=∠AFB=90°-x,∴∠EFA=180°-2x,∴∠EFB=90°-x+180°-2x=270°-3x,∵∠CEF=90°-x,∴∠BFE=3∠CEF,故④正确,故答案为:①②④.利用平行四边形的性质:平行四边形的对边相等且平行,再由全等三角形的判定得出△MBF≌△ECF,利用全等三角形的性质得出对应线段之间关系进而得出答案.此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,解决本题的关键是得出△AEF≌△DME.19.【答案】解:原式=+×-3+1=+1-3+1=-.【解析】直接利用特殊角的三角函数值以及零指数幂的性质、负指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.20.【答案】解:①<②解不等式①,得x≤3.解不等式②,得x>-1;∴原不等式组的解集为-1<x≤3.【解析】先解出不等式组的各个不等式x的取值范围,然后求出x的公共部分,该公共部分就是不等式的解.本题主要考查解一元一次不等式组,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.21.【答案】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠DBC,∵∠ADF+∠ADB=180°,∠CBE+∠DBC=180°,∴∠ADF=∠CBE,∵DF=BE,∴△ADF≌△CBE,∴AF=CE.【解析】只要证明△ADF≌△CBE,即可解决问题;本题考查平行四边形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.22.【答案】解:设B型机器人每小时搬运xkg化工原料,则A型机器人每小时搬运(x+60)kg化工原料,由题意得:=,解得:x=180,经检验,x=180是原方程的解,且符合题意,∴x+60=240.答:A型机器人每小时搬运240kg化工原料,B型机器人每小时搬运180kg化工原料.【解析】设B型机器人每小时搬运xkg化工原料,则A型机器人每小时搬运(x+60)kg化工原料,根据工作时间=工作总量÷工作效率结合A型机器人搬运1200kg所用时间与B型机器人搬运900kg所用时间相等,即可得出关于x的分式方程,解之经检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.23.【答案】(1)证明:∵BC∥OD,∴∠B=∠AOD,∵AB是直径,∴∠ACB=90°,∵AD是⊙O的切线,∴AD⊥AB,即∠BAD=90°,∴∠C=∠OAD,∴△ACB∽△DAO;(2)解:∵由(1)得△ABC∽△DAO,∴BC:OA=AB:OD,∵OA=1,AB=2,OD=3,∴BC=.【解析】(1)求出∠B=∠AOD,∠ACB=∠OAD,根据相似三角形的判定得出即可;(2)根据相似三角形的性质得出比例式,代入求出即可.本题考查了切线的性质、圆周角定理、相似三角形的性质和判定,能综合运用定理进行推理是解此题的关键.24.【答案】解:(1)120÷40%=300(名),所以在这次调查中,共调查了300名学生;(2)B类学生人数=300-90-120-30=60(名),则B对应的圆心角度数为360°×=72°;(3)补全条形图如下:(4)2000×=400(人),所以估计喜欢“音乐”的人数约为400人;(5)画树状图为:共有12种等可能的结果数,其中相同性别的学生的结果数为4,所以相同性别的学生的概率==.【解析】(1)由C项目人数及其所占百分比可得总人数;(2)根据各项目人数之和等于总人数求出B的人数,再用360°乘以B人数占被调查人数的比例即可得;(3)根据(2)中所求结果可补全图形;(4)利用样本估计总体思想求解可得;(5)先画树状图展示所有12种等可能的结果数,再找出相同性别的学生的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.也考查了统计图和用样本估计总体.25.【答案】解:(1)∵在矩形OABC中,OC=4,OA=3,∴AB=OC=4,BC=OA=3,AB∥x轴,BC∥y轴,∴B(4,3),∵点B在反比例函数y=(x>0)的图象上,∴m=3×4=12,∴反比例函数的解析式为y=;(2)针对于一次函数y=ax-1,令x=0,∴y=-1,∴D(0,-1),∵OA=3,∴A(0,3),∴AD=3-(-1)=4,∵△ADE的面积为6,∴×4x E=6,∴x E=3,由(1)知,反比例函数解析式为y=,∴y E=4,∴E(3,4),将点E(3,4)代入y=ax-1中得,3a-1=4,∴a=,∴一次函数的解析式为y=x-1;(3)如图,由(2)知,E(3,4),过点E作EM⊥x轴于M,∴OM=3,EM=4,过点F作FN⊥x轴于N,∴∠OME=∠GNF=90°,由平移知,FG∥OE,∴∠EOM=∠FGN,∴△OME∽△GNF,∴=,∵GF=OE,∴OM=2GN=,EM=2NF=4,∴NF=2,∴点F的纵坐标为2,∵点F在反比例函数y=的图象上,∴F(6,2),∴ON=6,∴OG=ON-GN=,∴t=÷1=秒.【解析】(1)先确定出点B(4,3),再将点B的坐标代入反比例函数y=(x>0)中,即可得出结论;(2)先求出点D(0,-1),进而求出AD=4,即可求出点E(3,4),将点E(3,4)代入y=ax-1中,即可得出结论;(3)先求出OM=3,EM=4,过点F作FN⊥x轴于N,∴∠OME=∠GNF=90°,再构造出△OME∽△GNF,得出=,进而求出OM=,EM=4,即可求出点F(6,2),进而求出OG,即可得出结论.此题是反比例函数综合题,主要考查了待定系数法,矩形的性质,三角形的面积公式,相似三角形的判定和性质,平移的性质,构造出相似三角形是解本题的关键.26.【答案】【解析】解:(1)①如图1中,由此EG交CD于H,则四边形FGHD是矩形.在Rt△CGH中,GH=DF=4,CH=DH=AE=3,∴CG==5,∴=,②成立.理由如下:如图2中,作FP⊥AD于P.在矩形AEGF中,∵AE=3,EG=4,∴AG=5,BG=AB=AG=1,在Rt△CBG中,CG==,由△APF∽△AEG,可得==,∴==,∴AP=,PF=,DP=AD-AP=8-=,在Rt△PDF中,DF==,∴=.故答案为:,.(2)成立.理由如下:连接AG、AC.由旋转可知:∠DAF=∠CAG,由勾股定理可知:AC==10,AG=5,∵==,=,∴=,∴△ADF∽△ACG,∴==.(3)如图4中,延长EG交CD于H,作CK⊥GH于K.由题意可知四边形FGHD是平行四边形,四边形AEGF是平行四边形,∴DF=GH=4,DH=FG=AE=3,CH=3,∠CHG=∠D=60°,在Rt△CHK中,HK=,CK=,GK=GH-KH=,在Rt△CGK中,CG==,∴CG=DF.在图5中,连接AG、AC.同法可证:△ACG∽△ADF,可得:==,可得CG=DF.作FH⊥AD于H,易知AH=AF=2,FH=2,DH=6,∴DF==4,∴CG=×4=.(1)①如图1中,由此EG交CD于H,则四边形FGHD是矩形.在Rt△CGH中,利用勾股定理即可解决问题;②如图2中,作FP⊥AD于P.利用勾股定理相似三角形的性质,分别求出CG、DF即可解决问题;(2)成立.理由如下:连接AG、AC.只要证明△ADF∽△ACG,可得==,即可解决问题;(3)利用图4中,证明CG=DF,在图5中,连接AG、AC.同法可证:△ACG∽△ADF ,可得:==,可得CG=DF.求出DF 即可解决问题.本题属于四边形综合题、考查了矩形的性质、平行四边形的性质、相似三角形的判定和性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形或相似三角形解决问题,属于中考压轴题.27.【答案】解:(1)∵抛物线y=-x2+bx+c经过点A、B、C,A(-1,0),C(0,3),∴ ,解得b=2,c=3.故该抛物线解析式为:y=-x2+2x+3.(2)令-x2+2x+3=0,解得x1=-1,x2=3,即B(3,0),设直线BC的解析式为y=kx+b′,则′′,解得:′,故直线BC的解析式为y=-x+3;∴设P(t,3-t),∴D(t,-t2+2t+3),∴PD=(-t2+2t+3)-(3-t)=-t2+3t,∵OB=OC=3,∴△BOC是等腰直角三角形,∴∠OCB=45°,当CD=PC时,则∠CPD=∠CDP,∵PD∥y轴,∴∠CPD=∠OCB=45°,∴∠CDP=45°,∴∠PCD=90°,∴直线CD的解析式为y=x+3,解得或,∴D(1,4),此时P(1,2);当CD=PD时,则∠DCP=∠CPD=45°,∴∠CDP=90°,∴CD∥x轴,∴D点的纵坐标为3,代入y=-x2+2x+3得,3=-x2+2x+3,解得x=0或x=2,此时P(2,1);当PC=PD时,∵PC=t,∴t=-t2+3t,解得t=0或t=3-,此时P(3-,);综上,当△CDP为等腰三角形时,点P的坐标为(1,2)或(2,1)或(3-,)(3)如图2,由(1)y=-x2+2x+3=-(x-1)2+4,∴E(1,4),设N(1,n),则0≤n≤4,取CM的中点Q(,),∵∠MNC=90°,∴NQ=CM,∴4NQ2=CM2,∵NQ2=(1-)2+(n-)2,∴4[(1-)2+(n-)2]=m2+9,整理得,m=(n-)2-,∵0≤n≤4,当n=时,m最小值=-,n=4时,m=5,综上,m的取值范围为:-≤m≤5.【解析】(1)利用待定系数法即可求得此抛物线的解析式;(2)由待定系数法即可求得直线BC的解析式,再设P(t,3-t),即可得D(t,-t2+2t+3),即可求得PD的长,然后分三种情况讨论,求点P的坐标;(3)直角三角形斜边上的中线等于斜边的一半列出关系式m=(n-)2-,然后根据n的取值得到最小值.此题考查了待定系数法求函数的解析式、平行线的性质、二次函数的最值问题、判别式的应用第11页,共12页以及等腰直角三角形的性质等知识.此题综合性很强,难度较大,注意掌握数形结合思想、分类讨论思想与方程思想的应用.第12页,共12页。

2019杭州市【滨江区数学二模试卷】含答案

2019杭州市【滨江区数学二模试卷】含答案
A. 2S_2>3S_1 B. 2S_2>5S_1 C. 3S_2>7S_1 D. 3S_2>8S_1
【答案】A
【考点】相似三角形面积比、折叠问题
二、填空题:本大题有6个小题,每小题4分,共24分。
11、计算:(10mn3)÷(5mn2)= 。
【答案】2n
【考点】整式的除法
【解析】略
12、如图,在正方形ABCD中,延长BC至E,使CE=CA,则∠E的度数是 。
【解析】略
18.(本小题满分8分)
如图统计图表示某摩托车厂去年第一、二季度个月产值的数据.请根据统计图回答下列问题:
(1)相邻两个月中,哪两个月的月产值增长最快?为什么?
(2)(1)中月产值增长最快的这两个月之间月产值的增长率是多少(精确到0.1%)?
【答案】(1)4、5月份 (2)
【考点】统计图、增长率
C. y=-3x D. y=-2/x
【答案】A
【考点】函数的增减性
8.如图,△ABC是圆O的内接三角形,AD是圆O的直径,∠ABC=40°,则∠CAD的度数为( )
A.30° B.40° C.50° D.60°
【答案】C
【考点】内接三角形、圆心角、圆周角的性质
9.二次函数y=x^2+bx+c的图象经过坐标原点O和A(7,0),直线AB交y轴于点B(0,-7).动点C(x,y)在直线AB上,且1< x <7 ,过点C作x轴的垂线交抛物线于点D,则CD的最值情况是( )
【考点】根据实际问题列一次函数关系式
【解析】略
16.已知△ABC是等边三角形,AB=6,点D,E,F点分别在边AB,BC,AC上,BD:BE=2:3,DE同时平分∠BEF和∠BDF,则BD的长为 。

2019年南京市鼓楼区二模数学及答案

2019年南京市鼓楼区二模数学及答案

2019年南京市⿎楼区⼆模数学及答案2019年南京市⿎楼区⼆模数学及答案⼀、选择题(本⼤题共6⼩题,每⼩题2分,共12分.在每⼩题所给出的四个选项中,恰有⼀项是符合题⽬要求的,请将正确选项前的字母代号填涂在答题..卡.相应位置....上) 1.若2=+a ,则a 的值为A .2B .-2C .±2D .22.化简16 的结果是A .4B .-4C .±4D .±8 3. 把2018000保留3个有效数字,得到的近似数是A .246;B .2.456×106C .2018000D .2.46×1064.如果事件A 发⽣的概率是 1100,那么在相同条件下重复试验,下列陈述中,正确的是A .说明做100次这种试验,事件A 必发⽣1次B .说明事件A 发⽣的频率是1 100C .说明做100次这种试验中,前99次事件A 没发⽣,后1次事件A 才发⽣D .说明做100次这种试验,事件A 可能发⽣1次5. 已知y 关于x 的函数图象如图所⽰,则当y <0时,⾃变量x 的取值范围是A .x <0B .-1<x <1 或x >2C .x >-1D . x <-1 或1<x <26.某班每位学⽣上、下学期各选择⼀个社团,下表分别为该班学⽣上、下学期各社团的⼈数⽐例.若该班上、下学期的学⽣⼈数不变,关于上学期,下学期各社团的学⽣⼈数变化,下列叙述正确的是A .⽂学社增加,篮球社不变B .⽂学社不变,篮球社不变C .⽂学社增加,篮球社减少 D. ⽂学社不变,篮球社减少⼆、填空题(本⼤题共10⼩题,每⼩题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应.....位置..上) 7.计算:a(a+2b)= ▲.8.不等式 3-2-3x 5≤1+x2的解集为▲.9.函数y=xx -2中,⾃变量x 的取值范围是. 10.按要求分别写出⼀个⼤于9且⼩于10的⽆理数:(1)⽤⼀个平⽅根表⽰:▲;(2)⽤含π的代数式表⽰▲.11.⼀条排⽔管的截⾯如图所⽰,已知排⽔管的截⾯半径OB =10m ,截⾯圆圆⼼O 到⽔O BCA⾯的距离OC 是6m ,则⽔⾯宽AB 是▲ m .12.如图,如果正⽅形CDEF 旋转后能与正⽅形ABCD 重合,那么图形所在平⾯上可以作为旋转中⼼的点有▲个.132①该函数开⼝向上.②该函数图象的对称轴为过点(1,0)且平⾏于y 轴的直线.③当x =4时,y <0.④⽅程ax 2+bx +c =0的正根在3与4之间.其中正确的说法为▲.(只需写出序号)14.如图,平⾯上有两个全等的正⼗边形,其中A 点与A ′点重合,C 点与C ′点重合.∠BAJ ′为▲ °.15.某班把⼗名“迎青奥”获奖⼿抄报粘合在⼀起,在教室⾥展出.如图,已知每张报纸长为38cm ,宽为28cm ,粘合部分的纸宽为2cm ,则这10张报纸粘合后的长度为▲ cm .16.如图,将2个的正⽅形并排组成矩形OABC, OA 和OC 分别落在x 轴和y 轴的正半轴上.正⽅形EFMN 的边EF 落在线段CB 上,过点M 、N 的⼆次函数的图象也过矩形的顶点B 、C,若三个正⽅形边长均为1,则此⼆次函数的的关系式为▲.三、解答题(本⼤题共12⼩题,共88分.请在答题卡指定区域.......内作答,解答时应写出⽂字说明、证明过程或演算步骤) 17.(6分)计算-(-2)4+(2018-π) 0+(23)-218.(6分)计算6 2 (2 18 - 1275)19.(6分)解⽅程1x -2 = 1-x2-x -3.20.(7分)已知:如图,在△ABC 中,∠ACB=90°,AD 平分∠CAB , DE ⊥AB ,垂⾜为E , CD=ED .连接CE ,交AD 于点H .(1)求证:△ACD ≌△AED ;(2)点F 在AD 上,连接CF ,EF .现有三个论断:①EF ∥BC ;②EF =FC ;③CE ⊥AD .请从上述三个论断中选择⼀个论断作为条件,证明四边形CDEF 是菱形.21、(7分)甲、⼄两在在相同的情况下千打靶6次,每次打靶的成绩如下:(单位:环)甲:10,9,8,8,10,9 ⼄:10,10,8,10,7,9请你运⽤所学的统计知识做出分析,从三个不同⾓度评价甲、⼄两⼈的打靶成绩。

2019江苏省南通市高三二模数学试卷含答案

2019江苏省南通市高三二模数学试卷含答案

南通市2019届高三第二次调研测试 数学学科参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1. 已知集合{}{}31A x x x x =<-≥,则A =R ð ▲ .【答案】{}13x x -<≤.2. 某学校有8个社团,甲、乙两位同学各自参加其中一个社团,且他俩参加各个社团的可能性相同,则这两位同学参加同一个社团的概率为 ▲ . 【答案】18.3. 复数i z =(其中i 为虚数单位)的模为 ▲ ..4.从编号为0,1,2,…,79的80件产品中,采用系统抽样的 方法抽取容量是5的样本,若编号为28的产品在样本中,则 该样本中产品的最大编号为 ▲ . 【答案】76.5. 根据如图所示的伪代码,最后输出的a 的值为 ▲ .【答案】48.6. 若12log 11a a <-,则a 的取值范围是 ▲ .【答案】()4+∞,. 7. 若函数32()f x x ax bx =++为奇函数,其图象的一条切线方程为3y x =-则b 的值为 ▲ . 【答案】3-.8. 设l ,m 表示直线,m 是平面α内的任意一条直线.则“l m ⊥”是“l α⊥”成立的 ▲ 条件.(在“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中选填一个) 【答案】充要.9. 在平面直角坐标系xOy 中,设A 是半圆O :222x y +=(0x ≥)上一点,直线OA 的倾斜角为45°,过点A 作x 轴的垂线,垂足为H ,过H 作OA 的平行线交半圆于点B ,则直线AB 的方程是 ▲.(第5题)10y +=.10.在△ABC 中,D 是BC 的中点,AD =8,BC =20,则AB AC ⋅的值为 ▲ . 【答案】-36.11.设x ,y ,z 是实数,9x ,12y ,15z 成等比数列,且1x ,1y ,1成等差数列,则x z z x +的值是 ▲ .【答案】3415.12.设π6是函数()()sin 2f x x ϕ=+的一个零点,则函数()f x 在区间()02π,内所有极值点之和为▲ . 【答案】14π313. 若不等式(mx -1)[3m 2-( x + 1)m -1]≥0对任意(0)m ∈+∞,恒成立,则实数x 的值为 ▲ .【答案】114.设实数a ,b ,c 满足a 2+b 2 ≤c ≤1,则a +b +c 的最小值为 ▲ . 【答案】12-.二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答. 解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在△ABC 中,已知916AB AC AB BC ⋅=⋅=-,.求: (1)AB 的值; (2)sin()sin A B C-的值.【解】(1)(方法1)因为916AB AC AB BC ⋅=⋅=-,, …………………………… 4分 所以91625AB AC AB BC ⋅-⋅=+=,即()25AB AC CB +=,亦即225AB =,故5AB =. …………………………… 7分 (方法2)设A ,B ,C 的对边依次为a ,b ,c ,则由条件得cos 9cos 16bc A ac B ==,. …………………………… 3分 两式相加得(cos cos )91625c b A a B +=+=,即225c =,故5AB c ==. ……………… 7分 (方法3)设A ,B ,C 的对边依次为a ,b ,c ,PABCDE (第16题)PABCDE(第16题)FM 则由条件得cos 9cos 16bc A ac B ==,. …………………………… 3分 由余弦定理得()()2222221191622b c a c a b +-=+-=,,两式相加得225c =,故5AB c ==. …………………………… 7分 (2)sin()sin cos cos sin sin sin A B A B A BC C--=………………………… 10分 由正弦定理得sin()cos cos sin A B a B b A C c--=22cos cos 169725ac B bc A c c --===. ………… 14分16.(本小题满分14分)在四棱锥P -ABCD 中,AB ∥DC ,AB ⊥平面P AD , PD =AD ,AB =2DC ,E 是PB 的中点. 求证:(1)CE ∥平面P AD ;(2)平面PBC ⊥平面P AB .【证】(1)(方法1)取P A 的中点F ,连EF ,DF .…… 2分 因为E 是PB 的中点,所以EF // AB ,且12EF AB =.因为AB ∥CD ,AB =2DC ,所以EF ∥CD ,……………… 4分 EF CD =,于是四边形DCEF 是平行四边形,从而CE ∥DF ,而CE ⊄平面P AD ,DF ⊂平面P AD , 故CE ∥平面P AD . …………………… 7分 (方法2)取AB 的中点M ,连EM ,CM . ……………… 2分 因为E 是PB 的中点,所以EM // P A .因为AB ∥CD ,AB =2DC ,所以CM // AD .……………… 4分 因为EM ⊄平面P AD ,PA ⊂平面P AD , 所以EM ∥平面P AD .同理,CM ∥平面P AD . 因为EMCM M =,EM CM ⊂,平面CEM ,所以平面CEM ∥平面P AD .而CE ⊂平面P AD ,故CE ∥平面P AD .……………………… 7分 (2)(接(1)中方法1)因为PD =AD ,且F 是P A 的中点,所以DF PA ⊥.因为AB ⊥平面P AD ,DF ⊂平面P AD ,所以DF AB ⊥. ……………………… 10分 因为CE ∥DF ,所以CE PA ⊥,CE AB ⊥. 因为PA AB ⊂,平面P AB ,PAAB A =,所以CE ⊥平面P AB .因为CE ⊂平面PBC ,所以平面PBC ⊥平面P AB . ………………………… 14分17.(本小题满分14分)为了净化空气,某科研单位根据实验得出,在一定范围内,每喷洒1个单位的净化剂,空气中 释放的浓度y (单位:毫克/立方米)随着时间x (单位:天)变化的函数关系式近似为161048154102x xy x x ⎧-⎪-=⎨⎪-<⎩,≤≤,,≤. 若多次喷洒,则某一时刻空气中的净化剂浓度为每次投放的净化剂在相应时刻所释放的浓度之 和.由实验知,当空气中净化剂的浓度不低于4(毫克/立方米)时,它才能起到净化空气的作用. (1)若一次喷洒4个单位的净化剂,则净化时间可达几天?(2)若第一次喷洒2个单位的净化剂,6天后再喷洒a (14a ≤≤)个单位的药剂,要使接下来的4天中能够持续有效净化,试求a 的最小值(精确到0.11.4). 【解】(1)因为一次喷洒4个单位的净化剂, 所以浓度644048()4202410x x f x y x x ⎧-⎪-==⎨⎪-<⎩,≤≤,,≤.则当04x ≤≤时,由64448x--≥,解得0x ≥,所以此时04x ≤≤.…………………… 3分 当410x <≤时,由2024x -≥解得8x ≤,所以此时48x <≤.综合得08x ≤≤,若一次投放4个单位的制剂,则有效净化时间可达8天. …………… 7分 (2)设从第一次喷洒起,经x (610x ≤≤)天,浓度()1161616()25110(14)428(6)1414a a g x x a x a x a x x x ⎡⎤=-+-=-+-=-+--⎢⎥----⎣⎦.…… 10分因为14[48]x -∈,,而14a ≤≤,所以[48],,故当且仅当14x -=y有最小值为4a -.令44a -≥,解得244a -≤,所以a的最小值为24 1.6-.……… 14分18.(本小题满分16分)在平面直角坐标系xOy 中,设曲线C 1:1(0)x ya b a b+=>>所围成的封闭图形的面积为曲线C 1上的点到原点O.以曲线C 1与坐标轴的交点为顶点的椭圆记为C 2.(1)求椭圆C 2的标准方程;(2)设AB 是过椭圆C 2中心O 的任意弦,l 是线段AB 的垂直平分线.M 是l 上的点(与O 不重合).①若MO =2OA ,当点A 在椭圆C 2上运动时,求点M 的轨迹方程; ②若M 是l 与椭圆C 2的交点,求△AMB 的面积的最小值.【解】(1)由题意得2ab ⎧=⎪= 又0a b >>,解得28a =,21b =.因此所求椭圆的标准方程为2218x y +=. ………………………… 4分(2)①设()M x y ,,()A m n ,,则由题设知:2OM OA =,0OA OM ⋅=.即22224()0x y m n mx ny ⎧+=+⎨+=⎩,, 解得22221414m y n x ⎧=⎪⎨⎪=⎩,. ………………………8分因为点()A m n ,在椭圆C 2上,所以2218m n +=,即()()222182y x+=,亦即221432x y +=.所以点M 的轨迹方程为221432x y +=. ………………………10分②(方法1)设()M x y ,,则()(0)A y x λλλλ-∈≠R ,,, 因为点A 在椭圆C 2上,所以222(8)8y x λ+=,即22288y x λ+= (i )又2288x y += (ii )(i )+(ii )得()2228119x y λ+=+, ………………………13分所以()228116||()||99AMB S OM OA x y λλλ∆=⋅=+=+≥.当且仅当1λ=±(即1AB k =±)时,()min 169AMB S ∆=. ………………………16分 (方法2)假设AB 所在的直线斜率存在且不为零,设AB 所在直线方程为y =kx (k ≠0). 解方程组2218x y y kx ⎧+=⎪⎨⎪=⎩,,得22818A x k =+,222818A k y k =+,所以22222222888(1)181818A Ak k OA x y k k k +=+=+=+++,222232(1)418k AB OA k+==+. 又22181x y y x k ⎧+=⎪⎪⎨⎪=-⎪⎩,,解得2228+8M k x k =,228+8M y k =,所以2228(1)+8k OM k +=.…………… 12分(解法1)由于22214AMBS AB OM =⋅△2222132(1)8(1)418+8k k k k ++=⨯⨯+222264(1)(18)(+8)k k k +=+ ()2222264(1)18+82k k k +++≥222264(1)2568181(1)4k k +==+, 当且仅当22188k k +=+时等号成立,即k =±1时等号成立,此时△AMB 面积的最小值是S △AMB =169. …………… 15分当k =0,S △AMB 1161=⨯=;当k 不存在时,S △AMB 116229=⨯=>.综上所述,△AMB 面积的最小值为169. …………… 16分(解法2)因为22222211118(1)8(1)18+8k k OA OMk k +=++++22218+898(1)8k k k ++==+, 又22112OA OM OA OM +⋅≥,于是169OA OM ⋅≥, 当且仅当22188k k +=+时等号成立,即k =±1时等号成立.(后同方法1)19.(本小题满分16分)设数列{a n }的首项不为零,前n 项和为S n ,且对任意的r ,t ∈N *,都有()2r t SrS t=.(1)求数列{a n }的通项公式(用a 1表示);(2)设a 1=1,b 1=3,()1*2n n b b S n n -=∈N ≥,,求证:数列{}3log n b 为等比数列; (3)在(2)的条件下,求121nk n k k b T b -==-∑. 【解】(1)因为110a S =≠,令1t =,r n =,则()2r t SrS t=,得21nSn S=,即21n S a n =.… 2分当2n ≥时,11(21)n n n a S S a n -=-=-,且当1n =时,此式也成立.故数列{a n }的通项公式为1(21)n a a n =-. …………… 5分(2)当11a =时,由(1)知1(21)21n a a n n =-=-,S n =n 2.依题意,2n ≥时,121n n b n b S b --==, ……… 7分 于是233131log log 2log (2)n n n b b b n n --==∈N ≥,,且31log 1b =,故数列{}3log n b 是首项为1,公比为2的等比数列. …………… 10分 (3)由(2)得113log 122n n n b --=⨯=,所以12*3()n n b n -=∈N . ……… 12分 于是()()()22121222212222231131113131313+131k k k k k k k k k b b --------+-===------. ……… 15分 所以()211122222111112313131k k n nnk n k k k b T b ----====-=-----∑∑. ……… 16分20.(本小题满分16分)设函数()e ()x f x ax a a =-+∈R ,其图象与x 轴交于1(0)A x ,,2(0)B x ,两点,且x 1<x 2.(1)求a 的取值范围; (2)证明:0f '<(()f x '为函数()f x 的导函数);(3)设点C 在函数()y f x =的图象上,且△ABC 为等腰直角三角形,t ,求(1)(1)a t -- 的值.【解】(1)()e x f x a '=-.若0a ≤,则()0f x '>,则函数()f x 是单调增函数,这与题设矛盾.……………………… 2分 所以0a >,令()0f x '=,则ln x a =.当ln x a <时,()0f x '<,()f x 是单调减函数;ln x a >时,()0f x '>,()f x 是单调增函数; 于是当ln x a =时,()f x 取得极小值. ……………………… 4分 因为函数()e ()x f x ax a a =-+∈R 的图象与x 轴交于两点1(0)A x ,,2(0)B x ,(x 1<x 2),所以(ln )(2ln )0f a a a =-<,即2e a >.. 此时,存在1ln (1)e 0a f <=>,;存在33ln ln (3ln )3ln a a f a a a a a >=-+,3230a a a >-+>,又由()f x 在(ln )a -∞,及(ln )a +∞,上的单调性及曲线在R 上不间断,可知2e a >为所求取值范围. ……………………………… 6分(2)因为1212e 0e 0xx ax a ax a ⎧-+=⎪⎨-+=⎪⎩,, 两式相减得2121e e x x a x x -=-.记21(0)2x x s s -=>,则()121221212221e e e e 2(e e )22x x x x x x s s x xf s x x s++-+-'⎡⎤=-=--⎣⎦-,…………… 8分 设()2(e e )s s g s s -=--,则()2(e e )0s s g s -'=-+<,所以()g s 是单调减函数, 则有()(0)0g s g <=,而12e02x x s+>,所以()1202x x f +'<. 又()e x f x a '=-是单调增函数,且122x x +>所以0f '<. ………………………………………… 11分(3)依题意有e 0i x i ax a -+=,则(1)e 0i x i a x -=>⇒112i x i >=(,).于是122ex x +=ABC 中,显然C = 90°,…………………… 13分所以12012()2x x x x x +=∈,,即00()0y f x =<, 由直角三角形斜边的中线性质,可知2102x x y -=-, 所以2100x x y -+=,即122112e ()022x x x xa x x a +--+++=,所以2112()022x x a x x a -+++=,即2112(1)(1)[(1)(1)]022x x a x x ----+-+=.因为110x -≠,则()2211111110212x x x a x ----++=-,t ,所以221(1)(1)022a at t t -++-=, …………………………………… 15分即211a t =+-,所以(1)(1) 2.a t --= …………………………………… 16分南通市2019届高三第二次调研测试数学Ⅱ(附加题)(第21—A 题)21A .选修4—1:几何证明选讲如图,△ABC 内接于圆O ,D 为弦BC 上一点,过D 作直线DP // AC ,交AB 于点E ,交圆O 在A 点处的切线于点P .求证:△P AE ∽△BDE .【证明】因为P A 是圆O 在点A 处的切线,所以∠P AB =∠ACB . 因为PD ∥AC ,所以∠EDB =∠ACB , 所以∠P AE =∠P AB =∠ACB =∠BDE .又∠PEA =∠BED ,故△P AE ∽△BDE .…………………… 10分21B .选修4—2:矩阵与变换已知二阶矩阵M 有特征值1λ=及对应的一个特征向量111⎡⎤=⎢⎥-⎣⎦e ,且M 11⎡⎤⎢⎥⎣⎦=31⎡⎤⎢⎥⎣⎦.求矩阵M .【解】设a b c d ⎡⎤=⎢⎥⎣⎦M ,则由 1 111ab cd ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,得11a b c d -=⎧⎨-=-⎩,. 再由1311⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦a b c d ,得31a b c d +=⎧⎨+=⎩.,联立以上方程组解得a =2,b =1,c =0,d =1,故2101⎡⎤=⎢⎥⎣⎦M .……………………… 10分 21C .选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,设动点P ,Q 都在曲线C :12cos 2sin x y θθ=+⎧⎨=⎩,(θ为参数)上,且这两点对应的参数分别为θ=α与θ=2α(0<α<2π),设PQ 的中点M 与定点A (1,0)间的距离为d , 求d 的取值范围.【解】由题设可知P ( 1 + 2cos α,2sin α ),Q ( 1 + 2cos2α,sin2α ),………………………… 2分 于是PQ 的中点M ()1cos cos2sin sin 2αααα+++,. ………………………… 4分 从而()()2222cos cos2sin sin222cos d MA ααααα==+++=+ ………………………… 6分 因为0<α<2π,所以-1≤cos α<1, ………………………… 8分 于是0≤d 2<4,故d 的取值范围是[)02,. ………………………… 10分21D .选修4—5:不等式选讲已知:2a x ∈≥,R .求证:|1|||x a x a -++-≥3. 证明:因为|m|+|n|≥|m -n|,所以|1|||1()21|x a x a x a x a a -++--+---≥||=|.………………………………………… 8分ABCDD 1A 1B 1C 1E(第22题)又a ≥2,故21|a -|≥3.所以|1|||3x a x a -++-≥.…………………………………………………………………… 10分【必做题】第22题、第23题,每题10分,共计20分.请在答.题卡指定区域......内作答,解答时应 写出文字说明、证明过程或演算步骤.22.(本小题满分10分)在长方体ABCD —A 1B 1C 1D 1中,112AD AA AB ==,点E 是棱AB 上一点.且AE EB λ=.(1)证明:11D E A D ⊥;(2)若二面角D 1—EC —D 的大小为π4,求λ的值.【证】(1)以D 为原点,DA 为x 轴,DC 为y 轴, DD 1为z 轴建立空间直角坐标系. 不妨设AD =AA 1=1,AB =2,则D (0,0,0),A (1,0,0),B (1,2,0),C (0,2,0),A 1(1,0,1),B 1(1,2,1),C 1(0,2,1),D 1(0,0,1).因为AEEB =λ,所以()2101E λλ+,,,于是()112111D E A D λλ=-=+,,,(-1,0,-1). 所以()11211(101)01D E A D λλ⋅=-⋅--=+,,,,.故D 1E ⊥A 1D . ……… 5分 (2)因为D 1D ⊥平面ABCD ,所以平面DEC 的法向量为n 1=(0,0,1). 又()21201CE λλ=+,-,,1CD =(0,-2,1).设平面D 1CE 的法向量为n 2=(x ,y ,z ),则n 2·()220CE x y λλ=+-=,n 2·120CD y z =-+=,所以向量n 2的一个解为()22121λλ-+,.因为二面角D 1—EC —D 的大小为π4,则1212⋅=n n.解得λ=±233-1. 又因E 是棱AB 上的一点,所以λ>0,故所求的λ值为233-1. ……… 10分23.(本小题满分10分)数学试卷设数列{a n }共有n (3n n ∈N ≥,)项,且11n a a ==,对每个i (1≤i ≤1n -,i ∈N ),均有 {}11122i i a a +∈,,. (1)当3n =时,写出满足条件的所有数列{a n }(不必写出过程);(2)当8n =时,求满足条件的数列{a n }的个数.【解】(1)当3n =时,131a a ==. 因为{}211122a a ∈,,,{}321122a a ∈,,,即{}21122a ∈,,,{}211122a ∈,,, 所以212a =或21a =或22a =. 故此时满足条件的数列{a n }共有3个:1112,,; 1,1,1; 1,2,1. ……… 3分 (2)令b i =a i +1a i(1≤i ≤7),则对每个符合条件的数列{a n },满足条件: 77181111i ii i i a a b a a +=====∏∏,且b i ∈{}1122,, (1≤i ≤7). 反之,由符合上述条件的7项数列{b n }可唯一确定一个符合条件的8项数列{a n }.………7分记符合条件的数列{b n }的个数为N . 显然,b i (1≤i ≤7)中有k 个2;从而有k 个12,7-2k 个1. 当k 给定时,{b n }的取法有77C C k k k -种,易得k 的可能值只有0,1,2,3,故1122337675741C C C C C C 393N =+++=.因此,符合条件的数列{a n }的个数为393. ……… 10分。

