高中数学 3.1.3空间向量的数量积导学案 人教A版选修2-1
2021年高中数学3.1.3空间向量的数量积运算学案含解析人教A版选修2_1
3.1.3 空间向量的数量积运算[目标] 1.掌握空间向量夹角的概念及表示方法,掌握两个向量的数量积概念、性质和计算方法及运算规律.2.掌握两个向量的数量积的主要用途,会用它解决立体几何中一些简单的问题.[重点] 空间向量的数量积运算.[难点] 利用空间向量解决夹角、距离等问题.知识点一 空间向量的夹角[填一填]1.定义:(1)条件:a ,b 是空间的两个非零向量.(2)作法:在空间任取一点O ,作OA →=a ,OB →=b . (3)结论:∠AOB 叫做向量a ,b 的夹角,记作a ,b .2.范围:a ,b∈[0,π],其中,(1)当a ,b =0时,a 与b 的方向相同. (2)当a ,b =π时,a 与b 的方向相反. (3)当a ,b=π2时,a 与b 互相垂直,记作a ⊥b . [答一答]1.若a ,b 是空间的两个非零向量,则-a ,b =a ,-b =a ,b ,对吗?提示:不对.∵-a 与a ,-b 与b 分别是互为相反向量,∴-a ,b=a ,-b =π-a ,b .知识点二 空间向量的数量积[填一填]1.空间向量的数量积 (1)定义:已知两个非零向量a ,b ,则|a ||b |cos a ,b 叫做a ,b 的数量积,记作a ·b .即a ·b=|a ||b |cosa ,b .(2)运算律:①(λa )·b =λ(a ·b ); ②交换律:a ·b =b ·a ;③分配律:a ·(b +c )=a ·b +a ·c . 2.空间向量数量积的性质[答一答]2.类比平面向量,你能说出a ·b 的几何意义吗?提示:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |·cos θ的乘积. 3.对于向量a ,b ,c ,由a ·b =a ·c ,能得到b =c 吗?提示:不能,若a ,b ,c 是非零向量,则a ·b =a ·c 得到a ·(b -c )=0,即可能有a ⊥(b -c )成立.4.对于向量a ,b ,若a ·b =k ,能不能写成a =k b? 提示:不能,向量没有除法,k b无意义. 5.为什么(a ·b )c =a (b ·c )不一定成立? 提示:由定义得(a ·b )c =(|a ||b |cosa ,b )c ,即(a ·b )c =λ1c ;a (b ·c )=a (|b ||c |cos b ,c ),即a (b ·c )=λ2a ,因此,(a ·b )c 表示一个与c 共线的向量,而a (b ·c )表示一个与a 共线的向量,而a 与c 不一定共线,所以(a ·b )c =a (b ·c )不一定成立.1.求两向量的数量积时,关键是搞清楚两个向量间的夹角,在求两个向量间的夹角时,可用平移向量的方法,把一个向量平移到另一个向量的起点.2.利用向量的数量积求两点间的距离,可以转化为求向量的模的问题,其基本思路是将此向量表示为几个已知向量的和的形式,求出这几个已知向量的两两之间的夹角以及它们的模,利用公式|a |=a ·a 求解即可.3.利用空间向量的数量积解决几何中的夹角垂直关系,其思路是将直线的方向向量用已知向量表示,然后进行数量积的运算.类型一 空间向量的数量积运算【例1】 如下图所示,已知正三棱锥A BCD 的侧棱长和底面边长都是a ,点E 、F 、G 分别是AB 、AD 、DC 的中点.求下列向量的数量积.(1)AB →·AC →;(2)AD →·BD →; (3)GF →·AC →;(4)EF →·BC →.【解】 (1)由题知|AB →|=|AC →|=a ,且〈AB →,AC →〉=60°, ∴AB →·AC →=a ·a ·cos60°=12a 2.(2)|AD →|=a ,|BD →|=a ,且〈AD →,BD →〉=60°. ∴AD →·BD →=a ·a ·cos60°=12a 2.(3)|GF →|=12a ,|AC →|=a ,又GF →∥AC →,∴〈GF →,AC →〉=180°.∴GF →·AC →=12a ·a ·cos180°=-12a 2.(4)|EF →|=12a ,|BC →|=a ,又EF →∥BD →,∴〈EF →,BC →〉=〈BD →,BC →〉=60°. ∴EF →·BC →=12a ·a ·cos60°=14a 2.在几何体中求空间向量的数量积,首先要充分利用向量所在的图形,将各向量分解成已知模和夹角的向量的组合形式;其次利用向量的运算律将数量积展开,转化为已知模和夹角的向量的数量积;最后利用数量积的定义求解即可.注意挖掘几何体中的垂直关系或者特殊角.已知正四面体OABC 的棱长为1.求:(1)OA →·OB →;(2)(OA →+OB →)·(CA →+CB →). 解:如图所示,(1)OA →·OB →=|OA →||OB →|cos ∠AOB =1×1×cos60°=12;(2)(OA →+OB →)·(CA →+CB →)=(OA →+OB →)·(OA →-OC →+OB →-OC →)=(OA →+OB →)·(OA →+OB →-2OC →)=12+1×1×cos60°-2×1×1×cos60°+1×1×cos60°+12-2×1×1×cos60°=1.类型二 利用数量积求夹角【例2】 如图,在直三棱柱ABC A 1B 1C 1中,∠ABC =90°,AB =BC =1,AA 1=2,求异面直线BA 1与AC 所成角的余弦值.【分析】 求异面直线BA 1与AC 所成的角,可转化为求向量BA 1→与AC →所成的角,因此可先求BA 1→·AC →,再求|BA 1→|,|AC →|,最后套用夹角公式求得,但要注意两直线夹角与两向量夹角的区别.【解】 因为BA 1→=BA →+AA 1→=BA →+BB 1→,AC →=BC →-BA →,且BA →·BC →=BB 1→·BA →=BB 1→·BC →=0, 所以BA 1→·AC →=(BA →+BB 1→)·(BC →-BA →)=BA →·BC →-BA→2+BB 1→·BC →-BB 1→·BA →=-1. 又|AC →|=2,|BA 1→|=1+2= 3.所以cos 〈BA 1→,AC →〉=BA 1→·AC→|BA 1→||AC →|=-16=-66.则异面直线BA 1与AC 所成角的余弦值为66.如图所示,在正方体ABCD A 1B 1C 1D 1中,求异面直线A 1B 与AC 所成的角.解:不妨设正方体的棱长为1, 设AB →=a ,AD →=b ,AA 1→=c , 则|a |=|b |=|c |=1,a ·b =b ·c =c ·a =0,A 1B →=a -c ,AC →=a +b .∴A 1B →·AC →=(a -c )·(a +b ) =|a |2+a ·b -a ·c -b ·c =1.而|A 1B →|=|AC →|=2,∴cos 〈A 1B →,AC →〉=12×2=12,∴〈A 1B →,AC →〉=60°.∴异面直线A 1B 与AC 所成的角为60°. 类型三 利用数量积求距离【例3】 在正四面体ABCD 中,棱长为a .M ,N 分别是棱AB ,CD 上的点,且|MB |=2|AM |,|CN |=12|ND |,求|MN |.【分析】 转化为求向量MN →的模,然后将向量MN →分解,再根据数量积运算性质进行求解. 【解】 因为MN →=MB →+BC →+CN →=23AB →+(AC →-AB →)+13(AD →-AC →)=-13AB →+13AD →+23AC →,所以MN →·MN →=⎝ ⎛⎭⎪⎫-13AB →+13AD →+23AC →·⎝ ⎛⎭⎪⎫-13AB →+13AD →+23AC →=19AB →2-29AD →·AB →-49AB →·AC →+49AC →·AD →+19AD →2+49AC →2=19a 2-19a 2-29a 2+29a 2+19a 2+49a 2=59a 2. 所以|MN |=53a .求两点间的距离或某条线段的长度的方法:先将此线段用向量表示,然后用其他已知夹角和模的向量表示此向量,最后利用|a |2=a ·a ,通过向量运算去求|a |,即得所求距离.如下图,在平行四边形ABCD 中,AB =AC =1,∠ACD =90°,将它沿对角线AC 折起,使直线AB 与CD 成60°角,求B ,D 间的距离.解:∵∠ACD =90°, ∴AC →·CD →=0,同理BA →·AC →=0.∵AB 与CD 成60°角,∴〈BA →,CD →〉=60°或120°. ∵BD →=BA →+AC →+CD →, ∴BD →2=BA →2+AC →2+CD→2+2BA →·AC →+2BA →·CD →+2AC →·CD →=BA→2+AC→2+CD→2+2BA →·CD →=3+2·1·1·cos〈BA →,CD →〉=⎩⎪⎨⎪⎧4 〈BA →,CD →〉=60°, 2〈BA →,CD →〉=120°.∴|BD →|=2或2,即B ,D 间的距离为2或 2. 类型四 利用数量积证明垂直问题【例4】 如下图,正方体ABCD A 1B 1C 1D 1中,P 为DD 1的中点,O 是底面ABCD 的中心.求证:B 1O ⊥平面PAC .【分析】 本题考查利用a ⊥b ⇔a ·b =0求证线面垂直,关键是在平面PAC 中找出两相交向量与向量B 1O →垂直.【证明】 不妨设正方体的棱长为1,AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,a ·b=b ·c =a ·c =0.由题图得:PA →=PD →+DA →=-12AA 1→-AD →=-b -12c ,PC →=PD →+DC →=-12AA 1→+AB →=a -12c ,B 1O →=B 1B →+BO →=-c +12(-a +b )=-12a +12b -c .∵PA →·B 1O →=⎝ ⎛⎭⎪⎫-b -12c ·⎝ ⎛⎭⎪⎫-12a +12b -c=12a ·b -12b 2+b ·c +14a ·c -14b ·c +12c 2, PC →·B 1O →=⎝⎛⎭⎪⎫a -12c ·⎝ ⎛⎭⎪⎫-12a +12b -c=-12a 2+12a ·b -a ·c +14a ·c -14b ·c +12c 2,又∵|a |=|b |=|c |=1,a ·b =a ·c =b ·c =0,∴PA →·B 1O →=0,PC →·B 1O →=0.∴PA →⊥B 1O →,PC →⊥B 1O →. ∴PA ⊥B 1O ,PC ⊥B 1O .又∵PA ∩PC =P ,∴B 1O ⊥平面PAC .用向量法证明线面垂直,离不开线面垂直的判定定理,需将线面垂直转化为线线垂直,然后利用向量法证明线线垂直即可.已知空间四边形ABCD 中,AB ⊥CD ,AC ⊥BD ,求证:AD ⊥BC . 证明:如图.方法一:∵AB ⊥CD ,AC ⊥BD , ∴AB →·CD →=0,AC →·BD →=0.AD →·BC →=(AB →+BD →)·(AC →-AB →)=AB →·AC →+BD →·AC →-AB→2-AB →·BD →=AB →·AC →-AB→2-AB →·BD →=AB →·(AC →-AB →-BD →)=AB →·DC →=0. ∴AD →⊥BC →,从而AD ⊥BC .方法二:设AB →=a ,AC →=b ,AD →=c , ∵AB ⊥CD ,∴AB →·CD →=0,即AB →·(AD →-AC →)=0,a ·(c -b )=0,即a ·c =b ·a . ∵AC ⊥BD ,∴AC →·BD →=0,即AC →·(AD →-AB →)=0,b ·(c -a )=0, 即b ·c =b ·a .∴a ·c =b ·c ,c ·(b -a )=0, 即AD →·(AC →-AB →)=0,AD →·BC →=0. ∴AD →⊥BC →,从而AD ⊥BC.1.如图所示,正方体ABCD A 1B 1C 1D 1的棱长为a ,对角线AC 1和BD 1相交于点O ,则有( C)A.AB →·A 1C 1→=2a 2B.AB →·AC 1→=2a 2C.AB →·AO →=12a 2D.BC →·DA 1→=a 2解析:∵AB →·AO →=AB →·12AC 1→=12AB →·(AB →+AD →+AA 1→)=12(AB →2+AB →·AD →+AB →·AA 1→)=12AB →2=12|AB →|2=12a 2. 2.已知a ,b ,c 是两两垂直的单位向量,则|a -2b +3c |=( B ) A .14 B.14 C .4 D .2解析:|a -2b +3c |2=|a |2+4|b |2+9|c |2-4a ·b +6a ·c -12b ·c =14,∴|a -2b +3c |=14.3.已知i 、j 、k 是两两垂直的单位向量,a =2i -j +k ,b =i +j -3k ,则a·b 等于-2.解析:a·b =(2i -j +k )·(i +j -3k )=2i 2-j 2-3k 2=-2. 4.已知向量a 、b 、c 两两之间的夹角都为60°,其模都为1,则 |a -b +2c |等于 5.解析:(a -b +2c )2=a 2+b 2+4c 2-2a·b +4a·c -4b ·c =1+1+4-2cos60°=5,∴|a -b +2c |= 5.5.如图所示,已知△ADB 和△ADC 都是以D 为直角顶点的直角三角形,且AD =BD =CD ,∠BAC =60°.求证:BD ⊥平面ADC .证明:不妨设AD =BD =CD =1,则AB =AC = 2. BD →·AC →=(AD →-AB →)·AC →=AD →·AC →-AB →·AC →,由于AD →·AC →=AD →·(AD →+DC →)=AD →·AD →=1,AB →·AC →=|AB →|·|AC →|cos60°=2×2×12=1.∴BD →·AC →=0,即BD ⊥AC ,又已知BD ⊥AD , ∴BD ⊥平面ADC .。
