信号与系统版课后答案_(郑君里)_高等教育出版社[1]

合集下载

信号与系统(郑君里)习题答案

信号与系统(郑君里)习题答案

2 j2 3
− 1t
h(t) = e 2 (cos
3 t + 1 sin
3 t)u(t)
2 32
∫ ∫ g(t) = t h(τ )dτ = t h(τ )dτ

−∞
0
− 1t
= [e 2 (− cos
3 t + 1 sin
3 t) + 1]u(t)
2 32
d r(t) + 2r(t) = d 2 e(t) + 3 d e(t) + 3e(t)
零输入响应: r(t) = ( A1t + A2 )e−t
代入初始条件, ⇒ A1 = 3 A2 = 1
r(t) = (3t + 1)e−t
d 3 r(t) + 2 d 2 r(t) + d r(t) = 0
(3)dt 3
dt 2
dt
给定:r(0+ ) = r ' (0+ ) = 0, r " (0+ ) = 1
信号与系统习题答案(注:教材---郑君里编) 习题二
2-1 对下图所示电路图分别列写求电压的微分方程表示。
图(a):微分方程:
2i1
(t
)
+
1∗
di1 (t dt
)
+
uc
(t
)
=
e(t
)
u20d(itd2)(t=t)2+di2id2((ttt))= uc (t)

duc (t) dt
=
i1 (t )
r(t) = −eα1t + 2eα2t = e−t (cos t − 3sin t)

《信号与系统引论》郑君里版第一章课后答案解析

《信号与系统引论》郑君里版第一章课后答案解析

第一章1-1 分别判断图1-1所示各波形是连续时间信号还是离散时间信号,若是离散时间信号是否为数字信号?图1-1图1-2解 信号分类如下:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧--⎩⎨⎧--))(散(例见图数字:幅值、时间均离))(连续(例见图抽样:时间离散,幅值离散))(连续(例见图量化:幅值离散,时间))(续(例见图模拟:幅值、时间均连连续信号d 21c 21b 21a 21图1-1所示信号分别为 (a )连续信号(模拟信号); (b )连续(量化)信号; (c )离散信号,数字信号; (d )离散信号;(e )离散信号,数字信号; (f )离散信号,数字信号。

1-2 分别判断下列各函数式属于何种信号?(重复1-1题所示问) (1))sin(t e at ω-; (2)nT e -; (3))cos(πn ;(4)为任意值)(00)sin(ωωn ;(5)221⎪⎭⎫⎝⎛。

解由1-1题的分析可知: (1)连续信号; (2)离散信号;(3)离散信号,数字信号; (4)离散信号; (5)离散信号。

1-3 分别求下列各周期信号的周期T : (1))30t (cos )10t (cos -;(2)j10t e ; (3)2)]8t (5sin [;(4)[]为整数)(n )T nT t (u )nT t (u )1(0n n ∑∞=-----。

解 判断一个包含有多个不同频率分量的复合信号是否为一个周期信号,需要考察各分量信号的周期是否存在公倍数,若存在,则该复合信号的周期极为此公倍数;若不存在,则该复合信号为非周期信号。

(1)对于分量cos (10t )其周期5T 1π=;对于分量cos (30t ),其周期15T 2π=。

由于5π为21T T 、的最小公倍数,所以此信号的周期5T π=。

(2)由欧拉公式)t (jsin )t (cos e t j ωωω+=即)10t (jsin )10t (cos e j10t +=得周期5102T ππ==。

信号与系统版课后答案_(郑君里)_高等教育出版社[1]

信号与系统版课后答案_(郑君里)_高等教育出版社[1]