上海市虹口区2019届高三数学二模试题(含解析)

上海市虹口区2019届高三数学二模试题(含解析)

上海市虹口区2019届高三数学二模试题(含解析)一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.设全集,若,则________【答案】【解析】【分析】先化简集合A,再利用补集定义直接求解.【详解】∵全集U=R,集合A={x||x﹣3|>1}={x|x>4或x<2),∴∁U A={x|2≤x≤4}=[2,4]故答案为:[2,4]【点睛】本题考查补集的求法,考查补集定义、不等式的解法等基础知识,考查运算求解能力,是基础题.2.若复数(为虚数单位),则的共轭复数________【答案】【解析】【分析】利用复数代数形式的乘除运算化简,再由共轭复数的概念得答案.【详解】由z=i(2﹣i)=1+2i,得.故答案为:1﹣2i.【点睛】本题考查复数代数形式的乘除运算,考查共轭复数的基本概念,是基础题.3.已知,在第四象限,则________【答案】【解析】【分析】利用同角三角函数的基本关系及诱导公式,求得的值.【详解】∵cosθ,且θ是第四象限角,则sinθ,又sinθ=,故答案为.【点睛】本题主要考查同角三角函数的基本关系式及诱导公式的应用,考查了三角函数在各个象限中的符号,属于基础题.4.行列式的元素的代数余子式的值等于________【答案】7【解析】【分析】利用代数余子式的定义和性质直接求解.【详解】行列式的元素π的代数余子式的值为:(﹣1)2+1(4cos9sin)=﹣(2﹣9)=7.故答案为:7.【点睛】本题考查行列式的元素的代数余子式的值的求法,考查代数余子式的定义和性质等基础知识,考查运算求解能力,是基础题.5.5位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为________【答案】【解析】【分析】设A={周六、周日都有同学参加公益活动},计算出事件A包含的基本事件的个数,除以基本事件的总数可得.【详解】设A={周六、周日都有同学参加公益活动},基本事件的总数为25=32个,而5人都选同一天包含2种基本事件,故A包含32﹣2=30个基本事件,∴p(A).故填:.【点睛】本题考查古典概型的概率计算,考查了利用对立事件来求事件A包含的基本事件的方法,属于基础题.6.已知、是椭圆的两个焦点,点为椭圆上的点,,若为线段的中点,则线段的长为________【答案】2【解析】【分析】求出椭圆的焦点坐标,利用椭圆的定义转化求解即可.【详解】F1、F2是椭圆的两个焦点,可得F1(﹣3,0),F2(3,0).a=6.点P为椭圆C上的点,|PF1|=8,则|PF2|=4,M为线段PF1的中点,则线段OM的长为:|PF2|=2.故答案为:2.【点睛】本题考查椭圆的的定义及简单性质的应用,是基本知识的考查.7.若函数()有3个零点,则实数的取值范围是________【答案】【解析】【分析】利用数形结合,通过a与0的大小讨论,转化求解a的范围即可.【详解】函数f(x)=x|x﹣a|﹣4有三个不同的零点,就是x|x﹣a|=4有三个不同的根;当a>0时,函数y=x|x﹣a|与y=4的图象如图:函数f(x)=x|x﹣a|﹣4(a∈R)有3个零点,必须,解得a>4;当a≤0时,函数y=x|x﹣a|与y=4的图象如图:函数f(x)=x|x﹣a|﹣4不可能有三个不同的零点,综上a∈(4,+∞).故答案为:(4,+∞).【点睛】本题考查函数与方程的综合应用,考查数形结合以及分类讨论思想的应用,考查计算能力.8.若函数()为偶函数,则的值为________【答案】【解析】【分析】根据题意,由函数奇偶性的定义可得f(﹣x)=f(x),即log3(9x+1)+kx=log3(9﹣x+1)+k(﹣x),变形可得k的值,即可得答案.【详解】根据题意,函数(k∈R)为偶函数,则有f(﹣x)=f(x),即log3(9x+1)+kx=log3(9﹣x+1)+k(﹣x),变形可得:2kx=log3(9﹣x+1)﹣log3(9x+1)=﹣2x,则有k=﹣1;故答案为:﹣1【点睛】本题考查函数的奇偶性的应用以及对数的运算性质,关键是掌握函数奇偶性的定义,属于基础题.9.一个几何体的三视图如图所示,则该几何体的体积为________【答案】【解析】【分析】由已知中的三视图可得该几何体是一个以俯视图为底面的三棱锥,由三视图的数据可分析出底面的底和高及棱锥的高,代入棱锥体积公式,可得答案.【详解】由已知中的三视图可得该几何体是一个以俯视图为底面的三棱锥,如图:由三视图可知:底面的底和高均为2,棱锥的高为2,故底面S2×2故棱锥的体积V Sh2,故答案为.【点睛】本题考查的知识点是由三视图求体积,其中由已知中的三视图判断出几何体的形状,及棱长,高等几何量是解答的关键.10.在平面直角坐标系中,边长为1的正六边形的中心为坐标原点,如图所示,双曲线是以、为焦点的,且经过正六边形的顶点、、、,则双曲线的方程为________【答案】【解析】【分析】求出B的坐标,代入双曲线方程,结合焦距,求出a,b即可得到双曲线方程.【详解】由题意可得c=1,边长为1的正六边形ABCDEF的中心为坐标原点O,如图所示,双曲线Γ是以C、F为焦点的,且经过正六边形的顶点A、B、D、E,可得B(,),代入双曲线方程可得:,a2+b2=1,解得a2,b2,所求双曲线的方程为:.故答案为:.【点睛】本题考查双曲线的简单性质的应用以及双曲线方程的求法,是基本知识的考查.11.若函数,则的值为________【答案】【解析】【分析】根据题意,由函数的解析式求出f(0)与f(﹣1)的值,据此依次求出f(1)、f(2)、f(3)的值,分析可得f(x)=f(x+6),(x>0),据此可得f(2019)=f(3+336×6)=f(3),即可得答案.【详解】根据题意,函数,当x≤0时,f(x)=2﹣x,则f(0)=20=1,f(﹣1)=2﹣1=2,当x>0时,f(x)=f(x﹣1)﹣f(x﹣2),①f(x+1)=f(x)﹣f(x﹣1),②①+②得f(x+1)=﹣f(x﹣2),∴f(x+4)=﹣f(x+1)= f(x﹣2),即f(x+6)=f(x),,又f(2019)=f(3+336×6)=f(3)而f(1)=f(0)﹣f(﹣1)=1﹣2=﹣1,f(2)=f(1)﹣f(0)=﹣1﹣1=﹣2,f(3)=f(2)﹣f(1)=﹣2﹣(﹣1)=﹣1,∴f(2019)=f(3+336×6)=f(3)=﹣1;故答案为:﹣1.【点睛】本题考查分段函数值的计算,考查了周期性的推导与应用,属于中档题.12.过点作圆()的切线,切点分别为、,则的最小值为________【答案】【解析】【分析】根据圆心到点P的距离以及平面向量的数量积定义,求出PC的最小值,计算再计算的最小值.【详解】圆C:(x m)2+(y﹣m+1)2=1的圆心坐标为(m,m﹣1),半径为1,∴PC,PA=PB,cos∠APC,∴cos∠APB=2()2﹣1=1,∴•(PC2﹣1)×(1)=﹣3+PC23+23+2,当且仅当PC时取等号,∴的最小值为23.故答案为:23.【点睛】本题考查了平面向量的数量积的定义及基本不等式求最值问题,考查了直线与圆的位置关系应用问题,是中档题.二. 选择题(本大题共4题,每题5分,共20分)13.已知、是两个不同平面,为内的一条直线,则“∥”是“∥”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】【分析】m∥β不一定得到直线与平面平行,由此可判断不充分,由面面平行的定义及性质可判断必要性.【详解】α、β表示两个不同的平面,直线m⊂α,m∥β,不一定得到直线与平面平行,还有一种情况可能是直线和平面相交,∴不满足充分性;当两个平面平行时,由面面平行的定义及性质可知:其中一个平面上的直线一定平行于另一个平面,一定存在m∥β,∴满足必要性,∴“m∥β”是“α∥β”的必要不充分条件故选:B.【点睛】本题考查充分必要条件的判断和线面、面面平行的定义及性质的应用,解题的关键是熟练掌握平面与平面平行的判定与性质定理,是一个基础题.14.钝角三角形的面积是,,,则等于()A. 1B. 2C.D. 5【答案】C【解析】【分析】由三角形的面积公式求得角B,再由余弦定理求得AC的值.【详解】由题意,钝角△ABC的面积是S•AB•BC•sin B1sin B sin B,∴sin B,∴B或(不合题意,舍去);∴cos B,由余弦定理得:AC2=AB2+CB2﹣2AB•CB•cos B=1+2﹣2×1()=5,解得AC的值为.故选:C.【点睛】本题考查了三角形的面积公式和余弦定理的应用问题,是基础题.15.已知直线经过不等式组表示的平面区域,且与圆相交于、两点,则当最小时,直线的方程为()A. B. C. D.【答案】D【解析】【分析】画出不等式组表示的区域,过点P的直线l与圆C:x2+y2=16相交于A、B两点,则|AB|的最小值时,区域内的点到原点(0,0)的距离最大.由此可得结论.【详解】不等式组表示的区域如图阴影部分,其中AB的中点为P,则AP⊥OP,所以|OP|最长时,AB最小,因为最小l经过可行域,由图形可知点P为直线x﹣2y+1=0与y﹣2=0的交点(3,2)时,|OP|最长,因为k OP,则直线l的方程为:y﹣2(x﹣4),即.故选:D.【点睛】本题考查线性规划知识,考查学生分析解决问题的能力,解题的关键是|AB|的最小值时,区域内的点到原点(0,0)的距离最大.16.已知等比数列的首项为2,公比为,其前项和记为,若对任意的,均有恒成立,则的最小值为()A. B. C. D.【答案】B【解析】【分析】S n•,①n为奇数时,S n•,根据单调性可得:S n≤2;②n为偶数时,S n•,根据单调性可得:≤S n.可得S n的最大值与最小值分别为:2,.考虑到函数y=3t在(0,+∞)上单调递增,即可得出.【详解】S n•,①n为奇数时,S n•,可知:S n单调递减,且•,∴S n≤S1=2;②n为偶数时,S n•,可知:S n单调递增,且•,∴S2≤S n.∴S n的最大值与最小值分别为:2,.考虑到函数y=3t在(0,+∞)上单调递增,∴A.B.∴B﹣A的最小值.故选:B.【点睛】本题考查了等比数列的求和公式及数列单调性的判断和应用问题,考查了恒成立问题的转化,考查了推理能力与计算能力,属于中档题.三. 解答题(本大题共5题,共14+14+14+16+18=76分)17.已知函数(,).(1)若函数的反函数是其本身,求的值;(2)当时,求函数的最小值.【答案】(1);(2)【解析】【分析】(1)由互为反函数的函数定义域和值域互换得反函数解析式.(2)得到解析式后根据基本不等式求最小值.【详解】(1)由题意知函数f(x)的反函数是其本身,所以f(x)的反函数a y=9﹣3x,x=,反函数为y=,所以a=3.(2)当时,f(x)=,f(﹣x)=,则y=f(x)+f(﹣x)=﹣3,故最小值为﹣3.【点睛】本题考查了反函数和基本不等式的应用,属于简单题.18.如图,在多面体中,、、均垂直于平面,,,,.(1)求与平面所成角的大小;(2)求二面角的大小.【答案】(1);(2)【解析】【分析】由题意建立空间直角坐标系.(1)由已知分别求出的坐标与平面A1B1C1的一个法向量,则线面角可求;(2)求出平面AA1B1的一个法向量,结合(1),由两法向量所成角的余弦值可得二面角A﹣A1B1﹣C1的大小.【详解】由题意建立如图所示空间直角坐标系,∵AA1=4,CC1=3,BB1=AB=AC=2,∠BAC=120°,∴A(0,0,0),A1(0,0,4),B1(,﹣1,2),C1(0,2,3).(1),,,设平面A1B1C1的一个法向量为,由,取y=1,得.∴AB1与A1B1C1所成角的最小值sinθ=|cos|.∴AB1与A1B1C1所成角的大小为;(2)设平面AA1B1的一个法向量为,由,取x1=1,得.∴cos.∴二面角A﹣A1B1﹣C1的大小为.【点睛】本题考查利用空间向量法求解空间角,考查计算能力,是中档题.19.如图,一块长方形区域,,,在边的中点处有一个可转动的探照灯,其照射角始终为,设,探照灯照射在长方形内部区域的面积为.(1)求关于的函数关系式;(2)当时,求的最大值.【答案】(1)S(2)【解析】【分析】(1)根据条件讨论α的范围,结合三角形的面积公式进行求解即可.(2)利用两角和差的三角公式进行化简,结合基本不等式的性质进行转化求解即可.【详解】(1),则OA=1,即AE=tanα,∠HOFα,HF=tan(α),则△AOE,△HOF得面积分别为tanα,tan(α),则阴影部分的面积S=1,,当∈[,)时,E在BH上,F在线段CH上,如图②,EH,FH,则EF,则S(),即,;同理当,;即S.(2)当时,S=12(1+tanα)∵0≤tanα≤1,即1≤1+tanα≤2,则1+tanα22,当且仅当1+tanα,即1+tanα时取等号,即,即S的最大值为2【点睛】本题主要考查函数的应用问题,结合三角形的面积公式以及两角和差的正切公式以及利用基本不等式的性质是解决本题的关键,考查学生的运算能力,属于中档题.20.设为抛物线的焦点,过点的直线与抛物线相交于、两点.(1)若,求此时直线的方程;(2)若与直线垂直的直线过点,且与抛物线相交于点、,设线段、的中点分别为、,如图,求证:直线过定点;(3)设抛物线上的点、在其准线上的射影分别为、,若△的面积是△的面积的两倍,如图,求线段中点的轨迹方程.【答案】(1);(2);(3)【解析】【分析】(1)求出抛物线的焦点坐标,由直线方程的点斜式写出直线l的方程,和抛物线方程联立后利用2得直线方程.(2由(1)得点P,又直线与直线垂直,将m换为,同理可得Q(,﹣).由此可求直线PQ的方程,可得结论;(3)利用△的面积是△的面积的两倍,求出N的坐标,再利用直线的斜率公式及点差法求TS中点的轨迹方程.【详解】(1)抛物线焦点坐标为F(1,0),设直线方程为x=my+1,设点A(x1,y1),B(x2,y2),联立,得:y2﹣4my﹣4=0,则由韦达定理有:y1+y2=4m,①,y1y2=﹣4,②∵2,∴1﹣x1=2(x2﹣1),﹣y1=2y2,③,由①②③可得m2,∴,∴直线方程为x=y+1,即.(2)由(1)得点P,又直线与直线垂直,将m换为,同理可得Q(,﹣).m时,直线PQ的斜率k PQ,直线PQ的方程为:y-2m(x﹣1﹣2),整理为m(x﹣3)﹣(m2﹣1)y=0,于是直线PQ恒过定点E(3,0),m=±1时,直线PQ的方程为:x=3,也经过点E(3,0).综上所述:直线PQ恒过定点E(3,0).(3)设S(x1,y1),T(x2,y2),F(1,0),准线为x=﹣1,2||=|y1﹣y2|,设直线TS与x轴交点为N,∴S△TSF|FN||y1﹣y2|,∵的面积是△TSF的面积的两倍,∴|FN|=,∴|FN|=1,∴x N=2,即N(2,0).设TS中点为M(x,y),由得﹣=4(x1﹣x2),又,∴,即y2=2x﹣4.∴TS中点轨迹方程为y2=2x﹣4.【点睛】本题考查了抛物线的标准方程及其几何性质的应用,考查轨迹方程的求解,考查了直线与抛物线的位置关系,考查了推理能力与计算能力,是中档题.21.设各项均为正数的数列的前项和为,且,(,),数列满足().(1)求数列、的通项公式;(2)设,是的前项和,求正整数,使得对任意的,均有;(3)设,且,其中(,),求集合中所有元素的和.【答案】(1),;(2);(3)见解析.【解析】【分析】(1)①a1=1,a n2=S n+S n﹣1(n∈N*,n≥2),S n+1+S n,相减可得:a n+1+a n,化简利用已知条件及其等差数列的通项公式可得a n.②数列{b n}满足(n∈N*).n≥2时,b1b2•…b n﹣1,相除可得b n.(2)c n,利用求和公式与裂项求和方法可得:T n.作差T n+1﹣T n,利用其单调性即可得出.(3)x=k1b1+k2b2+…+k n b n,且x>0,其中k1,k2,…,k n∈{﹣1,1}(n∈N*,n≥2),①要使x>0,则必须k n=1.其它k1,k2,…,k n﹣1∈{﹣1,1}(n∈N*,n≥2),可任取1,﹣1.通过放缩及其求和公式即可证明.另外k n=1.此时:x≥﹣2﹣22﹣……﹣2n﹣1+2n>0.②其它k1,k2,…,k n﹣1∈{﹣1,1}(n∈N*,n≥2),可任取1,﹣1.此时集合内的元素x共有2n﹣1个互不相同的正数,利用乘法原理可得:表示x的式子共有2n﹣1个.利用反证法证明这2n﹣1个式子所表示的x互不相等,再分析求解所有元素的和.【详解】(1)①a1=1,a n2=S n+S n﹣1(n∈N*,n≥2),∴S n+1+S n,相减可得:a n+1+a n,化为:(a n+1+a n)(a n+1﹣a n﹣1)=0,∵a n+1+a n>0,∴a n+1﹣a n=1,又S2+S1,可得a2﹣2=0,a2>0,解得:a2=2,∴a2﹣a1=1,∴数列{a n}设等差数列,a n=1+n﹣1=n.②数列{b n}满足(n∈N*).n≥2时,b1b2•…b n﹣1,∴.(2)c n,∴T n(1).T n+1﹣T n().n≤3时,T n+1≥T n.n≥4时,T n+1≤T n.当m=4时,使得对任意的n∈N*,均有T m≥T n.(3)x=k1b1+k2b2+…+k n b n,且x>0,其中k1,k2,…,k n∈{﹣1,1}(n∈N*,n≥2),①要使x>0,则必须k n=1.其它k1,k2,…,k n﹣1∈{﹣1,1}(n∈N*,n≥2),可任取1,﹣1.证明:若k n=﹣1,则x=k1•2+k2•22+…+k n﹣1•2n﹣1﹣k n•2n≤2+22+……+2n﹣1﹣2n2n =﹣2<0,此时x恒为负数,不成立.∴k n=1.此时:x≥﹣2﹣22﹣……﹣2n﹣1+2n2n=2>0,故k1,k2,…,k n﹣1∈{﹣1,1}(n∈N*,n≥2),可任取1,﹣1.②其它k1,k2,…,k n﹣1∈{﹣1,1}(n∈N*,n≥2),可任取1,﹣1.此时集合内的元素x共有2n﹣1个互不相同的正数.证明:k1,k2,…,k n﹣1∈{﹣1,1}(n∈N*,n≥2),利用乘法原理可得:表示x的式子共有2n﹣1个.下面证明这2n﹣1个式子所表示的x互不相等,具体如下:证明:假如这2n﹣1个式子所表示的x存在相等的数,x1=2n+k n﹣1•2n﹣1+……+k2•22+k1•2=x2=2n•2n﹣1•22•2.k i,∈{﹣1,1}(i∈N*,n﹣1≥i≥2),即满足k i∈{﹣1,1}(i∈N*,n﹣1≥i≥2)的第一组系数的下标数为m.则•2m•2m﹣1+()•2m﹣2+……+()•2,而|•2m﹣1+()•2m﹣2+……+()•2|≤2•2m﹣1+2•2m﹣2+……+2×2=2m+1﹣4<|•2m|<2m+1.因此,假设不成立,即这2n﹣1个式子所表示的x互不相等.③这2n﹣1个x互不相等的正数x(每个均含k n b n=2n).又k i=1或﹣1(i=1,2,……,n﹣1)等可能出现,因此所有k i b i(i=1,2,……,n﹣1)部分的和为0.欢迎下载!祝您成绩进步,生活愉快!故集合B中所有元素的和为所有k n b n=2n的和,即2n•2n﹣1=22n﹣1.【点睛】本题考查了数列递推关系、等比数列的通项公式与求和公式、数学归纳法、方程与不等式的解法、反证法,考查了推理能力与计算能力,属于难题.- 21 -。

2019年静安区初三二模数学试卷(含详细答案)

2019年静安区初三二模数学试卷(含详细答案)