人教版选修2-1 3.1.3 空间向量的数量积运算导学案
《空间向量的数量积运算》导学案制作人王维审核高二数学组2016-02-29【学习目标】1、理解空间向量夹角的概念及表示方法;2、理解空间向量数量积的概念、运算性质及运算律;3、通过探究空间几何图形,将几何问题代数化,提高分析问题与解决问题的能力.【学习重点】空间向量数量积的概念、运算性质及运算律【学习难点】空间向量数量积的概念、运算性质及运算律的运用【问题探究】探究活动一:两空间向量的夹角探究活动二:空间向量的数量积探究活动三:空间两个向量的数量积的性质探究活动四:空间向量的数量积满足的运算律【预习导航】1、复习回顾:平面向量的数量积运算2、如何进行空间向量的数量积运算?【思考】如何运用空间向量的数量积运算处理有关问题?1•【应用训练】【练习题】1、在平面内的一条直线 ,如果和这个平面的一条斜线的射影垂直 ,那1、向量a 、b 之间的夹角为30 0,且a = 3 ,b = 4 ,则么它也和这条斜线垂直.a •b = __________, a 2 = __________, b 2= __________,(a + 2b ) (a - b ) = __________.2、已知 a = 2 2夹角., b =22 ,a • b = 2 ,试求向量 a 与 b的【总结概括】2 、已知l ⊥ n ,m , n 是平面α求证:l ⊥α.内的两条相交直线,若l ⊥ m ,本节课的收获:【分层作业】 必做题:教材第 98 页习题 第 3,4 题选做题:同步练习册课后作业提升习题2。
(新课程)高中数学《3.1.1空间向量及其运算》导学案 新人教a版选修2-1
§3.1.1空间向量及其运算1. 理解空间向量的概念,掌握其表示方法;2. 会用图形说明空间向量加法、减法、数乘向量及它们的运算律;3. 能用空间向量的运算意义及运算律解决简单的立体几何中的问题.8486复习1:平面向量基本概念:具有 和 的量叫向量, 叫向量的模(或长度); 叫零向量,记着 ; 叫单位向量. 叫相反向量, a 的相反向量记着 . 叫相等向量. 向量的表示方法有 , ,和 共三种方法.复习2:平面向量有加减以及数乘向量运算:1. 向量的加法和减法的运算法则有 法则 和 法则.2. 实数与向量的积:实数λ与向量a 的积是一个 量,记作 ,其长度和方向规定如下:(1)|λa |= .(2)当λ>0时,λa 与A. ;当λ<0时,λa 与A. ;当λ=0时,λa = .3. 向量加法和数乘向量,以下运算律成立吗?加法交换律:a +b =b +a加法结合律:(a +b )+c =a +(b +c )数乘分配律:λ(a +b )=λa +λb二、新课导学※ 学习探究探究任务一:空间向量的相关概念问题: 什么叫空间向量?空间向量中有零向量,单位向量,相等向量吗?空间向量如何表示?新知:空间向量的加法和减法运算:空间任意两个向量都可以平移到同一平面内,变为两个平面向量的加法和减法运算,例如右图中, OB = , AB = ,试试:1. 分别用平行四边形法则和三角形法则求,.a b a b +- a .2. 点C 在线段AB 上,且52AC CB =,则 AC = AB , BC = AB .反思:空间向量加法与数乘向量有如下运算律吗?⑴加法交换律:A. + B. = B. + a ;⑵加法结合律:(A. + b ) + C. =A. + (B. + c );⑶数乘分配律:λ(A. + b ) =λA. +λb .※ 典型例题例1 已知平行六面体''''ABCD A B C D -(如图),化简下列向量表达式,并标出化简结果的向量: AB BC + ⑴;'AB AD AA ++ ⑵;1'2AB AD CC ++ ⑶ 1(')2AB AD AA ++ ⑷.变式:在上图中,用',,AB AD AA 表示'',AC BD 和'DB .小结:空间向量加法的运算要注意:首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量,求空间若干向量之和时,可通过平移使它们转化为首尾相接的向量.例2 化简下列各式: ⑴ AB BC CA ++ ; ⑵;AB MB BO OM +++ ⑶;AB AC BD CD -+- ⑷ OA OD DC -- .变式:化简下列各式: ⑸ OA OC BO CO +++ ; ⑹ AB AD DC -- ; ⑺ NQ QP MN MP ++- .小结:化简向量表达式主要是利用平行四边形法则或三角形法则,遇到减法既可转化成加法,也可按减法法则进行运算,加法和减法可以转化.※ 动手试试练1. 已知平行六面体''''ABCD A B C D -, M 为A 1C 1与B 1D 1的交点,化简下列表达式: ⑴ 111AA A B + ; ⑵ 11111122A B A D + ; ⑶ 111111122AA A B A D ++ ⑷ 1111AB BC CC C A A A ++++ .三、总结提升※ 学习小结1. 空间向量基本概念;2. 空间向量加法、减法、数乘向量及它们的运算律※ 知识拓展平面向量仅限于研究平面图形在它所在的平面内的平移,而空间向量研究的是空间的平移,它们的共同点都是指“将图形上所有点沿相同的方向移动相同的长度”,空间的平移包含平面的平移.).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 下列说法中正确的是( ) A. 若∣a ∣=∣b ∣,则a ,b 的长度相同,方向相反或相同; B. 若a 与b 是相反向量,则∣a ∣=∣b ∣;C. 空间向量的减法满足结合律;D. 在四边形ABCD 中,一定有AB AD AC += . 2. 长方体''''ABCD A B C D -中,化简'''''AA A B A D ++ =3. 已知向量a ,b 是两个非零向量,00,a b 是与a ,b 同方向的单位向量,那么下列各式正确的是( ) A. 00a b = B. 00a b = 或00a b =- C. 01a = D. ∣0a ∣=∣0b ∣ 4. 在四边形ABCD 中,若AC AB AD =+ ,则四边形是( )A. 矩形B. 菱形C. 正方形D. 平行四边形5. 下列说法正确的是( )A. 零向量没有方向B. 空间向量不可以平行移动C. 如果两个向量不相同,那么它们的长度不相等D. 同向且等长的有向线段表示同一向量1. 在三棱柱中,M,N 分别为BC ,B'C'的中点,化简下列式子: ⑴ AM + BN ⑵'A N -'MC + 'BB2. 如图,平行六面体1111ABCD A B C D -中,点M 为AC 与的BD 的交点,AB a = ,AD b = ,1A A c = , 则下列向量中与1B M 相等的是( )A. 1122a b c -++ B. 1122a b c ++ C. 1122a b c -+ D. 1122a b c --+。
人教A版选修2-1《空间向量的数量积运算》导学案
第三章第3课时 空间向量的数量积运算学习目标:1、 掌握空间向量夹角的概念及表示方法;2、 掌握两个向量的数量积概念、性质和计算方法及简单应用。
3、体会空间问题平面化的数学思想。
预习案一、 教材助读,知识归纳:1、两个向量的夹角:平面向量的夹角定义:b a 两个非零向量,,O 在平面任取一点,OA=OB=b a 作,,b AOB a Ð则叫作,的夹角.取值范围:空间向量的夹角定义:取值范围:<a ®,b ®>=0时,a ®与b ®的方向 ;<a ®,b ®>= 时,a ®与b ®的方向 。
特别地:如果<a ®,b ®>= 则称a ®与b ®互相垂直,并记作 。
思考:对于空间任意两个非零向量a 、b,如何求出其夹角?2.两个向量的数量积平面向量的数量积b b cos b b a a a a 已知两个非零向量,,则,叫做,的数量积.空间向量的数量积变形式:cos<a ®,b ®>= 。
特别地:①零向量与任何向量的数量积为0,即0a ×=0 ②a a × =cos ,a a a a 狁= |a ®|2③0a b a b ^圩=3、空间向量数量积的运算律:①()a b l ×= (数乘的结合律) ②a b ?(交换律)③()a b c ?=(分配律)反馈练练习:1. 已知|a |=22,22b = ,a b × =-2,则a ,b 所夹的角为 。
2.判断正误1)0,=0=0.a b a b ?若则, ( ) 2)()()a b c a b c 鬃=鬃( ) 3)()222p qp q ? ( ) 课堂探究案二、例题讲解,合作探究: 探究1.问题解决夹角问题例1.如图,在空间四边形ABCD 中,AC=3,AD=23,AB=2,CD=3,BAD=30AC=60B 邪邪,,(1)AD DC AC用、表示。
高中数学 3.1.3空间向量的数量积(1)导学案新人教A版选修2-1
3.1.3.空间向量的数量积(1)1. 掌握空间向量夹角和模的概念及表示方法;2. 掌握两个向量的数量积的计算方法,并能利用两个向量的数量积解决立体几何中的一些简单问题.9092 复习1:什么是平面向量a 与b 的数量积?复习2:在边长为1的正三角形⊿ABC 中,求AB BC ∙ .二、新课导学※ 学习探究探究任务一:空间向量的数量积定义和性质问题:在几何中,夹角与长度是两个最基本的几何量,能否用向量的知识解决空间两条直线的夹角和空间线段的长度问题?新知: 1) 两个向量的夹角的定义:已知两非零向量,a b ,在空间 一点O ,作,OA a OB b == ,则AOB ∠叫做向量a 与b 的夹角,记作 .试试: ⑴ 范围: ,a b ≤<>≤ ,a b 〈〉 =0时,a b 与 ;,a b 〈〉 =π时,a b 与 ⑵ ,,a b b a <>=<> 成立吗? ⑶,a b <>= ,则称a 与b 互相垂直,记作 .2) 向量的数量积: 已知向量,a b ,则 叫做,a b 的数量积,记作a b ⋅ ,即a b ⋅= .规定:零向量与任意向量的数量积等于零.反思:⑴ 两个向量的数量积是数量还是向量? ⑵ 0a ∙= (选0还是0 ) ⑶ 你能说出a b ⋅ 的几何意义吗?3) 空间向量数量积的性质: (1)设单位向量e ,则||cos ,a e a a e ⋅=<> .(2)a b a b ⊥⇔⋅= .(3)a a ⋅= = .4) 空间向量数量积运算律: (1)()()()a b a b a b λλλ⋅=⋅=⋅ .(2)a b b a ⋅=⋅ (交换律). (3)()a b c a b a c ⋅+=⋅+⋅ (分配律反思: ⑴ )()a b c a b c ⋅⋅=⋅⋅ (吗?举例说明.⑵ 若a b a c ⋅=⋅ ,则b c = 吗?举例说明.⑶ 若0a b ⋅= ,则00a b == 或吗?为什么?※ 典型例题例1 用向量方法证明:在平面上的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.变式1:用向量方法证明:已知:,m n 是平面α内的两条相交直线,直线l 与平面α的交点为B ,且,l m l n ⊥⊥.求证:l α⊥.例2 如图,在空间四边形ABCD 中,2AB =,3BC =,BD =,3CD =,30ABD ∠= ,60ABC ∠= ,求AB 与CD 的夹角的余弦值变式:如图,在正三棱柱ABC-AAB 1,则AB 1与C 1B 所成的角为( ) A. 60° B. 90° C. 105° D. 75°例3 如图,在平行四边形ABCD-A 1B 1C 1D 1中,4,3AB AD ==,'5AA =,90BAD ∠=︒,'BAA ∠= 'DAA ∠=60°,求'AC 的长.※ 动手试试练1. 已知向量,a b满足1a = ,2b = ,3a b += ,则a b -= ____.练2. ,,a b a b ==⋅= 已知, 则a b 与的夹角大小为_____.三、总结提升※ 学习小结1..向量的数量积的定义和几何意义.2. 向量的数量积的性质和运算律的运用.※ 知识拓展 向量给出了一种解决立体几何中证明垂直问题,求两条直线的夹角和线段长度的新方法※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 下列命题中: ①若0a b ∙= ,则a ,b 中至少一个为0 ②若a 0≠ 且a b a c ∙=∙ ,则b c = ③()()a b c a b c ∙∙=∙∙ ④22(32)(32)94a b a b a b +∙-=-正确有个数为( )A. 0个B. 1个C. 2个D. 3个2. 