(
−t
) u (t )
(2) f ( t ) = 3e + 2e
−t
(
−2 t
) u (t )
2
(3)f ( t ) = 5e − 5e
−t
(
−2 t
) u (t )
(4)f ( t ) = e cos (10π t ) ⎡ ⎣u ( t − 1) − u ( t − 2 ) ⎤ ⎦
−t
1-12 解题过程:
t0 ⎡ ⎛ t ⎞⎤ : f ⎢ a ⎜ t + 0 ⎟ ⎥ = f ( at + t0 ) ≠ f ( t0 − at ) a ⎣ ⎝ a ⎠⎦ t0 ⎡ ⎛ t ⎞⎤ : f ⎢ − a ⎜ t − 0 ⎟ ⎥ = f ( − at + t0 ) = f ( t0 − at ) a ⎣ ⎝ a ⎠⎦
解题过程:
(a-1)
(a-2)
(a-3)
4
(a-4)
(b) f ( t ) 为偶函数,故只有偶分量,为其本身
(c-1)
(c-2)
(c-3)
(c-4)
(d-1)
(d-2)
(d-3)
(d-4)
1-20 分析过程:本题为判断系统性质:线性、时不变性、因果性 (1)线性(Linearity) :基本含义为叠加性和均匀性
2
(t )
2
非线性:设 r1 ( t ) = e1
( t ) 、 r2 ( t ) = e2 2 ( t ) ,
2 2 2 2
则⎡ ⎣ c1e1 ( t ) + c2 e2 ( t ) ⎤ ⎦ = c1 e1 ( t ) + c2 e2
2
( t ) + 2c1c2e1 ( t ) e2 ( t ) ≠ c1r1 ( t ) + c2 r2 ( t )

信号与系统第三版郑君里课后习题答案

信号与系统第三版郑君里课后习题答案

信号与系统第三版郑君里课后习题答案第一章习题参考解1,判刑下列信号的类型解:()sin[()];y t A x t = 连续、模拟、周期、功率型信号 。

()()tt y t x e d τττ--∞=⎰ 连续、模拟、非周期、功率型信号。

()(2y n x n =) 离散、模拟、非周期、功率型信号。

()()y n nx n = 离散、模拟、非周期、功率型信号。

1-6,示意画出下列各信号的波形,并判断其类型。

(1) 0()sin()x t A t ωθ=+ 连续、模拟、周期、功率型(2) ()tx t Ae -= 连续、模拟、非周期、只是一个函数,不是物理量。

(3) ()cos 0t x t e t t -=≥ 连续、模拟、非周期、能量型 (4) ()2112,x t t t =+-≤≤ 连续、模拟、非周期、能量型(5) 4()(),0.5kx k k =≥ 离散、模拟、非周期、能量型 (6) 0().j kx k eΩ= 离散、模拟、周期、功率型()sin[()];()()()(2);()()tt y t A x t y t x ed y n x n y n nx n τττ--∞====⎰1-6题,1-4图。

t=-pi:1/200:pi;y1=1.5*sin(2*t+pi/6);subplot(4,1,1),plot(t,y1),title('1.5sin(2*t+pi/6)'),gridy2=2*exp(-t);subplot(4,1,2),plot(t,y2),title('2exp(-t)'),gridt1=0:1/200:2*pi;y3=10*exp(-t1).*cos(2*pi*t1);subplot(4,1,3),plot(t1,y3),title('10exp(-t1)cos(2*pi*t1)'),grid t2=-1:1/200:2;y4=2*t2+1;subplot(4,1,4),plot(t2,y4),title('2x+1'),grid习题1-6 5-6题 n=0:pi/10:2*pi; y=(0.8).^n;subplot(4,1,1),stem(n,y,'fill '),title('(0.8)^n'),grid n1=0:pi/24:2*pi;y1=cos(2*pi*n1);y2=sin(2*pi*n1);subplot(4,1,2),stem3(y1,y2,n1,'fill '),title('exp[2*pi*n1'),grid subplot(4,1,4),stem(n1,sin(2*pi*n1),'fill '),title('sin2pin1'),grid subplot(4,1,3),stem(n1,cos(2*pi*n1),'fill'),title('cos2pin1)'),grid1-8,判断下列系统的类型。

信号与系统 郑君里 习题答案

信号与系统 郑君里 习题答案
用冲激函数匹配法,设:
d h(t) = aδ ' (t) + bδ (t) + c∆u(t) dt h(t) = aδ (t) + b∆u(t)
则有: aδ ' (t) + bδ (t) + c∆u(t) + 3aδ (t) + 3b∆u(t) = 2δ ' (t)
∴ a = 2,b = −6, c = 18
h(t) = [ A1e 2 2 + A2e 2 2 ]u(t)
j 3 +1
j 3 −1
H ( p) =
p +1 p2 + p +1
=
p−
j2 3 −1+ j
2
+ j2 3 3 p − −1− j
2
3
h(t) = (1 +
1
−1+ j
)e 2
3t
+ (1 −
1
−1− j 3 t
)e 2