静安区 2019学年第二学期期中教学质量调研九年级数学试卷2019.4(满分 150分,100分钟完成)考生注意:1.本试卷含三个大题,共 25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、 本调研卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共 6题,每题 4分,满分 24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用 2B 铅笔正确填涂] 1 2等于 1. 2 (A ) 2;2.下列二次根式里,被开方数中各因式的指数都为 1的是 (A ) x 2y 2; (B ) x 2 y 2; (C ) (x y )2; (D ) xy 2.(B )2;(C ) 2;2 (D )2 .2 3.关于 x 的一元二次方程 x 2mx 10的根的情况是(A )有两个不相等的实数根; (C )没有实数根;(B )有两个相等的实数根;(D )不能确定.4.一次数学作业共有 10道题目,某小组 8位学生做对题目数的情况如下表:做对题目数 人数6 17 18 29 310 1那么这 8位学生做对题目数的众数和中位数分别是 (A )9和 8; (B )9和 8.5; (C )3和 2; 5.在下列图形中,一定是中心对称图形,但不一定是轴对称图形的为 (A )正五边形; (B )正六边形; (C )等腰梯形;(D )3和 1.(D )平行四边形. 6.已知四边形 ABCD 中,对角线 AC 与 BD 相交于点 O ,AD //BC ,下列判断中错误的是 .. (A )如果 AB =CD ,AC =BD ,那么四边形 ABCD 是矩形; (B )如果 AB //CD ,AC =BD ,那么四边形 ABCD 是矩形; (C )如果 AD =BC ,AC ⊥BD ,那么四边形 ABCD 是菱形; (D )如果 OA =OC ,AC ⊥BD ,那么四边形 ABCD 是菱形. 二、填空题:(本大题共 12题,每题 4分,满分 48分) [在答题纸相应题号后的空格内直接填写答案]8.在实数范围内分解因式:2x 26 ▲.2x3 0, 9.不等式组 x5的解集是▲.10.函数 y x2x 3的定义域是 ▲ . 11.如果函数 y 3m 1的图像在每个象限内,当自变量 x 的值逐渐增大时,y 的值随着逐渐增大,那么mx的取值范围是▲.1 1 1 12.如果实数 x 满足(x)2(x) 20,那么 x的值是 ▲ .x xx频率13.为了解全区 5000名初中毕业生的体重情况,随机抽测了 400名学生的体重,频率分布如图所示(每小 组数据可含最小值,不含最大值),其中从左至右前四个小长方形的高依次为 0.02、0.03、0.04、0.05, 由此可估计全区初中毕业生的体重不小于 60千克 组距0.04 0.03 0.020.01 40 45 50 55 60 65 70体重(千克)(第 13题图)的学生人数约为▲人.AD14.布袋里有三个红球和两个白球,它们除了颜色外其他都相同,从布袋里摸出两个球,摸到两个红球的概率是▲.B (第 15题图)C D 15.如图,在△ABC 中,点 D 是边 AC 的中点,如果 ABa , BCb ,那么 BD(用向量a 、b 表示). 16.如图,在正方形 ABCD 中,点 E 、F 分别在边 BC 、CD 上,△AEF 是等边三角形,如果 AB =1,那么 CE 的长是 A F▲CE(第 16题图)▲ .17.在 Rt △ABC 中,∠C =90°,∠B =70°,点 D 在边 AB 上,△ABC 绕点 D 旋转后点 B 与点 C 重合,点 C 落在点 C ’, AB那么∠ACC ’的度数是18.如图,⊙A 和⊙B 的半径分别为 5和 1,AB =3,点 O 在直线AB 上,⊙O 与⊙A 、⊙B 都内切,那么⊙O 半径是▲.▲.(第 18题图)三、解答题:(本大题共 7题,满分 78分)[将下列各题的解答过程,做在答题纸的相应位置上] 19.(本题满分 10分)x 3 x 1 1化简:( - ) ,并求 x时的值. x 2 x 6 x 2 4 x 2 2 320.(本题满分 10分)解方程: x1 2x 5 1.21.(本题满分 10分,每小题满分 5分)已知:如图,在 Rt △ABC 和 Rt △BCD 中,∠ABC =∠BCD =90°,BD 与 AC 相交于点 E , A3 5 . 12 AB =9,cosBAC , tan DBC5DC求:(1)边 CD 的长; E(2)△BCE 的面积.B(第 21题图)22.(本题满分 10分,第(1)小题满分 6分,第(2)小题满分 4分)有两种包装盒,大盒比小盒可多装 20克某一物品.已知 120克这一物品单独装满小盒比单独装满大盒 多 1盒.(1)问小盒每个可装这一物品多少克?(2)现有装满这一物品两种盒子共 50个.设小盒有 n 个,所有盒子所装物品的总量为 w 克.①求 w 关于n 的函数解析式,并写出定义域;②如果小盒所装物品总量与大盒所装物品总量相同,求所有盒子所装物品的总量.23.(本题满分12分,第小题满分6分)已知:如图,在菱形ABCD中,点E在边BC上,点F在BA的延长线上,BE=AF,CF//AE,CF与边AD相交于点G. F求证:(1)FD=CG;A(2)CG 2 FGGFC .B DEC(第23题图)24.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)已知二次函数y 1 x2 bx c的图像与x轴的正半轴相交于点A(2,0)和点B、2与y轴相交于点C,它的顶点为M、对称轴与x轴相交于点N.y(1)用b的代数式表示顶点M的坐标;(2)当tan∠MAN=2时,求此二次函数的解析式及∠ACB的正切值.2AO 2 x(第24题图)25.(本题满分14分,第(1)小题满分6分,第(2)小题满分8分)如图,已知⊙O的半径OA的长为2,点B是⊙O上的动点,以AB为半径的⊙A与线段OB相交于点AC的延长线与⊙O相交于点D.设线段AB的长为x,线段OC的长为y.(1)求y关于x的函数解析式,并写出定义域;(2)当四边形ABDO是梯形时,求线段OC的长.DBCAO(第25题图)静安区质量调研九年级数学试卷参考答案及评分标准 2019.4.20一、选择题:(本大题共 6题,每题 4分,满分 24分) 1.C ; 2.B ; 3.A ; 4.B ; 5.D ; 6A .二.填空题:(本大题共 12题,满分 48分) 7.1 ;8.2(x 3)(x 3);9.3 x 5;2 210. x3;13.1500;16. 3 1; 11.m1; 12.2;314. 310 ;15. b 1 a ;1 2 3 2 9 17.50°; 18.或. 2 2三、(本大题共 7题,第 19~22题每题 10分,第 23、24题每题 12分,第 25题 14分,满分 78分)x 3 x 119.解:原式=[ ]……………………………………(3分) (x 3)(x 2) (x 2)(x 2)x 2 x 2 x =[ ](x 2)……………………………………(2分) (x 2)(x 2) (x 2)(x 2) 2=.…………………………………………………………………………(2分) 2 3时,…………………………………………………………(1分) x 2 1 当 x 2 3 原式= 2 = 2 3.……………………………………………………………………(2分) 3 320.解: 2x5 1x 1,………………………………………………………………(1分) 2x 5 12 x 1x1,…………………………………………………………(2分)2 x 1 7x .………………………………………………………………………(1分) 4x449 14xx 2,………………………………………………………………(2分)x 2 18x 450,……………………………………………………………………(1分)x 13, x 2 15,………………………………………………………………………(1分)经检验: x 13, x 2 15都是增根,………(1分)所以原方程无解.…………(1分)21.解:(1)在 Rt △ABC 中,cosBAC AB 3.………………………………………(1分)AC 5∴ AC5 AB15,………………………………………………………………(1分)∴BC = AC 2 AB 2 152 92 12.…………………………………………(1分)在 Rt △BCD 中, tanDBC CD BC 5,………………………………………(1分)12∴CD =5.…………………………………………………………………………(1分) (2)过点 E 作 EH ⊥BC ,垂足为 H ,…………………………………………………(1分)∵∠ABC =∠BCD =90°,∴∠ABC +∠BCD =180°,∴CD //AB .∴ CE DC 5.………………………………………………………………(1分) AE AB 9∵∠EHC =∠ABC =90°,∴EH//AB ,∴ EH CE 5.…………………(1分)AB CA 14 ∴ EH5 AB 5 9 45.…………………………………………………(1分) 14 14 14∴ S EBC 1 BC EH 1 1245 1357.……………………………………(1分)2214 22.解:(1)设小盒每个可装这一物品 x 克,…………………………………………………(1分)∴120 x 1201,…………………………………………………………………(2分)x 20x 2 20x 2400 0,……………………………………………………………(1分)x 140, x 260,………………………………………………………………(1分)它们都是原方程的解,但 x60不合题意.∴小盒每个可装这一物品 40克.(1分) (2)① w40 n 60 (50 n )300020 n ,(0n50,n 为整数)…………(2分)② 40 n60 (50 n ), n 30, w 2400 .…………………………………(2分)∴所有盒子所装物品的总量为 2400克.23.证明:(1)∵在菱形 ABCD 中,AD //BC ,∴∠FAD =∠B ,……………………………(1分)又∵AF=BE ,AD =BA ,∴△ADF ≌△BAE .……………………………………(2分) ∴FD =EA ,…………………………………………………………………………(1分) ∵CF //AE ,AG //CE ,∴EA =CG .…………………………………………………(1分) ∴FD=CG .…………………………………………………………………………(1分)(2)∵在菱形 ABCD 中,CD //AB ,∴∠DCF =∠BFC .……………………………(1分)∵CF //AE ,∴∠BAE =∠BFC ,∴∠DCF =∠BAE .……………………………(1分) ∵△ADF ≌△BAE ,∴∠BAE =∠FDA ,∴∠DCF =∠FDA .…………………(1分) 又∵∠DFG =∠CFD ,∴△FDG ∽△FCD .……………………………………(1分)∴ FD FC FG , FD 2FG FC .…………………………………………………(1分)FD ∵FD=CG ,CG 2FG FC .……………………………………………………(1分) 24.解:(1)∵二次函数 y1 x 2bxc 的图像经过点 A (2,0),2 ∴0 1 4 2b c ,………………………………………………………………(1分)2 ∴ c22b ,…………………………………………………………………………(1分)∴ y 1 x 2 bx c 1 x 2bx22b1 (xb ) 2b 24b4,………(2分)2 22 2∴顶点 M 的坐标为(b , b 2 4b4).……………………………………………(1分)2MN(2)∵tan ∠MAN = 2,∴MN =2AN .………………………………………………(1分)AN∵M (b , b 2 4b 4 2),∴ N (b ,0), MN b 2 4b 4 1 (b 2) .……(1分) 22 2 ①当点 B 在点 N 左侧时, AN =2b ,∴ 1 ( b 2) 2(2 b ),b 2.22不符合题意.…………………………………………………………………………(1分) 1 ②当点 B 在点 N 右侧时, AN = b 2,∴ (b 2)2 2(b 2), b 6.…………(1分)2∴二次函数的解析式为 y1 x2 6x 10.………………………………………(1分)2∴点 C (0,–10),∵点 A 、B 关于直线 MN 对称,∴点 B (10,0).∵OB =OC =10,∴BC =10 2,∠OBC =45°.………………………………………(1分) 过点 A 作 AH ⊥BC ,垂足为 H ,∵AB =8,∴AH =BH =4 2,∴CH =6 2. ∴ tan ACBAH 4 22.……………………………………………………(1分)CH 6 2 325.解:(1)在⊙O 与⊙A 中,∵OA=OB ,AB=AC ,∴∠ACB =∠ABC =∠OAB .……(2分)ABC .…………………………………………………………………(1分) ∴ BC AB AB OA ,∴ BC x x ,………………………………………………………(1分)2 ∴ BC1 2x 2,∵OC=OB –BC ,∴y 关于 x 的函数解析式 y2 1 x 2,……(1分)2定义域为0 x2.………………………………………………………………(1分)122 1 x2x2(2)①当OD//A B时,∴ BC ABCO OD ,∴x,……………………………(1分)22∴ x 2 1 x2,∴ x 2 2x 4 0,……………………………………………(1分)2∴ x 15(负值舍去).……………………………………………………(1分)∴AB= 5 1,这时AB OD,符合题意.∴OC =2 1 x2 2 1 ( 5 1)2 5 1.………………………………………(1分)2 2②当BD//OA时,设∠ODA=,∵BD//OA,OA=OD,∴∠BDA=∠OAD=∠ODA=,又∵OB=OD,∴∠BOA =∠OBD=∠ODB=2.…………………………………(1分)∵AB=AC,OA=OB,∴∠OAB=∠ABC=∠ACB=∠COA+∠CAO=3.………(1分)∵∠AOB+∠OAB +∠OBA =180°,∴233180,∴22.5,∠BOA=45°.………………………………………………………(1分)∴∠ODB=∠OBD=45°,∠BOD=90°,∴BD =2 2 .∵BD//OA,∴ BC BD.OACO∴ 2y 2 2,∴ y 2 2 2.OC 2 2 2.………………………………(1分)y 2由于BD OA,OC 2 2 2符合题意.∴当四边形ABDO是梯形时,线段OC的长为 5 1或2 2 2.或:过点B作BH⊥OA ,垂足为H ,BH=OH = 2,AH=2–2,∴ AB 2 AH 2 BH 2 (2 2)2 ( 2)2 8 4 2 .∴OC 2 12x2 2 1 AB2 2 (4 2 2) 2 2 2 .…………………………(1分)2。

2019年广东省揭阳市高考数学二模试卷(文科)(解析版)

2019年广东省揭阳市高考数学二模试卷(文科)(解析版)

2019年广东省揭阳市高考数学二模试卷(文科)一、选择题(本大题共12小题,共60.0分)1. 已知集合M ={x |-1<x <1}, ,则M ∩N =( )A.B.C.D.2. 复数的共轭复数的虚部为( )A.B.C.D.3. 已知双曲线mx 2+y 2=1的一条渐近线方程为2x +y =0,则m 的值为( )A.B.C.D.4.由K 2=得K 2=≈8.333>7.879参照附表,得到的正确结论是( )A. 有 以上的把握认为“爱好该项运动与性别有关”B. 有 以上的把握认为“爱好该项运动与性别无关”C. 在犯错误的概率不超过 的前提下,认为“爱好该项运动与性别有关”D. 在犯错误的概率不超过 的前提下,认为“爱好该项运动与性别无关”5. 某公司2018年在各个项目中总投资500万元,如图是几类项目的投资占比情况,已知在1万元以上的项目投资中,少于3万元的项目投资占,那么不少于3万元的项目投资共有( ) A. 56万元 B. 65万元 C. 91万元 D. 147万元6. 已知,,若θ是第二象限角,则tanθ的值为( )A.B.C.D.7. 已知α,β是平面,m ,n 是直线.下列命题中不正确的是( )A. 若 , ,则B. 若 , ,则C. 若 , ,则D. 若 , ,则8. 已知函数则的是( ) A.B.C. eD. 39. 我国古代数学专著《九章算术》中有一个“两鼠穿墙题”,其内容为:“今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半.问何日相逢?各穿几何?”如图的程序框图源于这个题目,执行该程序框图,若输入x =20,则输出的结果为( ) A. 3 B. 4 C. 5 D. 6 10. 设函数,则下列结论错误的是( )A. 为 的一个周期B. 的图象关于直线对称 C. 的一个零点为D. 的最大值为211. 设F 是椭圆 :> > 的右焦点,A 是椭圆E 的左顶点,P 为直线上一点,△APF是底角为30°的等腰三角形,则椭圆E 的离心率为( )A.B.C.D.12. 若函数f (x )=-x 2(x 2+ax +b )的图象关于直线x =-1对称,则f (x )的最大值是( )A. B. C. 0 D. 1 二、填空题(本大题共4小题,共20.0分)13. 若x ,y 满足约束条件,则z =3x -2y 的最小值为______. 14. 已知平面向量 ,, , ,且 ∥ ,则实数m 的值为______.15. 已知四棱锥S -ABCD 的底面是边长为 的正方形,且四棱锥S -ABCD 的顶点都在半径为2的球面上,则四棱锥S -ABCD 体积的最大值为______.16. 已知△ABC 中, ,D 是BC 边上的一点,且△ABD 为等边三角形,则△ACD 面积S 的最大值为______.三、解答题(本大题共7小题,共82.0分)17. 已知等差数列{a n }的前n 项和为S n ,公差d 不为零,若a 1,a 3,a 9成等比数列,且S4=10.(1)求数列{a n }的通项公式;(2)求证:< .18. 已知如图,长方体ABCD -A 1B 1C 1D 1中,AB =BC =4, ,点E ,F ,M 分别为C 1D 1,A 1D 1,B 1C 1的中点,过点M 的平面α与平面DEF 平行,且与长方体的面相交,交线围成一个几何图形.(1)在图中画出这个几何图形,并求这个几何图形的面积(画图说出作法,不用说明理由);(2)求证:D1B平面DEF.19.已知抛物线C:x2=4y的焦点为F,直线y=kx+m(m>0)与抛物线C交于不同的两点M,N.(1)若抛物线C在点M和N处的切线互相垂直,求m的值;(2)若m=2,求|MF|•|NF|的最小值.20.某快递公司收取快递费用的标准是:重量不超过1kg的包裹收费10元;重量超过1kg的包裹,除收费10元之外,超过1kg的部分,每超出1kg(不足1kg,按1kg计算)需要再收费5元.该公司近60天每天揽件数量的频率分布直方图如下图所示(同一组数据用该区间的中点值作代表).(1)求这60天每天包裹数量的平均值和中位数;(2)该公司从收取的每件快递的费用中抽取5元作为前台工作人员的工资和公司利润,剩余的作为其他费用.已知公司前台有工作人员3人,每人每天工资100元,以样本估计总体,试估计该公司每天的利润有多少元?(3)小明打算将A(0.9kg),B(1.3kg),C(1.8kg),D(2.5kg)四件礼物随机分成两个包裹寄出,且每个包裹重量都不超过5kg,求他支付的快递费为45元的概率.21.已知函数f(x)=x-a ln x-1.(1)若函数f(x)的极小值为0,求a的值;(2)∀t>0且a≤1,求证:>.22.在直角坐标系xOy中,直线:,圆:,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(1)求C1,C2的极坐标方程;(2)若直线C3的极坐标方程为,设C1与C2的交点为O,A,圆C2与C3的交点为O,B,求△OAB的面积.23.已知正实数x,y满足x+y=1.(1)解关于x的不等式;(2)证明:.答案和解析1.【答案】A【解析】解:;∴.故选:A.可以求出集合N,然后进行交集的运算即可.考查描述法的定义,以及交集的运算.2.【答案】C【解析】解:设z====,所以z的共轭复数的虚部为-,故选:C.先求出复数的代数形式,即可得到的共轭复数的虚部本题考查了复数代数形式的乘除运算,考查了共轭复数的概念,是基础题.3.【答案】D【解析】解:双曲线mx2+y2=1的渐近线方程为:y±x=0,因为双曲线mx2+y2=1的一条渐近线方程为2x+y=0,可得,解得m=-4.故选:D.求出双曲线的渐近线方程与已知渐近线方程对比,即可求出m的值.本题考查双曲线的简单性质的应用,是基本知识的考查.4.【答案】A【解析】解:由题意知K2=≈8.333>7.879,对照临界值得出,有99.5%以上的把握认为“爱好该项运动与性别有关”.故选:A.由题意知观测值K2,对照临界值得出结论.本题考查了独立性检验原理的应用问题,是基础题.5.【答案】B【解析】解:由题意,因为在1万元以上的项目投资中,少于3万元的项目投资占,所以在1万元以上的项目投资中,不少于3万元的项目投资占比为,而1万元以上的项目投资占总投资的比例为1-46%-33%=21%,所以不少于3万元的项目投资共有500×21%×=65万元,故选:B.根据题意,在1万元以上的项目投资中,少于3万元的项目投资占,可得不少于3万元的项目投资占比为,而1万元以上的项目投资占总投资的比例为1-46%-33%=21%,即可得到那么不少于3万元的项目投资.本题考查了扇形图的读图识图能力,属于基础题.6.【答案】C【解析】解:∵,∴sin2θ+cos2θ=()2+(-)2=1,解得:a=0,或a=4,∵θ为第二象限角,∴sinθ>0,cosθ<0.∴a=4,∴可得:sinθ=,cosθ=-,tanθ=-.故选:C.利用sin2θ+cos2θ=1,解得a.由于θ为第二象限角,可得sinθ>0,cosθ<0.即可得出a的值,进而可求tanθ的值.本题考查了同角三角函数的基本关系式、三角函数值的符号,考查了推理能力与计算能力,属于基础题.7.【答案】B【解析】解:对于A,根据两条平行线中一条垂直某平面,另一条也垂直这平面可判定A正确;对于B,若m∥α,α∩β=n,则m∥n或异面,故错;对于C,根据线面垂直的性质、面面平行的判定,可知C正确;对于D,根据面面垂直的判定,可D正确;故选:B.A,根据两条平行线中一条垂直某平面,另一条也垂直这平面可判定;B,若m∥α,α∩β=n,则m∥n或异面,;C,根据线面垂直的性质、面面平行的判定判定;D,根据面面垂直的判定;本题考查了命题真假的判定,属于基础题.8.【答案】D【解析】解:根据题意,函数则f ()=ln=-ln3,则f[f ()]=f(-ln3)=e ln3=3;故选:D.根据题意,由函数的解析式求出f ()=-ln3,进而可得f[f ()]=f(-ln3),计算可得答案.本题考查函数值的计算,涉及分段函数的解析式,属于基础题.9.【答案】C【解析】解:若x=20,则T=1+1=2,S=0+2=2,S<20是,a=2,b=,n=2T=2+=,S=+2=,S<20是,a=4,b=,n=3,T=4+=,S=+=,S<20是,a=8,b=,n=4,T=8+=,S=+=,S<20是,a=16,b=,n=5,T=16+=,S=+=,S<20否,程序终止,输出,n=5,故选:C.根据程序框图进行模拟计算即可.本题主要考查程序框图的识别和判断,利用模拟运算法是解决本题的关键.考查学生的计算能力.10.【答案】D【解析】解:∵函数=cos2x+cos2x=(+1)cos2x,故它的周期为=π,故A正确;当x=,求得f(x)=-(+1),为最小值,故它的图象关于直线x=对称,故B正确;当x=,求得f(x)=0,故f(x)的一个零点为x=,故C正确;由于f(x)的最大值为+1,故D错误,故选:D.由题意利用诱导公式化简函数的解析式,再利用余弦函数的性质得出结论.本题主要考查诱导公式、余弦函数的性质,属于基础题.11.【答案】B【解析】解:设交x轴于点M,∵△FPA是底角为30°的等腰三角形∴∠PFA=120°,|PF|=|FA|,且|PF|=2|FM|∵P为直线上一点,∴2(-c)=a+c,解之得2a=3c∴椭圆E的离心率为e==故选:B.利用△FPA是底角为30°的等腰三角形,可得|PF|=|FA|,根据P为直线上一点建立方程,由此可求椭圆的离心率.本题给出与椭圆有关的等腰三角形,在已知三角形形状的情况下求椭圆的离心率.着重考查椭圆的几何性质,解题的关键是确定几何量之间的关系,属于基础题.12.【答案】C【解析】解:因为函数f(x)=-x2(x2+ax+b)的图象关于直线x=-1对称,则,即,解得,当a=b=4时,f(x)=f(-2-x)恒成立,即a=b=4满足题意,即f(x)=-x2(x+2)2=-[(x+1)2-1]2,当x=0时,f(x)取最大值0,故选:C.由函数的性质得:函数f(x)=-x2(x2+ax+b)的图象关于直线x=-1对称,则,即,解得,当a=b=4时,f(x)=f(-2-x)恒成立,即a=b=4满足题意,由二次函数的最值问题得:f(x)=-x2(x+2)2=-[(x+1)2-1]2,当x=0时,f(x)取最大值0,得解.本题考查了函数的性质及二次函数的最值问题,属中档题.13.【答案】0【解析】解:由z=3x-2y得y=x-,作出不等式组对应的平面区域如图(阴影部分):平移直线y=x-由图象可知当直线y=x-经过点A时,直线的截距最小,此时z也最小,由,解得O(0,0)将O(0,0)代入目标函数z=3x-2y,得z=0.故答案为:0.作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.14.【答案】【解析】解:平面向量,且∥,所以,2m+1-(-)•2m=0,解得m=-.故答案为:-.根据平面向量的共线定理与坐标表示,列方程求出m的值.本题考查了平面向量的共线定理与坐标运算问题,是基础题.15.【答案】6【解析】解:设M为正方形ABCD的中心,O为外接球的球心,则OM平面ABCD,∵正方形ABCD边长为,∴AM=,∴OM==1,当S,O,M在同一条直线上且O在四棱锥内部时,S到平面ABCD的距离取得最大值,最大距离为2+1=3.∴四棱锥的最大体积为()2×3=6.故答案为:6.计算球心到平面ABCD的距离,得出S到平面ABCD的最大距离,再根据体积公式计算最大体积.本题考查了棱锥与外接球的位置关系,棱锥的体积计算,属于中档题.16.【答案】【解析】解:△ABC 中,,且△ABD为等边三角形,如图所示;则∠ADC=120°,△ADC中,AC=2,由余弦定理得:AC2=CD2+AD2-2CD•AD•cos∠ADC,即12=CD2+AD2-2CD•AD•(-),又CD2+AD2≥2CD•AD,所以3CD•AD≤12,即CD•AD≤4,当且仅当CD=AD=2时取“=”;所以△ACD面积为S=AD•CD•sin∠ADC≤×4×=,即△ACD面积S的最大值为.故答案为:.利用余弦定理和基本不等式求得CD•AD的最大值,再求△ACD面积S的最大值.本题考查了余弦定理以及三角形面积的计算问题,也考查了利用基本不等式求最值的应用问题,是中档题.17.【答案】解:(1)由a1,a3,a9成等比数列,可得且d≠0,化简得a1=d-------------------------------(3分)由S4=10可得2a1+3d=5由上解得a1=d=1,∴a n=1+(n-1)•1=n------------------------------(6分)(2)由(1)知,-------------------------------(7分)-----------------------------(9分)∴<------------(12分)【解析】(1)利用等比数列以及等差数列,转化求解数列的首项与公差,得到数列的通项公式.(2)求出数列的和,利用裂项消项法求解数列的和即可.本题考查等差数列以及等比数列的应用,数列求和,考查计算能力.18.【答案】解:(1)设N为A1B1的中点,连结MN,AN、AC、CM,则四边形MNAC为所作图形.由题意知MN∥A1C1(或∥EF),四边形MNAC为梯形,且,过M作MP AC于点P,可得,,得,∴梯形MNAC的面积=.证明:(2)证法1:在长方体中ABCD-A1B1C1D1,设D1B1交EF于Q,连接DQ,则Q为EF的中点并且为D1B1的四等点,如图,,由DE=DF得DQ EF,又EF BB1,∴EF平面BB1D1D,∴EF D1B,,∴∠D1QD=∠BD1D,∴∠QD1B+∠D1QD=∠DD1B+∠BD1Q=90°,∴DQ D1B,∴D1B平面DEF.证法2:设D1B1交EF于Q,连接DQ,则Q为EF的中点,且为D1B1的四等分点,,由BB1平面A1B1C1D1可知BB1EF,又B1D1EF,BB1∩B1D1=B1,∴EF平面BB1D1D,∴EF D1B,由得tan∠QDD1=tan∠D1BD,得∠QDD1=∠D1BD,∴∠QDB+∠D1BD=∠QDB+∠QDD1=90°,∴DQ D1B,又DQ∩EF=Q,∴D1B平面DEF.【解析】(1)设N为A1B1的中点,连结MN,AN、AC、CM,则四边形MNAC为所作图形.推导出四边形MNAC为梯形,过M作MP AC于点P,由此能求出梯形MNAC的面积.(2)证法1:设D1B1交EF于Q,连接DQ,则Q为EF的中点并且为D1B1的四等点,推导出EF平面BB1D1D,从而EF D1B,推导出DQ D1B,由此能证明D1B平面DEF.证法2:设D1B1交EF于Q,连接DQ,则Q为EF的中点,且为D1B1的四等分点,推导出BB1EF,从而EF平面BB1D1D,EF D1B,推导出DQ D1B,由此能证明D1B平面DEF.本题考查几何图形面积的求法,考查空间中直线的位置关系的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理推论证能力、运算求解能力,是中档题.19.【答案】解:(1)设M(x1,y1),N(x2,y2),对求导得:,------------------------------------(1分)故抛物线C在点M和N处切线的斜率分别为和,又切线垂直,∴,即x1•x2=-4,-------------------------------------------------(3分)把y=kx+m代入C的方程得x2-4kx-4m=0.∴x1x2=-4m.-------------------------------(5分)故m=1.------------------------------------------------(6分)(2)解:设M(x1,y1),N(x2,y2),由抛物线定义可知|MF|=y1+1,|NF|=y2+1---------------(8分)由(1)和m=2知x1x2=-8,x1+x2=4k所以=4k2+9------(11分)所以当k=0时,|MF|•|NF|取得最小值,且最小值为9.-----------------------------------------------------(12分)【解析】(1)设M(x1,y1),N(x2,y2),对求导得:,故抛物线C在点M和N处切线的斜率分别为和,通过切线垂直,得到x1•x2=-4,把y=kx+m代入C的方程得x2-4kx-4m=0.利用韦达定理求解即可.(2)设M(x1,y1),N(x2,y2),由抛物线定义可知|MF|=y1+1,|NF|=y2+1,由(1)和m=2知x1x2=-8,x1+x2=4k,求出|MF|•|NF|的表达式,然后求解最小本题考查直线与抛物线的位置关系的应用,考查转化思想以及计算能力.20.【答案】解:(1)每天包裹数量的平均数为0.1×50+0.1×150+0.5×250+0.2×350+0.1×450=260;--------------------------------------------(2分)【或:由图可知每天揽50、150、250、350、450件的天数分别为6、6、30、12、6,所以每天包裹数量的平均数为】设中位数为x,易知x(200,300),则0.001×100×2+0.005×(x-200)=0.5,解得x=260.所以公司每天包裹的平均数和中位数都为260件.-----------------------------------------(4分)(2)由(1)可知平均每天的揽件数为260,利润为260×5-3×100=1000(元),所以该公司平均每天的利润有1000元.-------------------------------------------------(7分)(3)设四件礼物分为二个包裹E、F,因为礼物A、C、D共重0.9+1.8+2.5=5.2(千克),礼物B、C、D共重1.3+1.8+2.5=5.6(千克),都超过5千克,------------------(8分)故E和F的重量数分别有1.8和4.7,2.5和4.0,2.2和4.3,2.7和3.8,3.1和3.4共5种,对应的快递费分别为45、45、50,45,50(单位:元)------------------------------(10分)故所求概率为.----------------------------------------------------------------------------------(12分)【解析】(1)根据频率分布直方图,将每一组的中点作为改组数据的代表值,对应的频率作为权重,取加权平均即可.(2)根据(1)中得到的平均值,求出每天的费用,减去300元的前台工作人员工资即可.(3)将4件礼物分成2个包裹,且每个包裹重量都不超过5kg,共有5种分法,其中快递费用为45的有3种,可得概率.本题考查了用频率分布直方图估计平均值,考查频率公式,频率分布直方图的应用,古典概型的概率求法.属于基础题.21.【答案】解:(1)∵函数f(x)=x-a ln x-1,∴,当a≤0时,f (x)>0,函数f(x)在定义域上递增,不满足条件;当a>0时,函数f(x)在(0,a)上递减,在(a,+∞)上递增,故f(x)在x=a取得极小值0,∴f(a)=a-a lna-1=0,令p(a)=a-a lna-1,p'(a)=-ln a,所以p(a)在(0,1)单调递增,在(1,+∞)单调递减,故p(a)≤p(1)=0,∴f(a)=0的解为a=1,故a=1.证明:(2)证法1:由>>>,∵a≤1,所以只需证当t>0时,>恒成立,令,,由(1)可知x-ln x-1≥0,令x=e t得e t-t-1≥0,∴g(t)在(0,+∞)上递增,故g(t)>g(0)=0,故>.证法2:>>>,设(t>0),则g'(t)=e t-at-a,则g''(t)=e t-a,又e t>e0=1,a≤1,得g''(t)>0,∴g'(t)单调递增,得g'(t)>g(0)=1-a≥0,∴g(t)单调递增,得g(t)>g(0)=0,故>.【解析】(1)求出,当a≤0时,f′(x)>0,函数f(x)在定义域上递增,不满足条件;当a>0时,函数f(x)在(0,a)上递减,在(a,+∞)上递增,从而f(x)在x=a取得极小值0,由此能求出a.(2)法1:由,由a≤1,得只需证当t>0时,恒成立,令,x-lnx-1≥0,令x=e t得e t-t-1≥0,由此能证明.法2:,设(t>0),则g'(t)=e t-at-a,推导出g(t)单调递增,得g(t)>g(0)=0,由此能证明.本题考查实数值的求法,考查不等式的证明,考查导数性质、函数的单调性、最值等基础知识,考查运算求解能力,考查化归与转化思想,是中档题.22.【答案】解:(1)因为x=ρcosθ,y=ρsinθ,-------------------------------------------------------(1分)所以C1的极坐标方程为,即(ρR),----------------------------(3分)C2的极坐标方程为ρ2-2ρcosθ-4ρsinθ=0.----------------------------------------------------(4分)即ρ-2cosθ-4sinθ=0----------------------------------------------------------------------------------(5分)(2)代入ρ-2cosθ-4sinθ=0,解得.------------------------------------(7分)代入ρ-2cosθ-4sinθ=0,解得.---------------------------------------------(8分)故△OAB的面积为.----------------------------------(10分)【解析】(1)利用x=ρcosθ,y=ρsinθ可把C1,C2化成极坐标方程;(2)联立极坐标方程并利用极径的几何意义和面积公式可得.本题考查了简单曲线的极坐标方程,属中档题.23.【答案】(1)解:∵x+y=1,且x>0,y>0,∴ <<<<<<,解得<,所以不等式的解集为,,证明:(2)方法一:∵x+y=1,且x>0,y>0,∴ ===.当且仅当时,取“=”.方法二:∵x+y=1,且x>0,y>0,∴ ====,当且仅当时,取“=”.【解析】(1)利用x的取值,去掉绝对值符号,求解绝对值不等式即可.(2)利用已知条件,通过“1”的代换以及基本不等式求解表达式的最小值,证明不等式即可.不等式选讲本小题考查绝对值不等式、基本不等式的解法与性质等基础知识,考查运算求解能力、推理论证能力,考查分类与整合思想、化归与转化思想等.。

2019年高三二模数学(文科)(含答案)

2019年高三二模数学(文科)(含答案)