已知1e 和2e 是两个单位向量,夹角为3π,则下面向量中与212e e - 垂直的是( ) A. 12e e + B. 12e e - C. 1e D. 2e3.已知ABC ∆中,,,A B C ∠∠∠所对的边为,,a b c ,且3,1a b ==,30C ∠=︒,则BC CA ∙ =4. 已知4a = ,2b = ,且a 和b 不共线,当 a b λ+ 与a b λ- 的夹角是锐角时,λ的取值范围是 .5. 已知向量,a b 满足4a = ,2b = ,3a b -= ,则a b += ____1. 已知空间四边形ABCD 中,AB CD ⊥,AC BD ⊥,求证:AD BC ⊥.2. 已知线段AB 、BD 在平面α内,BD ⊥AB , 线段AC α⊥,如果AB =a ,BD =b ,AC =c ,求C 、D 间的距离.§3.1.4 空间向量的正交分解及其坐标表示1. 掌握空间向量的正交分解及空间向量基本定理和坐标表示;2. 掌握空间向量的坐标运算的规律;92-96复习1:平面向量基本定理: 对平面上的任意一个向量P ,,a b 是平面上两个 向量,总 是存在 实数对(),x y ,使得向量P 可以用,a b 来表示,表达式为 ,其中,a b 叫做 . 若a b ⊥ ,则称向量P 正交分解.复习2:平面向量的坐标表示:平面直角坐标系中,分别取x 轴和y 轴上的 向量 ,i j 作为基底,对平面上任意向量a ,有且只有一对实数x ,y ,使得a xi y j =+ ,,则称有序对(),x y 为向量a 的 ,即a = .二、新课导学※ 学习探究探究任务一:空间向量的正交分解 问题:对空间的任意向量a ,能否用空间的几个向量唯一表示?如果能,那需要几个向量?这几个向量有何位置关系?新知: ⑴ 空间向量的正交分解:空间的任意向量a ,均可分解为不共面的三个向量11a λ 、22a λ 、33a λ ,使112233a a a a λλλ=++ . 如果123,,a a a 两两 ,这种分解就是空间向量的正交分解.(2)空间向量基本定理:如果三个向量,,a b c , 对空间任一向量p ,存在有序实数组{,,}x y z ,使得p xa yb zc =++ . 把 的一个基底,,,a b c 都叫做基向量.反思:空间任意一个向量的基底有 个.⑶单位正交分解:如果空间一个基底的三个基向量互相 ,长度都为 ,则这个基底叫做单位正交基底,通常用{i ,j ,k }表示.⑷空间向量的坐标表示:给定一个空间直角坐标系O -xyz 和向量a ,且设i 、j 、k 为 x 轴、y 轴、z 轴正方向的单位向量,则存在有序实数组{,,}x y z ,使得a xi y j zk =++ ,则称有序实数组{,,}x y z 为向量a 的坐标,记着p = .⑸设A 111(,,)x y z ,B 222(,,)x y z ,则AB = .⑹向量的直角坐标运算:设a =123(,,)a a a ,b =123(,,)b b b ,则⑴a +b =112233(,,)a b a b a b +++;⑵a -b =112233(,,)a b a b a b ---;⑶λa =123(,,)a a a λλλ()R λ∈;⑷a ·b =112233a b a b a b ++.试试: 1. 设23a i j k =-+ ,则向量a 的坐标为 . 2. 若A (1,0,2),B (3,1,1)-,则AB = .3. 已知a =(2,3,5)-,b =(3,1,4)--,求a +b ,a -b ,8a ,a ·b※ 典型例题 例1 已知向量,,a b c 是空间的一个基底,从向量,,a b c 中选哪一个向量,一定可以与向量,p a b =+ q a b =- 构成空间的另一个基底?变式:已知O,A,B,C 为空间四点,且向量,,OA OB OC 不构成空间的一个基底,那么点O,A,B,C 是否共面?小结:判定空间三个向量是否构成空间的一个基底的方法是:这三个向量一定不共面. 例2 如图,M,N 分别是四面体Q ABC 的边OA,BC 的中点,P ,Q 是MN 的三等分点,用,,OA OB OC 表示OP 和OQ .变式:已知平行六面体''''ABCD A B C D -,点G是侧面''BB C C 的中心,且OA a = ,',OC b OO c == ,试用向量,,a b c 表示下列向量: ⑴''',,;OB BA CA ⑵ OG .※ 动手试试 练1. 已知()()()2,3,1,2,0,3,0,0,2a b c =-== ,求: ⑴()a b c ∙+ ; ⑵68a b c +- .练2. 正方体''''ABCD A B C D -的棱长为2,以A 为坐标原点,以'AB,AD,AA 为x 轴、y 轴、z 轴正方向建立空间直角坐标系,则点1D ,',AC AC 的坐标分别是 , , .三、总结提升※ 学习小结1. 空间向量的正交分解及空间向量基本定理;2. 空间向量坐标表示及其运算※ 知识拓展建立空间直角坐标系前,一定要验证三条轴的垂直关系,若图中没有建系的环境,则根据已.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 若{}a,,b c 为空间向量的一组基底,则下列各项中,能构成基底的是( )A.,,a a b a b +-B. ,,b a b a b +-C. ,,c a b a b +-D. 2,,a b a b a b ++-2. 设i 、j 、k 为空间直角坐标系O -xyz 中x 轴、y 轴、z 轴正方向的单位向量,且AB i j k =-+- ,则点B 的坐标是3. 在三棱锥OABC 中,G 是ABC ∆的重心(三条中线的交点),选取,,OA OB OC 为基底,试用基底表示OG =4. 正方体''''ABCD A B C D -的棱长为2,以A 为坐标原点,以'AB,AD,AA 为x 轴、y 轴、z轴正方向建立空间直角坐标系,E 为BB 1中点,则E 的坐标是 . 5. 已知关于x 的方程()222350x t x t t --+++=有两个实根,c a tb =+ ,且()()1,1,3,1,0,2a b =-=- , 当t = 时,c 的模取得最大值.1. 已知()()3,5,7,2,4,3A B =-=-,求,,AB BA 线段AB 的中点坐标及线段AB 的长度.2. 已知,,a b c 是空间的一个正交基底,向量,,a b a b c +- 是另一组基底,若p 在,,a b c 的坐标是()1,2,3,求p 在,,a b a b c +- 的坐标.。
人教课标版高中数学选修2-1《空间向量的数量积运算》教案-新版
3.1.3 空间向量的数量积运算一、教学目标(一)核心素养通过本节课的学习,同学们能掌握空间向量数量积运算的法则及运算律,能借助图形进行空间向量的运算,并通过空间几何体加深对运算的理解.会利用数量积的性质求空间向量的夹角和模,并能熟练应用于立体几何证明与求值.(二)学习目标1.了解向量夹角的定义,掌握空间向量数量积的运算法则及运算律.2.掌握利用数量积求空间向量夹角和模的方法.3.培养学生数形结合的思想和空间想象能力,并能解决向量的综合问题.(三)学习重点1.空间向量的数量积运算法则及运算律.2.空间向量的模长公式和夹角公式.3.空间向量数量积在立体几何中的应用.(四)学习难点1.利用空间向量的数量积求模与夹角.2.将立体几何问题转化为空间向量的数量积问题.二、教学设计(一)课前设计1.预习任务(1)读一读:阅读教材第90页至第91页,填空: 已知两个非零向量a ,b ,在空间任取一点O ,作a OA =,b OB =,则AOB ∠叫做向量a ,的夹角,记作><,. 如果2,π>=<,那么向量,互相垂直,记作⊥. 已知两个非零向量,,则><b a b a ,cos ||||叫做,的的数量积,记作⋅. 零向量与任何向量数量积为0. 特别地,⋅=><,cos ||||2||=.(2)写一写:和平面向量类似,空间向量的数量积满足哪些运算律? ①数乘结合律:)()(b a b a ⋅=⋅λλ, ②交换律:⋅=⋅, ③分配率:⋅+⋅=+⋅)(.和平面向量类似,空间向量的数量积有哪些性质? ①若为单位向量,则⋅=><,cos ||; ②若,⊥⇔⋅0=; ③==a ||;④若,为非零向量,则>=<,cos ||||a ba b ⋅; ⑤||||||≤⋅(当且仅当a ,b 共线时等号成立). 2.预习自测(1)已知向量,满足:3||=,2||=,⋅6-=,则>=<,( )A .0B .3πC .2πD .π 【知识点】空间向量的夹角公式.【解题过程】∵6cos ,123||||a b a b a b ⋅-<>===-⨯rr r r r r ,∴>=<b a ,π.【思路点拨】理解并熟记空间向量的夹角公式.【答案】D .(2)在正三棱柱111C B A ABC -中,若12BB AB =,则1AB 与B C 1所成角的大小为()A . 60B . 90C . 75D . 105【知识点】空间向量的垂直.【解题过程】设m BB =||1,则m AB 2||=,∴C AB 11⋅)()(11C BB +⋅+=C BB 11⋅+⋅= 180cos 60cos 22⋅⋅+⋅⋅=m m m m 022=-=m m ,故1AB 与B C 1所成角的大小为 90.【思路点拨】空间向量的垂直的充要条件数量积等于0.【答案】B .(3)在平行六面体1111D C B A ABCD -中,4=AB ,3=AD ,51=AA , 90=∠BAD ,6011=∠=∠DAA BAA ,则=||1AC .【知识点】空间向量的模长. 【解题过程】=21||AC 2121)(AA AC ++=112122222AA AA AA ⋅+⋅+⋅+++=21532215420534222⨯⨯⨯+⨯⨯⨯++++=85=,故=||1AC 85.【思路点拨】利用空间向量的模长公式,转化为数量积的运算. 【答案】85.(4)已知线段AB ,BD 在平面α内,AB BD ⊥,线段α⊥AC ,且a AB =,b BD =,c AC =,则C ,D 间的距离为 .【知识点】空间向量的模长. 【解题过程】222)(||++==⋅+⋅+⋅+++=222222000222+++++=c b a 222c b a ++=,故C ,D 间的距离为222c b a ++.【思路点拨】利用空间向量的模长公式,转化为数量积的运算. 【答案】222c b a ++.(二)课堂设计1.知识回顾(1)空间向量线性运算法则和运算律;(2)共线向量定理的两种表达形式;(3)共面向量定理的两种表达形式.2.问题探究探究一 由平面向量类比空间向量的数量积运算★●活动① 类比提炼概念前面我们说过,两个非零向量a r ,b r 一定是共面向量.那在平面向量中,我们是怎样定义两个向量的夹角的呢?(抢答) 已知两个非零向量,,在空间任取一点O ,作OA a =uu r r ,OB b =uu u r r ,则AOB ∠叫做向量,的夹角,记作><,.如果2,π>=<,那么向量,互相垂直,记作⊥.也就是说,两个空间向量夹角的定义与平面向量一致.【设计意图】两个非零向量一定是共面,因此向量夹角的概念自然地从平面到空间,让学生体会概念的类比过程,为数量积的定义作好准备.●活动② 巩固理解,深入探究同样的,那数量积的定义呢?(抢答) 已知两个非零向量a ,b ,则><,cos ||||叫做a ,b 的的数量积(inner product ),记作a b ⋅r r .零向量与任何向量数量积为0.特别地,2=||||cos ,||a a a a a a a ⋅<>=r r r r r r r .【设计意图】通过抢答,使学生深入探究,进而得到数量积定义.●活动③ 深入探究,发现规律和平面向量类似,空间向量的数量积满足哪些运算律?(抢答) ①数乘结合律:)()(⋅=⋅λλ, ②交换律:⋅=⋅, ③分配率:⋅+⋅=+⋅)(.【设计意图】类比平面向量,得出空间向量数量积的运算律,理解更加深入.探究二 探究空间向量数量积的性质★▲●活动① 类比探究,研究性质和平面向量类似,空间向量的数量积有哪些性质?(抢答) ①若为单位向量,则=||cos ,a e a a e ⋅<>r r r r r ;(解释:1||=,转化为投影) ②若,为非零向量,则0a b a b ⊥⇔⋅=r r r r ;(解释:,cos 022a b ππ<>==r r ,)③||==;(解释:,0cos 01a b <>==r r ,) ④若,为非零向量,则||||,cos b a b a >=<;(解释:定义的变形式) ⑤||||||≤⋅(当且仅当,共线时等号成立).(解释:,[0,]cos ,[1,1]a b a b π<>∈<>∈-r r r r ,)【设计意图】通过类比,得到空间向量数量积的各种性质,并给予合理解释,突破难点. ●活动② 巩固理解,深入探究以上五个性质中,大家认为最重要的有哪些,它们有什么作用?