2 j2 3
(3) dt 2
dt
dt
试判断在起始点是否发生跳变,据此对(1)(2)分别写出其 r(0+)值,对(3)写出 r(0+)
和 r’(0+)值。
(1) (1) 由于方程右边没有冲激函数 δ (t) 及其导数,所以在起始点没有跳变。
∴ r(0+ ) = r(0- ) = 0
d r(t) + 2r(t) = 3 d e(t)

i2
(t)
1
∫ C1

C
i1dt + Li1' + Mi2' + Ri1 = e(t)

信号与系统作业答案郑君里版

信号与系统作业答案郑君里版

《信号与系统》习题与答案第一章1.1 画出信号[])()(sin )(00t t a t t a t f --=的波形。

1.2 已知信号[])2()1()1()(--++=t u t u t t f ,画出)32(+-t f 的波形。

1.3已知信号[])2()1()1()(--++=t u t u t t f ,试求它的直流分量。

答案:01.4 已知信号[])2()1()1()(--++=t u t u t t f ,试求它的奇分量和偶分量。

答案:偶分量:[][][])2()1()1(5.0)1()1()1()2()1(5.0---++--+++-+-t u t u t t u t u t u t u t奇分量:[][][])2()1()1(5.0)1()1()1()2()1(5.0---++--+++-+-t u t u t t u t u t t u t u t1.5 信号⎩⎨⎧=20)(tt f≥<t t 是否是奇异信号。

答案:二阶以上导数不连续,是奇异信号。

1.6 已知)(t f 是有界信号,且当∞→t 时0)(→t f ,试问)(t f 是否是能量有限信号。

答案:不一定。

1.7 对一连续三角信号进行抽样,每周期抽样8点,求抽样所得离散三角序列的离散角频率。

答案:4/πθ=1.8 以s 5.0=s T 的抽样间隔对下列两个三角信号抽样,写出抽样所得离散序列的表达式,画出它们的波形。

比较和说明两波形的差别,为什么? (1) t t f 4cos)(1π= (2)t t f 415cos)(2π= 答案:两个离散序列是相同的。

1.9 判断下列信号是否是周期信号。

如果是周期信号,试确定其周期。

(1) t C t B t A t f 9cos 7cos 4sin )(++= 答案:是周期函数,周期π2=T 。

(2) n j d n f 8e)(π-= 答案:是周期信号,周期16=N1.10 求下列表达式的函数值(1) ⎰∞∞--dt t t t f )()(0δ; 答案:)(0t f - (2) ⎰∞∞--dt t t t f )()(0δ; 答案:)(0t f(3) ⎰∞∞---dt t t u t t )2()(00δ; 答案:当00>t 时为1;当00<t 时为0 (4) ⎰∞∞---dt t t u t t )2()(00δ; 答案:当00<t 时为1;当00>t 时为0 (5) ⎰∞∞--++dt t t e t )2()(δ; 答案:2e 2- (6) ⎰∞∞--+dt t t t )6()sin (πδ; 答案:2/16/+π(7)[]⎰∞∞----dt t t t e t j )()2(0δδω; 答案:0e 2/1t j ω--1.11 判断下列系统是否线性、时不变和因果(1) tt e t r d )(d )(=; 答案:线性,时不变,因果 (2) )()()(t u t e t r =; 答案:线性,时变,因果(3) [])()(sin )(t u t e t r =; 答案:非线性,时变,因果 (4) )1()(t e t r -=; 答案:线性,时变,非因果 (5) )2()(t e t r =; 答案:线性,时变,非因果 (6) )()(2t e r r =; 答案:非线性,时不变,因果1.12 试证明:)()0(')(')0()(')(t f t f t t f δδδ-=。

信号与系统作业答案郑君里版

信号与系统作业答案郑君里版

信号与系统作业答案郑君里版1.1 1.2 1.3画出信号f(t)sin a(t t0) 的波形。

a(t t0)已知信号f(t) (t 1) u(t 1) u(t 2) ,画出f( 2t 3)的波形。

已知信号f(t) (t 1) u(t 1) u(t 2) ,试求它的直流分量。

答案:01.4 已知信号f(t) (t 1) u(t 1) u(t 2) ,试求它的奇分量和偶分量。

答案:偶分量:0.5(1 t) u(t 2) u(t 1) u(t 1) u(t 1) 0.5(t 1) u(t 1) u(t 2)奇分量:0.5(t 1) u(t 2) u(t 1) t u(t 1) u(t 1) 0.5(t 1) u(t 1) u(t 2)1.5 信号f(t)2 tt 0是否是奇异信号。