2019年高三二模数学(文科)(含答案)一、选择题(本大题共12小题,共60分)1.已知i为虚数单位,复数的共扼复数在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.若集合A={x|x<2},B={x|x2-5x+6<0,x∈Z},则A∩B中元素的个数为()A. 0B. 1C. 2D. 33.已知等差数列{a n}的前n项和为S n,若2a6=a3+6,则S7=()A. 49B. 42C. 35D. 284.函数y=的部分图象大致是()A. B.C. D.5.执行如图所示的程序框图,输出的S值为()A. 1B.C.D.6.已知某几何体的三视图如图,则该几何体的表面积是( )A.B.C.D.7.已知F是抛物线C:y2=4x(p>0)的焦点,抛物线C的准线与双曲线Γ:(a>0,b>0)的两条渐近线交于A,B两点,若△ABF为等边三角形,则Γ的离心率e=A. B. C. D.8.定义在R上的函数满足:且,若,则的值是A. B. 0 C. 1 D. 无法确定9.已知f(x)=sin x cosx+cos2x-,将f(x)的图象向右平移个单位,再向上平移1个单位,得到y=g(x)的图象.若对任意实数x,都有g(a-x)=g(a+x)成立,则=()A. B. 1 C. D. 010.直三棱柱ABC-A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A. B. C. D.11.函数f(x)=的零点个数为()A. 3B. 2C. 1D. 012.设x,y满足约束条件且z=x+ay的最小值为7,则a=()A. B. 3 C. 或3 D. 5或二、填空题(本大题共4小题,共20分)13.若x,y满足约束条件,则z=x+2y的最小值为______.14.在平面直角坐标系xOy中,角θ的顶点在原点,始边与x轴的非负半轴重合,终边过点(),则cos(2θ+)=______.15.设数列{a n}的前n项和为S n,且a1=-1,a n+1=S n•S n+1,则数列{a n}的通项公式a n=______.16.已知曲线x2-4y2=4,过点A(3,-1)且被点A平分的弦MN所在的直线方程为______ .三、解答题(本大题共5小题,共70分)17.△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(1)求C;(2)若c=,△ABC的面积为,求△ABC的周长.18.国际奥委会将于2017年9月15日在秘鲁利马召开130次会议决定2024年第33届奥运会举办地,目前德国汉堡,美国波士顿等申办城市因市民担心赛事费用超支而相继退出,某机构为调查我国公民对申办奥运会的态度,选了某小区的100位居民调查结果统计如下:支持不支持合计年龄不大于50岁______ ______ 80年龄大于50岁10______ ______合计______ 70100(1)根据已知数据,把表格数据填写完整;(2)能否在犯错误的概率不超过5%的前提下认为不同年龄与支持申办奥运无关?(3)已知在被调查的年龄大于50岁的支持者中有5名女性,其中2位是女教师,现从这5名女性中随机抽取3人,求至多有1位教师的概率.附:,n=a+b+c+d,P(K2>k)0.1000.0500.0250.010k 2.706 3.841 5.024 6.63519.在平面xOy中,已知椭圆过点P(2,1),且离心率.(1)求椭圆C的方程;(2)直线l方程为,直线l与椭圆C交于A,B两点,求△PAB面积的最大值.20.已知函数f(x)=x2+a ln x.(1)当a=-2时,求函数f(x)的单调区间和极值;(2)若g(x)=f(x)+在上是单调增函数,求实数a的取值范围.21.已知直线l的参数方程为(t为参数),曲线C的极坐标方程为ρsin2θ-16cosθ=0,直线l与曲线C交于A,B两点,点P(1,3).(1)求直线l的普通方程与曲线C的直角坐标方程;(2)求的值.答案和解析1.【答案】B【解析】【分析】利用复数代数形式的乘除运算化简,再由共轭复数的概念求其共轭复数得答案.本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础的计算题.【解答】解:∵=,∴复数的共扼复数为,在复平面内对应的点的坐标为(),位于第二象限.故选B.2.【答案】A【解析】解:集合A={x|x<2},B={x|x2-5x+6<0,x∈Z}={x|2<x<3,x∈Z}=∅,则A∩B=∅,其中元素的个数为0.故选:A.化简集合B,根据交集的定义写出A∩B,再判断其中元素个数.本题考查了集合的化简与运算问题,是基础题.3.【答案】B【解析】解:∵等差数列{a n}的前n项和为S n,2a6=a3+6,∴2(a1+5d)=a1+7d+6,∴a1+3d=6,∴a4=6,∴=42.故选:B.由已知条件利用等差数列的通项公式能求出a4,由此利用等差数列的前n项和公式能求出S7.本题考查等差数列的前7项和的求法,是基础题,解题时要认真审题,注意等差数列的通项公式和前n项和公式的合理运用.4.【答案】A【解析】解:当x=2时,f(2)==ln3>0,故排除C,当x=时,f()==4ln>0,故排除D,当x→+∞时,f(x)→0,故排除B,故选:A.根据函数值的变化趋势,取特殊值即可判断.本题考查了函数图象的识别,考查了函数值的特点,属于基础题.5.【答案】D【解析】解:由于=-,则n=1,S=-1;n=2,S=-+-1=-1;n=3,S=2-+-+-1=2-1;…n=2016,S=-1;n=2017,S=-1.2017>2016,此时不再循环,则输出S=-1.故选:D.分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算S值并输出,模拟程序的运行过程,即可得到答案.本题考查的知识点是程序框图,在写程序的运行结果时,模拟程序的运行过程是解答此类问题最常用的办法.6.【答案】C【解析】根据三视图知该几何体是底面为等腰三角形,高为2的直三棱柱,画出几何体的直观图,结合图中数据计算它的表面积即可.本题考查了根据几何体三视图求表面积的应用问题,是基础题目.解:根据三视图知,该几何体是底面为等腰三角形,高为2的直三棱柱,画出几何体的直观图,如图所示,结合图中数据,计算它的表面积是S三棱柱=2××2×1+2×2+2×2+2×2=6+8.故选:C.7.【答案】D【解析】【分析】本题主要考查了抛物线的性质,双曲线的渐近线方程及其性质,属于中档题. 【解答】解:已知抛物线方程为,则2p=4,解得p=2,则F(1,0),抛物线准线方程为x=-1,设AB与x轴交点为M,则|MF|=2,双曲线:的渐近线方程为:,将x=-1代入到,解得,则,又△ABF为等边三角形,则,则,则,则,解得.故选D.8.【答案】A【解析】解:∵函数f(x)满足f(2-x)+f(x-2)=0,∴f(2-x)=-f(x-2),∴f(-x)=-f[2-(x+2)]=-f[(x+2)-2]=-f(x),∴函数f(x)为奇函数,又f(x)满足f(x)=f(4-x),∴f(x)=f(x-4),∴f(x+8)=f(x+8-4)=f(x+4)=f(x+4-4)=f (x),∴函数为周期函数,周期T=8,∴f(2014)=f(251×8+6)=f(6),又f(6)=f(6-8)=f(-2)=-f(2)=-1,故选:A.先由条件f(2-x)+f(x-2)=0推出f(-x)=-f[2-(x+2)]=-f[(x+2)-2]=-f(x),故函数f(x)为奇函数,再由条件f(x)=f(4-x)推出函数为周期函数,根据函数奇偶性和周期性之间的关系,将条件进行转化即可得到结论.本题主要考查了抽象函数及其应用,利用函数的周期性和奇偶性进行转化是解决本题的关键.9.【答案】B【解析】【分析】本题主要考查y=Asin(ωx+φ)的图象变换规律,正弦函数的图象和性质,利用y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用正弦函数的图象和性质,求得的值,属于中档题.【解答】解:∵f(x)=sinxcosx+cos2x-=sin2x+•-=sin(2x+),将f(x)的图象向右平移个单位,再向上平移1个单位,得到y=g(x)=sin(2x-+)+1=sin2x+1的图象.若对任意实数x,都有g(a-x)=g(a+x)成立,则g(x)的图象关于直线x=a对称,再根据g(x)的周期为=π,可得=1,故选B.10.【答案】C【解析】解:延长CA到D,使得AD=AC,则ADA1C1为平行四边形,∠DA1B就是异面直线BA1与AC1所成的角,又A1D=A1B=DB=AB,则三角形A1DB为等边三角形,∴∠DA1B=60°故选:C.延长CA到D,根据异面直线所成角的定义可知∠DA1B就是异面直线BA1与AC1所成的角,而三角形A1DB为等边三角形,可求得此角.本小题主要考查直三棱柱ABC-A1B1C1的性质、异面直线所成的角、异面直线所成的角的求法,考查转化思想,属于基础题.11.【答案】B【解析】解:函数f(x)=,可得:-1+lnx=0,可得:x=e;3x+4=0可得x=-.函数的零点为:2个.故选:B.利用分段函数,分别为0,然后求解函数的零点即可.本题考查函数的零点的求法,考查计算能力.12.【答案】B【解析】解:如图所示,当a≥1时,由,解得,y=.∴.当直线z=x+ay经过A点时取得最小值为7,∴,化为a2+2a-15=0,解得a=3,a=-5舍去.当a<1时,不符合条件.故选:B.如图所示,当a≥1时,由,解得.当直线z=x+ay经过A 点时取得最小值为7,同理对a<1得出.本题考查了线性规划的有关知识、直线的斜率与交点,考查了数形结合的思想方法,属于中档题.13.【答案】-4【解析】解:作出不等式组对应的平面区域,由z=x+2y,得y=-x+,平移直线y=-x+,由图象可知当直线经过点A时,直线y=-x+的截距最小,此时z最小,由,得A(-2,-1)此时z=-2+2×(-1)=-4.故答案为:-4.作出不等式组对应的平面区域,利用z的几何意义即可得到结论.本题主要考查线性规划的应用,利用图象平行求得目标函数的最小值,利用数形结合是解决线性规划问题中的基本方法.14.【答案】-1【解析】解:角θ的顶点在原点,始边与x轴的非负半轴重合,终边过点(),∴cosθ=,sinθ=,∴sin2θ=2sinθcosθ=,cos2θ=2cos2θ-1=-,则cos(2θ+)=cos2θ-sin2θ=--=-1,故答案为:-1.利用任意角的三角函数的定义求得cosθ 和sinθ的值,再利用二倍角公式求得sin2θ和cos2θ的值,再利用两角和的余弦公式求得要求式子的值.本题主要考查任意角的三角函数的定义,二倍角的正弦公式,两角和的余弦公式的应用,属于基础题.15.【答案】【解析】【分析】本题考查数列递推式,考查了等差关系的确定,训练了等差数列通项公式的求法,是中档题.由已知数列递推式可得数列{}是以-1为首项,以-1为公差的等差数列,求其通项公式后,利用a n=S n-S n-1求得数列{a n}的通项公式.【解答】解:由a n+1=S n•S n+1,得:S n+1-S n=S n•S n+1,即,∴数列{}是以-1为首项,以-1为公差的等差数列,则,∴.∴当n≥2时,.n=1时上式不成立,∴.故答案为:.16.【答案】3x+4y-5=0【解析】【分析】设两个交点的坐标分别为(x1,y1),(x2,y2),利用点差法求得直线的斜率,进一步求出直线方程,然后验证直线与曲线方程由两个交点即可.本题主要考查了直线与圆锥曲线的综合问题.解题的关键是充分运用数形结合的数学思想、方程的数学思想和转化的数学思想来解决较为复杂的综合题.【解答】解:设两个交点的坐标分别为(x1,y1),(x2,y2)所以x12-4y12=4,,两式相减得(x1+x2)(x1-x2)=4(y1+y2)(y1-y2),又=3,=-1,∴=-,所以直线的方程为y+1=-(x-3),即3x+4y-5=0.由点A(3,-1)在双曲线内部,直线方程满足题意.∴MN所在直线的方程是3x+4y-5=0.故答案为:3x+4y-5=0.17.【答案】解:(Ⅰ)∵在△ABC中,0<C<π,∴sin C≠0已知等式利用正弦定理化简得:2cos C(sin A cos B+sin B cos A)=sin C,整理得:2cos C sin(A+B)=sin C,即2cos C sin(π-(A+B))=sin C2cos C sinC=sin C∴cos C=,∴C=;(Ⅱ)由余弦定理得7=a2+b2-2ab•,∴(a+b)2-3ab=7,∵S=ab sin C=ab=,∴ab=6,∴(a+b)2-18=7,∴a+b=5,∴△ABC的周长为5+.【解析】(Ⅰ)已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,根据sinC不为0求出cosC的值,即可确定出出C的度数;(2)利用余弦定理列出关系式,利用三角形面积公式列出关系式,求出a+b的值,即可求△ABC的周长.此题考查了正弦、余弦定理,三角形的面积公式,以及三角函数的恒等变形,熟练掌握定理及公式是解本题的关键.18.【答案】解:(1)20;60;10;20;30.(2),所以能在犯错误的概率不超过5%的前提下认为不同年龄与支持申办奥运无关;(3)记5人为abcde,其中ab表示教师,从5人任意抽3人的所有等可能事件是:abc,abd,abe,acd,ace,ade,bcd,bce,bde,cde共10个,其中至多1位教师有7个基本事件:acd,ace,ade,bcd,bce,bde,cde,所以所求概率是.【解析】本题考查独立性检验的应用,考查概率的计算,本题解题的关键是根据所给的数据填在列联表中,注意数据的位置不要出错.(1)根据条件中所给的数据,列出列联表,填上对应的数据,得到列联表.支持不支持合计年龄不大于50岁20 60 80年龄大于50岁10 10 20合计30 70 100(2)假设聋哑没有关系,根据上一问做出的列联表,把求得的数据代入求观测值的公式求出观测值,把观测值同临界值进行比较得到结论.(3)列举法确定基本事件,即可求出概率.19.【答案】解:(1)椭圆C:过点P(2,1),且离心率.可得:,解得a=2,c=,则b=,椭圆方程为:;(2)设直线方程为,A(x1,y1)、B(x2,y2),联立方程组整理得:x2+2mx+2m2-4=0,x1+x2=-2m,-4,直线与椭圆要有两个交点,所以,即:,利用弦长公式得:,由点线距离公式得到P到l的距离.S=|AB|•d=•=≤=2.当且仅当m2=2,即时取到最大值,最大值为:2.【解析】本题考查椭圆的简单性质以及椭圆方程的求法,直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力.(1)利用已知条件列出方程组,然后求解a,b即可得到椭圆方程;(2)联立直线与椭圆方程,利用韦达定理以及弦长公式结合点到直线的距离公式表示三角形的面积,然后通过基本不等式求解最值即可.20.【答案】解:(Ⅰ)∵函数f(x)=x2+a ln x,∴函数f(x)的定义域为(0,+∞).当a=-2时,=.当x变化时,f′(x)和f(x)的值的变化情况如下表:x(0,1)1(1,+∞)f′(x)-0+f(x)递减极小值递增由上表可知,函数f(x)的单调递减区间是(0,1)、单调递增区间是(1,+∞)、极小值是f(1)=1.(Ⅱ)由g(x)=x2+a ln x+,得.若函数g(x)为[1,+∞)上的单调增函数,则g′(x)≥0在[1,+∞)上恒成立,即不等式2x-+≥0在[1,+∞)上恒成立.也即a≥在[1,+∞)上恒成立.令φ(x)=,则φ′(x)=-.当x∈[1,+∞)时,φ′(x)=--4x<0,∴φ(x)=在[1,+∞)上为减函数,∴φ(x)max=φ(1)=0.∴a≥0.∴a的取值范围为[0,+∞).【解析】本题考查函数的单调区间和极值的求法,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意构造法和导数性质的合理运用.(Ⅰ)函数f(x)的定义域为(0,+∞).当a=-2时,=,由此利用导数性质能求出函数f(x)的单调区间和极值.(Ⅱ)由g(x)=x2+alnx+,得,令φ(x)=,则φ′(x)=-.由此利用导数性质能求出a的取值范围.21.【答案】解:(1)直线l的参数方程为(t为参数),消去参数,可得直线l的普通方程y=2x+1,曲线C的极坐标方程为ρsin2θ-16cosθ=0,即ρ2sin2θ=16ρcosθ,得y2=16x即直线l的普通方程为y=2x+1,曲线C的直角坐标方程为y2=16x;(2)直线的参数方程改写为(t为参数),代入y2=16x,得,,,.即的值为.【解析】本题考查三种方程的转化,考查参数方程的运用,属于中档题.(1)利用三种方程的转化方法,求直线l的普通方程与曲线C的直角坐标方程;(2)直线的参数方程改写为(t为参数),代入y2=16x,利用参数的几何意义求的值.。

2019年江苏省淮安市开明中学中考数学二模试卷含答案解析

2019年江苏省淮安市开明中学中考数学二模试卷含答案解析

2019年江苏省淮安市开明中学中考数学二模试卷一、选择题(共8小题,每小题3分,满分24分)1.四个数﹣3.14,0,1,2中,正数的个数是()A.1 B.2 C.3 D.42.下列计算中,正确的是()A.2a+3b=5ab B.(3a3)2=6a6C.a6÷a2=a3 D.﹣3a+2a=﹣a3.若代数式4x﹣5与的值相等,则x的值是()A.1 B.C.D.24.下列图形中,是正方体表面展开图的是()A.B.C.D.5.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是()A.B.C.D.6.下列说法中正确的是()A.“打开电视机,正在播放《动物世界》”是必然事件B.某种彩票的中奖概率为,说明每买1000张,一定有一张中奖C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为D.想了解长沙市所有城镇居民的人均年收入水平,宜采用抽样调查7.抛物线y=﹣﹣3的顶点坐标是()A.(,﹣3)B.(﹣3,0)C.(0,﹣3)D.(0,3)8.如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P1,第二次碰到正方形的边时的点为P2…第n次碰到正方形的边时的点为P n,则P2019的坐标是()A.(5,3)B.(3,5)C.(0,2)D.(2,0)二、填空题(本大题共有10小题,每小题3分,共30分)9.若分式的值为0,则x=______.10.若a+b=3,ab=2,则a2b+ab2=______.11.PM 2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为______.12.如图,四边形ABCD是⊙O的内接四边形,若∠C=130°,则∠BOD=______°.13.小明的圆锥形玩具的高为12cm,母线长为13cm,则其侧面积是______cm2.14.如果某市6月份日平均气温统计如图所示,那么在日平均气温这组数据中,中位数是______.15.的整数部分是______.16.若是方程3x+ay=1的一个解,则a的值是______.17.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于______度.18.如图,A.B是双曲线y=上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为______.三、解答题(本大题共有10小题,共96分)19.(1)计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°;(2)解不等式组,并写出它的所有非负整数解.20.已知2a2+3a﹣6=0.求代数式3a(2a+1)﹣(2a+1)(2a﹣1)的值.21.在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.22.随着互联网、移动终端的迅速发展,数字化阅读越来越普及,公交、地铁上的“低头族”越来越多.某研究机构针对“您如何看待数字化阅读”问题进行了随机问卷调查(问卷调查表如图1所示)并将调查结果绘制成图2和图3所示的统计图(均不完整).请根据统计图中提供的信息,解答下列问题:(1)本次接受调查的总人数是______人.(2)请将条形统计图补充完整.(3)在扇形统计图中,观点E的百分比是______,表示观点B的扇形的圆心角度数为______度.(4)假如你是该研究机构的一名成员,请根据以上调查结果,就人们如何对待数字化阅读提出你的建议.23.一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.24.如图,△ABC是直角三角形,∠ACB=90°.(1)尺规作图:作⊙C,使它与AB相切于点D,与AC相交于点E,保留作图痕迹,不写作法,请标明字母.(2)在你按(1)中要求所作的图中,若BC=3,∠A=30°,求的长.25.市实验学校为创建书香校园,去年进一批图书.经了解,科普书的单价比文学书的单价多4元,用1500元购进的科普书与1000元购进的文学书本数相等.(1)求去年购进的文学书和科普书的单价各是多少元?(2)若今年书和科普书的单价与去年相比保持不变,该校打算用1250元再购进一批文学书和科普书,问购进科普书65本后至多还能购进多少本文学书?26.小明同学看到一则材料:甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地.设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t的函数关系如图1所示.小明思考后发现了如图的部分正确信息:乙先出发1h;甲出发0.5小时与乙相遇;….请你帮助小明解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式;(2)当20≤y≤30时,直接写出t的取值范围;(3)丙骑摩托车与乙同时出发,从N地沿同一公路匀速前往M地,若丙经过1.4h与甲相遇,问丙出发后多少时间与乙相遇?27.在平面直角坐标系中,如图1,将n个边长为1的正方形并排组成矩形OABC,相邻两边OA和OC分别落在x轴和y轴的正半轴上,设抛物线y=ax2+bx+c(a<0)过矩形顶点B、C.(1)当n=1时,如果a=﹣1,试求b的值;(2)当n=2时,如图2,在矩形OABC上方作一边长为1的正方形EFMN,使EF在线段CB上,如果M,N两点也在抛物线上,求出此时抛物线的解析式;(3)将矩形OABC绕点O顺时针旋转,使得点B落到x轴的正半轴上,如果该抛物线同时经过原点O.①试求当n=3时a的值;②直接写出a关于n的关系式.28.如图,在△ABC中,∠ACB=90°,∠ABC=30°,BC=6,点D在BC上,CD=1.动点M从C点出发,以1个单位/秒的速度沿直线CB向右匀速运动,同时,动点N从D点出发,以2个单位/秒的速度沿直线CB向右匀速运动,以MN为一边在CB的上方作等边三角形△PMN.设运动时间为t(s),△PMN与△ABC重叠部分的面积为S.(1)△PMN的边长=______(用含有t的代数式表示),当t=______秒时,点P落在AB上;(2)求S与t之间的函数关系式,并写出自变量t的取值范围;(3)在M、N运动的同时,以点A为圆心、t为半径的⊙A也在不断变化,直接写出⊙A 与△PMN的三边所在的直线相切时t的值.2019年江苏省淮安市开明中学中考数学二模试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.四个数﹣3.14,0,1,2中,正数的个数是()A.1 B.2 C.3 D.4【考点】正数和负数.【分析】根据正数和负数,即可解答.【解答】解:四个数﹣3.14,0,1,2中,正数是1,2,共2个,故选:B.2.下列计算中,正确的是()A.2a+3b=5ab B.(3a3)2=6a6C.a6÷a2=a3 D.﹣3a+2a=﹣a【考点】合并同类项;幂的乘方与积的乘方.【分析】根据合并同类项,积的乘方,等于先把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.【解答】解:A、不是同类二次根式,不能加减,故A选项错误;B、(3a3)2=9a6≠6a6,故B选项错误;C、a6÷a2=a4,故C选项错误;D、﹣3a+2a=﹣a,故D选项正确.故选:D.3.若代数式4x﹣5与的值相等,则x的值是()A.1 B.C.D.2【考点】解一元一次方程.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:4x﹣5=,去分母得:8x﹣10=2x﹣1,解得:x=,故选B.4.下列图形中,是正方体表面展开图的是()A.B.C.D.【考点】几何体的展开图.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:根据正方体展开图的特点,A、能折成正方体,正确;B、折起来出现重叠,不是正方体的表面展开图,故错误;C、D、都是“2﹣4”结构,出现重叠现象,不能折成正方体,即不是正方体的表面展开图,故错误;故选:A.5.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是()A.B.C.D.【考点】余角和补角.【分析】根据图形,结合互余的定义判断即可.【解答】解:A、∠α与∠β不互余,故本选项错误;B、∠α与∠β不互余,故本选项错误;C、∠α与∠β互余,故本选项正确;D、∠α与∠β不互余,∠α和∠β互补,故本选项错误;故选C.6.下列说法中正确的是()A.“打开电视机,正在播放《动物世界》”是必然事件B.某种彩票的中奖概率为,说明每买1000张,一定有一张中奖C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为D.想了解长沙市所有城镇居民的人均年收入水平,宜采用抽样调查【考点】概率的意义;全面调查与抽样调查;随机事件;概率公式.【分析】根据随机事件,可判断A;根据概率的意义,可判断B、C;根据调查方式,可判断D.【解答】解:A、“打开电视机,正在播放《动物世界》”是随机事件,故A错误;B、某种彩票的中奖概率为,说明每买1000张,有可能中奖,也有可能不中奖,故B 错误;C、抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为,故C错误;D、想了解长沙市所有城镇居民的人均年收入水平,宜采用抽样调查,故D正确;故选:D.7.抛物线y=﹣﹣3的顶点坐标是()A.(,﹣3)B.(﹣3,0)C.(0,﹣3)D.(0,3)【考点】二次函数的性质.【分析】抛物线y=﹣﹣3是顶点式,从而可以直接得到抛物线y=﹣﹣3的顶点坐标,从而解答本题.【解答】解:∵抛物线y=﹣﹣3,∴抛物线y=﹣﹣3的顶点坐标为:(0,﹣3).故选项A错误,选项B错误,选项C正确,选项D错误.故选C.8.如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P1,第二次碰到正方形的边时的点为P2…第n次碰到正方形的边时的点为P n,则P2019的坐标是()A.(5,3)B.(3,5)C.(0,2)D.(2,0)【考点】规律型:点的坐标.【分析】根据所给出的图形,得出小球第一次碰到正方形的边时的点为P1的坐标,小球第二次碰到正方形的边时的点为P2的坐标,找出规律,得出第三次、第四的坐标,从而得出规律,每四次一个循环,即可得出答案.【解答】解:∵小球第一次碰到正方形的边时的点为P1的坐标是(5,3),小球第二次碰到正方形的边时的点为P2的坐标是(3,5),小球第三次碰到正方形的边时的点为P3的坐标是(0,2),小球第四次碰到正方形的边时的点为P4的坐标是(2,0),∴每四次一个循环,则2019÷4=503…3,∴P2019的坐标是(0,2);故选C.二、填空题(本大题共有10小题,每小题3分,共30分)9.若分式的值为0,则x=2.【考点】分式的值为零的条件.【分析】根据分式的值为0的条件列出关于x的不等式组,求出x的值即可.【解答】解:∵分式的值为0,∴,解得x=2.故答案为:2.10.若a+b=3,ab=2,则a2b+ab2=6.【考点】因式分解的应用.【分析】将所求式子提取公因式ab,再整体代入求值.【解答】解:a2b+ab2=ab(a+b)=2×3=6.故答案为:6.11.PM 2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为 2.5×10﹣6.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025=2.5×10﹣6,故答案为:2.5×10﹣6.12.如图,四边形ABCD是⊙O的内接四边形,若∠C=130°,则∠BOD=100°.【考点】圆周角定理;圆内接四边形的性质.【分析】先根据圆内接四边形的性质得到∠A=180°﹣∠C=50°,然后根据圆周角定理求∠BOD.【解答】解:∵∠A+∠C=180°,∴∠A=180°﹣130°=50°,∴∠BOD=2∠A=100°.故答案为100.13.小明的圆锥形玩具的高为12cm,母线长为13cm,则其侧面积是65πcm2.【考点】圆锥的计算.【分析】首先根据勾股定理求得底面半径的长,然后根据扇形的面积公式即可求得侧面积.【解答】解:底面半径是:=5cm,则侧面积是:×2π×5×13=65πcm2.故答案是:65π.14.如果某市6月份日平均气温统计如图所示,那么在日平均气温这组数据中,中位数是22.【考点】中位数;条形统计图.【分析】根据条形统计图得到各数据的权,然后根据中位数的定义求解.【解答】解:这组数据一共有30个,中位数是第15和第16个数据平均数,由图可知,第15个数和第16个数都是22,所以中位数是22,故答案为:22.15.的整数部分是4.【考点】估算无理数的大小.【分析】根据已知得出的取值范围,进而得出答案.【解答】解:∵16<17<25,∴4<<5,∴的整数部分是4,故答案为:4.16.若是方程3x+ay=1的一个解,则a的值是2.【考点】二元一次方程的解.【分析】把x=﹣1,y=2代入方程可得到关于a的方程,可求得a的值.【解答】解:∵是方程3x+ay=1的一个解,∴﹣3+2a=1,解得a=2,故答案为:2.17.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于65度.【考点】正方形的性质;全等三角形的判定与性质.【分析】根据正方形的性质得出∠BAE=∠DAE,再利用SAS证明△ABE与△ADE全等,再利用三角形的内角和解答即可.【解答】解:∵正方形ABCD,∴AB=AD,∠BAE=∠DAE,在△ABE与△ADE中,,∴△ABE≌△ADE(SAS),∴∠AEB=∠AED,∠ABE=∠ADE,∵∠CBF=20°,∴∠ABE=70°,∴∠AED=∠AEB=180°﹣45°﹣70°=65°,故答案为:6518.如图,A.B是双曲线y=上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为.【考点】反比例函数系数k的几何意义.【分析】过点B作BE⊥x轴于点E,根据D为OB的中点可知CD是△OBE的中位线,即CD=BE,设A(x,),则B(2x,),故CD=,AD=﹣,再由△ADO的面积为1求出y的值即可得出结论.【解答】解:过点B作BE⊥x轴于点E,∵D为OB的中点,∴CD是△OBE的中位线,即CD=BE.设A(x,),则B(2x,),CD=,AD=﹣,∵△ADO的面积为1,∴AD•OC=1,(﹣)•x=1,解得k=,故答案是:.三、解答题(本大题共有10小题,共96分)19.(1)计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°;(2)解不等式组,并写出它的所有非负整数解.【考点】一元一次不等式组的整数解;实数的运算;零指数幂;负整数指数幂;解一元一次不等式组;特殊角的三角函数值.【分析】(1)先根据负整数指数幂、零指数幂、绝对值、特殊角的三角函数值分别求出每一部分的值,再代入求出即可;(2)先求出每一个不等式的解集,再求出不等式组的解集即可.【解答】解:(1)原式=4﹣1+2﹣+4×=5+;(2)∵解不等式①得:x≥﹣2,解不等式②得:x<,∴不等式组的解集为﹣2≤x<,∴不等式组的所有非负整数解为0,1,2,3.20.已知2a2+3a﹣6=0.求代数式3a(2a+1)﹣(2a+1)(2a﹣1)的值.【考点】整式的混合运算—化简求值.【分析】原式第一项利用单项式乘以多项式法则计算,第二项利用平方差公式化简,去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:∵2a2+3a﹣6=0,即2a2+3a=6,∴原式=6a2+3a﹣4a2+1=2a2+3a+1=6+1=7.21.在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.【考点】平行四边形的性质;角平分线的性质;勾股定理的逆定理;矩形的判定.【分析】(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)解:∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC===5,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.22.随着互联网、移动终端的迅速发展,数字化阅读越来越普及,公交、地铁上的“低头族”越来越多.某研究机构针对“您如何看待数字化阅读”问题进行了随机问卷调查(问卷调查表如图1所示)并将调查结果绘制成图2和图3所示的统计图(均不完整).请根据统计图中提供的信息,解答下列问题:(1)本次接受调查的总人数是5000人.(2)请将条形统计图补充完整.(3)在扇形统计图中,观点E的百分比是4%,表示观点B的扇形的圆心角度数为18度.(4)假如你是该研究机构的一名成员,请根据以上调查结果,就人们如何对待数字化阅读提出你的建议.【考点】条形统计图;扇形统计图.【分析】(1)根据D类观点除以D类所占的百分比,可得调查的人数;(2)根据各类调查的人数,可得条形统计图;(3)根据E类人数除以调查的人数,可得答案,根据B类人数除以调查人数,再乘以360°,可得答案;(4)根据对调查数据的收集、整理,可得答案.【解答】解:(1)本次接受调查的总人数是5000人(2)C类的人数为5000﹣2300﹣250﹣750﹣200=1500(人),请将条形统计图补充完整(3)在扇形统计图中,观点E的百分比是4%,表示观点B的扇形的圆心角度数为18度,故答案为:5000,4%,18.(4)应充分利用数字化阅读获取信息方便等优势,但不要成为“低头族”而影响人际交往.23.一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.【考点】列表法与树状图法;概率公式.【分析】(1)设红球的个数为x,根据白球的概率可得关于x的方程,解方程即可;(2)画出树形图,即可求出两次摸到的球都是白球的概率.【解答】解:(1)设红球的个数为x,由题意可得:,解得:x=1,经检验x=1是方程的根,即红球的个数为1个;(2)画树状图如下:∴P(摸得两白)==.24.如图,△ABC是直角三角形,∠ACB=90°.(1)尺规作图:作⊙C,使它与AB相切于点D,与AC相交于点E,保留作图痕迹,不写作法,请标明字母.(2)在你按(1)中要求所作的图中,若BC=3,∠A=30°,求的长.【考点】作图—复杂作图;切线的性质;弧长的计算.【分析】(1)过点C作AB的垂线,垂足为点D,然后以C点为圆心,CD为半径作圆即可;(2)先根据切线的性质得∠ADC=90°,则利用互余可计算出∠DCE=90°﹣∠A=60°,∠BCD=90°﹣∠ACD=30°,再在Rt△BCD中利用∠BCD的余弦可计算出CD=,然后根据弧长公式求解.【解答】解:(1)如图,⊙C为所求;(2)∵⊙C切AB于D,∴CD⊥AB,∴∠ADC=90°,∴∠DCE=90°﹣∠A=90°﹣30°=60°,∴∠BCD=90°﹣∠ACD=30°,在Rt△BCD中,∵cos∠BCD=,∴CD=3cos30°=,∴的长==π.25.市实验学校为创建书香校园,去年进一批图书.经了解,科普书的单价比文学书的单价多4元,用1500元购进的科普书与1000元购进的文学书本数相等.(1)求去年购进的文学书和科普书的单价各是多少元?(2)若今年书和科普书的单价与去年相比保持不变,该校打算用1250元再购进一批文学书和科普书,问购进科普书65本后至多还能购进多少本文学书?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设文学书的单价是x元,则科普书的单价是(x+4)元,根据用1500元购进的科普书与用1000元购进的文学书本数相等,可列方程求解.(2)设购进科普书65本后还能购进y本文学书,根据用1250元再购进一批文学书和科普书,得出不等式求出即可.【解答】解:(1)设文学书的单价是x元,则科普书的单价是(x+4)元,根据题意,得=,解得x=8.经检验:x=8是原分式方程的解,x+4=12.答:文学书的单价是8元,则科普书的单价是12元.(2)设购进科普书65本后还能购进y本文学书,则12×65+8y≤1250,解得:y≤58.75,∵y为整数,∴y最大是58,答:购进科普书65本后至多还能购进58本文学书.26.小明同学看到一则材料:甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地.设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t的函数关系如图1所示.小明思考后发现了如图的部分正确信息:乙先出发1h;甲出发0.5小时与乙相遇;….请你帮助小明解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式;(2)当20≤y≤30时,直接写出t的取值范围;(3)丙骑摩托车与乙同时出发,从N地沿同一公路匀速前往M地,若丙经过1.4h与甲相遇,问丙出发后多少时间与乙相遇?【考点】一次函数的应用.【分析】(1)利用待定系数法求函数解析式,即可解答;(2)先求出甲、乙的速度、所以OA的函数解析式为:y=20t(0≤t≤1),所以点A的纵坐标为20,根据当20≤y≤30时,得到20≤40t﹣60≤30,或20≤﹣20t+80≤30,解不等式组即可;(3)首先得出M,N地之间的距离,进而求出丙的速度,进而求出丙与乙相遇时间.【解答】解:(1)直线BC的函数解析式为y=kt+b,把(1.5,0),(,)代入得:解得:,∴直线BC的解析式为:y=40t﹣60;设直线CD的函数解析式为y1=k1t+b1,把(,),(4,0)代入得:,解得:,∴直线CD的函数解析式为:y=﹣20t+80.(2)设甲的速度为akm/h,乙的速度为bkm/h,根据题意得;,解得:,∴甲的速度为60km/h,乙的速度为20km/h,∴OA的函数解析式为:y=20t(0≤t≤1),所以点A的纵坐标为20,当20≤y≤30时,即20≤40t﹣60≤30,或20≤﹣20t+80≤30,解得:2≤t≤或≤t≤3;(3)根据题意,M地到N地的距离是:60×(﹣1)=80(km),设丙的速度为:mkm/h,当t=1.4时,1.4m+(1.4﹣1)×60=80,解得:m=40(km/h),设丙出发n小时与乙相遇,则(40+20)n=80,解得:n=,所以丙出发h与乙相遇.27.在平面直角坐标系中,如图1,将n个边长为1的正方形并排组成矩形OABC,相邻两边OA和OC分别落在x轴和y轴的正半轴上,设抛物线y=ax2+bx+c(a<0)过矩形顶点B、C.(1)当n=1时,如果a=﹣1,试求b的值;(2)当n=2时,如图2,在矩形OABC上方作一边长为1的正方形EFMN,使EF在线段CB上,如果M,N两点也在抛物线上,求出此时抛物线的解析式;(3)将矩形OABC绕点O顺时针旋转,使得点B落到x轴的正半轴上,如果该抛物线同时经过原点O.①试求当n=3时a的值;②直接写出a关于n的关系式.【考点】二次函数综合题;解二元一次方程组;待定系数法求二次函数解析式;勾股定理;正方形的性质;相似三角形的判定与性质.【分析】(1)根据已知得到抛物线对称轴为直线x=,代入即可求出b;(2)设所求抛物线解析式为y=ax2+bx+1,由对称性可知抛物线经过点B(2,1)和点M(,2),把B、M的坐标代入得到方程组,求出a、b的值即可得到抛物线解析式;(3)①当n=3时,OC=1,BC=3,设所求抛物线解析式为y=ax2+bx,过C作CD⊥OB于点D,则Rt△OCD∽Rt△OBC,得出,设OD=t,则CD=3t,根据勾股定理OD2+CD2=OC2,求出t,得出C的坐标,把B、C坐标代入抛物线解析式即可得到方程组,求出a即可;②根据(1)、(2)①总结得到答案.【解答】解:(1)∵抛物线过矩形顶点B、C,其中C(0,1),B(n,1)∴当n=1时,抛物线对称轴为直线x=,∴,∵a=﹣1,∴b=1,答:b的值是1.(2)设所求抛物线解析式为y=ax2+bx+1,由对称性可知抛物线经过点B(2,1)和点M(,2),则,解得∴所求抛物线解析式为,答:此时抛物线的解析式是.(3)①当n=3时,OC=1,BC=3,设所求抛物线解析式为y=ax2+bx,过C作CD⊥OB于点D,则Rt△OCD∽Rt△OBC,∴,设OD=t,则CD=3t,∵OD2+CD2=OC2,∴(3t)2+t2=12,∴,∴C(,),又∵B(,0),∴把B、C坐标代入抛物线解析式,得,解得:a=,答:a的值是﹣.②答:a关于n的关系式是.28.如图,在△ABC中,∠ACB=90°,∠ABC=30°,BC=6,点D在BC上,CD=1.动点M从C点出发,以1个单位/秒的速度沿直线CB向右匀速运动,同时,动点N从D点出发,以2个单位/秒的速度沿直线CB向右匀速运动,以MN为一边在CB的上方作等边三角形△PMN.设运动时间为t(s),△PMN与△ABC重叠部分的面积为S.(1)△PMN的边长=t+1(用含有t的代数式表示),当t=秒时,点P落在AB上;(2)求S与t之间的函数关系式,并写出自变量t的取值范围;(3)在M、N运动的同时,以点A为圆心、t为半径的⊙A也在不断变化,直接写出⊙A 与△PMN的三边所在的直线相切时t的值.【考点】圆的综合题.【分析】(1)根据题意,直接将△PMN的三边相加即可得出含t的表达式;易得△NPB为等腰三角形,可得到NB=NP=NM=t+1,又NB=CB﹣CM﹣MN,两式联立即有5﹣2t=t+1,解之即可得出t.(2)易得重叠部分为一个小等边三角形,依题意分别得出底边及其对应的高即可得出重叠部分的面积.(3)结合题意,可知有三种情况,①以点A为圆心、tcm为半径的⊙A与MN所在的直线相切,②⊙A与MN所在的直线相切,③⊙A与PN所在的直线相切;分别利用切线的性质以及勾股定理,即可得出各种情况对应的t值.【解答】解:(1)△PMN的边长MN=CN﹣CM=(CD+DN)﹣CM=(1+2t)﹣t=(t+1)cm;∵当t为某值时,点P落在AB上,三角形PMN是等边三角形,∴NB=NP=MN=t+1,∠PND=60°,∴∠PNB=120°,∠PNB=30°,∴△PNB为等腰三角形,∵Q=NB=CB﹣CM﹣PMN=6﹣t﹣(t+1)=5﹣2t,∴5﹣2t=t+1,解得:t=s;故答案为:t+1,;(2)分为四种情况:①当0≤t<时,如图1:重叠部分是△PMN,∵△PMN的边长为t+1,∴高为(t+1)cm,∴S=×(t+1)×(t+1)=(t+1)2;②当≤t<时,如图2:重叠部分为四边形MNFE,∵∠B=30°,且△PMN为等边三角形,∴∠PMN=∠P=60°,∴∠PEF=90°,且MB=BC﹣CM=6﹣t,∠PFE=30°,∴PE=(6﹣t),∴EP=PM﹣NF=(t+1)﹣(6﹣t)=(3t﹣4),∴EF=M=EP•tan60°=(3t﹣4),∴S=(t+1)2﹣(3t﹣4)2=﹣t2+t﹣=﹣(t﹣2)2+;③当≤t<6时,如图3:同理可得y=(6﹣t)2;④当t≥6时,如图4:此时y=0.(3)(一)如图a,⊙A与PN所在的直线相切时,切点为F,F在PN的延长线上,AB与FN交于L点,AF=t,得到AL=2t,NB=5﹣2t,得到BL=(5﹣2t),AB=4=BL﹣AL=(5﹣2t)﹣2t,得到t=.即t=.如图b,若FP交AB与E,∵⊙A半径=AF=t,则AE=2t,NE=NB=5﹣2t,BE=(5﹣2t),AB=4=BE+AE=(5﹣2t)+2t,∴t=,(二)如图c:当⊙A与MN所在的直线相切时,∵AC⊥MN所在的直线,∴⊙A半径=AC=t=2.此时,若设AB与PM相交于G,则AG=⊙A半径=2,∴BM=4﹣2=2,∴∠MGB=90°,∴⊙A 也同时与PM相切.(三)如图d:⊙A与PM所在的直线相切时,切点为E,可知道点E在AB延长线上,在Rt△MBE中,∠ABC=30°,有AE=t,BE=AE﹣AB=t﹣4,斜边MB=CM﹣BC=t﹣6,所以MB=BE,有(t﹣6)=t﹣4,得到t=4+6;综上所述,当⊙A与QR所在的直线相切时,t=或t=,;当⊙A与PQ所在的直线相切时,t=2;当⊙A与PR所在的直线相切,t=4+6.2019年9月22日。