(抢答)第②条,0a b a b ⊥⇔⋅=r r r r ,可用于证明空间向量垂直;第③条,||=,是空间向量的模长公式;第④条,||||,cos b a b a >=<,是空间向量的夹角公式.【设计意图】让学生进行思考,在深刻理解性质的同时,指出公式的作用,为后面的计算打好基础.探究三 探究空间向量数量积的具体应用★▲●活动① 归纳梳理、理解提升通过前面的学习,由于两个向量必然共面,所以空间向量数量积的运算法则和运算律和平面向量基本一致.同时,我们理解了数量积的三个重要应用是?(抢答)模长、垂直、夹角.它们都是向量a ,b 的二次运算,是非线性的.【设计意图】通过学生归纳知识点和定理,培养学生数学对比、归类、整理意识. ●活动② 互动交流、初步实践例1 设,,是任意的非零向量,且它们相互不共线,下列命题中:①()()0a b c c a b ⋅-⋅=r r r r r r ;②=||22a b b a =r r r r ; ④22||4||9)23()23(-=-⋅+.正确的是( )A .①②B .②③C .③④D .②④【知识点】空间向量的数量积运算法则和运算律.【数学思想】转化思想.【解题过程】向量的数量积不满足结合律,所以①不正确;由向量的数量积的定义知,②正确;,不一定共线,向量不一定相等,所以③不正确;利用数量积的运算律,④正确.【思路点拨】空间向量数量积运算不满足结合律.【答案】D .同类训练 已知空间四边形ABCD 的每条边和对角线长都等于a ,点E ,F ,G 分别为AB ,AD ,DC 的中点,则以下运算结果为2a 的是( )A .⋅2B .⋅2C .CA FG ⋅2D .CB EF ⋅2【知识点】空间几何体中向量的数量积运算.【数学思想】数形结合思想. 【解题过程】由已知可得3,π>=<, 所以><=⋅,cos ||||22223cos 2a a ==π. 【思路点拨】在空间几何体中先找出向量的夹角再根据定义计算.【答案】B .【设计意图】通过空间几何体中的向量,让学生对数量积的定义和运算更加熟练. 活动③ 巩固基础、检查反馈例2 已知空间四边形OABC 中,OB =OC ,且3π=∠=∠AOC AOB ,则><BC OA ,cos 的值为( )A .0B .21C .22D .23 【知识点】空间向量的线性表示及夹角公式.【数学思想】数形结合思想. 【解题过程】设a OA =,b OB =,c OC =,由已知得3,,π>=>=<<,且||||=. 所以()OA BC a c b a c a b ⋅=⋅-=⋅-⋅uu r uu u r r r r r r r r 3cos ||||3cos ||||ππ-=0|)||(|||21=-=, 所以0||||,cos =>=<BC OA .【思路点拨】求向量夹角的重点就是求数量积和模长.【答案】A .同类训练 已知空间向量,,两两夹角为 60,其模都为1,则|2|+-等于( )A .5B .5C .6D .6【知识点】空间向量的模长公式.【数学思想】转化思想. 【解题过程】∵1||||||===c b a , 60,,,>=>=<>=<<a c c b b a ,∴21=⋅=⋅=⋅, ∴2|2|+-a c c b b a c b a ⋅+⋅-⋅-++=4424222214214212411⨯+⨯-⨯-++=5=, ∴|2|+-5=. 【思路点拨】先计算⋅,⋅,⋅,再利用模长公式展开计算.【答案】A .【设计意图】运用向量的夹角和模长公式,学生对数量积的运算更加熟练,基础更加牢固. ●活动④ 强化提升、灵活应用例3 已知PO ,P A 分别是平面α的垂线、斜线,AO 是P A 在平面α内的射影,α⊂l 且OA l ⊥,求证:PA l ⊥.【知识点】利用空间向量数量积解决直线垂直问题.【数学思想】数形结合思想.【解题过程】取直线l 的方向向量,同时取向量PA ,,∵OA l ⊥,∴0=⋅.∵α⊥PO ,且α⊂l ,∴PO l ⊥,∴0=⋅. 又∵=⋅)(+⋅0=⋅+⋅=,∴PA l ⊥.【思路点拨】将向量用,来表示,从而利用数量积解决垂直问题.这是三垂线定理的向量证法,同理也可用来证明:若PA l ⊥,则OA l ⊥.【答案】见解题过程.同类训练 已知m ,n 是平面α内的两条相交直线,如果m l ⊥,n l ⊥,求证:α⊥l .【知识点】利用空间向量数量积解决线面垂直问题.【数学思想】数形结合思想.【解题过程】在α内任作一直线g ,分别在l ,m ,n ,g 上取非零向量l ,m ,,. ∵m 与n 相交,∴向量,不平行,由向量共面的充要条件知,存在唯一的有序实数对),(y x ,使y x +=. ∵0=⋅m l ,0=⋅n l ,∴y x ⋅+⋅=⋅0=,即g l ⊥.∴l 垂直于α内的任意直线,∴α⊥l .【思路点拨】将α内的任意直线的方向向量表示为,的线性组合,从而利用数量积证明0=⋅g l ,再由线面垂直的定义可证.这是线面垂直判定定理的向量证法.【答案】见解题过程.【设计意图】垂直问题的证明是常见题型,通过数量积的计算,避免了立体几何中辅助线的添加,极大地降低了难度.3. 课堂总结知识梳理(1)已知两个非零向量,,在空间任取一点O ,作=,=,则AOB ∠叫做向量,的夹角,记作><,.如果2,π>=<b a ,那么向量,互相垂直,记作⊥. (2)已知两个非零向量,,则><,cos ||||叫做,的的数量积(inner product ),记作⋅.零向量与任何向量数量积为0.特别地,⋅=><,cos ||||2||=.空间向量的数量积满足的运算律有:①数乘结合律:)()(⋅=⋅λλ,②交换律:⋅=⋅,③分配率:⋅+⋅=+⋅)(.(3)空间向量的数量积的性质有:①若e 为单位向量,则a e ⋅=><,cos ||;②若a ,b 为非零向量,则a b ⊥⇔a b ⋅0=;③||==a ,b 为非零向量,则||||,cos b a >=<;⑤||||||≤⋅(当且仅当,共线时等号成立).重难点归纳(1)空间向量的数量积是向量的二维计算,是三个实数的乘积,不满足结合律.(2)空间向量的数量积主要解决向量的垂直,模长和夹角问题,在立体几何中应用非常广泛.(三)课后作业基础型 自主突破1.下列命题中正确的是( )A .222)(⋅=⋅ B .||||||≤⋅C .)()(⋅⋅=⋅⋅D .若)(-⊥,则0=⋅=⋅【知识点】向量数量积的概念和运算.【数学思想】转化思想. 【解题过程】对于A 项,><=⋅,cos )(222222≤,故A 错误;对于C 项,数量积不满足结合律,故C 错误;对于D 项,有0)(=-⋅,所以⋅=⋅,但不一定等于0,故D 错误.B 项是数量积的性质.【思路点拨】深刻理解各种概念和运算.【答案】B . 2.已知,为单位向量,其夹角为 60,则=⋅-)2(( )A .1-B .0C .1D .2【知识点】向量数量积的运算.【数学思想】转化思想. 【解题过程】∵1||||==,>=<, 60, ∴=⋅-)2(22-⋅0||60cos ||||22=-= .【思路点拨】熟练掌握空间向量数量积的运算法则.【答案】B . 3.在三棱锥BCD A -中,2===AD AC AB , 90=∠BAD , 60=∠BAC ,则=⋅( )A .2-B .2C .32-D .32 【知识点】空间向量数量积的运算.【数学思想】数形结合思想. 【解题过程】=⋅)(-⋅⋅-⋅= 60cos 220⨯⨯-=2-=.【思路点拨】在空间几何体中找到夹角再根据定义计算.【答案】A .4.在三棱锥ABC D -中,已知)()2(AC AB DA DC DB -⋅-+0=,则ABC ∆是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形 【知识点】空间向量数量积的运算.【数学思想】转化思想. 【解题过程】∵)()2(-⋅-+)()(-⋅-+-=0)()(22=-=-⋅+=AC AB AC AB AC AB ,∴22||||AC AB =,即AC AB =.【思路点拨】熟练掌握空间向量数量积的各种变形.【答案】B .5.已知A ,B ,C 为圆O 上的三点,若+=与的夹角 为 .【知识点】空间向量的夹角.【数学思想】数形结合思想.【解题过程】∵+=,∴点O 是BC 中点,故BC 为直径,根据圆的性质,有 90=∠BAC ,即<AB ,> 90=.【思路点拨】利用几何性质,点O 是BC 中点,BAC ∠是直角所对的圆周角.【答案】 90. 6.已知,,中每两个向量的夹角都是3π,且4||=a ,6||=b ,2||=c ,试求出||++的值.【知识点】向量模长公式.【数学思想】转化思想. 【解题过程】∵2||++⋅+⋅+⋅+++=222222422664264222⨯+⨯+⨯+++=100=,∴||++10=. 【思路点拨】利用模长公式进行数量积的计算.【答案】10.能力型 师生共研7.已知23|=a ,4|=b ,+=,λ+=,43,π>=<,若⊥, 则=λ .【知识点】向量垂直与数量积的关系. 【数学思想】转化思想.【解题过程】∵⊥,∴0=⋅,即⋅+)(0)(=+λ,则0)1(22=⋅+++λλ,即043cos 234)1(4)23(22=⨯⨯⨯+++πλλ,∴064=+λ,23-=λ. 【思路点拨】利用向量垂直的性质,列出方程求解.【答案】23-. 8.直三棱柱111C B A ABC -中, 90=∠BCA ,M ,N 分别是11B A ,11C A 的中点,1CC CA BC ==,则BM 与AN 所成角的余弦值为( )A .101 B .52 C .1030 D .22 【知识点】向量夹角公式求空间几何体中异面直线所成角. 【数学思想】数形结合思想.【解题过程】设=.=,CC =1,1||||||===,∴0=⋅=⋅=⋅,∵BM +=,+=,∴BM ⋅432=+=,又∵26||=BM ,25||=AN ,∴<cos ⋅>||||AN BM =1030252643=⨯=. 【思路点拨】将与用.,表示,再利用向量夹角公式得到所求角的余弦值.【答案】C .探究型 多维突破9.在正三棱柱111C B A ABC -中,若侧面对角线11BC AB ⊥,求证:11AB C A ⊥. 【知识点】在空间几何体中利用数量积解决直线垂直问题. 【数学思想】数形结合思想.【解题过程】设=,=,BB =1,m ==||||,n =||, ∵11BC AB ⊥,且11BB AB AB +=+-=,=1BC +, ∴11BC AB ⋅⋅+-=)()(+2+⋅-=02122=-=m n ,∴222n m =, ∴A AB 11⋅⋅+-=)()(1BC AB A A ++⋅+-=)()(+--b a c a ⋅--=22021222=--=m n m ,∴11AB C A ⊥. 【思路点拨】将1AB ,1BC ,C A 1用,,表示,再把垂直关系与数量积为零进行转化. 【答案】见解题过程.10.三棱柱111 C B A ABC -中,2221===AC AB AA , 6011=∠=∠=∠BAC AC A AB A ,在平行四边形C C BB 11内是否存在一点O ,使得⊥O A 1平面C C BB 11?若存在,试确定O 点的位置;若不存在,说明理由.【知识点】利用数量积运算解决动点存在性问题. 【数学思想】数形结合思想.【解题过程】设a AB =,b AC =,AA =1,假设存在点O ,使得⊥O A 1平面C C BB 11,不妨设n BB m +=1,则)(n m -+=m n n ++-=,而+=m n n ++-=)1(,∴11AA A -=m n n )1()1(-++-=, 要使⊥O A 1平面C C BB 11,只需⊥O A 11BB ,⊥O A 1BC ,即01=⋅A ,0)(1=-⋅A , ∴])1()1[(m n n -++-0=⋅c ,])1()1[(m n n -++-0)(=-⋅,解得43=m ,21=n ,+=O ,使得⊥O A 1平面C C BB 11.【思路点拨】在平面C C BB 11内将表示为n BB m +1,利用垂直条件列式解出m ,n 的值,从而确定点O 的位置.【答案】见解题过程.自助餐1.下列命题中,①a =||m m ⋅=⋅)()(λλ;③⋅+=+⋅)()(;④a b b a 22=. 其中真命题的个数为( )A .1个B .2个C .3个D .4个【知识点】向量数量积的概念和运算. 【数学思想】转化思想.【解题过程】①②③正确,④不正确,因为与的方向不一定相同,故不一定相等. 【思路点拨】深刻理解各种概念和运算. 【答案】C .2.已知向量,满足2||=,2||=,且与-2互相垂直,则>=<, .【知识点】向量数量积的运算,夹角公式. 【数学思想】转化思想.【解题过程】∵与a b -2互相垂直,∴0)2(=-⋅,即022=-⋅,∴2=⋅b a ,∴22||||,cos =>=<b a ,故 45,>=<b a . 【思路点拨】先求出b a ⋅,再利用向量夹角公式.【答案】 45.3.设A ,B ,C ,D 是空间不共面的四点,且满足0=⋅,0=⋅,0=⋅,则BCD ∆( )A .是钝角三角形B .是锐角三角形C .是直角三角形D .无形状不确定【知识点】数量积定义的应用.【数学思想】转化思想【解题过程】∵⋅)()(-⋅-=2+⋅-⋅-⋅=02>=,∴0||||,cos >>=<BD BC ,故CBD ∠为锐角,同理BCD ∠与BDC ∠均为锐角. 【思路点拨】锐角、钝角可由数量积的正负进行判定. 【答案】B .4.已知a ,b 是两异面直线,A ,a B ∈,C ,b D ∈,b AC ⊥,b BD ⊥,且2=AB ,1=CD ,则直线a ,b 所成的角为( ) A . 30B . 60C . 90D . 45【知识点】利用向量夹角公式计算异面直线所成角. 【数学思想】数形结合思想.【解题过程】∵++=,∴⋅++=⋅)(12==,故21||||,cos =>=<CD AB ,即 60,>=<CD AB . 【思路点拨】先求出⋅,再利用向量夹角公式. 【答案】B .5.在一个直二面角βα--l 的棱上有两点A ,B ,AC ,BD 分别是这个二面角的两个面内垂直于l 的线段,且4=AB ,6=AC ,8=BD ,则CD 的长为 . 【知识点】向量模长的计算. 【数学思想】转化思想.【解题过程】∵++=,∴22)(++=⋅+⋅+⋅+++=222222116864222=++=,∴292||=CD .【思路点拨】将拆分成已知长度的向量,再使用向量模长公式. 【答案】292.6.在长方体1111D C B A ABCD -中,设11==AA AD ,2=AB ,P 是11D C 的中点,则C B 1与A 1所成角的大小为 .【知识点】向量夹角公式的运用. 【数学思想】数形结合思想.【解题过程】∵A B 11⋅()(1AA ⋅+-=2=1=,由题意得211==C B PA ,则21||||,cos 1111=>=<P A C B A B ,故 60,11>=<P A C B . 【思路点拨】灵活运用向量夹角公式,关键是计算出A B 11⋅.【答案】 60.。