t 0答案:二阶以上导数不连续,是奇异信号。

1.6 已知f(t)是有界信号,且当t 时f(t) 0,试问f(t)是否是能量有限信号。

答案:不一定。

1.7 对一连续三角信号进行抽样,每周期抽样8点,求抽样所得离散三角序列的离散角频率。

答案:/41.8 以Ts 0.5s的抽样间隔对下列两个三角信号抽样,写出抽样所得离散序列的表达式,画出它们的波形。

比较和说明两波形的差别,为什么?(1)f1(t) cos4t (2)f2(t) cos15t 4答案:两个离散序列是相同的。

1.9 判断下列信号是否是周期信号。

如果是周期信号,试确定其周期。

(1)f(t) Asin4t Bcos7t Ccos9t 答案:是周期函数,周期T 2 。

(2)fd(n) ejn8答案:是周期信号,周期N 161.10 求下列表达式的函数值(1)(2)(3)(4)(5)(6)(7)f(t t0) (t)dt;答案:f( t0)f(t0 t) (t)dt;答案:f(t0)(t t0)u(t t02)dt;答案:当t0 0时为1;当t0 0时为0 (t t0)u(t 2t0)dt;答案:当t0 0时为1;当t0 0时为0(e t t) (t 2)dt;答案:e2 2 (t sint) (t 6)dt;答案:/6 1/2e j t (2t) (t t0) dt;答案:1/2 e j t01.11 判断下列系统是否线性、时不变和因果de(t);答案:线性,时不变,因果dt(2)r(t) e(t)u(t);答案:线性,时变,因果(1)r(t)(3)r(t) sin e(t) u(t);答案:非线性,时变,因果(4)r(t) e(1 t);答案:线性,时变,非因果(5)r(t) e(2t);答案:线性,时变,非因果(6)r(r) e2(t);答案:非线性,时不变,因果1.12 试证明:f(t) '(t) f(0) '(t) f'(0) (t)。

信号与系统作业答案郑君里版

信号与系统作业答案郑君里版

《信号与系统》习题与答案第一章1.1 画出信号[])()(sin )(00t t a t t a t f --=的波形。

1.2 已知信号[])2()1()1()(--++=t u t u t t f ,画出)32(+-t f 的波形。

1.3已知信号[])2()1()1()(--++=t u t u t t f ,试求它的直流分量。

答案:01.4 已知信号[])2()1()1()(--++=t u t u t t f ,试求它的奇分量和偶分量。

答案:偶分量:[][][])2()1()1(5.0)1()1()1()2()1(5.0---++--+++-+-t u t u t t u t u t u t u t奇分量:[][][])2()1()1(5.0)1()1()1()2()1(5.0---++--+++-+-t u t u t t u t u t t u t u t1.5 信号⎩⎨⎧=20)(tt f≥<t t 是否是奇异信号。