2019届高三数学二模试卷理科附答案

2019届高三数学二模试卷理科附答案

2019届高三数学二模试卷理科附答案理科数学(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2019•乐山调研]若与互为共轭复数,则的值为()A.B.C.D.2.[2019•济南外国语]已知集合,,则()A.B.C.D.3.[2019•九江一模] 的部分图像大致为()A.B.C.D.4.[2019•榆林一模]已知向量,满足,,,则()A.2 B.C.D.5.[2019•湘潭一模]以双曲线的焦点为顶点,且渐近线互相垂直的双曲线的标准方程为()A.B.C.D.6.[2019•武邑中学]在中,角,,的对边分别为,,,若,,,则角()A.B.C.或D.或7.[2019•新乡调研]某医院今年1月份至6月份中,每个月为感冒来就诊的人数如下表所示:()上图是统计该院这6个月因感冒来就诊人数总数的程序框图,则图中判断框、执行框依次应填()A.;B.;C.;D.;8.[2019•优创名校联考]袋子中有四个小球,分别写有“美、丽、中、国”四个字,有放回地从中任取一个小球,直到“中”“国”两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“中、国、美、丽”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:232 321 230 023 123 021 132 220 001231 130 133 231 031 320 122 103 233由此可以估计,恰好第三次就停止的概率为()A.B.C.D.9.[2019•成都一诊]在各棱长均相等的四面体中,已知是棱的中点,则异面直线与所成角的余弦值为()A.B.C.D.10.[2019•长沙一模]已知是函数图象的一个最高点,,是与相邻的两个最低点.设,若,则的图象对称中心可以是()A.B.C.D.11.[2019•湖北联考]已知偶函数满足,现给出下列命题:①函数是以2为周期的周期函数;②函数是以4为周期的周期函数;③函数为奇函数;④函数为偶函数,则其中真命题的个数是()A.1 B.2 C.3 D.412.[2019•宜昌调研]已知椭圆:上存在、两点恰好关于直线:对称,且直线与直线的交点的横坐标为2,则椭圆的离心率为()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.13.[2019•泉州质检]若函数的图象在点处的切线过点,则______.14.[2019•湖北联考]设,满足约束条件,则的最大值为____.15.[2019•镇江期末]若,,则_______.16.[2019•遵义联考]已知三棱锥中,面,且,,,,则该三棱锥的外接球的表面积为__________.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)[2019•潍坊期末]已知数列的前项和为,且,,成等差数列.(1)求数列的通项公式;(2)数列满足,求数列的前项和.18.(12分)[2019•开封一模]大学先修课程,是在高中开设的具有大学水平的课程,旨在让学有余力的高中生早接受大学思维方式、学习方法的训练,为大学学习乃至未来的职业生涯做好准备.某高中成功开设大学先修课程已有两年,共有250人参与学习先修课程,这两年学习先修课程的学生都参加了高校的自主招生考试(满分100分),结果如下表所示:分数人数25 50 100 50 25参加自主招生获得通过的概率(1)这两年学校共培养出优等生150人,根据下图等高条形图,填写相应列联表,并根据列联表检验能否在犯错的概率不超过的前提下认为学习先修课程与优等生有关系?优等生非优等生总计学习大学先修课程250没有学习大学先修课程总计150(2)已知今年全校有150名学生报名学习大学选项课程,并都参加了高校的自主招生考试,以前两年参加大学先修课程学习成绩的频率作为今年参加大学先修课程学习成绩的概率.(i)在今年参与大学先修课程学习的学生中任取一人,求他获得高校自主招生通过的概率;(ii)某班有4名学生参加了大学先修课程的学习,设获得高校自主招生通过的人数为,求的分布列,试估计今年全校参加大学先修课程学习的学生获得高校自主招生通过的人数.参考数据:参考公式:,其中.19.(12分)[2019•湖北联考]如图,在四棱锥中,,,,且,.(1)证明:平面;(2)在线段上,是否存在一点,使得二面角的大小为?如果存在,求的值;如果不存在,请说明理由.20.(12分)[2019•河北联考]在直角坐标系中,直线与抛物线交于,两点,且.(1)求的方程;(2)试问:在轴的正半轴上是否存在一点,使得的外心在上?若存在,求的坐标;若不存在,请说明理由.21.(12分)[2019•泉州质检]已知函数.(1)讨论的单调性;(2)当时,,求的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(10分)【选修4-4:坐标系与参数方程】[2019•九江一模]在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系(,),点为曲线上的动点,点在线段的延长线上,且满足,点的轨迹为.(1)求,的极坐标方程;(2)设点的极坐标为,求面积的最小值.23.(10分)【选修4-5:不等式选讲】[2019•湘潭一模]设函数.(1)当时,求关于的不等式的解集;(2)若在上恒成立,求的取值范围.2019届高三第二次模拟考试卷理科数学(二)答案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】A【解析】∵,,又与互为共轭复数,∴,,则.故选A.2.【答案】C【解析】∵集合,,∴,,∴.故选C.3.【答案】B【解析】,则函数是偶函数,图象关于轴对称,排除A,D,,排除C,故选B.4.【答案】A【解析】根据题意得,,又,∴,∴,∴.故选A.5.【答案】D【解析】由题可知,所求双曲线的顶点坐标为,又∵双曲线的渐近线互相垂直,∴,则该双曲线的方程为.故选D.6.【答案】A【解析】∵,,,∴由正弦定理可得,∵,由大边对大角可得,∴解得.故选A.7.【答案】C【解析】∵要计算1月份至6月份的6个月的因感冒来就诊的人数,∴该程序框图要算出所得到的和,①当时,,没有算出6个月的人数之和,需要继续计算,因此变成2,进入下一步;②当时,用前一个加上,得,仍然没有算出6个月的人数之和而需要继续计算,因此变成3,进入下一步;③当时,用前一个加上,得,仍然没有算出6个月的人数之和而需要继续计算,因此变成4,进入下一步;④当时,用前一个加上,得,仍然没有算出6个月的人数之和而需要继续计算,因此变成5,进入下一步;⑤当时,用前一个加上,得,仍然没有算出6个月的人数之和而需要继续计算,因此变成6,进入下一步;⑥当时,用前一个加上,得,刚好算出6个月的人数之和,因此结束循环体,并输出最后的值,由以上的分析,可得图中判断框应填“”,执行框应填“”.故选C.8.【答案】C【解析】∵随机模拟产生18组随机数,由随机产生的随机数可知,恰好第三次就停止的有,,,共4个基本事件,根据古典概型概率公式可得,恰好第三次就停止的概率为,故选C.9.【答案】C【解析】设各棱长均相等的四面体中棱长为2,取中点,连结,,∴是棱的中点,∴,∴是异面直线与所成角(或所成角的补角),,,∴,∴异面直线与所成角的余弦值为,故选C.10.【答案】D【解析】结合题意,绘图又,,∴周期,解得,∴,,令,得到,∴,令,,得对称中心,令,得到对称中心坐标为,故选D.11.【答案】B【解析】偶函数满足,即有,即为,,可得的最小正周期为4,故①错误;②正确;由,可得,又,即有,故为奇函数,故③正确;由,若为偶函数,即有,可得,即,可得6为的周期,这与4为最小正周期矛盾,故④错误.故选B.12.【答案】C【解析】由题意可得直线与直线的交点,,设,,则,,∵、是椭圆上的点,∴①,②,①﹣②得:,∴,∴,∴,∴,故选C.二、填空题:本大题共4小题,每小题5分,共20分.13.【答案】1【解析】函数,可得,∴,又,∴切线方程为,切线经过,∴,解得.故答案为1.14.【答案】5【解析】作出,满足约束条件,所示的平面区域,如图:作直线,然后把直线向可行域平移,结合图形可知,平移到点时最大,由可得,此时.故答案为5.15.【答案】【解析】由得,即,又,解得,∴.16.【答案】【解析】取的中点,连结、,∵平面,平面,∴,可得中,中线,由,,,可知,又∵,、是平面内的相交直线,∴平面,可得,因此中,中线,∴是三棱锥的外接球心,∵中,,,∴,可得外接球半径,因此,外接球的表面积,故答案为.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1);(2).【解析】(1)∵,,成等差数列,∴,当时,,∴,当时,,,两式相减得,∴,∴数列是首项为,公比为的等比数列,∴.(2),∴,∴.18.【答案】(1)见解析;(2)见解析.【解析】(1)列联表如下:优等生非优等生总计学习大学先修课程50 200 250没有学习大学先修课程100 900 1000总计150 **** ****由列联表可得,因此在犯错误的概率不超过的前提下认为学习先修课程与优等生有关系.(2)(i)由题意得所求概率为.(ii)设获得高校自主招生通过的人数为,则,,,1,2,3,4,∴的分布列为0 1 2 3 4估计今年全校参加大学先修课程的学生获得大学自主招生通过的人数为.19.【答案】(1)见证明;(2)见解析.【解析】(1)∵在底面中,,,且,∴,,∴,又∵,,平面,平面,∴平面,又∵平面,∴,∵,,∴,又∵,,平面,平面,∴平面.(2)方法一:在线段上取点,使,则,又由(1)得平面,∴平面,又∵平面,∴,作于,又∵,平面,平面,∴平面,又∵平面,∴,又∵,∴是二面角的一个平面角,设,则,,这样,二面角的大小为,即,即,∴满足要求的点存在,且.方法二:取的中点,则、、三条直线两两垂直∴可以分别以直线、、为、、轴建立空间直角坐标系,且由(1)知是平面的一个法向量,设,则,,∴,,设是平面的一个法向量,则,∴,令,则,它背向二面角,又∵平面的法向量,它指向二面角,这样,二面角的大小为,即,即,∴满足要求的点存在,且.20.【答案】(1);(2)在轴的正半轴上存在一点,使得的外心在上.【解析】(1)联立,得,则,,从而.∵,∴,即,解得,故的方程为.(2)设线段的中点为,由(1)知,,,则线段的中垂线方程为,即.联立,得,解得或,从而的外心的坐标为或.假设存在点,设的坐标为,∵,∴,则.∵,∴.若的坐标为,则,,则的坐标不可能为.故在轴的正半轴上存在一点,使得的外心在上.21.【答案】(1)见解析;(2).【解析】解法一:(1),①当时,↘极小值↗∴在上单调递减,在单调递增.②当时,的根为或.若,即,0 0↗极大值↘极小值↗∴在,上单调递增,在上单调递减.若,即,在上恒成立,∴在上单调递增,无减区间.若,即,0 0↗极大值↘极小值↗∴在,上单调递增,在上单调递减.综上:当时,在上单调递减,在单调递增;当时,在,上单调递增,在上单调递减;当时,在上单调递增,无减区间;当时,在,上单调递增,在上单调递减.(2)∵,∴.当时,恒成立.当时,.令,,设,∵在上恒成立,即在上单调递增.又∵,∴在上单调递减,在上单调递增,则,∴.综上,的取值范围为.解法二:(1)同解法一;(2)令,∴,当时,,则在上单调递增,∴,满足题意.当时,令,∵,即在上单调递增.又∵,,∴在上有唯一的解,记为,↘极小值↗,满足题意.当时,,不满足题意.综上,的取值范围为.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.【答案】(1);;(2)2.【解析】(1)∵曲线的参数方程为(为参数),∴曲线的普通方程为,∴曲线的极坐标方程为,设点的极坐标为,点的极坐标为,则,,,,∵,∴,∴,,∴的极坐标方程为.(2)由题设知,,当时,取得最小值为2.23.【答案】(1);(2).【解析】(1)∵,∴的解集为.(2)∵,∴,即,则,∴.。

2019年河南省六市高考数学二模试卷(理科)(解析版)

2019年河南省六市高考数学二模试卷(理科)(解析版)