高中数学 3.1.3空间向量的数量积运算导学案 理新人教A版选修2-1
高二理科数学学案课题:3.1.3空间向量的数量积运算一、学习目标:类比平面向量学习空间两个向量数量积的概念、性质和运算律 二、重点:掌握空间向量的数量积的概念、性质和运算律难点:会用空间向量的数量积解决有关垂直的问题三、复习回顾:平面内两向量数量积的定义、夹角、性质、运算律、几何意义; 四、自学指导导读:阅读课本90-91页,叙述空间向量数量积的定义、性质及运算律,并思考下列问题 导思1、对于三个均不为0的数a,b,c ,若ab=ac,则b=c 。
对于向量a →、b →、c →,由a →·b →=a →·c →,能得到b →=c →吗?如果不能,请举出反例。
导思2、对于三个均不为0的数a,b,c ,若ab=c ,则a=c b (或cb a=).对于向量a →,b →,若a →·b →=k ,能不能写成a →=kb →(或b →=ka→)?也就是说向量有除法吗?导思3、对于三个均不为0的数a,b,c ,有(ab )c=a(bc)。
对于向量a →、b →、c →,(.)a b c →→→=(.)a b c →→→成立吗?向量的数量积满足结合律吗五、导练: 1、判断真假22222)4()()3()()()2(0,0,0)1(q p q p q p q p q p c b a c b a b a b a -=-⋅+⋅=⋅⋅⋅=⋅⋅===⋅则若2、仿照课本例2证明: 在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线在平面内的射影也垂直。
(三垂线逆定理)3、用向量方法证明线面垂直的判定定理4、已知正方体ABCD A B C D ''''-,CD '和DC '相交于点O ,连结AO ,用向量方法证明:AO CD '⊥。
六、达标检测:课本92页练习1、2、3七、反思小结:。
高中数学 3.1.3 空间向量数量积学案 新人教A版选修2-1 学案
广东省佛山市顺德区均安中学高中数学 3.1.3 空间向量数量积学案 新人教A 版选修2-1【学习目标】 1.掌握空间向量夹角概念;2.掌握空间向量的数量积运算及其运算律; 3.利用空间向量的数量积解决立体几何中的一些简单问题。
【探索新知】1. 两个向量的夹角的定义:已知两非零向量,a b ,在空间 一点O , 作,OA a OB b ==,则AOB ∠叫做向量a 与b 的夹角,记作 .注意:①,,a b b a <>=<>成立吗? ②范围: ,a b ≤<>≤ ;,a b 〈〉=0时,a b 与 ; ,a b 〈〉=π时,a b 与③,a b <>= ,则称a 与b 互相垂直,记作 . 2. 向量的数量积:已知向量,a b ,则 叫做,a b 的数量积,记作a b ⋅,即a b ⋅= . 规定: ①零向量与任意向量的数量积等于零. ②cos ,_________a a a a a a ⋅==3. 空间向量数量积运算律:(1)()()()a b a b a b λλλ⋅=⋅=⋅ (2)a b b a ⋅=⋅(交换律)(3)()a b c a b a c ⋅+=⋅+⋅(分配律) 【基础自测】1.已知ABC ∆中,,,A B C ∠∠∠所对的边为,,a b c ,且3,1a b ==,30C ∠=︒,则BC CA •=2. 已知||1,||2,30,a b a b ===,则________a b =⋅3.已知2,22||,22||-===⋅b a b a ,则a 与b 的夹角为______.4.已知1e 和2e 是两个单位向量,夹角为3π,则下面向量中与212e e -垂直的是( )A. 12e e +B. 12e e -C. 1eD. 2e 【合作学习】例1.如图,已知空间四边形ABCD 的每条边和对角线长都等于1,点E ,F 分别是AB ,AD 的中点,计算:(1)EF BA ⋅;(2)EF BD ⋅; (3)EF DC ⋅.例2.如图,在正方体ABCD -A1B1C1D1中,求向量1BC 与AC 的夹角的大小.例3.在三角形ABC 中,3,3 3.AB AC BC ===且0030,120ABC BAC ∠=∠=,记,AB a =,.AC b BC c ==则(1) a b ⋅,b c ⋅,a c ⋅. (2) ()a b c ⋅⋅,()a b c ⋅⋅.(3)若线段BC 的中点为D ,求a AD ⋅,b AD ⋅.【检测反馈】1.下列命题中正确有个数为( )①若0a b •=,则a ,b 中至少一个为0; ②若a 0≠且a b a c •=•,则b c =;③()()a b c a b c ••=••; ④22(32)(32)94a b a b a b+•-=-;•OA. 0个B. 1个C. 2个D. 3个2.在长方体ABCD -A1B1C1D1中,AB =1,AD =2,AA1=3.则=⋅1AC BD ( ) A .1B .3C .0D .-33.空间四边形OABC 中,OB =OC ,∠AOB =∠AOC =π3,则cos 〈OA ,BC 〉的值为( )A .12B .22C .-12D .04.已知长方体ABCD -A1B1C1D1中,AB =AA1=2,AD =4,E 为侧面AB1的中心,F 为A1D1的中点.计算:(1)1BC ED ⋅=________________ ;(2)1BF AB ⋅ =________________; (3)1EF FC ⋅ =________________. 5.如图,在空间四边形OABC 中,OA =8,AB =6,AC =4,BC =5,∠OAC =45°, ∠OAB =60°,求OA 与BC 所成角的余弦值.【导学案】§3.1.3空间向量的数量积运算(2) 班级____________姓名___________【合作学习】例3.如图,已知平行六面体ABCD -A1B1C1D1中,底面ABCD 是边长为a 的正方形,侧棱AA1长为b ,∠A1AB=∠A1AD =120°.(1)求AC1的长;(2)证明:AC1⊥BD ;(3)求直线BD1与AC 所成角的余弦值.变式训练: 1.如图,已知ABCD 中,AD =4,CD =3,∠D =60°,PA ⊥平面ABCD ,并且PA =6,则PC 的长为__________.2.如图,空间四边形OABC 中,OB =OC ,AB =AC . 求证:OA ⊥BC .【检测反馈】1.若b a c b a +===,1||,2||,且b c ⊥,则a 与b 的夹角为( ) A .30° B .60° C .120°D .150°2.已知24||,19||,13||=+==b a b a ,则=-||b a ( ) A .22B .48C .46D .323.设A 、B 、C 、D 是空间不共面的四点,且满足0,0,0===⋅⋅⋅AD AB AD AC AC AB ,则△BCD 是( ) A .钝角三角形B .锐角三角形C .直角三角形D .不确定4.已知空间四边形ABCD ,则=++⋅⋅⋅BD CA AD BC CD AB ______.5.已知直线a 、b 是异面直线,A ,B ∈a ,C ,D ∈b ,AC ⊥b ,BD ⊥b ,且AB =2,CD =1,则直线a 与b 所成的角是______.6.已知平行六面体ABCD -A1B1C1D1中,以顶点A 为端点的三条棱长都等于1,且两两夹角是60°,则对角线AC1的长是______.7.下列命题中:(1)0=⋅b a 则a =0或b =0;(2)==⋅⋅⋅⋅⋅22||||)3();()(q p c b a c b a 2)(q p ⋅;(4)若a 与b c a c b a ⋅⋅⋅⋅-)()(均不为0,则它们必垂直.其中真命题的序号是______.8.如图,在空间四边形OABC 中,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,求OA 与BC 夹角的余弦值.10.如图,正方体ABCD-A1B1C1D1中,P是DD1的中点,O是底面ABCD的中心.求证:B1O⊥平面PAC.3.1.3 空间向量的数量积1.C 2.A 3.D 4.B 5.4π36.0 7.60°8.69.(4) 10.解:∵,ABACBC-=∴.ABOAACOABCOA⋅⋅⋅-=><-><=⋅⋅ABOAABOAACOAACOA,cos||||,cos|||=21624120cos68135cos48-=⨯⨯-⨯⨯.⋅-=⨯-=<52235821624||||,cosBCOABCOA∴OA与BC夹角的余弦值5223-.11.解:(1)∵221aACAB=⋅;(2)221aBDAD=⋅;(3)221aACGF-=⋅;(4)241aBCEF=⋅.12.解:(1)212121)()(||AAADABCCACAC++=+=112122222||||||AAADAAABADABAAADAB⋅⋅+⋅++++==120cos2120cos·290cos2222babaaabaa⋅⋅+--+++2a·bcos120°=abba2222-+∴abbaAC22||221-+=(2) ))((11ABADAAADABBDAC-++=⋅ABAAABADABADAAADADAB⋅⋅⋅---++⋅=1212||||ABAAADAA⋅-⋅=11=120cos120cos=-abab,∴BDAC⊥1,即AC1⊥BD.(3)212121)()(||AAABADDDBDBD+-=+=112122222||||||AA AD AA AB AD AB AA AB AD ⋅⋅⋅+--++==120cos 290cos 2222b a a a b a a ⋅⋅++++=22b a +,∴2212||b a BD +=.∵)()()()(111AA AB AD AD AB DD BD AD AB BDAC +-+=++=⋅⋅⋅ AD AA AB AD AD AB AA AB AD AB ⋅⋅⋅⋅+-++-=1212||||=0-a2+abcos120°+a2+abcos120°=-ab , 又,2||a AC =⋅+-=+-=>=<⋅22221112422||||,cos ba b ba a ab BD AC BD AC BD AC∵异面直线所成角的范围为(0,90°],∴直线BD1与AC 所成角的余弦值为2224b a b+.。
人教课标版高中数学选修2-1:《空间向量的数量积运算》教案-新版