答案:二阶以上导数不连续,是奇异信号。

1.6 已知)(t f 是有界信号,且当∞→t 时0)(→t f ,试问)(t f 是否是能量有限信号。

答案:不一定。

1.7 对一连续三角信号进行抽样,每周期抽样8点,求抽样所得离散三角序列的离散角频率。

答案:4/πθ=1.8 以s 5.0=s T 的抽样间隔对下列两个三角信号抽样,写出抽样所得离散序列的表达式,画出它们的波形。

比较和说明两波形的差别,为什么? (1) t t f 4cos)(1π= (2)t t f 415cos)(2π= 答案:两个离散序列是相同的。

1.9 判断下列信号是否是周期信号。

如果是周期信号,试确定其周期。

(1) t C t B t A t f 9cos 7cos 4sin )(++= 答案:是周期函数,周期π2=T 。

(2) n j d n f 8e)(π-= 答案:是周期信号,周期16=N1.10 求下列表达式的函数值(1) ⎰∞∞--dt t t t f )()(0δ; 答案:)(0t f - (2) ⎰∞∞--dt t t t f )()(0δ; 答案:)(0t f(3) ⎰∞∞---dt t t u t t )2()(00δ; 答案:当00>t 时为1;当00<t 时为0 (4) ⎰∞∞---dt t t u t t )2()(00δ; 答案:当00<t 时为1;当00>t 时为0 (5) ⎰∞∞--++dt t t e t )2()(δ; 答案:2e 2- (6) ⎰∞∞--+dt t t t )6()sin (πδ; 答案:2/16/+π(7)[]⎰∞∞----dt t t t e t j )()2(0δδω; 答案:0e 2/1t j ω--1.11 判断下列系统是否线性、时不变和因果(1) tt e t r d )(d )(=; 答案:线性,时不变,因果 (2) )()()(t u t e t r =; 答案:线性,时变,因果(3) [])()(sin )(t u t e t r =; 答案:非线性,时变,因果 (4) )1()(t e t r -=; 答案:线性,时变,非因果 (5) )2()(t e t r =; 答案:线性,时变,非因果 (6) )()(2t e r r =; 答案:非线性,时不变,因果 1.12 试证明:)()0(')(')0()(')(t f t f t t f δδδ-=。

《信号与系统引论》郑君里版第一章课后答案

《信号与系统引论》郑君里版第一章课后答案

第一章1-1 分别判断图1-1所示各波形是连续时间信号还是离散时间信号,若是离散时间信号是否为数字信号?图1-1图1-2解 信号分类如下:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧--⎩⎨⎧--))(散(例见图数字:幅值、时间均离))(连续(例见图抽样:时间离散,幅值离散))(连续(例见图量化:幅值离散,时间))(续(例见图模拟:幅值、时间均连连续信号d 21c 21b 21a 21图1-1所示信号分别为 (a )连续信号(模拟信号); (b )连续(量化)信号; (c )离散信号,数字信号; (d )离散信号;(e )离散信号,数字信号; (f )离散信号,数字信号。

1-2 分别判断下列各函数式属于何种信号?(重复1-1题所示问) (1))sin(t e at ω-;(2)nT e -; (3))cos(πn ;(4)为任意值)(00)sin(ωωn ;(5)221⎪⎭⎫⎝⎛。

解由1-1题的分析可知: (1)连续信号; (2)离散信号;(3)离散信号,数字信号; (4)离散信号; (5)离散信号。

1-3 分别求下列各周期信号的周期T : (1))30t (cos )10t (cos -; (2)j10t e ;(3)2)]8t (5sin [;(4)[]为整数)(n )T nT t (u )nT t (u )1(0n n ∑∞=-----。

解 判断一个包含有多个不同频率分量的复合信号是否为一个周期信号,需要考察各分量信号的周期是否存在公倍数,若存在,则该复合信号的周期极为此公倍数;若不存在,则该复合信号为非周期信号。

(1)对于分量cos (10t )其周期5T 1π=;对于分量cos (30t ),其周期15T 2π=。

由于5π为21T T 、的最小公倍数,所以此信号的周期5T π=。

(2)由欧拉公式)t (jsin )t (cos e t j ωωω+=即)10t (jsin )10t (cos e j10t +=得周期5102T ππ==。

信号与系统(郑君里)课后答案 第一章习题解答

信号与系统(郑君里)课后答案  第一章习题解答

1-4 分析过程:(1)例1-1的方法:()()()()23232f t f t f t f t →−→−→−− (2)方法二:()()()233323f t f t f t f t ⎡⎤⎛⎞→→−→−−⎜⎟⎢⎥⎝⎠⎣⎦(3)方法三:()()()()232f t f t f t f t →−→−+→−−⎡⎤⎣⎦ 解题过程:(1)方法一:方法二:(1)()−f at 左移0t :()()()000−+=−−≠−⎡⎤⎣⎦f a t t f at at f t at (2)()f at 右移0t :()()()000−=−≠−⎡⎤⎣⎦f a t t f at at f t at (3)()f at 左移0t a :()()000⎡⎤⎛⎞+=+≠−⎜⎟⎢⎥⎝⎠⎣⎦t f a t f at t f t at a (4)()f at 右移0t a :()()000⎡⎤⎛⎞−−=−+=−⎜⎟⎢⎥⎝⎠⎣⎦t f a t f at t f t at a 故(4)运算可以得到正确结果。