2019年河南省六市高考数学二模试卷(理科)一、选择题(本大题共12小题,共60.0分)1.已知集合A={(x,y)|y=x+1,x∈Z},集合B={y|y=2x,x∈Z},则集合A∩B等于()A. B. C. D.2.若复数z满足(3-4i)z=|3-4i|,则z的虚部为()A. B. C. 4 D.3.某学校为落实学生掌握社会主义核心价值观的情况,用系统抽样的方法从全校2400名学生中抽取30人进行调查.现将2400名学生随机地从1~2400编号,按编号顺序平均分成30组(1~80号,81~160号,…,2321~2400号),若第3组与第4组抽出的号码之和为432,则第6组抽到的号码是()A. 416B. 432C. 448D. 4644.若等差数列{a n}的公差为2,且a5是a2与a6的等比中项,则该数列的前n项和S n取最小值时,n的值等于()A. 7B. 6C. 5D. 45.设P是正方体ABCD-A1B1C1D1的对角面BDD1B1(含边界)内的点,若点P到平面ABC、平面ABA1、平面ADA1的距离相等,则符合条件的点P()A. 仅有一个B. 有有限多个C. 有无限多个D. 不存在6.已知Rt△ABC,点D为斜边BC的中点,,,,则等于()A. B. C. 9 D. 147.设变量x,y满足不等式组,则z=|x-y-4|的最大值为()A. B. C. D. 68.函数f(x)=的大致图象为()A.B.C.D.9.设实数a,b,c分别满足,b lnb=1,3c3+c=1,则a,b,c的大小关系为()A. B. C. D.10.在直角坐标系xOy中,F是椭圆C:=1(a>b>0)的左焦点,A,B分别为左、右顶点,过点F作x轴的垂线交椭圆C于P,Q两点,连接PB交y轴于点E,连接AE交PQ于点M,若M是线段PF 的中点,则椭圆C的离心率为()A. B. C. D. 11.在数列{a n}中,已知a1=1,且对于任意的m,n∈N*,都有a m+n=a m+a n+mn,则=()A. B. C. D.12.已知函数f(x)=sin2x的图象与直线2kx-2y-kπ=0(k>0)恰有三个公共点,这三个点的横坐标从小到大依次为x1,x2,x3,则(x1-x2)tan(x2-2x3)=()A. B. C. 0 D. 1二、填空题(本大题共4小题,共20.0分)13.已知tan(x+)=2,x是第三象限角,则cos x=______.14.《易经》是中国传统文化中的精髓,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每卦有三根线组成(“”表示一根阳线,“”表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有三根阳线和三根阴线的概率______.15.抛物线y2=4x的焦点为F,其准线为直线l,过点M(5,2)作直线l的垂线,垂足H,则∠FMH的角平分线所在的直线斜率是______.16.我国古代数学名著《九章算术》中有如下问题:“今有羡除,下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺.问积几何”,羡除是一个五面体,其中三个面是梯形,另两个面是三角形,已知一个羡除的三视图如图粗线所示,其中小正方形网格的边长为1,则该羡除的体积为______.三、解答题(本大题共7小题,共84.0分)17.在△ABC中,内角A,B,C的对边分别为a,b,c,且满足sin2A+sin A sin B-6sin2B=0.(1)求的值;(2)若cos C=,求sin B的值.18.如图,四棱锥P-ABCD,AB∥CD,∠BCD=90°,AB=2BC=2CD=4,△PAB为等边三角形,平面PAB⊥平面ABCD,Q为PB中点.(1)求证:AQ⊥平面PBC;(2)求二面角B-PC-D的余弦值.19.为评估M设备生产某种零件的性能,从该设备生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到如表:(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为X,并根据以下不等式进行评判(p表示相应事件的频率):①p(μ-σ<X<μ+σ)≥0.6826;②p(μ-2σ<X<μ+2σ)≥0.9544;③p(μ-3σ<X<μ+3σ)≥0.9974.评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁.试判断M设备的性能等级.(2)将直径小于等于μ-2σ的零件或直径大于等于μ+2σ的零件认定为是“次品”,将直径小于等于μ-3σ的零件或直径大于等于μ+3σ的零件认定为是“突变品”,从样本的“次品”中随意抽取2件零件,求“突变品”个数ξ的数学期望.20.已知动点P到定点F(1,0)和直线l:x=2的距离之比为,设动点P的轨迹为曲线E,过点F作垂直于x轴的直线与曲线E相交于A,B两点,直线l:y=mx+n与曲线E交于C,D两点,与线段AB相交于一点(与A,B不重合)(Ⅰ)求曲线E的方程;(Ⅱ)当直线l与圆x2+y2=1相切时,四边形ACBD的面积是否有最大值,若有,求出其最大值,及对应的直线l的方程;若没有,请说明理由.21.已知函数f(x)=e x(2x-1),g(x)=ax-a(a∈R).(1)若y=g(x)为曲线y=f(x)的一条切线,求a的值;(2)已知a<1,若存在唯一的整数x0,使得f(x0)<g(x0),求a的取值范围.22.在直角坐标系xOy中,抛物线C的方程为y2=4x.(1)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(2)直线l的参数方程是(t为参数),l与C交于A,B两点,,求l的倾斜角.23.已知函数f(x)=|x-1|+|2x+m|(m∈R).(1)若m=2时,解不等式f(x)≤3;(2)若关于x的不等式f(x)≤|2x-3|在x∈[0,1]上有解,求实数m的取值范围.答案和解析1.【答案】D【解析】解:由题可得:集合A是点集,集合B是数集,所以A∩B=∅.故选:D.由题可得:集合A是点集,集合B是数集,由交集概念即可得解.本题主要考查了集合的表示及交集运算,属于基础题.2.【答案】B【解析】解:∵(3-4i)z=|3-4i|,∴z==.∴z的虚部为:.故选:B.整理(3-4i)z=|3-4i|得:z=,由复数的基本概念得答案.本题主要考查了复数的模及复数的除法运算,还考查了复数的有关概念,考查计算能力,属于基础题.3.【答案】A【解析】解:样本间隔为2400÷30=80,设首个号码为x,则第三.第四个号码为x+160,x+240,则x+160+x+240=2x+400=432,得2x=32,x=16,则第6组抽到的号码为16+80×5=400+16=416,故选:A.先求出样本间隔,设出首个号码x,建立方程组求出x,利用系统抽样的定义进行求解即可.本题主要考查系统抽样的应用,根据样本间隔,结合条件求出首个号码是解决本题的关键.4.【答案】B【解析】解:由a5是a2与a6的等比中项,可得a52=a2a6,由等差数列{a n}的公差d为2,即(a1+8)2=(a1+2)(a1+10),解得a1=-11,a n=a1+(n-1)d=-11+2(n-1)=2n-13,由a1<0,a2<0,…,a6<0,a7>0,…可得该数列的前n项和S n取最小值时,n=6.故选:B.由题意可得,运用等差数列的通项公式和等比数列的中项的性质,解方程可得a1,结合已知公差,代入等差数列的通项可求,判断数列的单调性和正负,即可得到所求和的最小值时n的值等差数列与等比数列是高考考查的基本类型,本题考查等差数列的通项公式的运用,同时考查等比数列的中项的性质,以及等差数列的单调性和前n项和的最小值,属于中档题.5.【答案】A【解析】解:设P是正方体ABCD-A1B1C1D1的对角面BDD1B1(含边界)内的点,若点P到平面ABC、平面ABA1、平面ADA1的距离相等,则符合条件的点P是正方体的中心,故选:A.设P是正方体ABCD-A1B1C1D1的对角面BDD1B1(含边界)内的点,若点P到平面ABC、平面ABA1、平面ADA1的距离相等,则符合条件的点P是正方体的中心,即可得出结论.本题考查点面距离,考查学生分析解决问题的能力,比较基础.6.【答案】D【解析】解:如图,分别以边AC,AB所在直线为x,y轴,建立平面直角坐标系,则:;;∴=;∴=,,;∴.故选:D.可分别以直线AC,AB为x,y轴,建立平面直角坐标系,根据条件便可求出点A,B,C,D的坐标,进而求出点E的坐标,从而得出向量的坐标,这样进行数量积的坐标运算即可求出的值.考查建立平面直角坐标系,通过坐标解决向量问题的方法,能求平面上点的坐标,以及向量数乘的几何意义,数量积的坐标运算.7.【答案】D【解析】解:作出不等式组表示的平面区域如下:作出直线l:x-y-4=0,当l往上平移时,x-y-4变小,当直线l经过点B(,)时,x-y-4最大,当直线l经过点C(1,3)时,x-y-4最小.即:1-3-4≤x-y-4≤,所以-6≤x-y-4≤-,所以,所以z=|x-y-4|的最大值为6.故选:D.作出不等式组表示的平面区域,利用线性规划知识求得-6≤x-y-4≤-,问题得解.本题主要考查了利用线性规划知识求目标函数的最值,考查了数形结合思想及转化能力,属于中档题.8.【答案】C【解析】解:函数f(x)=,当x=0时,y=-3,排除选项A,B,D.即可判断选项C正确,故选:C.利用特殊值对应点的坐标排除选项,判断即可.本题考查函数的图象的判断,函数的奇偶性以及函数值的应用,考查分析问题解决问题的能力.9.【答案】B【解析】解;因为,所以a=,又因为blnb=1>0,所以lnb>0,所以b>1,又因为f(x)=3x3+x-1在R上为增函数,又f(1)=3>0,f ()=-1<0,又f(c)=0,由函数零点定理可得:,即b>c>a,故选:B.由对数不等式得求法得:blnb=1>0,所以lnb>0,所以b>1,由函数的零点定理得:因为f(x)=3x3+x-1在R上为增函数,又f(1)=3>0,f()=-1<0,又f(c)=0,由函数零点定理可得:,得解.本题考查了解对数不等式及函数的零点定理,属中档题.10.【答案】C【解析】解:可令F(-c,0),由x=-c,可得y=±b =±,由题意可设P(-c,),B(a,0),可得BP的方程为:y=-(x-a),x=0时,y=,E(0,),A(-a,0),则AE的方程为:y=(x+a),则M(-c,-),M是线段QF的中点,可得2•(-)=,即2a-2c=a+c,即a=3c,可得e==.故选:C.利用已知条件求出P的坐标,然后求解E的坐标,推出M的坐标,利用中点坐标公式得到双曲线的离心率即可.本题考查椭圆的简单性质的应用,考查转化思想以及计算能力.11.【答案】C【解析】解:数列{a n}中,已知a1=1,且对于任意的m,n∈N*,都有a m+n=a m+a n+mn,则:a2=a1+a1+1×1=3=1+2,a3=a1+a2+1×2=6=1+2+3,…,a n=1+2+3+…+n=,所以:,所以:=,=2(),=,=.故选:C.首先利用赋值法求出数列的通项公式,进一步利用裂项相消法求出数列的和.本题考查的知识要点:数列的通项公式的求法及应用,裂项相消法在数列求和中的应用,主要考察学生的运算能力和转换能力,属于基础题型.12.【答案】B【解析】解:由题意得直线2kx-2y-kπ=0(k>0)过定点(,0),且斜率k>0,由对称性可知,直线与三角函数图象切于另外两个点,所以x3+x1=π;x2=,f′(x)=2cos2x,则切线方程过点(x1,sin2x1),(x2,sin2x2),所以2(2x3-π)cos2x3=2sin2x3,,而(x1-x2)tan(x2-2x3)=(-x3)tan (-2x3)=(π-2x3)cot2x3=-.故选:B.求出直线恒过的定点,利用函数的导数求出切线方程,转化求解表达式的值即可.直线与曲线相切一般要应用三点,一是曲线在切点处的导数是切线的斜率,二是切点即在曲线上也在切线上,三是没有切点要设切点.本就用到了上面三点,然后再配求所求式子的结构.13.【答案】【解析】解:因为tan(x+)=2,所以=2,解得:tanx=,即:sinx=cosx,又sin2x+cos2x=1,所以cos2x=,又x是第三象限角,所以cosx=-.故答案为:-.由两角和的正切公式即可求得tanx=,结合sin2x+cos2x=1,即可求得cos2x=,问题得解.本题主要考查了两角和的正切公式及同角三角函数基本关系,考查计算能力,属于基础题.14.【答案】【解析】解:从八卦中任取两卦,共有=28种取法,若两卦的六根线中恰有三根阳线和三根阴线,可按取得卦的阳、阴线的根数分类计算;当有一卦阳、阴线的根数为3、0时,另一卦阳、阴线的根数为0、3,共有1种取法.当有一卦阳、阴线的根数为2、1时,另一卦阳、阴线的根数为1、2,共有3×3=9种取法.所以两卦的六根线中恰有三根阳线和三根阴线的取法有1+9=10种.则从八卦中任取两卦,这两卦的六根线中恰有三根阳线和三根阴线的概率为P=,故答案为:由图可得:三根都是阳线的有一卦,三根都是阴线的有一卦,两根阳线一根阴线的有三卦,两根阴线一根阳线的有三卦,利用组合数可得基本事件总数,分类利用计算原理求得符合要求的基本事件个数为10个,问题得解.本题主要考查了组合计数及分类思想,考查古典概型概率计算公式,属于中档题.15.【答案】【解析】解:连接HF,因为点M在抛物线y2=4x上,所以由抛物线的定义可知|MH|=|MF|,所以△MHF为等腰三角形,所以∠FMH的角平分线所在的直线经过HF的中点,因为F(1,0),H(-1,),所以HF的中点为(0,),所以∠FMH的角平分线的斜率为=.故答案为:.由抛物线定义可知|MH|=|MF|,进而可推断出∠FMH的角平分线所在的直线经过HF的中点,利用斜率的两点式即可得到结论.在解决与抛物线有关的问题时,要注意抛物线的定义在解题中的应用.抛物线定义有两种用途:一是当已知曲线是抛物线时,抛物线上的点M满足定义,它到准线的距离为d,则|MF|=d,可解决有关距离、最值、弦长等问题;二是利用动点满足的几何条件符合抛物线的定义,从而得到动点的轨迹是抛物线.16.【答案】24【解析】解:由三视图还原原几何体如图所示,在长宽高分别为6,3,4的长方体中,A1E=D1F=2,BG=CH=1,三视图所对应的几何体是多面体AEG-DHF,该组合体是由一个三棱锥和一个四棱锥组成的组合体,其体积: V=V E-AGHD +V H-EFD=.故答案为:24.首先确定几何体的空间结构特征,然后将其分割之后求解其体积即可.本题考查求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,训练了利用分割补形法求解多面体的体积,是中档题. 17.【答案】解:(1)因为sin 2A +sin A sin B -6sin 2B =0,sin B ≠0,所以( )2+ -6=0,得 =2或=-3(舍去).由正弦定理得 ==2. (2)由余弦定理得cos C ==.① 将=2,即a =2b 代入①,得5b 2-c 2=3b 2,得c = b .由余弦定理cos B =,得:cos B ==,则sin B = =.【解析】(1)由已知可得()2+-6=0,解方程可得=2,由正弦定理得=2.(2)由已知及余弦定理可求c=b ,进而可求cosB 的值,根据同角三角函数基本关系式可求sinB 的值.本题主要考查了正弦定理,余弦定理,同角三角函数基本关系式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.18.【答案】证明:(1)因为AB ∥CD ,∠BCD =90°, 所以AB ⊥BC ,又平面PAB ⊥平面ABCD ,且平面PAB ∩平面ABCD =AB , 所以BC ⊥平面PAB ,(1分)又AQ ⊂平面PAB ,所以BC ⊥AQ ,(2分)因为Q 为PB 中点,且△PAB 为等边三角形,所以PB ⊥AQ ,(3分) 又PB ∩BC =B ,所以AQ ⊥平面PBC .(4分) 解:(2)取AB 中点为O ,连接PO , 因为△PAB 为等边三角形,所以PO ⊥AB ,由平面PAB ⊥平面ABCD ,因为PO ⊂平面PAB , 所以PO ⊥平面ABCD ,(5分)所以PO ⊥OD ,由AB =2BC =2CD =4,∠ABC =90°, 可知OD ∥BC ,所以OD ⊥AB .以AB 中点O 为坐标原点,分别以OD ,OB ,OP 所在直线为x ,y ,z 轴, 建立如图所示的空间直角坐标系O -xyz .(6分)所以A (0,-2,0),D (2,0,0),C (2,2,0),P (0,0,2 ),B (0,2,0),则 =(2,2,0), =(-2,0,2 ), =(0,-2,0), 因为Q 为PB 中点,所以Q (0,1, ), 由 (1)知,平面PBC 的一个法向量为 =(0,3, ),(7分)设平面PCD 的法向量为=(x ,y ,z ), 由,取z =1,得 =( , , ),(9分) 由cos < , >=== .(11分)因为二面角B -PC -D 为钝角,所以,二面角B -PC -D 的余弦值为.(12分)【解析】(1)推导出AB ⊥BC ,从而BC ⊥平面PAB ,进而BC ⊥AQ ,再求出PB ⊥AQ ,由此能证明AQ ⊥平面PBC .(2)取AB 中点为O ,连接PO ,推导出PO ⊥AB ,PO ⊥平面ABCD ,OD ⊥AB .以AB 中点O 为坐标原点,分别以OD ,OB ,OP 所在直线为x ,y ,z 轴,建立空间直角坐标系O-xyz ,利用向量法能求出二面角B-PC-D 的余弦值.该题考查线面垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系,考查运算求解能力,考查数形结合思想,是中档题. 19.【答案】解:(1)p (m -s <X <m +s )=p (82.8<X <87.2)=0.8>0.6826p (m -2s <X <m +2s )=p (80.6<X <89.4)=0.94<0.9544p (m -3s <X <m +3s )=p (78.4<X <91.6)=0.98<0.9974,因为设备的数据仅满足一个不等式,故其性能等级为丙.( 2)由题意可知,样本中次品个数为 6,突变品个数为 2,“突变品”个数ξ的可能取值为 0,1,2, P (ξ=0)==,P (ξ=1)==,P (ξ=2)==,可得ξ的分布列:EY =0×+1×+2×=. 【解析】(1)利用正态分布列的概率计算公式即可得出.( 2)由题意可知,样本中次品个数为 6,突变品个数为 2,“突变品”个数ξ的可能取值为 0,1,2,利用超几何分布列的计算公式即可得出ξ的分布列与数学期望.本题考查了正态分布列的概率计算公式、超几何分布列的计算公式,考查了推理能力与计算能力,属于中档题.20.【答案】解:(1)设点P(x,y),由题意可得,,整理可得:.∴曲线E的方程是.(2)设C(x1,y1),D(x2,y2),由已知可得:,当m=0时,不合题意.当m≠0时,由直线l与圆x2+y2=1相切,可得:,即m2+1=n2,联立消去y得.△ >,△,△,所以,,,四边形==.当且仅当,即时等号成立,此时.经检验可知,直线和直线符合题意.【解析】(1)设点P(x,y),由题意可得,,化简即可得出;(2)设C(x1,y1),D(x2,y2),由已知可得:,当m=0时,不合题意.当m≠0时,由直线l与圆x2+y2=1相切,可得m2+1=n2,直线与椭圆方程联立可得.利用根与系数的关系可得,再利用基本不等式的性质即可得出.本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、四边形的面积计算公式、基本不等式的性质,考查了推理能力与计算能力,属于难题.21.【答案】解:(1)f′(x)=e x(2x-1)+2e x=e x(2x+1),设切点为(m,n),由题意可得a=e m(2m+1),又n=am-a=e m(2m-1),解方程可得,a=1或4;(2)函数f(x)=e x(2x-1),g(x)=ax-a由题意知存在唯一的整数x0使得f(x0)在直线y=ax-a的下方,∵f′(x)=e x(2x-1)+2e x=e x(2x+1),∴当x<-时,f′(x)<0,当x>-时,f′(x)>0,∴当x=-时,f(x)取最小值-2,当x=0时,f(0)=-1,当x=1时,f(1)=e>0,直线y=ax-a恒过定点(1,0)且斜率为a,故-a>f(0)=-1且f(-1)=-3e-1≥-a-a,解得≤a<1.【解析】(1)求出导数,设出切点(m,n),求得切线的斜率,由切线的方程,可得a=e m(2m+1),又n=am-a=e m(2m-1),解方程可得a的值;(2)函数f(x)=e x(2x-1),g(x)=ax-a,问题转化为存在唯一的整数x0使得f(x0)在直线y=ax-a的下方,求导数可得函数的极值,数形结合可得-a>f(0)=-1且f(-1)=-3e-1≥-a-a,解关于k的不等式组可得.本题考查导数的运用:求切线的斜率和极值、最值,涉及数形结合和转化的思想,属中档题.22.【答案】解:(1)∵ ,代入y2=4x,∴ρsin2θ-4cosθ=0(2)不妨设点A,B对应的参数分别是t1,t2,把直线l的参数方程代入抛物线方程得:t2sin2α-4cosα•t-8=0,∴△=16cos2α+32sin2α>0,∴t1+t2=,t1t2=-,则|AB|=|t1-t2|==4,∴,∴或.【解析】(1)由x=ρcosθ,y=ρsinθ可得抛物线C的极坐标方程;(2)不妨设点A,B对应的参数分别是t1,t2,根据弦长公式,即可求解.本题考查普通方程与极坐标方程的转化,考查弦长公式,考查学生分析解决问题的能力,属于中档题.23.【答案】解:(1)若m=2时,|x-1|+|2x+2|≤3,当x≤-1时,原不等式可化为-x+1-2x-2≤3解得x≥-,所以,当-1<x<1时,原不等式可化为1-x+2x+2≤3得x≤0,所以-1<x≤0,当x≥1时,原不等式可化为x-1+2x+2≤3解得x≤,所以x∈Φ,综上述:不等式的解集为;(2)当x∈[0,1]时,由f(x)≤|2x-3|得1-x+|2x+m|≤3-2x,即|2x+m|≤2-x,故x-2≤2x+m≤2-x得-x-2≤m≤2-3x,又由题意知:(-x-2)min≤m≤(2-3x)max,即-3≤m≤2,故m的范围为[-3,2].【解析】(1)通过去掉绝对值符号,转化求解不等式的解集即可.(2)已知条件转化为即|2x+m|≤2-x,即-x-2≤m≤2-3x,即可求解实数m的取值范围.本题主要考查了解绝对值不等式,利用绝对值不等式的几何意义解决问题;考查推理论证能力、运算求解能力等;考查化归与转化思想、数形结合思想、函数与方程思想等;考查数学抽象、逻辑推理、直观想象、数学运算等.。

2019学年河南省平顶山市中考二模数学试卷【含答案及解析】

2019学年河南省平顶山市中考二模数学试卷【含答案及解析】

2019学年河南省平顶山市中考二模数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. ﹣的倒数是()A.﹣ B.3 C. D.﹣32. 下列计算正确的是()A.2a+3b=5ab B.(﹣1)0=1 C.(ab3)2=ab6 D.(x+2)2=x2+43. 下列手机软件图标中,既是轴对称图形又是中心对称图形的是()A. B. C.D.4. 一个几何体的三视图如图,则该几何体是()A. B. C.D.5. 某班的9名学生的体重分别是(单位:千克):70,67,65,63,61,59,59,57,59,这组数据的众数和中位数是()A.59,61 B.59,63 C.59,65 D.57,616. 如图,▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,连接AE,∠E=36°,则∠ADC的度数是()A.44° B.54° C.72° D.53°7. 已知点A(x1,y1),B(x2,y2)是反比例函数y=图象上的点,若x1>0>x2,则一定成立的是()A.y1>0>y2 B.y1>y2>0 C.0>y1>y2 D.y2>0>y18. 如图,△ABC中,∠ACB=90°,∠A=30°,AB=16.点P是斜边AB上一点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为()二、填空题9. 比﹣2大5的数是.10. 已知,,且a、b是两个连续的整数,则|a+b|= .11. 如图,直线l∥m∥n,等边△ABC的顶点B,C分别在直线n和m上,边BC与直线n所夹的角为25°,则∠α的度数为度.12. 不等式组的非负整数解是.13. 如图是某市7月1日至10日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大地200表示空气重度污染,某人随机选择7月1日至7月8日中的某一天到达该市,连续停留3天,则此人在该市停留期间有且仅有1天空气质量优良的概率是.14. 如图,AB半圆的直径,点O为圆心,OA=5,弦AC=8,OD⊥AC,垂足为E,交⊙O于D,连接BE.设∠BEC=α,则tanα的值为.15. 如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于.三、计算题16. (8分)化简求值:,其中a=,b=.四、解答题17. (10分)如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得△GFC.(1)求证:BE=DG;(2)若∠B=60°,当BC= AB时,四边形ABFG是菱形;(3)若∠B=60°,当BC= AB时,四边形AECG是正方形.18. (8分)2014年6月,某中学以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图①和图②提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生?(2)请把折线统计图(图①)补充完整;(3)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书箱的学生人数.19. (8分)如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=51°18′,求梯子的长.(参考数据:sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈1.248)20. (10分)如图,将透明三角形纸片PAB的直角顶点P落在第四象限,顶点A、B分别落在反比例函数y=图象的两支上,且PB⊥x于点C,PA⊥y于点D,AB分别与x轴,y轴相交于点E、F.已知B(1,3).(1)k= ;(2)试说明AE=BF;(3)当四边形ABCD的面积为时,求点P的坐标.21. (10分)目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:22. 类型进价(元/只)售价(元/只)甲型2530乙型4560td23. (10分)(1)操作发现:如图①,在Rt△ABC中,∠C=2∠B=90°,点D是BC上一点,沿AD折叠△ADC,使得点C 恰好落在AB上的点E处.请写出AB、AC、CD之间的关系;(2)问题解决:如图②,若(1)中∠C≠90°,其他条件不变,请猜想AB、AC、CD之间的关系,并证明你的结论;(3)类比探究:如图③,在四边形ABCD中,∠B=120°,∠D=90°,AB=BC,AD=DC,连接AC,点E是CD上一点,沿AE折叠,使得点D正好落在AC上的F处,若BC=,直接写出DE的长.24. (11分)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.(1)求该抛物线的解析式;(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】。

2019上海市金山数学二模

2019上海市金山数学二模

2019上海市金山数学二模一、(金山区)选择题(本大题共6小题,共24.0分)1.下列实数中,是有理数的是()A. πB. √8C. √32D. 372.不等式组{x−1<0−x>3的解集是()A. x>−3B. x<−3C. x>1D. x<13.用换元法解方程:xx−1−x−1x-2=0时,如果设xx−1=y,那么将原方程变形后表示为一元二次方程一般形式的是()A. y−1y −2=0 B. y−2y−1=0 C. y2−2y−1=0D. y2−y−2=04.数据2、1、0、-2、0、-1的中位数与众数分别是()A. 0和0B. −1和0C. 0和1D. 0和25.下列四边形中,是中心对称而不是轴对称图形的是()A. 平行四边形B. 矩形C. 菱形D. 正方形6.已知⊙O1与⊙O2内切于点A,⊙O1的半径等于5,O1O2=3,那么O2A的长等于()A. 2B. 3C. 8D. 2或8二、(金山区)填空题(本大题共12小题,共48.0分)7.计算:a2÷a-2=______.8.因式分解:a3+2a=______.9.方程√3x−2=2的解是______.10.化简:√a3b24(b≥0)的结果是______.11.已知反比例函数y=k−1x的图象在第二、四象限内,那么k的取值范围是______.12.已知关于x的一元二次方程x2+x+m=0的一个根是x=1,那么这个方程的另一个根是______.13.从方程x2=0,√x−1=-1,x2-2x+4=0中,任选一个方程,选出的这个方程无实数解的概率为______.14.100克鱼肉中蛋白质的含量如图表,每100克草鱼、鲤鱼、花鲢鱼鱼肉的平均蛋白质含量为16.8克,那么100克鲤鱼肉的蛋白质含量是______克.15.在△ABC中,AB=AC,请你再添加一个条件使得△ABC成为等边三角形,这个条件可以是______(只要写出一个即可).16.如图,在▱ABCD中,E是边BC上的点,AE交BD于点F,BEBC =23,BE⃗⃗⃗⃗⃗ =a⃗,AB⃗⃗⃗⃗⃗ =b⃗ ,那么BD⃗⃗⃗⃗⃗⃗ =______(用a⃗、b⃗ 表示).17.如图,飞机于空中A处观测其正前方地面控制点C的俯角为30°,若飞机航向不变,继续向前飞行1000米至B处时,观测到其正前方地面控制点C的俯角为45°,那么该飞机与地面的高度是______米(保留根号).18.一个正多边形的对称轴共有10条,且该正多边形的半径等于4,那么该正多边形的边长等于______.三、解答题(本大题共7小题,共78.0分)19.计算:(√3)0+812+√2(√2−1)+(√3+√2)-1.20.解方程:1x−2−2xx2−4=1.21.已知:如图,在Rt△ABC中,∠ACB=90°,D是边AB的中点,CE=CB,CD=5,sin∠ABC=35.求:(1)BC的长.(2)tan E的值.22.某演唱会购买门票的方式有两种.方式一:若单位赞助广告费10万元,则该单位所购门票的价格为每张0.02万元;方式二:如图所示.设购买门票x张,总费用为y万元,方式一中:总费用=广告赞助费+门票费.(1)求方式一中y与x的函数关系式.(2)若甲、乙两个单位分别采用方式一、方式二购买本场演唱会门票共400张,且乙单位购买超过100张,两单位共花费27.2万元,求甲、乙两单位各购买门票多少张?23.(金山区)已知:如图,菱形ABCD的对角线AC与BD相交于点O,若∠CAD=∠DBC.(1)求证:四边形ABCD是正方形.(2)E是OB上一点,DH⊥CE,垂足为H,DH与OC相交于点F,求证:OE=OF.24.(金山区)已知:抛物线y=-x2+bx+c,经过点A(-1,-2),B(0,1).(1)求抛物线的关系式及顶点P的坐标.(2)若点B′与点B关于x轴对称,把(1)中的抛物线向左平移m个单位,平移后的抛物线经过点B′,设此时抛物线顶点为点P′.①求∠P′BB′的大小.②把线段P′B′以点B′为旋转中心顺时针旋转120°,点P′落在点M处,设点N在(1)中的抛物线上,当△MNB′的面积等于6√3时,求点N的坐标.25.(金山区)如图,在Rt△ABC中,∠C=90°,AC=16cm,AB=20cm,动点D由点Ccm速度在边向点A以每秒1cm速度在边AC上运动,动点E由点C向点B以每秒43 BC上运动,若点D,点E从点C同时出发,运动t秒(t>0),联结DE.(1)求证:△DCE∽△BCA.(2)设经过点D、C、E三点的圆为⊙P.①当⊙P与边AB相切时,求t的值.②在点D、点E运动过程中,若⊙P与边AB交于点F、G(点F在点G左侧),联结CP并延长CP交边AB于点M,当△PFM与△CDE相似时,求t的值.金山区答案和解析1.【答案】D【解析】解:有理数是整数和分数的集合,故选:D.根据有理数的定义即可求出答案.本题考查有理数,解题的关键是熟练运用有理数的定义,本题属于基础题型.2.【答案】B【解析】解:解不等式-x>3,得:x<-3,解不等式x-1<0,得:x<1,则不等式组的解集为x<-3.故选:B.求出每个不等式的解集,再求出不等式组的解集即可.本题考查的是解一元一次不等式组,熟知解一元一次不等式的基本步骤是解答此题的关键.3.【答案】C【解析】解:设=y,那么将原方程可化为:,去分得,y2-1-2y=0,整理得y2-2y-1=0故选:C.依题意,设=y,那么将原方程可化为:,去分母得,y2-1-2y=0,对比选项即可得出答案此题主要考查换元法解一元二次方程.主要针对有相似的整体项,可以利用换元法进行求解,再求出最终的答案.4.【答案】A【解析】解:在这一组数据中2是出现次数最多的,故众数是0;将这组数据已从小到大的顺序排列,处于中间位置的数是0,那么由中位数的定义可知,这组数据的中位数是0;故选:A.中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据.此题主要考查了众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5.【答案】A【解析】解:A、平行四边形是中心对称图形,不是轴对称图形,故选项正确;B、矩形既是轴对称图形,又是中心对称图形,故选项错误;C、菱形既是轴对称图形,又是中心对称图形,故选项错误;D、正方形,矩形既是轴对称图形,又是中心对称图形,故选项错误.故选:A.根据中心对称图形以及轴对称图形的定义即可作出判断.本题主要考查了中心对称图形与轴对称图形的定义,正确理解定义是解题关键.6.【答案】D【解析】解:设⊙O2的半径为r,∵⊙O1与⊙O2内切于点A,∴O2A=r,O1A=5,∴r-5=3或5-r=3,∴r=8或r=2,即O2A的长等于2或8.故选:D.设⊙O2的半径为r,利用两圆相切的性质得O2A=r,O1A=5,再根据内切的判定方法得到r-5=3或5-r=3,然后计算出确定r的值.本题考查了圆和圆的位置关系:两圆的圆心距为d,两圆半径分别为R、r,当两圆外离⇔d>R+r;两圆外切⇔d=R+r;两圆相交⇔R-r<d<R+r(R≥r);两圆内切⇔d=R-r(R>r);两圆内含⇔d<R-r(R>r).7.【答案】a4【解析】解:a2÷a-2=a2-(-2)=a4,故答案为:a4.根据同底数幂的除法法则计算,得到答案.本题考查的是同底数幂的除法、负整数指数幂,同底数幂的除法法则:底数不变,指数相减.8.【答案】a(a2+2)【解析】解:a3+2a=a(a2+2),故答案为a(a2+2).运用提公因式法分解因式即可,提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式.本题考查了因式分解,正确提取公因式是解题的关键.9.【答案】x=2【解析】解:∵=2,∴3x-2=4,∴x=2,当x=2时,左边=,右边=2,∵左边=右边,∴方程=2的解是:x=2.故答案为:x=2.首先根据乘方法消去方程中的根号,然后根据一元一次方程的求解方法,求出x的值是多少,最后验根,求出方程=2的解是多少即可.此题主要考查了无理方程的求解,要熟练掌握,解答此题的关键是要明确:(1)解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法.常用的方法有:乘方法,配方法,因式分解法,设辅助元素法,利用比例性质法等.(2)注意:用乘方法(即将方程两边各自乘同次方来消去方程中的根号)来解无理方程,往往会产生增根,应注意验根.10.【答案】ab√a2【解析】解:=,故答案为:.依据二次根式的性质化简即可.本题主要考查的是二次根式的性质与化简,熟练掌握相关知识是解题的关键.11.【答案】k<1【解析】解:由题意可得k-1<0,则k<1.故答案为:k<1.根据k<0时,图象是位于二、四象限即可得出结果.此题主要考查反比例函数图象的性质:(1)k>0时,图象是位于一、三象限.(2)k<0时,图象是位于二、四象限.12.【答案】-2【解析】解:设关于x的一元二次方程x2+x+m=0的另一个实数根是α,∵关于x的一元二次方程x2+x+m=0的一个实数根为1,∴α+1=-1,∴α=-2.故答案为-2.首先设关于x的一元二次方程x2+x+m=0的另一个实数根是α,然后根据根与系数的关系,即可得α+1=-1,继而求得答案.此题考查了根与系数的关系.此题难度不大,注意掌握若二次项系数为1,x1,x2是方程x2+px+q=0的两根时,x1+x2=-p,x1x2=q.13.【答案】23【解析】解:∵=-1,x2-2x+4=0无实数解,∴无实数解的概率为,故答案为:.根据算术平方根具有非负性可得=-1,再计算x2-2x+4=0的△<0,因此也无实数解,再利用概率可得答案.此题主要考查了概率公式和一元二次方程的解法,关键是掌握算术平方根具有非负性,掌握判断一元二次方程解的方法.14.【答案】17.2【解析】解:∵每100克草鱼、鲤鱼、花鲢鱼鱼肉的平均蛋白质含量为16.8克,∴设100克鲤鱼肉的蛋白质含量是x克,由题意可得:(17.9+15.3+x)=16.8,解得:x=17.2.故答案为:17.2.直接利用频数分布直方图结合平均数求法得出答案.此题主要考查了频数分布直方图,由直方图获取正确信息是解题关键.15.【答案】∠A=60°【解析】解:在△ABC中,AB=AC,再添加∠A=60°可得△ABC是等边三角形,故答案为:∠A=60°.根据有一个角是60°的等腰三角形是等边三角形可得答案.此题主要考查了等边三角形的判定,关键是掌握等边三角形的判定方法:(1)由定义判定:三条边都相等的三角形是等边三角形.(2)判定定理1:三个角都相等的三角形是等边三角形.(3)判定定理2:有一个角是60°的等腰三角形是等边三角形.a⃗−b⃗16.【答案】32【解析】解:∵四边形ABCD是平行四边形,∴AD∥BC,AC=BC,∵BE:BC=2:3,∴BE:AD=2:3,∴AD=BE,∵=,∴=,∵=+,∴=-,故答案为-.利用平行四边形的性质求出,再根据=+求解即可.本题考查平行四边形的性质,平面向量等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.【答案】(500√3+500)【解析】解:作CD⊥AB于点D.∴∠BDC=90°,∵∠DBC=45°,∴BD=CD,∵∠DAC=30°,∴tan30°====,解得CD=BD=500+500(米).答:飞机再向前飞行(500+500)米与地面控制点C的距离最近.故答案为:(500+500).易得CD=BD,那么利用30°的正切值即可求得BD长,即为飞机再向前飞行多少米与地面控制点C的距离最近.此题主要考查了解直角三角形的应用,用到的知识点为:点到直线的最短距离为这点到这条直线的垂线段的长度;借助俯角构造直角三角形并解直角三角形是俯角问题常用的方法.18.【答案】2√5-2【解析】解:∵正多边形的对称轴共有10条,∴这个正多边形是正十边形,设这个正十边形的中心为O,则OA=OB=4,∠AOB==36°,∵OA=OB,∴∠OAB=∠B=72°,作AC平分∠OAB交OB于C,则∠OAC=∠O,∠ACB=∠B,∴OC=CA=AB,△ABC∽△OAB,∴=,即AB2=4×(4-AB),解得,AB1=2-2,AB2=-2-2(舍去),∴AB=2-2,故答案为:2-2.根据轴对称图形的性质得到这个正多边形是正十边形,求出正十边形的中心角,作AC平分∠OAB交OB于C,根据相似三角形的性质列出比例式,计算即可.本题考查的是轴对称图形、正多边形的概念和性质、相似三角形的判定和性质,掌握正多边形的计算公式是解题的关键.19.【答案】解:原式=1+2√2+2-√2+√3+√2=1+2√2+2-√2+√3−√2=3+√3;【解析】分别化简零指数幂、分数指数幂、负指数幂,然后相加即可.本题考查了实数的运算,熟练掌握零指数幂、分数指数幂、负指数幂是解题的关键.20.【答案】解:去分母,得x+2-2x=x2-4,整理,得x2+x-6=0,∴(x+3)(x-2)=0,∴x+3=0或x-2=0,∴x=-3或x=2,检验:x=2时,分母x-2=0,因此x=2是原分式方程的增根,x=-3时,左边=1=右边所以原方程的解为x=-3.【解析】先去分母,化成整式方程,然后求出整式方程的解,最后检验得出结论.本题考查了解分式方程,将分式方程化成整式方程求解是解题的关键.21.【答案】解:(1)∵在Rt△ABC中,∠ACB=90,D是边AB的中点;∴CD=12AB,∵CD=5,∴AB=10,∵sin∠ABC=ACAB =3 5,∴AC=6∴BC=√AB2−AC2=√102−62=8;(2)作EH⊥BC,垂足为H,∴∠EHC=∠EHB=90°∵D是边AB的中点,∴BD=CD=12AB,∠DCB=∠ABC,∵∠ACB=90°,∴∠EHC=∠ACB,∴△EHC∽△ACB,∴EH AC =CHBC=ECAB由BC=8,CE=CB得CE=8,∠CBE=∠CEB,∴EH 6=CH 8=810解得EH =245,CH =325,BH =8-325=85 ∴tan ∠CBE =EHBH =3,即tan E =3.【解析】(1)先由直角三角形的中线定理求出CD 的长度,然后根据勾股定理求出长度; (2)作EH ⊥BC ,垂足为H ,所以∠EHC=∠EHB=90°,由D 是边AB 的中点,可得BD=CD=AB ,∠DCB=∠ABC ,∠EHC=∠ACB ,得到△EHC ∽△ACB ,然后根据相似比求出EH=,CH=,BH=8-=,因此tan ∠CBE==3,即tanE=3.本题考查了解直角三角形,熟练运用直角三角函以及三角形相似是解题的关键.22.【答案】解:(1)方案一:单位赞助广告费10万元,该单位所购门票的价格为每张0.02万元,则y =10+0.02x ;(2)方案二:当x >100时,设解析式为y =kx +b .将(100,10),(200,16)代入,得{200k +b =16100k+b=10,解得{b =4k=0.06,所以y =0.06x +4.设乙单位购买了a 张门票,则甲单位购买了(400-a )张门票,根据题意得0.06a +4+[10+0.02(400-a )]=27.2,解得,a =130,∴400-a =270,答:甲、乙两单位购买门票分别为270张和130张.【解析】(1)方案一中,总费用=广告赞助费10+门票单价0.02×票的张数;(2)方案二中,当x >100时,设出一次函数解析式,把其中两点的坐标代入即可求得相应的函数解析式;设乙单位购买了a 张门票,则甲单位购买了(400-a )张门票,进而根据((1)得甲单位的总费用,再根据两单位共花费27.2万元,列出方程解答便可.本题考查了一次函数的应用,待定系数法求一次函数的解析式的运用,及一元一次方程解决实际问题的运用,在解答的过程中求出一次函数的解析式y=0.06x+4.是解答的关键,根据自变量不同的取值,对总门票费分情况进行探讨是解决本题的易错点.23.【答案】(1)证明:∵四边形ABCD 是菱形,∴AD ∥BC ,∠BAD =2∠DAC ,∠ABC =2∠DBC ,∴∠BAD +∠ABC =180°,∵∠CAD =∠DBC ,∴∠BAD =∠ABC ,∴2∠BAD =180°,∴∠BAD =90°,∴四边形ABCD 是正方形;(2)证明:∵四边形ABCD 是正方形,∴AC ⊥BD ,AC =BD ,CO =12AC ,DO =12BO ,∴∠COB =∠DOC =90°,CO =DO ,∵DH ⊥CE ,垂足为H ,∴∠DHE =90°,∠EDH +∠DEH =90°,∵∠ECO +∠DEH =90°,∴∠ECO =∠EDH ,在△ECO 和△FDO 中,{∠ECO =∠EDHCO =DO ∠COE =∠DHE =90°,∴△ECO ≌△FDO (ASA ),∴OE =OF .【解析】(1)由菱形的性质得出AD ∥BC ,∠BAD=2∠DAC ,∠ABC=2∠DBC ,得出∠BAD+∠ABC=180°,证出∠BAD=∠ABC ,求出∠BAD=90°,即可得出结论; (2)由正方形的性质得出AC ⊥BD ,AC=BD ,CO=AC ,DO=BO ,得出∠COB=∠DOC=90°,CO=DO ,证出∠ECO=∠EDH ,证明△ECO ≌△FDO (ASA ), 即可得出结论.本题考查了正方形的判定与性质、菱形的性质、全等三角形的判定与性质等知识;熟练掌握正方形的判定与性质是解题关键.24.(金山区)【答案】解:(1)把点A 、B 坐标代入抛物线表达式得:{1=c −2=−1−b+c ,解得:{c =1b=2,则抛物线的表达式为:y=-x2+2x+1=-(x-1)2+2,故顶点P的坐标为(1,2);(2)①设抛物线平移后为y=-(x-1+m)2+2,代入点B′(0,-1)得:-1=-(m-1)2+2,解得:m=1±√3(舍去负值),则y=-(x+√3)2+2,则顶点P′(-√3,2),连结P′B、P′B′,作P′H⊥y轴交于点H,则:P′H=√3,HB=1,BP′=√3+1=2,∵tan∠P′BH=P′H=√3,BH∴∠P′BH=60°,∴∠P′BB′=180°-60°=120°,②∵BB′=2,P′B=2,即BB′=P′B,∴∠BP′B′=∠P′B′B=30°;∵线段P′B′围绕B′旋转120°,点P′落在M处,∴∠OB′M=90°,B′M=B′P′,∴MB′∥x轴,MB′=B′P′=2√3,×B′M•h=6√3,解得:h=6,设:△MNB′在MB′边上的高为h,则S△MNB′=12设:N(a,-7)或(a,5)分别代入y=-x2+2x+1得:-7=-a2+2a+1,解得:a=4或-2;5=-a2+2a+1,△=b2-4ac<0,故方程无实数根,故:a=4或-2,即点N(4,-7)或(-2,-7).【解析】(1)把点A、B坐标代入抛物线表达式,即可求解;(2)①设抛物线平移后为y=-(x-1+m)2+2,代入点B′(0,-1),求出P′(-,2),则P′H=,HB=1,BP′==2,即可求解;②BB′=2,P′B=2,即BB′=P′B,则∠BP′B′=∠P′B′B=30°,则点P′落在M处,此时MB′∥x轴,即可求解.本题考查的是二次函数综合运用,涉及到一次函数、点的对称性、图象平移等,其中(2)②,通过求解∠P′BB′=60°,得到点P′落在M 处且MB′∥x 轴,是本题的关键.25.(金山区)【答案】(1)证明:由题意得:CD =t ,CE =43t , 由勾股定理得,BC =√AB 2−AC 2=12, CD CB =t 12,CE AC =43t 16=t 12, ∴CD CB =CE AC ,又∠C =∠C ,∴△DCE ∽△BCA ;(2)①连结CP 并延长CP 交AB 于点H ,∵∠ACB =90°,∴DE 是⊙P 的直径,即P 为DE 中点,∴CP =DP =PE =12DE ,∴∠PCE =∠PEC ,∵△DCE ∽△BCA ,∴∠CDE =∠B ,∵∠CDE +∠CED =90°,∴∠B +∠HCB =90°,即CH ⊥AB ,∵⊙P 与边AB 相切,∴点H 为切点,CH 为⊙P 的直径,∵sin A =CH CA =CB AB ,∴CH 16=1220,解得,CH =485,∴DE =485,sin A =sin ∠CED =CD DE =CB AB ,即CD 485=1220, 解得,CD =14425,∴t =14425;②由题意得,0<43t ≤12,即0<t ≤9,∵CD =t ,CE =43t ,∴DE =√CD 2+CE 2=53t ,由①得,CM =485,CP =12DE =56t ,CM ⊥AB ,∴PM =485-56t ,PF =CP =56t ,∠PMF =90°,当△FMP ∽△DCE 时,PF DE =PM CE ,即56t 53t =485−56t 43t , 解得,t =325;当△PMF ∽△DCE 时,PF DE =PM CD ,即56t 53t =485−56t t ,解得,t =365; ∴综上所述:当△PFM 与△CDE 相似时.t =325或t =365.【解析】(1)根据题意用t 表示出CD 、CE ,根据两边对应成比例、夹角相等的两个三角形相似证明;(2)①连结CP 并延长CP 交AB 于点H ,根据切线的性质、正弦的定义求出CH 、DE ,再根据正弦的定义求出CD ,根据题意求出t ;②分△FMP ∽△DCE 和△PMF ∽△DCE 两种情况,根据相似三角形的性质列出比例式,计算即可.本题考查的是相似三角形的判定和性质、切线的性质,掌握相似三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.。