3.1.3 空间向量的数量积运算一、教学目标(一)核心素养通过本节课的学习,同学们能掌握空间向量数量积运算的法则及运算律,能借助图形进行空间向量的运算,并通过空间几何体加深对运算的理解.会利用数量积的性质求空间向量的夹角和模,并能熟练应用于立体几何证明与求值.(二)学习目标1.了解向量夹角的定义,掌握空间向量数量积的运算法则及运算律.2.掌握利用数量积求空间向量夹角和模的方法.3.培养学生数形结合的思想和空间想象能力,并能解决向量的综合问题.(三)学习重点1.空间向量的数量积运算法则及运算律.2.空间向量的模长公式和夹角公式.3.空间向量数量积在立体几何中的应用.(四)学习难点1.利用空间向量的数量积求模与夹角.2.将立体几何问题转化为空间向量的数量积问题.二、教学设计(一)课前设计1.预习任务(1)读一读:阅读教材第90页至第91页,填空: 已知两个非零向量a ,b ,在空间任取一点O ,作a OA =,b OB =,则AOB ∠叫做向量a ,的夹角,记作><,. 如果2,π>=<,那么向量,互相垂直,记作⊥. 已知两个非零向量,,则><b a b a ,cos ||||叫做,的的数量积,记作⋅. 零向量与任何向量数量积为0. 特别地,⋅=><,cos ||||2||=.(2)写一写:和平面向量类似,空间向量的数量积满足哪些运算律? ①数乘结合律:)()(b a b a ⋅=⋅λλ, ②交换律:⋅=⋅, ③分配率:⋅+⋅=+⋅)(.和平面向量类似,空间向量的数量积有哪些性质? ①若为单位向量,则⋅=><,cos ||; ②若,⊥⇔⋅0=; ③==a ||;④若,为非零向量,则>=<,cos ||||a ba b ⋅; ⑤||||||≤⋅(当且仅当a ,b 共线时等号成立). 2.预习自测(1)已知向量,满足:3||=,2||=,⋅6-=,则>=<,( )A .0B .3πC .2πD .π 【知识点】空间向量的夹角公式.【解题过程】∵6cos ,123||||a b a b a b ⋅-<>===-⨯rr r r r r ,∴>=<b a ,π.【思路点拨】理解并熟记空间向量的夹角公式.【答案】D .(2)在正三棱柱111C B A ABC -中,若12BB AB =,则1AB 与B C 1所成角的大小为()A . 60B . 90C . 75D . 105【知识点】空间向量的垂直.【解题过程】设m BB =||1,则m AB 2||=,∴C AB 11⋅)()(11C BB +⋅+=C BB 11⋅+⋅= 180cos 60cos 22⋅⋅+⋅⋅=m m m m 022=-=m m ,故1AB 与B C 1所成角的大小为 90.【思路点拨】空间向量的垂直的充要条件数量积等于0.【答案】B .(3)在平行六面体1111D C B A ABCD -中,4=AB ,3=AD ,51=AA , 90=∠BAD ,6011=∠=∠DAA BAA ,则=||1AC .【知识点】空间向量的模长. 【解题过程】=21||AC 2121)(AA AC ++=112122222AA AA AA ⋅+⋅+⋅+++=21532215420534222⨯⨯⨯+⨯⨯⨯++++=85=,故=||1AC 85.【思路点拨】利用空间向量的模长公式,转化为数量积的运算. 【答案】85.(4)已知线段AB ,BD 在平面α内,AB BD ⊥,线段α⊥AC ,且a AB =,b BD =,c AC =,则C ,D 间的距离为 .【知识点】空间向量的模长. 【解题过程】222)(||++==⋅+⋅+⋅+++=222222000222+++++=c b a 222c b a ++=,故C ,D 间的距离为222c b a ++.【思路点拨】利用空间向量的模长公式,转化为数量积的运算. 【答案】222c b a ++.(二)课堂设计1.知识回顾(1)空间向量线性运算法则和运算律;(2)共线向量定理的两种表达形式;(3)共面向量定理的两种表达形式.2.问题探究探究一 由平面向量类比空间向量的数量积运算★●活动① 类比提炼概念前面我们说过,两个非零向量a r ,b r 一定是共面向量.那在平面向量中,我们是怎样定义两个向量的夹角的呢?(抢答) 已知两个非零向量,,在空间任取一点O ,作OA a =uu r r ,OB b =uu u r r ,则AOB ∠叫做向量,的夹角,记作><,.如果2,π>=<,那么向量,互相垂直,记作⊥.也就是说,两个空间向量夹角的定义与平面向量一致.【设计意图】两个非零向量一定是共面,因此向量夹角的概念自然地从平面到空间,让学生体会概念的类比过程,为数量积的定义作好准备.●活动② 巩固理解,深入探究同样的,那数量积的定义呢?(抢答) 已知两个非零向量a ,b ,则><,cos ||||叫做a ,b 的的数量积(inner product ),记作a b ⋅r r .零向量与任何向量数量积为0.特别地,2=||||cos ,||a a a a a a a ⋅<>=r r r r r r r .【设计意图】通过抢答,使学生深入探究,进而得到数量积定义.●活动③ 深入探究,发现规律和平面向量类似,空间向量的数量积满足哪些运算律?(抢答) ①数乘结合律:)()(⋅=⋅λλ, ②交换律:⋅=⋅, ③分配率:⋅+⋅=+⋅)(.【设计意图】类比平面向量,得出空间向量数量积的运算律,理解更加深入.探究二 探究空间向量数量积的性质★▲●活动① 类比探究,研究性质和平面向量类似,空间向量的数量积有哪些性质?(抢答) ①若为单位向量,则=||cos ,a e a a e ⋅<>r r r r r ;(解释:1||=,转化为投影) ②若,为非零向量,则0a b a b ⊥⇔⋅=r r r r ;(解释:,cos 022a b ππ<>==r r ,)③||==;(解释:,0cos 01a b <>==r r ,) ④若,为非零向量,则||||,cos b a b a >=<;(解释:定义的变形式) ⑤||||||≤⋅(当且仅当,共线时等号成立).(解释:,[0,]cos ,[1,1]a b a b π<>∈<>∈-r r r r ,)【设计意图】通过类比,得到空间向量数量积的各种性质,并给予合理解释,突破难点. ●活动② 巩固理解,深入探究以上五个性质中,大家认为最重要的有哪些,它们有什么作用?(抢答)第②条,0a b a b ⊥⇔⋅=r r r r ,可用于证明空间向量垂直;第③条,||=,是空间向量的模长公式;第④条,||||,cos b a b a >=<,是空间向量的夹角公式.【设计意图】让学生进行思考,在深刻理解性质的同时,指出公式的作用,为后面的计算打好基础.探究三 探究空间向量数量积的具体应用★▲●活动① 归纳梳理、理解提升通过前面的学习,由于两个向量必然共面,所以空间向量数量积的运算法则和运算律和平面向量基本一致.同时,我们理解了数量积的三个重要应用是?(抢答)模长、垂直、夹角.它们都是向量a ,b 的二次运算,是非线性的.【设计意图】通过学生归纳知识点和定理,培养学生数学对比、归类、整理意识. ●活动② 互动交流、初步实践例1 设,,是任意的非零向量,且它们相互不共线,下列命题中:①()()0a b c c a b ⋅-⋅=r r r r r r ;②=||22a b b a =r r r r ; ④22||4||9)23()23(-=-⋅+.正确的是( )A .①②B .②③C .③④D .②④【知识点】空间向量的数量积运算法则和运算律.【数学思想】转化思想.【解题过程】向量的数量积不满足结合律,所以①不正确;由向量的数量积的定义知,②正确;,不一定共线,向量不一定相等,所以③不正确;利用数量积的运算律,④正确.【思路点拨】空间向量数量积运算不满足结合律.【答案】D .同类训练 已知空间四边形ABCD 的每条边和对角线长都等于a ,点E ,F ,G 分别为AB ,AD ,DC 的中点,则以下运算结果为2a 的是( )A .⋅2B .⋅2C .CA FG ⋅2D .CB EF ⋅2【知识点】空间几何体中向量的数量积运算.【数学思想】数形结合思想. 【解题过程】由已知可得3,π>=<, 所以><=⋅,cos ||||22223cos 2a a ==π. 【思路点拨】在空间几何体中先找出向量的夹角再根据定义计算.【答案】B .【设计意图】通过空间几何体中的向量,让学生对数量积的定义和运算更加熟练. 活动③ 巩固基础、检查反馈例2 已知空间四边形OABC 中,OB =OC ,且3π=∠=∠AOC AOB ,则><BC OA ,cos 的值为( )A .0B .21C .22D .23 【知识点】空间向量的线性表示及夹角公式.【数学思想】数形结合思想. 【解题过程】设a OA =,b OB =,c OC =,由已知得3,,π>=>=<<,且||||=. 所以()OA BC a c b a c a b ⋅=⋅-=⋅-⋅uu r uu u r r r r r r r r 3cos ||||3cos ||||ππ-=0|)||(|||21=-=, 所以0||||,cos =>=<BC OA .【思路点拨】求向量夹角的重点就是求数量积和模长.【答案】A .同类训练 已知空间向量,,两两夹角为 60,其模都为1,则|2|+-等于( )A .5B .5C .6D .6【知识点】空间向量的模长公式.【数学思想】转化思想. 【解题过程】∵1||||||===c b a , 60,,,>=>=<>=<<a c c b b a ,∴21=⋅=⋅=⋅, ∴2|2|+-a c c b b a c b a ⋅+⋅-⋅-++=4424222214214212411⨯+⨯-⨯-++=5=, ∴|2|+-5=. 【思路点拨】先计算⋅,⋅,⋅,再利用模长公式展开计算.【答案】A .【设计意图】运用向量的夹角和模长公式,学生对数量积的运算更加熟练,基础更加牢固. ●活动④ 强化提升、灵活应用例3 已知PO ,P A 分别是平面α的垂线、斜线,AO 是P A 在平面α内的射影,α⊂l 且OA l ⊥,求证:PA l ⊥.【知识点】利用空间向量数量积解决直线垂直问题.【数学思想】数形结合思想.【解题过程】取直线l 的方向向量,同时取向量PA ,,∵OA l ⊥,∴0=⋅.∵α⊥PO ,且α⊂l ,∴PO l ⊥,∴0=⋅. 又∵=⋅)(+⋅0=⋅+⋅=,∴PA l ⊥.【思路点拨】将向量用,来表示,从而利用数量积解决垂直问题.这是三垂线定理的向量证法,同理也可用来证明:若PA l ⊥,则OA l ⊥.【答案】见解题过程.同类训练 已知m ,n 是平面α内的两条相交直线,如果m l ⊥,n l ⊥,求证:α⊥l .【知识点】利用空间向量数量积解决线面垂直问题.【数学思想】数形结合思想.【解题过程】在α内任作一直线g ,分别在l ,m ,n ,g 上取非零向量l ,m ,,. ∵m 与n 相交,∴向量,不平行,由向量共面的充要条件知,存在唯一的有序实数对),(y x ,使y x +=. ∵0=⋅m l ,0=⋅n l ,∴y x ⋅+⋅=⋅0=,即g l ⊥.∴l 垂直于α内的任意直线,∴α⊥l .【思路点拨】将α内的任意直线的方向向量表示为,的线性组合,从而利用数量积证明0=⋅g l ,再由线面垂直的定义可证.这是线面垂直判定定理的向量证法.【答案】见解题过程.【设计意图】垂直问题的证明是常见题型,通过数量积的计算,避免了立体几何中辅助线的添加,极大地降低了难度.3. 课堂总结知识梳理(1)已知两个非零向量,,在空间任取一点O ,作=,=,则AOB ∠叫做向量,的夹角,记作><,.如果2,π>=<b a ,那么向量,互相垂直,记作⊥. (2)已知两个非零向量,,则><,cos ||||叫做,的的数量积(inner product ),记作⋅.零向量与任何向量数量积为0.特别地,⋅=><,cos ||||2||=.空间向量的数量积满足的运算律有:①数乘结合律:)()(⋅=⋅λλ,②交换律:⋅=⋅,③分配率:⋅+⋅=+⋅)(.(3)空间向量的数量积的性质有:①若e 为单位向量,则a e ⋅=><,cos ||;②若a ,b 为非零向量,则a b ⊥⇔a b ⋅0=;③||==a ,b 为非零向量,则||||,cos b a >=<;⑤||||||≤⋅(当且仅当,共线时等号成立).重难点归纳(1)空间向量的数量积是向量的二维计算,是三个实数的乘积,不满足结合律.(2)空间向量的数量积主要解决向量的垂直,模长和夹角问题,在立体几何中应用非常广泛.(三)课后作业基础型 自主突破1.下列命题中正确的是( )A .222)(⋅=⋅ B .||||||≤⋅C .)()(⋅⋅=⋅⋅D .若)(-⊥,则0=⋅=⋅【知识点】向量数量积的概念和运算.【数学思想】转化思想. 【解题过程】对于A 项,><=⋅,cos )(222222≤,故A 错误;对于C 项,数量积不满足结合律,故C 错误;对于D 项,有0)(=-⋅,所以⋅=⋅,但不一定等于0,故D 错误.B 项是数量积的性质.【思路点拨】深刻理解各种概念和运算.【答案】B . 2.已知,为单位向量,其夹角为 60,则=⋅-)2(( )A .1-B .0C .1D .2【知识点】向量数量积的运算.【数学思想】转化思想. 【解题过程】∵1||||==,>=<, 60, ∴=⋅-)2(22-⋅0||60cos ||||22=-= .【思路点拨】熟练掌握空间向量数量积的运算法则.【答案】B . 3.在三棱锥BCD A -中,2===AD AC AB , 90=∠BAD , 60=∠BAC ,则=⋅( )A .2-B .2C .32-D .32 【知识点】空间向量数量积的运算.【数学思想】数形结合思想. 【解题过程】=⋅)(-⋅⋅-⋅= 60cos 220⨯⨯-=2-=.【思路点拨】在空间几何体中找到夹角再根据定义计算.【答案】A .4.在三棱锥ABC D -中,已知)()2(AC AB DA DC DB -⋅-+0=,则ABC ∆是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形 【知识点】空间向量数量积的运算.【数学思想】转化思想. 【解题过程】∵)()2(-⋅-+)()(-⋅-+-=0)()(22=-=-⋅+=AC AB AC AB AC AB ,∴22||||AC AB =,即AC AB =.【思路点拨】熟练掌握空间向量数量积的各种变形.【答案】B .5.已知A ,B ,C 为圆O 上的三点,若+=与的夹角 为 .