注:1-4、1-5题考察信号时域运算:1-4题说明采用不同的运算次序可以得到一致的结果;1-5题提醒所有的运算是针对自变量t 进行的。

如果先进行尺度变换或者反转变换,再进行移位变换,一定要注意移位量和移位的方向。

1-9 解题过程: (1)()()()2tf t eu t −=− (2)()()()232tt f t ee u t −−=+(3)()()()255ttf t e eu t −−=− (4)()()()()cos 1012tf t et u t u t π−=−−−⎡⎤⎣⎦1-12 解题过程:((((注:1-9、1-12题中的时域信号均为实因果信号,即()()()=f t f t u t 1-18 分析过程:任何信号均可分解为奇分量与偶分量之和的形式,即()()()()1e o f t f t f t =+其中,()e f t 为偶分量,()o f t 为奇分量,二者性质如下:()()()()()()23e e o o f t f t f t f t =−=−−()()13∼式联立得()()()12e f t f t f t =+−⎡⎤⎣⎦ ()()()12o f t f t f t =−−⎡⎤⎣⎦ 解题过程:(a-1) (a-2)(a-3)(a-4)f t为偶函数,故只有偶分量,为其本身(b) ()(c-1)(c-2)(c-3)(c-4)(d-1)(d-2)(d-3)(d-4)1-20 分析过程:本题为判断系统性质:线性、时不变性、因果性(1)线性(Linearity):基本含义为叠加性和均匀性即输入()1x t ,()2x t 得到的输出分别为()1y t ,()2y t ,()()11T x t y t =⎡⎤⎣⎦,()()22T x t y t =⎡⎤⎣⎦,则()()()()11221122T c x t c x t c y t c y t +=+⎡⎤⎣⎦(1c ,2c 为常数)。

信号与系统第三版郑君里课后习题答案

信号与系统第三版郑君里课后习题答案

信号与系统第三版郑君里课后习题答案第一章习题参考解1,判刑下列信号的类型解:()sin[()];y t A x t = 连续、模拟、周期、功率型信号 。

()()tt y t x e d τττ--∞=⎰ 连续、模拟、非周期、功率型信号。

()(2y n x n =) 离散、模拟、非周期、功率型信号。

()()y n nx n = 离散、模拟、非周期、功率型信号。

1-6,示意画出下列各信号的波形,并判断其类型。

(1) 0()sin()x t A t ωθ=+ 连续、模拟、周期、功率型(2) ()tx t Ae -= 连续、模拟、非周期、只是一个函数,不是物理量。

(3) ()cos 0t x t e t t -=≥ 连续、模拟、非周期、能量型 (4) ()2112,x t t t =+-≤≤ 连续、模拟、非周期、能量型(5) 4()(),0.5kx k k =≥ 离散、模拟、非周期、能量型 (6) 0().j kx k eΩ= 离散、模拟、周期、功率型()sin[()];()()()(2);()()tt y t A x t y t x ed y n x n y n nx n τττ--∞====⎰1-6题,1-4图。

t=-pi:1/200:pi;y1=1.5*sin(2*t+pi/6);subplot(4,1,1),plot(t,y1),title('1.5sin(2*t+pi/6)'),gridy2=2*exp(-t);subplot(4,1,2),plot(t,y2),title('2exp(-t)'),gridt1=0:1/200:2*pi;y3=10*exp(-t1).*cos(2*pi*t1);subplot(4,1,3),plot(t1,y3),title('10exp(-t1)cos(2*pi*t1)'),grid t2=-1:1/200:2;y4=2*t2+1;subplot(4,1,4),plot(t2,y4),title('2x+1'),grid习题1-6 5-6题 n=0:pi/10:2*pi; y=(0.8).^n;subplot(4,1,1),stem(n,y,'fill '),title('(0.8)^n'),grid n1=0:pi/24:2*pi;y1=cos(2*pi*n1);y2=sin(2*pi*n1);subplot(4,1,2),stem3(y1,y2,n1,'fill '),title('exp[2*pi*n1'),grid subplot(4,1,4),stem(n1,sin(2*pi*n1),'fill '),title('sin2pin1'),grid subplot(4,1,3),stem(n1,cos(2*pi*n1),'fill'),title('cos2pin1)'),grid1-8,判断下列系统的类型。