山东省济南市高新区2019年中考数学二模试卷附答案解析

 山东省济南市高新区2019年中考数学二模试卷附答案解析

山东省济南市高新区2019年中考数学二模试卷含答案解析一.选择题(共12小题)1.﹣2的平方等于()A.±4 B.2 C.﹣4 D.42.图中立体图形的主视图是()A.B.C.D.3.将33.5万用科学记数法表示为()A.33.5×104B.0.335×106C.3.35×104D.3.35×1054.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.5.如图,直线AB、CD相交于点E,DF∥AB.若∠D=70°,则∠CEB等于()A.70°B.80°C.90°D.110°6.下列运算正确的是()A.x2+x=x3B.(﹣2x2)3=8x5C.(x+1)(x﹣2)=x2﹣x﹣2 D.(x﹣y)2=x2﹣y27.关于x的方程3x﹣2=2a的解为负数,则a的取值范围是()A.a>1 B.a<1 C.a>﹣1 D.a<﹣18.菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=,BD=2,则菱形ABCD的面积为()A.2B.C.6D.89.如图,直线l的解析式为y=3x+3,若直线y=a与直线l的交点在第二象限,则a的取值范围是()A.1<a<2 B.3<a<4 C.﹣1<a<0 D.0<a<310.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB 于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD 的余弦值是()A.B.C.D.11.如图,有一矩形纸片ABCD,AB=6,AD=8,将纸片折叠使AB落在AD边上,折痕为AE,再将△ABE以BE为折痕向右折叠,AE与CD交于点F,则的值是()A.1 B.C.D.12.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为()A.B.2 C.D.二.填空题(共6小题)13.分解因式:3a2﹣12=.14.某班有6名同学参加校“综合素质技能竞赛”,成绩(单位:分)分别是87,92,87,91,94,76.则他们成绩的中位数是分.15.已知m是关于x的方程x2﹣2x﹣3=0的一个根,则2m2﹣4m=.16.如图,在扇形OAB中,∠AOB=90°,半径OA=2.将扇形OAB沿过点B的直线折叠.点O恰好落在弧AB上点D处,折痕交OA于点C,则整个阴影部分的面积为.17.如图,在Rt△AOB中,直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB 绕点B逆时针旋转90°后,得到△A′O′B,且反比例函数y=的图象恰好经过斜边A′B的中点C,若S ABO=4,tan∠BAO=2,则k=.18.定义一种对正整数n的“F运算”:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为(其中k是使为奇数的最小正整数),并且运算重复进行.例如:取n=26,则运算过程如图:那么当n=9时,第2019次“F运算”的结果是.三.解答题(共9小题)19.计算:(3﹣)0+()﹣1﹣|﹣|+tan60°20.解不等式组.21.如图,点E、F、G分别在▱ABCD的边AB、BC和AD上,且BA=BF,AE=AG,连接FE.求证:FE=FG.22.列方程或方程组解应用题:去年暑期,某地由于暴雨导致电路中断,该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,10分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求吉普车的速度.23.如图,△ABC中,点O是边AB上一点,以点O为圆心,以OB为半径作⊙O,⊙O恰好与AC相切于点D,连接BD,BD平分∠ABC.(1)求∠C的度数;(2)如果∠A=30°,AD=2,求线段CD的长度.24.学校为了响应国家阳光体育活动,选派部分学生参加足球、乒乓球、篮球、排球队集训.根据参加项目制成如下两幅不完整的统计图(如图1和如图2,要求每位同学只能选择一种自己喜欢的球类,图中用足球、乒乓球、篮球、排球代表喜欢这四种球类某种球类的学生人数)请你根据图中提供的信息解答下烈问题;(1)参加篮球队的有人,喜欢排球小组的人数在扇形统计图中的圆心角的度数是;(2)补全频数分布折线统计图;(3)若足球队只剩一个集训名额,学生小明和小虎都想参加足球队,决定采用随机摸球的方式确定参加权,具体规则如下:一个不适明的袋子中装着标有数字1、2、3、4的四个完全相同的小球,小明随机地从四个小球中摸出一球,然后放回,小虎再随机地摸出一球,若小明摸出的小球标有数字比小虎探出的小球标有的数字大,则小明参加,否则小虎参加,试分析这种规则对双方是否公平?25.如图,反比例函数y=(x>0)的图象与直线y=x交于点M,∠AMB=90°,其两边分别与两坐标轴的正半轴交于点A,B,四边形OAMB的面积为6.(1)求k的值;(2)点P在反比例函数y=(x>0)的图象上,若点P的横坐标为3,∠EPF=90°,其两边分别与x轴的正半轴,直线y=x交于点E,F,问是否存在点E,使得PE=PF?若存在,求出点E的坐标;若不存在,请说明理由.26.已知,正方形ABCD的边长为4,点E是对角线BD延长线上一点,AE=BD.将△ABE绕点A顺时针旋转α度(0°<α<360°)得到△AB′E′,点B、E的对应点分别为B′、E′.(1)如图1,当α=30°时,求证:B′C=DE;(2)连接B′E、DE′,当B′E=DE′时,请用图2求α的值;(3)如图3,点P为AB的中点,点Q为线段B′E′上任意一点,试探究,在此旋转过程中,线段PQ长度的取值范围为.27.如图,在平面直角些标系中,二次函数y=ax2+bx﹣的图象经过点A(﹣1,0),C (2,0),与y轴交于点B,其对称轴与x轴交于点D.(1)求二次函数的表达式及其顶点的坐标;(2)若P为y轴上的一个动点,连接PD,求PB+PD的最小值;(3)M(x,t)为抛物线对称轴上一个动点,若平面内存在点N,使得以A、B、M、N为顶点的四边形为菱形,则这样的点N共有个.参考答案与试题解析一.选择题(共12小题)1.﹣2的平方等于()A.±4 B.2 C.﹣4 D.4【分析】根据有理数的乘方的定义解答.【解答】解:﹣2的平方的是4,故选:D.2.图中立体图形的主视图是()A.B.C.D.【分析】根据主视图是从正面看的图形解答.【解答】解:从正面看,共有两层,下面三个小正方体,上面有两个小正方体,在右边两个.故选:B.3.将33.5万用科学记数法表示为()A.33.5×104B.0.335×106C.3.35×104D.3.35×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:33.5万=335000=3.35×105.故选:D.4.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.【解答】解:A、此图形不是中心对称图形,是轴对称图形,故此选项错误;B、此图形是中心对称图形,也是轴对称图形,故此选项正确;C、此图形是中心对称图形,不是轴对称图形,故此选项错误;D、此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:B.5.如图,直线AB、CD相交于点E,DF∥AB.若∠D=70°,则∠CEB等于()A.70°B.80°C.90°D.110°【分析】由DF∥AB,根据两直线平行,内错角相等,即可求得∠BED的度数,又由邻补角的定义,即可求得答案.【解答】解:∵DF∥AB,∴∠BED=∠D=70°,∵∠BED+∠BEC=180°,∴∠CEB=180°﹣70°=110°.故选:D.6.下列运算正确的是()A.x2+x=x3B.(﹣2x2)3=8x5C.(x+1)(x﹣2)=x2﹣x﹣2 D.(x﹣y)2=x2﹣y2【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式不能合并,不符合题意;B、原式=﹣8x6,不符合题意;C、原式=x2﹣x﹣2,符合题意;D、原式=x2﹣2xy+y2,不符合题意,故选:C.7.关于x的方程3x﹣2=2a的解为负数,则a的取值范围是()A.a>1 B.a<1 C.a>﹣1 D.a<﹣1【分析】把a看做常数,求出已知方程的解,根据方程的解是负数得到x小于0,列出关于a的不等式,求出不等式的解集即可得到a的范围.【解答】解:3x﹣2=2a,移项得:3x=2a+2,解得:x=,由方程的解是负数,得到x<0,即<0,解得:a<﹣1.故选:D.8.菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=,BD=2,则菱形ABCD的面积为()A.2B.C.6D.8【分析】根据中位线定理可得对角线AC的长,再由菱形面积等于对角线乘积的一半可得答案.【解答】解:∵E,F分别是AD,CD边上的中点,EF=,∴AC=2EF=2,又∵BD=2,∴菱形ABCD的面积S=×AC×BD=×2×2=2,故选:A.9.如图,直线l的解析式为y=3x+3,若直线y=a与直线l的交点在第二象限,则a的取值范围是()A.1<a<2 B.3<a<4 C.﹣1<a<0 D.0<a<3【分析】首先求出方程组的解,然后根据第二象限内点的坐标特征,列出关于a的不等式组,从而得出a的取值范围.【解答】解:解方程组,得.∵交点在第二象限,∴,解得0<a<3.故选:D.10.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB 于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD 的余弦值是()A.B.C.D.【分析】设BC=x,由含30°角的直角三角形的性质得出AC=2BC=2x,求出AB=BC =x,根据题意得出AD=BC=x,AE=DE=AB=x,作EM⊥AD于M,由等腰三角形的性质得出AM=AD=x,在Rt△AEM中,由三角函数的定义即可得出结果.【解答】解:如图所示:设BC=x,∵在Rt△ABC中,∠B=90°,∠A=30°,∴AC=2BC=2x,AB=BC=x,根据题意得:AD=BC=x,AE=DE=AB=x,作EM⊥AD于M,则AM=AD=x,在Rt△AEM中,cos∠EAD===;故选:B.11.如图,有一矩形纸片ABCD,AB=6,AD=8,将纸片折叠使AB落在AD边上,折痕为AE,再将△ABE以BE为折痕向右折叠,AE与CD交于点F,则的值是()A.1 B.C.D.【分析】观察第3个图,易知△ECF∽△ADF,欲求CF、CD的比值,必须先求出CE、AD 的长;由折叠的性质知:AB=BE=6,那么BD=EC=2,即可得到EC、AD的长,由此得解.【解答】解:由题意知:AB=BE=6,BD=AD﹣AB=2,AD=AB﹣BD=4;∵CE∥AB,∴△ECF∽△ADF,得=,即DF=2CF,所以CF:CD=1:3;故选:C.12.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为()A.B.2 C.D.【分析】条件m≤x≤n和mn<0可得m<0,n>0所以y的最小值为2m为负数,最大值为2n为正数.最大值为2n分两种情况,(1)结合抛物线顶点纵坐标的取值范围,求出n=2.5,结合图象最小值只能由x=m时求出.(2)结合抛物线顶点纵坐标的取值范围,图象最大值只能由x=n求出,最小值只能由x=m求出.【解答】解:二次函数y=﹣(x﹣1)2+5的大致图象如下:.①当m<0≤x≤n<1时,当x=m时y取最小值,即2m=﹣(m﹣1)2+5,解得:m=﹣2.当x=n时y取最大值,即2n=﹣(n﹣1)2+5,解得:n=2或n=﹣2(均不合题意,舍去);②当m<0≤x≤1≤n时,当x=m时y取最小值,即2m=﹣(m﹣1)2+5,解得:m=﹣2.当x=1时y取最大值,即2n=﹣(1﹣1)2+5,解得:n=,或x=n时y取最小值,x=1时y取最大值,2m=﹣(n﹣1)2+5,n=,∴m=,∵m<0,∴此种情形不合题意,所以m+n=﹣2+=.故选:D.二.填空题(共6小题)13.分解因式:3a2﹣12=3(a+2)(a﹣2).【分析】先提取公因式3,再对余下的多项式利用平方差公式继续分解.【解答】解:3a2﹣12=3(a+2)(a﹣2).14.某班有6名同学参加校“综合素质技能竞赛”,成绩(单位:分)分别是87,92,87,91,94,76.则他们成绩的中位数是89 分.【分析】将一组数据从小到大(或从大到小)重新排列后,最中间的两个数的平均数,叫做这组数据的中位数.【解答】解:首先把数据按从小到大的顺序排列为:76、87、87、91、92、94,则中位数是:(87+91)÷2=89(分).故答案是:89.15.已知m是关于x的方程x2﹣2x﹣3=0的一个根,则2m2﹣4m= 6 .【分析】根据m是关于x的方程x2﹣2x﹣3=0的一个根,通过变形可以得到2m2﹣4m值,本题得以解决.【解答】解:∵m是关于x的方程x2﹣2x﹣3=0的一个根,∴m2﹣2m﹣3=0,∴m2﹣2m=3,∴2m2﹣4m=6,故答案为:6.16.如图,在扇形OAB中,∠AOB=90°,半径OA=2.将扇形OAB沿过点B的直线折叠.点O恰好落在弧AB上点D处,折痕交OA于点C,则整个阴影部分的面积为π﹣.【分析】连接OD交BC于点E,由翻折的性质可知:OE=DE=1,在Rt△OBE中,根据特殊锐角三角函数值可知∠OBC=30°,然后在Rt△COB中,可求得CO=,从而可求得△COB的面积=,最后根据阴影部分的面积=扇形面积﹣2倍的△COB的面积求解即可.【解答】解:连接OD交BC于点E.∴扇形的面积=×22π=π,∵点O与点D关于BC对称,∴OE=ED=1,OD⊥BC.在Rt△OBE中,sin∠OBE=,∴∠OBC=30°.在Rt△COB中,=tan30°,∴=.∴CO=.∴△COB的面积=×=.阴影部分的面积=扇形面积﹣2倍的△COB的面积=π﹣.故答案为:π﹣.17.如图,在Rt△AOB中,直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB 绕点B逆时针旋转90°后,得到△A′O′B,且反比例函数y=的图象恰好经过斜边A′B的中点C,若S ABO=4,tan∠BAO=2,则k= 6 .【分析】先根据S△ABO=4,tan∠BAO=2求出AO、BO的长度,再根据点C为斜边A′B的中点,求出点C的坐标,点C的横纵坐标之积即为k值.【解答】解:设点C坐标为(x,y),作CD⊥BO′交边BO′于点D,∵tan∠BAO=2,∴=2,∵S△ABO=•AO•BO=4,∴AO=2,BO=4,∵△ABO≌△A'O'B,∴AO=A′O′=2,BO=BO′=4,∵点C为斜边A′B的中点,CD⊥BO′,∴CD=A′O′=1,BD=BO′=2,∴x=BD=2,y=BO﹣CD=4﹣1=3,∴k=x•y=3•2=6.故答案为6.18.定义一种对正整数n的“F运算”:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为(其中k是使为奇数的最小正整数),并且运算重复进行.例如:取n=26,则运算过程如图:那么当n=9时,第2019次“F运算”的结果是8 .【分析】按新定义的运算法则,分别计算出当n=9时,第一、二、三、四、五次运算的结果,发现循环规律即可解答.【解答】解:由题意可知,当n=9时,历次运算的结果是:3×9+5=32,=1(使得为奇数的最小正整数为16),1×3+5=8,=1,…故32→1→8→1→8→…,即从第四次开始1和8出现循环,偶数次为1,奇数次为8,∴当n=9时,第2019次“F运算”的结果是8.故答案为:8.三.解答题(共9小题)19.计算:(3﹣)0+()﹣1﹣|﹣|+tan60°【分析】直接利用二次根式的性质以及零指数幂的性质、特殊角的三角函数值分别化简得出答案.【解答】解:原式=1+3﹣2+=4﹣.20.解不等式组.【分析】根据不等式组分别求出x的取值,数轴上相交的点的集合就是该不等式的解集.若没有交点,则不等式无解.【解答】解:不等式组可化为:,整理得,,即不等式组的解集为:﹣1≤x<2.故答案为:﹣1≤x<2.21.如图,点E、F、G分别在▱ABCD的边AB、BC和AD上,且BA=BF,AE=AG,连接FE.求证:FE=FG.【分析】由平行线的性质和等腰三角形的性质可得∠DAF=∠BAF,由“SAS”可证△AEF ≌△AGF,可得FE=FG.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAF=∠BFA,∵BA=BF,∴∠BAF=∠BFA,∴∠DAF=∠BAF,且AE=AG,AF=AF,∴△AEF≌△AGF(SAS)∴FE=FG.22.列方程或方程组解应用题:去年暑期,某地由于暴雨导致电路中断,该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,10分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求吉普车的速度.【分析】先设抢修车的速度为x千米/时,则吉普车的速度为1.5x千米/时,根据时间=列出方程,求出x的值,再进行检验,即可求出答案.【解答】解:设抢修车的速度为x千米/时,则吉普车的速度为1.5x千米/时,根据题意得:﹣=,解得,x=30,经检验,x=30是原方程的解,则1.5x=45(千米/时),答:吉普车的速度为45千米/时.23.如图,△ABC中,点O是边AB上一点,以点O为圆心,以OB为半径作⊙O,⊙O恰好与AC相切于点D,连接BD,BD平分∠ABC.(1)求∠C的度数;(2)如果∠A=30°,AD=2,求线段CD的长度.【分析】(1)连接OD,∠ADO=90°,由BD平分∠ABC,OB=OD可得OD与BC间的位置关系,则∠ACB=90°;(2)得Rt△OAD,由∠A=30°,AD=2,可求出OD、AO的长;根据平行线分线段成比例定理,得结论.【解答】解:(1)如图,连接OD∵OD是⊙O的半径,AC是⊙O的切线,点D是切点,∴OD⊥AC∵OD=OB,∴∠ODB=∠OBD,又∵BD平分∠ABC,∴∠OBD=∠CBD∴∠ODB=∠CBD∴OD∥CB,∴∠C=∠ADO=90°;(2)在Rt△AOD中,∵∠A=30°,AD=2,∴OD=OB=2,AO=4,∵OD∥CB,∴,即,∴CD=.24.学校为了响应国家阳光体育活动,选派部分学生参加足球、乒乓球、篮球、排球队集训.根据参加项目制成如下两幅不完整的统计图(如图1和如图2,要求每位同学只能选择一种自己喜欢的球类,图中用足球、乒乓球、篮球、排球代表喜欢这四种球类某种球类的学生人数)请你根据图中提供的信息解答下烈问题;(1)参加篮球队的有40 人,喜欢排球小组的人数在扇形统计图中的圆心角的度数是30 ;(2)补全频数分布折线统计图;(3)若足球队只剩一个集训名额,学生小明和小虎都想参加足球队,决定采用随机摸球的方式确定参加权,具体规则如下:一个不适明的袋子中装着标有数字1、2、3、4的四个完全相同的小球,小明随机地从四个小球中摸出一球,然后放回,小虎再随机地摸出一球,若小明摸出的小球标有数字比小虎探出的小球标有的数字大,则小明参加,否则小虎参加,试分析这种规则对双方是否公平?【分析】(1)根据折线图与扇形图首先得出参加乒乓球队的人数与百分比得出总人数,根据喜欢排球队的人数在扇形统计图中所占的圆心角是百分比为:1﹣(40%+30%+20%)=10%,即可得出所占的圆心角的度数,(2)分别喜欢篮球、排球的人数补全频数分布折线统计图即可;(3)用列表法画出即可得出小虎获参加权的概率以及小明获参加权的概率得出即可.【解答】解:(1)∵结合折线图与扇形图得出参加乒乓球队的人数为20,占总数的20%,∴总人数为:20÷20%=100人,∴参加篮球队的有:100×40%=40人,参加足球队的人数占全部参加人数的:30÷100×100%=30%,故答案为:40,30;(2)喜欢排球队的人数在扇形统计图中所占的圆心角是百分比为:1﹣(40%+30%+20%)=10%,圆心角度数=360×10%=36°;正确补全折线图中篮球、排球折线;(3)用列表法小虎1 2 3 4小明1 1,1 1,2 1,3 1,42 2,1 2,2 2,3 2,43 3,1 3,2 3,3 3,44 4,1 4,2 4,3 4,4共有16种可能的结果,且每种结果的可能性相同,其中小明可能获得参加权的结果是六种,分别是2,1;3,1;3,2;4,1;4,2;4,3;∴小明获参加权的概率P1==,小虎获参加权的概率P2=,或小虎获参加权的概率P2=1﹣,∵P1<P2,∴这个规则对双方不公平.25.如图,反比例函数y =(x>0)的图象与直线y=x交于点M,∠AMB=90°,其两边分别与两坐标轴的正半轴交于点A,B,四边形OAMB的面积为6.(1)求k的值;(2)点P在反比例函数y=(x>0)的图象上,若点P的横坐标为3,∠EPF=90°,其两边分别与x轴的正半轴,直线y=x交于点E,F,问是否存在点E,使得PE=PF?若存在,求出点E的坐标;若不存在,请说明理由.【分析】(1)过点M作MC⊥x轴于点C,MD⊥y轴于点D,根据AAS证明△AMC≌△BMD,那么S四边形OCMD=S四边形OAMB=6,根据反比例函数比例系数k的几何意义得出k=6;(2)先根据反比例函数图象上点的坐标特征求得点P的坐标为(3,2).再分两种情况进行讨论:①如图2,过点P作PG⊥x轴于点G,过点F作FH⊥PG于点H,交y轴于点K.根据AAS证明△PGE≌△FHP,进而求出E点坐标;②如图3,同理求出E点坐标.【解答】解:(1)如图1,过点M作MC⊥x轴于点C,MD⊥y轴于点D,则∠MCA=∠MDB=90°,∠AMC=∠BMD,MC=MD,∴△AMC≌△BMD,∴S四边形OCMD=S四边形OAMB=6,∴k=6;(2)存在点E,使得PE=PF.由题意,得点P的坐标为(3,2).①如图2,过点P作PG⊥x轴于点G,过点F作FH⊥PG于点H,交y轴于点K.∵∠PGE=∠FHP=90°,∠EPG=∠PFH,PE=PF,∴△PGE≌△FHP,∴PG=FH=2,FK=OK=3﹣2=1,GE=HP=2﹣1=1,∴OE=OG+GE=3+1=4,∴E(4,0);②如图3,过点P作PG⊥x轴于点G,过点F作FH⊥PG于点H,交y轴于点K.∵∠PGE=∠FHP=90°,∠EPG=∠PFH,PE=PF,∴△PGE≌△FHP,∴PG=FH=2,FK=OK=3+2=5,GE=HP=5﹣2=3,∴OE=OG+GE=3+3=6,∴E(6,0).26.已知,正方形ABCD的边长为4,点E是对角线BD延长线上一点,AE=BD.将△ABE绕点A顺时针旋转α度(0°<α<360°)得到△AB′E′,点B、E的对应点分别为B′、E′.(1)如图1,当α=30°时,求证:B′C=DE;(2)连接B′E、DE′,当B′E=DE′时,请用图2求α的值;(3)如图3,点P为AB的中点,点Q为线段B′E′上任意一点,试探究,在此旋转过程中,线段PQ长度的取值范围为2﹣2≤PQ≤4+2 .【分析】(1)先由正方形的性质得到直角三角形AOE,再经过简单计算求出角,判断出△ADE≌△AB′C即可;(2)先判断出△AEB′≌△AE′D,再根据旋转角和图形,判断出∠BAB′=∠DAB′即可;(3)先判断出点Q的位置,PQ最小时和最大时的位置,进行计算即可.【解答】解:(1)如图1,连接AC,B′C,∵四边形ABCD是正方形,∴AB=AD,AC⊥BD,AC=BD=2OA,∠CAB=ADB=45°,∵AE=BD,∴AC=AE=2OA,在Rt△AOE中,∠AOE=90°,AE=2OA,∴∠E=30°,∴∠DAE=∠ADB﹣∠E=45°﹣30°=15°,由旋转有,AD=AB=AB′∠BAB′=30°,∴∠DAE=15°,在△ADE和△AB′C中,,∴△ADE≌△AB′C,∴DE=B′C,(2)如图2,由旋转得,AB′=AB=AD,AE′=AE,在△AEB′和△AE′D中,,∴△AEB′≌△AE′D,∴∠DAE′=∠EAB′,∴∠EAE′=∠DAB′,由旋转得,∠EAE′=∠BAB′,∴∠BAB′=∠DAB′,∵∠BAB′+∠DAB′=90°,∴α=∠BAB′=45°,或α=360°﹣90°﹣45°=225°;(3)如图3,∵正方形ABCD的边长为4,∴BD=2,连接AC交BD于O,∴OA⊥BD,OA=AC=BD=2在旋转过程中,△ABE在旋转到边B'E'⊥AB于Q,此时PQ最小,由旋转知,△ABE≌△AB'E',∴AQ=OA=BD(全等三角形对应边上的高相等),∴PQ=AQ﹣AP=BD﹣AP=2﹣2在旋转过程中,△ABE在旋转到点E在BA的延长线时,点Q和点E'重合,∴AE'=AE=4,∴PE'=AE'+AP=4+2,故答案为2﹣2≤PQ≤4+2.27.如图,在平面直角些标系中,二次函数y=ax2+bx﹣的图象经过点A(﹣1,0),C (2,0),与y轴交于点B,其对称轴与x轴交于点D.(1)求二次函数的表达式及其顶点的坐标;(2)若P为y轴上的一个动点,连接PD,求PB+PD的最小值;(3)M(x,t)为抛物线对称轴上一个动点,若平面内存在点N,使得以A、B、M、N为顶点的四边形为菱形,则这样的点N共有 5 个.【分析】(1)将A、C三点的坐标代入y=ax2+bx﹣,利用待定系数法即可求出二次函数的表达式,进而得到其顶点坐标;(2)连接AB,作DH⊥AB于H,交OB于P,此时PB+PD最小.最小值就是线段DH,求出DH即可.(3)当以A,B,M,N为顶点的四边形为菱形时,分三种情况:①以A为圆心AB为半径画弧与对称轴有两个交点,此时AM=AB;②以B为圆心AB为半径画弧与对称轴有两个交点,此时BM=AB;③线段AB的垂直平分线与对称轴有一个交点,此时AM=BM.由M 点的个数则可得出点N的个数有5个.【解答】(1)∵二次函数y=ax2+bx﹣的图象经过点A(﹣1,0)C(2,0),∴,解得:,∴二次函数的表达式为,∵y=,∴抛物线的顶点坐标为();(2)如图,连接AB,作DH⊥AB于H,交OB于P,此时PB+PD最小.理由:∵OA=1,OB=,∴tan∠ABO=,∴∠ABO=30°,∴PH=PB,∴PB+PD=PH+PD=DH,∴此时PB+PD最短(垂线段最短).在Rt△ADH中,∵∠AHD=90°,AD=,∠HAD=60°,∴sin60°=,∴DH=,∴PB+PD的最小值为;(3)①以A为圆心AB为半径画弧,因为AB>AD,故此时圆弧与对称轴有两个交点,且AM=AB,即M点存在两个,所以满足条件的N点有两个;②以B为圆心AB为半径画弧,因为AB,故此时圆弧与对称轴有两个交点,且BM=AB,即M点有两个,所以满足条件的N点有两个;③线段AB的垂直平分线与对称轴有一个交点,此时AM=BM,因为M点有一个,所以满足条件的N点有一个;则满足条件的N点共有5个,故答案为:5.。