【知识点】空间向量的夹角.【数学思想】数形结合思想.【解题过程】∵+=,∴点O 是BC 中点,故BC 为直径,根据圆的性质,有 90=∠BAC ,即<AB ,> 90=.【思路点拨】利用几何性质,点O 是BC 中点,BAC ∠是直角所对的圆周角.【答案】 90. 6.已知,,中每两个向量的夹角都是3π,且4||=a ,6||=b ,2||=c ,试求出||++的值.【知识点】向量模长公式.【数学思想】转化思想. 【解题过程】∵2||++⋅+⋅+⋅+++=222222422664264222⨯+⨯+⨯+++=100=,∴||++10=. 【思路点拨】利用模长公式进行数量积的计算.【答案】10.能力型 师生共研7.已知23|=a ,4|=b ,+=,λ+=,43,π>=<,若⊥, 则=λ .【知识点】向量垂直与数量积的关系. 【数学思想】转化思想.【解题过程】∵⊥,∴0=⋅,即⋅+)(0)(=+λ,则0)1(22=⋅+++λλ,即043cos 234)1(4)23(22=⨯⨯⨯+++πλλ,∴064=+λ,23-=λ. 【思路点拨】利用向量垂直的性质,列出方程求解.【答案】23-. 8.直三棱柱111C B A ABC -中, 90=∠BCA ,M ,N 分别是11B A ,11C A 的中点,1CC CA BC ==,则BM 与AN 所成角的余弦值为( )A .101 B .52 C .1030 D .22 【知识点】向量夹角公式求空间几何体中异面直线所成角. 【数学思想】数形结合思想.【解题过程】设=.=,CC =1,1||||||===,∴0=⋅=⋅=⋅,∵BM +=,+=,∴BM ⋅432=+=,又∵26||=BM ,25||=AN ,∴<cos ⋅>||||AN BM =1030252643=⨯=. 【思路点拨】将与用.,表示,再利用向量夹角公式得到所求角的余弦值.【答案】C .探究型 多维突破9.在正三棱柱111C B A ABC -中,若侧面对角线11BC AB ⊥,求证:11AB C A ⊥. 【知识点】在空间几何体中利用数量积解决直线垂直问题. 【数学思想】数形结合思想.【解题过程】设=,=,BB =1,m ==||||,n =||, ∵11BC AB ⊥,且11BB AB AB +=+-=,=1BC +, ∴11BC AB ⋅⋅+-=)()(+2+⋅-=02122=-=m n ,∴222n m =, ∴A AB 11⋅⋅+-=)()(1BC AB A A ++⋅+-=)()(+--b a c a ⋅--=22021222=--=m n m ,∴11AB C A ⊥. 【思路点拨】将1AB ,1BC ,C A 1用,,表示,再把垂直关系与数量积为零进行转化. 【答案】见解题过程.10.三棱柱111 C B A ABC -中,2221===AC AB AA , 6011=∠=∠=∠BAC AC A AB A ,在平行四边形C C BB 11内是否存在一点O ,使得⊥O A 1平面C C BB 11?若存在,试确定O 点的位置;若不存在,说明理由.【知识点】利用数量积运算解决动点存在性问题. 【数学思想】数形结合思想.【解题过程】设a AB =,b AC =,AA =1,假设存在点O ,使得⊥O A 1平面C C BB 11,不妨设n BB m +=1,则)(n m -+=m n n ++-=,而+=m n n ++-=)1(,∴11AA A -=m n n )1()1(-++-=, 要使⊥O A 1平面C C BB 11,只需⊥O A 11BB ,⊥O A 1BC ,即01=⋅A ,0)(1=-⋅A , ∴])1()1[(m n n -++-0=⋅c ,])1()1[(m n n -++-0)(=-⋅,解得43=m ,21=n ,+=O ,使得⊥O A 1平面C C BB 11.【思路点拨】在平面C C BB 11内将表示为n BB m +1,利用垂直条件列式解出m ,n 的值,从而确定点O 的位置.【答案】见解题过程.自助餐1.下列命题中,①a =||m m ⋅=⋅)()(λλ;③⋅+=+⋅)()(;④a b b a 22=. 其中真命题的个数为( )A .1个B .2个C .3个D .4个【知识点】向量数量积的概念和运算. 【数学思想】转化思想.【解题过程】①②③正确,④不正确,因为与的方向不一定相同,故不一定相等. 【思路点拨】深刻理解各种概念和运算. 【答案】C .2.已知向量,满足2||=,2||=,且与-2互相垂直,则>=<, .【知识点】向量数量积的运算,夹角公式. 【数学思想】转化思想.【解题过程】∵与a b -2互相垂直,∴0)2(=-⋅,即022=-⋅,∴2=⋅b a ,∴22||||,cos =>=<b a ,故 45,>=<b a . 【思路点拨】先求出b a ⋅,再利用向量夹角公式.【答案】 45.3.设A ,B ,C ,D 是空间不共面的四点,且满足0=⋅,0=⋅,0=⋅,则BCD ∆( )A .是钝角三角形B .是锐角三角形C .是直角三角形D .无形状不确定【知识点】数量积定义的应用.【数学思想】转化思想【解题过程】∵⋅)()(-⋅-=2+⋅-⋅-⋅=02>=,∴0||||,cos >>=<BD BC ,故CBD ∠为锐角,同理BCD ∠与BDC ∠均为锐角. 【思路点拨】锐角、钝角可由数量积的正负进行判定. 【答案】B .4.已知a ,b 是两异面直线,A ,a B ∈,C ,b D ∈,b AC ⊥,b BD ⊥,且2=AB ,1=CD ,则直线a ,b 所成的角为( ) A . 30B . 60C . 90D . 45【知识点】利用向量夹角公式计算异面直线所成角. 【数学思想】数形结合思想.【解题过程】∵++=,∴⋅++=⋅)(12==,故21||||,cos =>=<CD AB ,即 60,>=<CD AB . 【思路点拨】先求出⋅,再利用向量夹角公式. 【答案】B .5.在一个直二面角βα--l 的棱上有两点A ,B ,AC ,BD 分别是这个二面角的两个面内垂直于l 的线段,且4=AB ,6=AC ,8=BD ,则CD 的长为 . 【知识点】向量模长的计算. 【数学思想】转化思想.【解题过程】∵++=,∴22)(++=⋅+⋅+⋅+++=222222116864222=++=,∴292||=CD .【思路点拨】将拆分成已知长度的向量,再使用向量模长公式. 【答案】292.6.在长方体1111D C B A ABCD -中,设11==AA AD ,2=AB ,P 是11D C 的中点,则C B 1与A 1所成角的大小为 .【知识点】向量夹角公式的运用. 【数学思想】数形结合思想.【解题过程】∵A B 11⋅()(1AA ⋅+-=2=1=,由题意得211==C B PA ,则21||||,cos 1111=>=<P A C B A B ,故 60,11>=<P A C B . 【思路点拨】灵活运用向量夹角公式,关键是计算出A B 11⋅.【答案】 60.。
人教新课标版数学高二选修2-1导学案 3.1.3空间向量的数量积运算教师版
3.1.3 空间向量的数量积运算【教学目标】1.掌握空间向量夹角概念及表示方法.2.掌握两个向量的数量积的概念、性质、计算方法及运算规律.3.掌握两个向量的数量积的主要用途,能运用数量积求向量夹角和判断向量的共线与垂直.【教学过程】一、创设情景教师首先提出问题:通过学生对课本的预习,让学生观看《3.1.3空间向量的数量积运算》课件“新课导入”部分,通过一个物理问题将向量的数量积运算展示出来,让数学知识落实到实际情境中,又实现跨学科融合,再通过互相交流,引入本节课要学习的空间向量的数量积运算的知识.二、自主学习知识点一 空间向量数量积的概念(1)定义:已知两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做a ,b 的数量积,记作a ·b .(2)数量积的运算律①定义:已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉.②范围:〈a ,b 〉∈[0,π].特别地:当〈a ,b 〉=π2时,a ⊥b .知识点二 空间向量的数量积的性质三、合作探究问题1 如图所示,在空间四边形OABC 中,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,类比平面向量有关运算,如何求向量OA →与BC →的数量积?并总结求两个向量数量积的方法.解 ∵BC →=AC →-AB →,∴OA →·BC →=OA →·AC →-OA →·AB →=|OA →||AC →|cos 〈OA →,AC →〉-|OA →||AB →|cos 〈OA →,AB →〉=8×4×cos135°-8×6×cos120°=24-16 2.求两个向量的数量积需先确定这两个向量的模和夹角,当夹角和长度不确定时,可用已知夹角和长度的向量来表示该向量,再代入计算.探究点1 空间向量的数量积运算例1 已知长方体ABCD-A 1B 1C 1D 1中,AB =AA 1=2,AD =4,E 为侧面AB 1的中心,F 为A 1D 1的中点.试计算:(1)BC →·ED →1;(2)BF →·AB →1;(3)EF →·FC →1.解 如图,设AB →=a ,AD →=b ,AA →1=c ,则|a |=|c |=2,|b |=4,a ·b =b ·c =c ·a =0.(1)BC →·ED →1=b ·[12(c -a )+b ]=|b |2=42=16. (2)BF →·AB →1=⎝⎛⎭⎫c -a +12b ·(a +c )=|c |2-|a |2 =22-22=0.(3)EF →·FC →1=⎣⎡⎦⎤12(c -a )+12b ·⎝⎛⎭⎫12b +a =12(-a +b +c )·⎝⎛⎭⎫12b +a =-12|a |2+14|b |2=2. 反思与感悟 两向量的数量积,其运算结果是数量,而不是向量.零向量与任意向量的数量积为0.向量的数量积不满足结合律.探究点2 利用数量积求夹角例2 BB 1⊥平面ABC ,且△ABC 是∠B =90°的等腰直角三角形,▱ABB 1A 1、▱BB 1C 1C 的对角线都分别相互垂直且相等,若AB =a ,求异面直线BA 1与AC 所成的角.解 如图所示.∵BA →1=BA →+BB →1,AC →=AB →+BC →,∴BA →1·AC →=(BA →+BB →1)·(AB →+BC →)=BA →·AB →+BA →·BC →+BB →1·AB →+BB →1·BC →.因为AB ⊥BC ,BB 1⊥AB ,BB 1⊥BC ,∴AB →·BC →=0,BB →1·AB →=0,BB →1·BC →=0且BA →·AB →=-a 2.∴BA →1·AC →=-a 2.又BA →1·AC →=|BA →1|·|AC →|cos 〈BA →1,AC →〉,∴cos 〈BA →1,AC →〉=-a 22a ·2a =-12.又∵〈BA 1→,AC →〉∈[0,π],∴〈BA →1,AC →〉=120°,又∵异面直线所成的角是锐角或直角,∴异面直线BA 1与AC 成60°角.反思与感悟 利用向量求异面直线夹角的方法:探究点3 利用数量积求距离例3 如图所示,平行六面体ABCD-A 1B 1C 1D 1中,AB =1,AD =2,AA 1=3,∠BAD =90°,∠BAA 1=∠DAA 1=60°,求AC 1的长.解 因为AC →1=AB →+AD →+AA →1,所以AC →21=(AB →+AD →+AA →1)2=AB →2+AD →2+AA 1→2+2(AB →·AD →+AB →·AA →1+AD →·AA →1).因为∠BAD =90°,∠BAA 1=∠DAA 1=60°,所以〈AB →,AD →〉=90°,〈AB →,AA 1→〉=〈AD →,AA →1〉=60°,所以AC →21=1+4+9+2(1×3×cos60°+2×3×cos60°)=23. 因为AC →21=|AC →1|2,所以|AC →1|2=23,|AC →1|=23,即AC 1=23.反思与感悟 利用向量的数量积求两点间的距离,可以转化为求向量的模的问题,其基本思路是先选择以两点为端点的向量,将此向量表示为几个已知向量的和的形式,求出这几个已知向量的两两之间的夹角以及它们的模,利用公式|a |=a·a 求解即可.四、当堂测试1.设a 、b 、c 是任意的非零向量,且它们互不共线,有下列命题:①(a·b )·c -(c·a )·b =0;②|a |-|b |<|a -b |;③(b·a )·c -(c·a )·b 与c 垂直;④(3a +2b )·(3a -2b )=9|a |2-4|b |2.其中正确的有( )A .①②B .②③C .③④D .②④ 答案 D解析 结合向量的数量积运算律,只有②④正确.2.已知正方体ABCD-A ′B ′C ′D ′的棱长为a ,设AB →=a ,AD →=b ,AA ′→=c ,则〈A ′B →,B ′D →′〉等于( )A .30°B .60°C .90°D .120°答案 D解析 B ′D →′=BD →,∵△A ′BD 为正三角形,∴〈A ′B →,BD →〉=120°.3.已知P A ⊥平面ABC ,垂足为A ,∠ABC =120°,P A =AB =BC =6,则PC 等于( )A .6 2B .6C .12D .144答案 C解析 ∵PC →=P A →+AB →+BC →,∴PC →2=P A →2+AB →2+BC →2+2AB →·BC →=36+36+36+2×36cos60°=144,∴|PC →|=12.4.已知a 、b 是异面直线,且a ⊥b ,e 1、e 2分别为取自直线a 、b 上的单位向量,且a =2e 1+3e 2,b =k e 1-4e 2,a ⊥b ,则实数k 的值为________.答案 6解析 由a ⊥b ,得a ·b =0,∴(2e 1+3e 2)·(k e 1-4e 2)=0,∴2k -12=0,∴k =6.5.已知a ,b 均为单位向量,它们的夹角为60°,那么|a +3b |=________.答案 13解析 |a +3b |2=(a +3b )2=a 2+6a ·b +9b 2=1+6·cos60°+9=13.∴|a +3b |=13.五、课堂小结本节课我们学习过哪些知识内容?①空间向量数量积的性质可以看成定义的引申和拓展,空间向量数量积与向量的模和夹角有关,更多的是以它为工具,解决立体几何中与夹角和距离相关的问题,求空间两点间的距离或线段的长度的问题可以转化为求相应向量的模的问题;②求空间两条直线所成的角的问题可以转化为求两条直线对应向量的夹角的问题,但要注意空间两条直线所成的角与对应向量的夹角的取值范围;③和垂直相关的问题可以转化为向量的数量积为零的情况.。