【区级联考】上海市虹口区2019届九年级中考数学二模试卷(解析版)

【区级联考】上海市虹口区2019届九年级中考数学二模试卷(解析版)

2019年上海市虹口区中考数学二模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.计算(a3)2的结果是( )A. a5B. a6C. a8D. a9【答案】B【解析】试题分析:(a3)2=a6,故选B.考点:幂的乘方与积的乘方.=的解为( )2.3A. x=4B. x=7C. x=8D. x=10.【答案】D【解析】【分析】将等式两边同时平方得到一元一次方程x﹣1=9,解方程并检验即可解题.【详解】将方程两边平方得x﹣1=9解得:x=10经检验:x=10是原无理方程的解故选:D.【点睛】本题考查了无理方程及一元一次方程的解法,解本题的关键是注意解出方程之后一定要进行检验,确保式子有意义.3.已知一次函数y=(3﹣a)x+3,如果y随自变量x的增大而增大,那么a的取值范围为( )A. a<3B. a>3C. a<﹣3D. a>﹣3.【答案】A【解析】【分析】根据题意一次函数y随自变量x的增大而增大,即可得出3﹣a>0,从而求得a的取值范围.【详解】∵一次函数y=(3﹣a)x+3,函数值y随自变量x的增大而增大∴3﹣a>0解得a<3故选:A.【点睛】本题考查了一次函数图像增减性问题,解决此类问题只要牢固掌握一次函数k>0,函数图像递增,k<0函数图像递减,反过来亦适用.4.下列事件中,必然事件是( )A. 体育中考中,小明考了满分B. 经过有交通信号灯的路口,遇到红灯C. 抛掷两枚正方体骰子,点数和大于1D. 四边形的外角和为180度.【答案】C【解析】【分析】必然事件:,在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件随机事件:可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件,【详解】A、在体育中考中,小明考了满分是随机事件;B、经过有交通信号灯的路口,遇到红灯是随机事件;C、抛掷两枚正方体骰子,点数和大于1是必然事件;D、四边形的外角和为180度是不可能事件,故选:C.【点睛】本题考查了必然事件和随机事件的定义,解决本类题目的关键是掌握一定会发生的,和一定不会发生的都是必然事件.5.正六边形的半径与边心距之比为( )A. 1B. 1C. 2D. 2在【答案】D【解析】【分析】边心距:是指正多边形的每条边到其外接圆的圆心的距离,正六边形的边长就等于其外接圆的半径.它的边心倍..正多边形的边心距就是其内切圆的半径.【详解】∵正六边形的半径为R,∴边心距r,∴R:r=12,故选:D.【点睛】本题主要考查了正多边形的半径与边心距之比,解决本题的关键是掌握边心距的求法.6.如图,在△ABC中,AB=AC,BC=4,tan B=2,以AB的中点D为圆心,r为半径作⊙D,如果点B在⊙D内,点C在⊙D外,那么r可以取( )A. 2B. 3C. 4D. 5【答案】B【解析】【分析】已知等腰三角形ABC中tan B=2,根据题意可求得△ABC中过顶点A的高AF的长度,进而求得AB的长度,以及得到;因为AF和CD均为中线,故交点为重心,通过重心到顶点的距离与重心到对边中点的距离之比为2:1,可求出CD,所以要满足B点在⊙D内,即满足r大于BD长度;要满足点C在⊙D外即r小于CD长度.【详解】如图,过点A作AF⊥BC于点F,连接CD交AF于点G,∵AB=AC,BC=4,∴BF =CF =2,∵tan B =2,∴2AFBF=,即AF =4,∴AB ∵D 为AB 的中点,∴BD G 是△ABC 的重心,∴GF =13AF =43,∴CG ,∴CD =32CG ,∵点B 在⊙D 内,点C 在⊙D 外,<r ,故选:B .【点睛】本题考查了等腰三角形的性质,三角函数求线段长度,三角形重心,点与圆的位置关系;解答本题的关键是发现BC 边上的高和CD 的交点是三角形的重心,重心到顶点的距离与重心到对边中点的距离之比为2:1,即可求出CD 的长度.二、填空题:(本大题共12题,每题4分,满分48分)7.计算:2﹣1=_____.【答案】12.【解析】【分析】负整数指数幂::任何不为零的数的 -n(n 为正整数)次幂等于这个数n 次幂的倒数.【详解】2﹣1=111=22.故答案为12.【点睛】本题考查了负整数指数幂的运算,掌握运算法则即可解题.8.在数轴上,实数2_____侧.(填“左”、“右”)【答案】左【解析】【分析】2可得到2<0,判断出2.【详解】根据题意可知:20∴2故填:左大小比较即可解题.9.不等式﹣2x >﹣4的正整数解为_____.【答案】x =1.【解析】【分析】将不等式两边同时除以-2,即可解题【详解】∵﹣2x >-4∴x <2∴正整数解为:x =1故答案为:x =1.【点睛】本题考查解不等式,掌握不等式的基本性质即可解题.10.如果关于x 的方程kx 2﹣6x +9=0有两个相等的实数根,那么k 的值为_____.【答案】1.【解析】分析】根据题意方程有两个相等实根可知△=0,代入求值即可解题.【详解】∵关于x 的方程kx 2﹣6x +9=0有两个相等的实数根,∴△=(﹣6)2﹣4k ×9=0且k ≠0,解得:k =1,故答案为:1.【点睛】本题考查了一元二次方程根的判别式,本题解题关键是根据题意得到根的情况,代值到判别式即可解题.11.已知反比例函数的图象经过点()1,3A ,那么这个反比例函数的解析式是________.【答案】3y x=【解析】【分析】把(1,3)代入函数y=kx中可先求出k 的值,那么就可求出函数解析式.【详解】解:由题意知,k=1´3=3.则反比例函数的解析式为:y=3x故答案为:y=3x.【点睛】本题考查了待定系数法求解反比例函数解析式,此为近几年中考的热点问题,同学们要熟练掌握.12.如果将抛物线y =2x 2向左平移3个单位,那么所得新抛物线的表达式为____.【答案】y =2(x +3)2.【解析】【分析】根据“左加右减”原则可知向左平移3各单位函数表达式变y =2(x +3)2.【详解】将抛物线y =2x 2向左平移3个单位,所得新抛物线的表达式为y =2(x +3)2,故答案为:y =2(x +3)2.【点睛】本题考查了二次函数图像的平移,本题的解题关键是牢记“上加下减,左加右减”的原则.【为13.一个不透明的袋中装有4个白球和若干个红球,这些球除颜色外其他都相同,摇匀后随机摸出一个球,如果摸到白球的概率为0.4,那么红球有____个.【答案】6.【解析】【分析】通过概率的求法:P(A)=满足条件的可能性/所有的可能性,代值44x+=0.4,即可求得红球数量.【详解】设红球有x个,根据题意得:44x+=0.4解得:x=6答:红球有6个;故答案为:6.【点睛】本题考查了概率的应用,掌握随机事件概率的求法即可解题.14.为了了解初三毕业班学生一分钟跳绳次数的情况,某校抽取了一部分初三毕业生进行一分钟跳绳次数的测试,将所得数据进行处理,共分成4组,频率分布表(不完整)如下表所示.如果次数在110次(含110次)以上为达标,那么估计该校初三毕业生一分钟跳绳次数的达标率约为__________.组别分组(含最小值,不含最大值)频数频率190~10030.06 2100~1101a3110~120240.48 4120~130b c【答案】92%【解析】【分析】根据第一组数据,频数÷频率=抽查的学生人数(样本容量),进而算出第四组的频数b,要求初三毕业生一分钟跳绳次数的达标率即为第三、四组频数和÷样本容量,即可求得答案.【详解】∵样本容量为:3÷0.06=50,∴该校初三毕业生一分钟跳绳次数的达标率约为503150--×100%=92%,故答案为:92%【点睛】本题考查了随机抽样调查中样本容量,频数以及频率的求法,牢固掌握即可解题.15.已知两圆外切,圆心距为7,其中一个圆的半径为3,那么另一个圆的半径长为___.【答案】4.【解析】【分析】根据题意,两圆外切,故圆心距为两圆半径和,已知一个圆半径为3,可求得另一圆的半径.【详解】∵两圆外切,圆心距为7,若其中一个圆的半径为3∴另一个圆的半径=7﹣3=4.故答案为:4.【点睛】本题考查了圆与圆位置关系,本题的解题关键是掌握当两圆外切时圆心距为两圆半径之和,两圆内切时,圆心距为大圆半径-小圆半径.16.如图,AD ∥BC ,BC =2AD ,AC 与BD 相交于点O ,如果AO a =uuu v v ,OD b =uuu r r,那么用a r 、b r 表示向量ABuuu r 是___.【答案】a r -2b r【解析】【分析】根据题意可知△ADO ∽△CBO ,根据相似三角形对应边成比例可得12AD OD BC OB ==,即OD=13DB ,通过转化AB AD DB =+uuu vuuu v uuu v =3AO OD DO ++uuu r uuu ruuur =2a b -rr【详解】∵AD ∥BC ,∴△ADO ∽△CBO ,的∴12AD OD BC OB == ,∴AB AD DB =+uuu v uuu v uuu v =3AO OD DO++uuu r uuu r uuur =3a b b +-r r r=2a b -rr,故答案为:2a b -r r.【点睛】本题考查了平面向量的相关计算,解决本题的关键是将要求的进行转化为与已知向量相关的两条线段.17.我们知道,四边形不具有稳定性,容易变形.一个矩形发生变形后成为一个平行四边形,设这个平行四边形相邻两个内角中较小的一个内角为α,我们把αcos 1的值叫做这个平行四边形的变形度.如图,矩形ABCD 的面积为5,如果变形后的平行四边形A 1B 1C 1D 1的面积为3,那么这个平行四边形的变形度为___.【答案】54.【解析】【分析】根据变形前后底边不变,可根据面积算的变形后的平行四边形的高.根据题意,变形度即为求∠B 1的余弦,及转化为求B 1D 的长度,利用勾股定理可求得B 1D ,最终求得1cos α.【详解】过A 1作A 1D ⊥B 1C 1,设矩形的长和宽分别为a ,b ,变形后的平行四边形的高为h ,∴ab =5,3=ah ,∴b =5a ,h =3a,∴B 1D 4a=,∴14551()cos 4a a α=¸¸=故答案为:54.【点睛】本题考查了平行四边形与矩形的性质,勾股定理,三角函数的求法,解决本题的关键即为求变形后平行四边形的高,即可解题.18.如图,在矩形ABCD 中,AB =6,点E 在边AD 上且AE =4,点F 是边BC 上的一个动点,将四边形ABFE 沿EF 翻折,A 、B 的对应点A 1、B 1与点C 在同一直线上,A 1B 1与边AD 交于点G ,如果DG =3,那么BF 的长为____.【答案】8-.【解析】【分析】根据题意可得到△CDG ∽△A'EG ,利用对应边成比例可求得A'G 、B'G 的长,进而可求得CG'、CB',再利用△CDG ∽△CFB',根据比例关系''CB GDB F CD=代值求得B ’F 即BF 的长度.详解】∵△CDG ∽△EA'G ,A'E =4∴A'G =2∴B'G =4由勾股定理可知CG'=则CB'=-4由△CDG ∽△CFB'设BF =x''CB GDB F CD=36【解得x=8-故答案为8-【点睛】本题考查了图形的三大变化之轴对称,解答本类题的关键是找到轴对称前后相等的边和角,可进一步得到全等三角形或相似三角形,进而解题.三、解答题(本大题共7题,满分78分)19.先化简,再求值:35(2)242mmm m-¸+---,m﹣3.【答案】【解析】【分析】根据题意将括号部分进行通分整理,再利用除法法则转化为乘法进行运算,进而约分化简即可,最后代值算的结果.【详解】解:原式=(3)(3)(3) 2(2)2m m mm m--+-¸--=(3)22(2)(3)(3) m mm m m---´-+-=12(3)m-+当m﹣3时,原式=12(3)m-+=.【点睛】本题考查了分式的化简求值,掌握相关的运算法则即可解题.20.解方程组:22560312x xy yx yì--=í-=î①②【答案】11244x y =ìí=î,2233x y =ìí=-î.【解析】【分析】将①式进行因式分解的(x ﹣6y )(x+y )=0,故将式子拆分为两个式子与②式组成两个二元一次方程组进行求解,求得的两组解即为原方程组的解.【详解】由①得,x ﹣6y =0或x+y =0,将它们与方程②分别组成方程组,得:60312x y x y -=ìí-=î或0312x y x y +=ìí-=î分别解这两个方程组,得原方程组的解为11244x y =ìí=î或2233x y =ìí=-î.【点睛】此题本质考查二元一次方程组的运算,解本题的关键是将①式化为两个二元一次方程进行计算即可.21.如图,在锐角△ABC 中,小明进行了如下的尺规作图:①分别以点A 、B 为圆心,以大于12AB 的长为半径作弧,两弧分别相交于点P 、Q ;②作直线PQ 分别交边AB 、BC 于点E 、D .(1)小明所求作的直线DE 是线段AB 的 ;(2)联结AD ,AD =7,sin ∠DAC =17,BC =9,求AC 的长.【答案】(1)线段AB 的垂直平分线(或中垂线);(2)AC =.【解析】【分析】(1)垂直平分线:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(2)根据题意垂直平分线定理可得AD=BD,得到CD=2,又因为已知sin∠DAC=17,故可过点D作AC垂线,求得DF=1,利用勾股定理可求得AF,CF,即可求出AC长.【详解】(1)小明所求作的直线DE是线段AB的垂直平分线(或中垂线);故答案为线段AB的垂直平分线(或中垂线);(2)过点D作DF⊥AC,垂足为点F,如图,∵DE是线段AB的垂直平分线,∴AD=BD=7∴CD=BC﹣BD=2,在Rt△ADF中,∵sin∠DAC=17 DFAD=,∴DF=1,在Rt△ADF中,AF=,在Rt△CDF中,CF=,∴AC=AF+CF==.【点睛】本题考查了垂直平分线的尺规作图方法,三角函数和勾股定理求线段长度,解本题的关键是充分利用中垂线,将已知条件与未知条件结合起来解题.22.甲、乙两组同时加工某种零件,甲组每小时加工80件,乙组加工的零件数量y(件)与时间x(小时)为一次函数关系,部分数据如下表所示.x(小时)246y(件)50150250(1)求y与x之间的函数关系式;(2)甲、乙两组同时生产,加工的零件合在一起装箱,每满340件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?【答案】(1)y=50x﹣50;(2)经过3小时恰好装满第1箱.【解析】【分析】(1)根据已知条件乙组加工的零件数量y(件)与时间x(小时)为一次函数关系,利用待定系数法代入两对x、y值即可求函数解析式;(2)根据题意甲生产零件+乙生产零件=340件(1箱),时间相同,故设时间为x小时恰好装满第1箱可列式80x+50x﹣50=340,解得的x即为所求.【详解】(1)设y与x之间的函数关系式为y=kx+b(k≠0)把(2,50)(4,150)代入,得50=21504k bk b+ìí=+î解得5050kb=ìí=-î∴y与x之间的函数关系式为y=50x﹣50;(2)设经过x小时恰好装满第1箱,根据题意得80x+50x﹣50=340,∴x=3,答:经过3小时恰好装满第1箱.【点睛】本题考查了一次函数的应用,解本题的关键为乙装箱的数量可用时间表示,明确这个隐藏条件即可解题.23.如图,在□ABCD中,AC与BD相交于点O,过点B作BE∥AC,联结OE交BC于点F,点F为BC的中点.(1)求证:四边形AOEB是平行四边形;(2)如果∠OBC=∠E,求证:BO•OC=AB•FC.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)根据BE∥AC,△COF∽△BEF,又因为F为BC的中点可得CF=BF,所以BE=OC=OA,结合BE∥AC,即可证得AOEB是平行四边形.(2)根据题意可证得△COB∽△CBA,即BO BCAB AC=,在依据AC=2OC,BC=2FC,可得BO FCAB OC=,即可证得BO•OC=AB•FC 【详解】(1)∵BE∥AC,∴△COF∽△BEF∴OC CF BE BF=∵点F为BC的中点,∴CF=BF,∴OC=BE∵四边形ABCD是平行四边形,∴AO=CO∴AO=BE∵BE∥AC,∴四边形AOEB是平行四边形(2)∵四边形AOEB是平行四边形,∴∠BAO=∠E∵∠OBC=∠E,∴∠BAO=∠OBC∵∠ACB=∠BCO,∴△COB∽△CBA∴BO BC AB AC=∵四边形ABCD是平行四边形,∴AC=2OC∵点F为BC的中点,∴BC=2FC∴BO FC AB OC=即BO•OC =AB•FC.【点睛】本题考查了平行四边形性质与判定的综合应用,本题的关键是通过平行得到几组相似三角形来解题.24.如图,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +8与x 轴相交于点A (﹣2,0)和点B (4,0),与y 轴相交于点C ,顶点为点P .点D (0,4)在OC 上,联结BC 、BD .(1)求抛物线的表达式并直接写出点P 的坐标;(2)点E 为第一象限内抛物线上一点,如果△COE 与△BCD 的面积相等,求点E 的坐标;(3)点Q 在抛物线对称轴上,如果△BCD ∽△CPQ ,求点Q 的坐标.【答案】(1)点P 的坐标为(1,9);(2)点E 的坐标为(2,8);(3)点Q 的坐标为(1,11)或(1,10).【解析】【分析】(1)通过待定系数法代入A 、B 坐标即可求得解析式;(2)根据解析式可求得点C 坐标(0,8),根据点E 为第一象限内抛物线上一点设点E ((x ,﹣x 2+2x+8)再根据S △COE =S △BCD ,可求得E 点坐标.(3)根据点B 、D 的坐标可得到∠BDC =135°,要满足△BCD ∽△CPQ ,∠CPQ=135°或者∠PCQ=135°,通过点C 、P 的坐标可得,∠PCM =45°,所以∠MCQ=90°,Q 在对称轴上,此情况不成立,所以要满足△BCD ∽△CPQ ,仅∠CPQ=135°,即Q 在P 点上方,可分两类讨论,CP PQ CD DB =或CP PQ BD DC=代值即可求出Q 点坐标.【详解】(1)将点A (﹣2,0),B (4,0)代入y =ax 2+bx+8,得:428016480a b a b -+=ìí++=î解得:12ab=-ìí=î,∴抛物线的表达式为y=﹣x2+2x+8.∵y=﹣x2+2x+8=﹣(x﹣1)2+9,∴点P的坐标为(1,9).(2)当x=0时,y=﹣x2+2x+8=8,∴点C的坐标为(0,8).设点E的坐标为(x,﹣x2+2x+8)(0<x<4),∵S△COE=S△BCD,∴12×8•x=12×4×4,解得:x=2,∴点E的坐标为(2,8).(3)过点C作CM∥x轴,交抛物线对称轴于点M,如图所示.∵点B(4,0),点D(0,4),∴OB=OD=4,∴∠ODB=45°,BD=,∴∠BDC=135°.∵点C(0,8),点P(1,9),∴点M的坐标为(1,8),∴CM=PM=1,∴∠CPM=45°,CP,∴点Q在抛物线对称轴上且在点P的上方,∴∠CPQ=∠CDB=135°.∵△BCD∽△CPQ,∴CP PQCD DB=或CP PQBD DC=.①当CP PQCD DB==,解得:PQ=2,∴点Q 的坐标为(1,11);②当CP PQ BD DC =4PQ =,解得:PQ =1,∴点Q 的坐标为(1,10).综上所述,点Q 的坐标为(1,11)或(1,10).【点睛】本题前两问考查了二次函数常考的求解析式和点的坐标,最后一问考查了二次函数与相似三角形的结合,解答本类型题重点是发现成相似的两个三角形有什么特点,是否有隐藏条件已知角度的对应或者边的对应.25.如图,AD ∥BC ,∠ABC =90°,AD =3,AB =4,点P 为射线BC 上一动点,以P 为圆心,BP 长为半径作⊙P ,交射线BC 于点Q ,联结BD 、AQ 相交于点G ,⊙P 与线段BD 、AQ 分别相交于点E 、F .(1)如果BE =FQ ,求⊙P 的半径;(2)设BP =x ,FQ =y ,求y 关于x 的函数关系式,并写出x 的取值范围;(3)联结PE 、PF ,如果四边形EGFP 是梯形,求BE 的长.【答案】(1)⊙P 的半径为32;(2)x 的取值范围为2506x <£;(3)BE =710或65.【解析】【分析】(1)由题意BE=FQ可得∠BPE=∠FPQ,进而可得∠EBP=∠FQP.又AD∥BC,故∠ADB=∠EBP,即∠FQP=∠ADB,故两角的正切值相等即可求出半径.(2)要求y关于x的函数关系式即可通过过P点做垂线PM,将QM用含x的式子表示,利用QM=PQcos∠AQB,而FQ=2QM,即y=D点相交时,x最大,可求出x的取值范围;(3)根据题意四边形EGFP是梯形,由于P点是动点所以产生两种情况,当GF∥EP时和GE∥FP时,故应进行分类讨论.①当GF∥EP时,可发现PE为△BGQ的中点,根据线段关系可求得BP的长度,因为△BGQ和△DGA相似,故有BG QGBD AQ=,可求得BG=75,所以BE=12BG.②当GE∥FP时,过点P作PN⊥BG ,跟①同理,可求得BE=2BN.【详解】(1)∵BE=FQ,∴∠BPE=∠FPQ,∵PE=PB,∴∠EBP=12(180°﹣∠EPB),同理∠FQP=12(180°﹣∠FPQ),∴∠EBP=∠FQP,∵AD∥BC,∴∠ADB=∠EBP,∴∠FQP=∠ADB,∴tan∠FQP=tan∠ADB=43,设⊙P的半径为r,则tan∠FQP=42 ABBQ r=,∴44 32r =,解得:r=32,∴⊙P的半径为32;(2)过点P 作PM ⊥FQ ,垂足为点M ,如图1所示:在Rt △ABQ 中,cos ∠AQB =BQ AQ ===在Rt △PQM 中,QM =PQcos ∠AQB ,∵PM ⊥FQ ,PF =PQ ,∴FQ =2QM∴y =当圆与D 点相交时,x 最大,作DH ⊥BC 于H ,如图2所示:则PD =PB =x ,DH =AB =4,BH =AD =3,则PH =BP ﹣BH =x ﹣3,在Rt △PDH 中,由勾股定理得:42+(x ﹣3)2=x 2,解得:x =256,∴x 的取值范围为:0<x ≤256;(3)设BP =x ,分两种情况:①EP ∥AQ 时,∴∠BEP=∠BGQ,∵PB=PE,∴∠PBE=∠BEP,∴∠BGQ=∠PBE,∴QG=QB=2x,同理:AG=AD=3,在Rt△ABQ中,由勾股定理得:42+(2x)2=(3+2x)2,解得:x=7 12,∴QG=QB=2x=76,∵EP∥AQ,PB=PQ,∴BE=EG,∵AD∥BC,∴BG QG BD AQ=,即767 536 BG=+,解得:BG=75,∴BE=12BG=710;②PF∥BD时,同①得:BG=BQ=2x,DG=AD=3,在Rt△ABD中,由勾股定理得:42+32=(3+2x)2,解得:x=1或x=﹣4(舍去),∴BQ=2,∴BP=1,作PN⊥BG于N,则BE=2BN,如图3所示:∵AD∥BC,∴∠PBN=∠ADB,∴cos∠PBN=cos∠ADB=35,即BNBP=35,∴BN=3 5,∴BE=2BN=65;综上所述,BE=710或65.【点睛】本题考查了圆与函数,四边形的综合,已知条件较多,存在不确定的动点情况,难度较大,解决本类题目的关键因素有①找到动点问题的临界点或特殊位置来解题;②对已知条件充分把握和利用,准确进行分类讨论.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年永嘉县初中毕业学业考试第二次模拟检测
数学参考答案
二、填空题(本题有6小题,每小题5分,共30分)
11、4
7 12、165° 13、5 14、6 15、1或5 16、k 22
k 1
三、解答题(本题有8小题,共80分) 17、(本题10分) (1)解:原式=322
3
21+⨯
-………………………………… 3′ =1+3……………………………………………5′
(2)y y x y xy y xy x 2244222-=-+-;y x y x y x y xy x 224442222+-=-+-;y
x y
y x y xy 242222+=--… 3′
(或反之),求值。

……………………………………………5′
18、(本题8分)(略)只要符合条件都给分(图①2分,图②3分,图③3分) 19、(本题目9分)
(1)3
1
62P )
(==红………………………………… 3′ (2)(i )设加红球为x 个,由题可得3
2
62=++x x ,解得x=6…………………6′
(ii )设减少白球y 个,由题可得
3
2
62=-y ,解得y=3…………………9′ 列式正确可参考上述步骤给分 20、(本题8分)
解:上述的证明过程不正确。

……………………………………1′ 证明:∵BE=EC
∴∠EBD=∠ECD
∵∠ABE=∠ACE ∴∠ABD=∠ACD
∴AB=AC ……………………………………4′ 在△ABE 与△ACE 中 AB=AC
∠ABE=∠ACE BE=CE
∴△ABE ≌△ACE (SAS )
∴∠BAE=∠CAE ……………………………8′
21.(本题10分)
(1)甲景区的游客满意度分数的众数为 3 ;………………………… 1′
乙景区的游客满意度分数的众数为 3 .………………………… 2′
(2)甲景区的游客满意度平均值为:201402803404
2.78180
⨯+⨯+⨯+⨯≈…4′
乙景区的游客满意度平均值为:51352903504
3.03180
⨯+⨯+⨯+⨯≈…6′
(3)乙景区的游客满意度较高,…………………………………………… 8′
理由:乙景区的游客满意度平均值较高;
乙景区的游客很满意和较满意的人数比甲景区多;…………………… 10′ (只要言之有理都可以)
22、(本题10分)
①原方程的解是211+=x 212-=x …………………………… 5′ ②122--x x …………………………………………………………… 6′ ③2x 与等与或x x x 21122-+……………………………………………… 8′ 图形(略) ………………………………………………………… 10′ 23、(本题11分)
(1)设该商场购进甲种商品x 件,根据题意可得:
2700)100(3515=-+x x ……………………………………………… 3′
解得40=x
乙种商品:100-40=60(件)………………………………………… 4′ 答:该商场购进甲种商品40件,乙种商品60件………………… 5′ (2)设该商场购进甲种商品a 件,则购进乙种商品)100(a -件,根据题意得:
{
760
)100)(3545()1520(750
)100)(3545()1520(≤--+-≥--+-a a a a ……………………………… 8′
解得48≤a ≤50……………………………………………………… 9′ ∵a 是正整数
∴a =48或a =49或a =50……………………………………………… 10′
∴进货方案有三种:
方案一:购进甲种商品48件,购进乙种商品52件。

方案二:购进甲种商品49件,购进乙种商品51件。

方案三:购进甲种商品50件,购进乙种商品50件。

………………… 11′
24、(本题14分)
(1)
A B ,点坐标分别为(2,m),(-3,n),∴BC=n,OC=3,OD=2,AD=m ,
又OA OB ⊥,易证CBO DOA △∽△,∴OA BO DA CO DO CB =
=,∴m
n 3
2=, ∴mn =6.…………………………………………………………………… 4′
(2)由(1)得,BO m OA 3=,又10AOB S =△,1
102
OB OA ∴=,
即,20=∙OA BO ∴602
=mBO ,
又92
222+=+=n OC BC OB ,∴60)9(2
=+n m ,又∵mn =6, ∴2032=+m n
∴m=6(舍去不合题意,m 3
2
=
),n=1 A ∴坐标为(26)B ,,
坐标为(31)-,,易得抛物线解析式为210y x =-+.………… 8′
(3)直线AB 为4y x =+,且与y 轴交于(04)F ,点,4,OF ∴=
假设存在直线l 交抛物线于P Q ,两点,且使S ⊿POF :S ⊿QOF =1:2,如图所示, 则有PF:FQ=1:2,作PM y ⊥轴于M 点,QN y ⊥轴于N 点,
P 在抛物线210y x =-+上,∴设P 坐标为2(10)t t -+,
, 则FM=64102
2
+-=-+-t t ,易证PMF QNF △∽△,∴
2
1
===QF PF FN MF QN PM ,
∴QN=2PM=-2t,NF=2MF=1222+-t ,∴822
+-=t ON
Q ∴点坐标为)82,2(2--t t ,Q 点在抛物线210y x =-+上,
1048222+-=-t t ,解得)3(,3舍去=-=t t ,
P ∴坐标为
)7,3(-(,Q 坐标为)2,32(-, ∴易得直线PQ 为43+-=x y .
根据抛物线的对称性可得直线PQ 的另解为43+=
x y .……………………14′
【说明:本卷由乌牛中学谢理福老师(665650)命题,实验中学俞志莉老师(660558)、城西中学全岳强审阅。

各题可能有不同的正确解法,可参考上述步骤相应给分,各阅卷老师在确认答案正确无误后才可开始评卷.】
121221*********,4(3,)(3,),(3,)(3,)23(3)2(3)3200,(1,4)
(3,)23(NBG
BG t
BN NG
G GH GH
CF H
H H
y x x
t t t t t H
H y x x
∠=︒=
∴==∴--
===∴
----
-=--
--=--
=∴==
∴=---
=--又把代入得即(不合题意舍去)当把代入得2212233332323)2(3)300120,(,)39
,
3(3)333,6)
3,6)233)2(
t t t
t H G GP
x H H Q x FQ
CP CQ CF FQ
H Q
GP H
H y x x
----
=--=∴==
∴=
--⊥⊥
==-∴=
-=--=
-==-∴--
--=--
--即9(不合题意舍去)当过作轴,过作轴则又
把代入得212333)3690
1818,18428
,()
121839
t t t t H t H --=--+=∴=
=
∴=-=即9当或当分。

相关文档
最新文档