高二数学(人教A版)选修2-1导学案:3. 1.3空间向量的数量积
编号:gswhsxxx 2—1—03-03文华高中高二数学选修2-13. 1.3.《空间向量的数量积》教学目标1、能说出空间向量夹角和模的概念及表示方法;2、会运用两个向量的数量积的计算方法,并能利用两个向量数量积解决立体几何中的一些简单问题。
3、激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.教学重、难点空间数量积的计算方法、几何意义、立体几何问题的转化。
学习方法由平面向量类比到空间向量的思想学习过程一、知识衔接:复习:空间向量基本定理及其推论;二、新课导学:1、自主学习(1).空间向量的夹角及其表示:已知两非零向量,a b ,在空间任取一点O ,作,OA a OB b ==,则------____叫做向量a 与b 的夹角,记作,a b <>;且规定0,a b π≤<>≤,显然有,,a b b a <>=<>; 若,2a b π<>=,则称________,记作:____;(2).向量的模:设OA a =,则有向线段OA 的长度叫做______,记作:||a ;(3).向量的数量积:已知向量,a b ,则||||cos ,a b a b ⋅⋅<>叫做,a b 的数量积,记作___,即________.已知向量AB a =和轴l ,e 是l 上与l 同方向的单位向量,作点A 在l 上的射影A ',作点B 在l 上的射影B ',则A B ''叫做向量AB 在轴l 上或在e 上的正射影;可以证明A B ''的长度||||cos ,||A B AB a e a e ''=<>=⋅.(4).空间向量数量积的性质:1.________2.________3.________(5).空间向量数量积运算律:1.________2. ________ (交换律).3.________ (分配律).三、合作探究:1、已知空间四边形ABCD 中,AB CD ⊥,AC BD ⊥,求证:AD BC ⊥.A CB A ' B ' e2、在空间四边形OABC 中,8OA =,6AB =,4AC =,5BC =,45OAC ∠=,60OAB ∠=,求OA 与BC 的夹角的余弦值。
高二数学选修2-1§3.1.3空间向量的数量积运算导学案设计
§ 3.1.3 空间向量的数量积运算班级 姓名 使用时间:2014年3月6号一. 学习目标1. 掌握空间向量夹角的概念及表示方法,掌握两个向量数量积的概念、性质和计算方法及运算规律;2. 掌握两个向量数量积的主要用途,会用它解决立体几何中的一些简单问题.二. 课前准备1. 空间向量的夹角 ①定义:已知两个非零向量,,在空间任取一点O ,作==,,则 叫做向量,的夹角,记作 . ②范围:]0[,π,∈><,这样,两个向量的夹角是唯一确定的,且>>=<<,, ③向量的垂直:如果o 90,>=<,那么向量,互相垂直,记作 .2. 空间向量的数量积 ①定义:已知两个非零向量,,则 叫做,的数量积,记作⋅. ②运算律:=⋅)(λ ;=⋅ (交换律)=+⋅)( (分配律)3. 数量积的性质 ①若,为非零向量,则0a b a b ⊥⇔⋅=,零向量与任意向量的数量积为零. ②若,同向,则=⋅ ,若反向,则=⋅ ,特别地,=⋅ .③若θ为,的夹角,则=θcos .≤三. 典型例题例1. 已知空间四边形ABCD 的每条边和对角线长都等于1,点E ,F 分别是AB ,AD 的中点,计算:(1)EF BA ⋅;(2)EF BD ⋅;(3)EF DC ⋅.练习1:已知长方体1111D C B A ABCD -中,421===AD AA AB ,,E 为侧面B B AA 11的中心,F 为11D A 的中点,求下列向量的数量积. (1)1ED BC ⋅ (2)1AB BF ⋅例2. 如图所示,已知四面体ABCD 的各棱长为a ,点N M ,分别是CD AB ,的中点,(1) 求证:AB MN ⊥(2)求MN 的长(3) 求异面直线CM 和AN 所成角的余弦值B A DM练习2. 在空间四边形OABC中,OA=8,AB=6,AC=4,BC=5,∠OAC=45°,∠OAB=60°,则OA与BC 所成角的余弦值是.练习3. 如图,平行六面体ABCD-A1B1C1D1中,AB=1,AD=2,AA1=3,∠BAD=90°,∠BAA1=∠DAA1=60°,则AC1的长为__________.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1.3 空间向量的数量积
【使用说明及学法指导】
1.先自学课本,理解概念,完成导学提纲; 2.小组合作,动手实践。
【学习目标】
1. 掌握空间向量夹角和模的概念及表示方法;
2. 掌握两个向量的数量积的计算方法,并能利用两个向量的数量积解决立体几何中的一些简单问题.
3. 掌握空间向量的正交分解及空间向量基本定理和坐标表示;
4. 掌握空间向量的坐标运算的规律;
【重点】利用两个向量的数量积解决立体几何中的问题. 【难点】空间向量的坐标运算的规律 一、自主学习
1预习教材P 90~ P 92, 解决下列问题
复习1:什么是平面向量a 与b 的数量积?
复习2:在边长为1的正三角形⊿ABC 中,求AB BC •.
2.导学提纲
1) 两个向量的夹角的定义:已知两非零向量,a b ,在空间 ,作
,OA a OB b ==,则AOB ∠叫做向量a 与b 的夹角,记作 . ⑴ 范围: ,a b ≤<>≤
,a b 〈〉=0时,a b 与 ;,a b 〈〉=π时,a b 与 ⑵ ,,a b b a <>=<>成立吗?
⑶,a b <>= ,则称a 与b 互相垂直,记作 . 2) 向量的数量积:
已知向量,a b ,则 叫做,a b 的数量积,记作a b ⋅,即a b ⋅= .
⑴ 两个向量的数量积是数量还是向量? ⑵ 0a •= (选0还是0) ⑶ 你能说出a b ⋅的几何意义吗? 3) 空间向量数量积的性质:
(1)设单位向量e ,则||cos ,a e a a e ⋅=<>.
(2)a b a b ⊥⇔⋅= . (3)a a ⋅= = . (4)cos ,a b <>=____________
4)空间向量数量积满足哪些运算律:_____________________________ ⑴ )()a b c a b c ⋅⋅=⋅⋅(吗?举例说明.
⑵ 若a b a c ⋅=⋅,则b c =吗?为什么?
⑶ 若0a b ⋅=,则00a b ==或吗?为什么?
5)对空间的任意向量a ,能否用空间的几个向量唯一表示?如果能,那需要___个向量?这几个向量有何位置关系?
⑴ 空间的任意向量a ,均可分解为不共面的三个向量11a λ、22a λ、33a λ,使112233a a a a λλλ=++. 如果123,,a a a 两两 ,这种分解叫空间向量
的___________.
(2)空间向量基本定理:如果三个向量,,a b c ,对空间任一向量p ,存在有序实数组{,,}x y z ,使得p xa yb zc =++. 把 的一个基底,,a b c 都叫做__________.空间任意一个向量的基底有 个.一个基底可以表示_____个空间向量?
(3)如果空间一个基底的三个基向量互相 ,长度都为 ,则这个基底叫做单位正交基底,通常用_________表示.
⑷空间向量的坐标表示:给定一个空间直角坐标系O -xyz 和向量a ,且设i 、j 、k 为 x 轴、y 轴、z 轴正方向的单位向量,则存在有序实数组{,,}x y z ,使得a xi y j zk =++,则称有序实数组{,,}x y z 为向量a 的坐标,记着p = .
⑸设A 111(,,)x y z ,B 222(,,)x y z ,则AB = . ⑹向量的直角坐标运算:
设a =123(,,)a a a ,b =123(,,)b b b ,则 ⑴a +b =_________________; ⑵a -b =_________________;
⑶λa =__________________;()R λ∈; ⑷a ·b =_____________________.
6)试用向量方法证明直线与平面垂直的判断定理
二、典型例题
例1.1. 下列命题中:
①若0a b •=,则a ,b 中至少一个为0 ②若a 0≠且a b a c •=•,则b c = ③()()a b c a b c ••=••
④2
2
(32)(32)94a b a b a b +•-=-
正确有个数为( )
A. 0个
B. 1个
C. 2个
D. 3个
2. 已知1e 和2e 是两个单位向量,夹角为3
π
,则下面向量中与212e e -垂直
的是( )
A. 12e e +
B. 1
2
e e - C. 1e D. 2e
3. 若{}
a,,b c 为空间向量的一组基底,则下列各项中,能构成基底的是( ) A.,,a a b a b +- B. ,,b a b a b +-
C. ,,c a b a b +-
D. 2,,a b a b a b ++-
4. 设i 、j 、k 为空间直角坐标系O -xyz 中x 轴、y 轴、z 轴正方向的单位向量,且AB i j k =-+-,则点B 的坐标是
5.已知ABC ∆中,,,A B C ∠∠∠所对的边为,,a b c ,且3,1a b ==,30C ∠=︒,则BC CA •=
6.在三棱锥OABC 中,G 是ABC ∆的重心(三条中线的交点),选取,,OA OB OC 为基底,试用基底表示OG =
7. 已知4a =,2b =,且a 和b 不共线,当 a b λ+与a b λ-的夹角是锐角时,λ的取值范围是 .
8. 正方体''''ABCD A B C D -的棱长为2,以A 为坐标原点,以'AB,AD,AA 为x 轴、y 轴、z 轴正方向建立空间直角坐标系,E 为BB 1中点,则E 的坐标是 . 9. 已知向量
,a b 满足4a =,2b =,3a b -=,则a b +=____
10. 已知关于x 的方程()222350x t x t t --+++=有两个实根,c a tb =+,且()()1,1,3,1,0,2a b =-=-,
当t = 时,c 的模取得最大值.
例2 如图,在空间四边形ABCD 中,2AB =,
3BC =,23BD =,3CD =,30ABD ∠=,60ABC ∠=,求AB 与CD 的夹角的余弦值
变式:如图,在正三棱柱ABC-A 1B 1C 1中,若
AB
=
2BB
1 ,
则AB
1
与C
1
B所成的角为()
A. 60°
B. 90°
C. 105°
D. 75°
例3如图所示,在平行四边形ABCD中,AB=AC=1,∠ACD=90°,将它沿对角线AC折起,使AB与CD成60°角,求B、D间的距离.
例4在平行六面体ABCD-A′B′C′D′中,-*6]·OC
→
=a,AD
→
=b,AA′
→=c,P是CA′的中点,M是CD′的中点,N是C′D′的中点,点Q是CA′上的点,且CQ∶QA′=4∶1,用基底{a,b,c}表示以下向量:
(1)AP; (2)AM
→
;
(3) AN; (4)AQ→.
三、变式训练:课本第92页练习1-3,94页练习1-3题
四、课堂小结
1.知识:
2.数学思想、方法:
3.能力:
五、课后巩固
1.课本第98页A组3、4题
2.已知空间四边形ABCD中,AB CD
⊥,AC BD
⊥,求证:AD BC
⊥.
3. 已知,,a b c 是空间的一个正交基底,向量,,a b a b c +-是另一组基底,若p 在,,a b c 的坐标是()1,2,3,求p 在,,a b a b c +-的坐标.。