信号与系统(郑君里)课后答案 第二章习题解答

信号与系统(郑君里)课后答案  第二章习题解答

( p + 5) h(t ) = 1 δ (t ) + 2δ (t )
p +1
3

h(t) =
1⋅ p+5
1δ p +1
(t ) +
2δ p+5
(t) =
⎛ ⎜ ⎜ ⎜
−1 4+
p+5
1⎞
4 p +1
⎟ ⎟δ ⎟
(t ) +
2δ p+5
(t)



h(t)
=
⎛ ⎜⎝
7 4
e−5t
+
1 4
e−t
⎞ ⎟⎠
卷积的微分与积分;与冲激函数或阶跃函数的卷积)对表达式进一步的化简,甚至直接得到
结果。
解题过程:
(1) f (t ) = u (t ) − u (t −1) = u (t )∗ ⎡⎣δ (t ) − δ (t −1)⎤⎦
∴s (t ) = f (t ) ∗ f (t ) = u (t ) ∗ ⎡⎣δ (t ) −δ (t −1)⎤⎦ ∗u (t )∗ ⎡⎣δ (t ) − δ (t −1)⎤⎦ = ⎡⎣u (t ) ∗u (t )⎤⎦ ∗ ⎡⎣δ (t ) − 2δ (t −1) + δ (t − 2)⎤⎦ = tu (t ) ∗ ⎡⎣δ (t ) − 2δ (t −1) + δ (t − 2)⎤⎦ = tu (t ) − 2(t −1)u (t −1) + (t − 2)u (t − 2)
⎞ ⎟⎠
u
(t)
受迫响应: 3 u (t )
2 综观以上两种方法可发现 p 算子法更简洁,准确性也更高

《信号与系统引论》郑君里版第一章课后答案

《信号与系统引论》郑君里版第一章课后答案

第一章1-1 分别判断图1-1所示各波形是连续时间信号还是离散时间信号,若是离散时间信号是否为数字信号?图1-1图1-2解 信号分类如下:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧--⎩⎨⎧--))(散(例见图数字:幅值、时间均离))(连续(例见图抽样:时间离散,幅值离散))(连续(例见图量化:幅值离散,时间))(续(例见图模拟:幅值、时间均连连续信号d 21c 21b 21a 21图1-1所示信号分别为 (a )连续信号(模拟信号); (b )连续(量化)信号; (c )离散信号,数字信号; (d )离散信号;(e )离散信号,数字信号; (f )离散信号,数字信号。

1-2 分别判断下列各函数式属于何种信号?(重复1-1题所示问) (1))sin(t e at ω-;(2)nT e -; (3))cos(πn ;(4)为任意值)(00)sin(ωωn ;(5)221⎪⎭⎫⎝⎛。

解由1-1题的分析可知: (1)连续信号; (2)离散信号;(3)离散信号,数字信号; (4)离散信号; (5)离散信号。

1-3 分别求下列各周期信号的周期T : (1))30t (cos )10t (cos -; (2)j10t e ;(3)2)]8t (5sin [;(4)[]为整数)(n )T nT t (u )nT t (u )1(0n n ∑∞=-----。

解 判断一个包含有多个不同频率分量的复合信号是否为一个周期信号,需要考察各分量信号的周期是否存在公倍数,若存在,则该复合信号的周期极为此公倍数;若不存在,则该复合信号为非周期信号。

(1)对于分量cos (10t )其周期5T 1π=;对于分量cos (30t ),其周期15T 2π=。

由于5π为21T T 、的最小公倍数,所以此信号的周期5T π=。

(2)由欧拉公式)t (jsin )t (cos e t j ωωω+= 即)10t (jsin )10t (cos e j10t +=得周期5102T ππ==。

信号与系统习题答案(注教材---郑君里编)

信号与系统习题答案(注教材---郑君里编)

《信号与系统》课程习题与解答第三章习题(教材上册第三章p160-p172)3-1~3-3,3-5,3-9,3-12,3-13,3-15~3-17,3-19,3-22,3-24,3-25,3-29,3-32第三章习题解答3-2 周期矩形信号如题图3-2所示。

若:求直流分量大小以及基波、二次和三次谐波的有效值。

解:直流分量 ⎰⎰--=⨯==2222301105)(1ττv Edt dt t f T a TTf(t)为偶函数,∴0=nb)(2cos )(222T n Sa T E tdt n t f T a n πττωττ⎰-== )(21T n Sa T E a F n n πςτ==基波 =1a )1.0s i n (20)(2πππττ=T Sa T E有效值 39.11.0sin 22021≈=ππa二次谐波有效值 32.122≈a三次谐波有效值 21.123≈a3-3 若周期矩形信号)(1t f 和 )(2t f 波形如题图3-2所示,)(1t f 的参数为s μτ5.0=,s T μ1=,E=1V ;)(2t f 的参数为s μτ5.1=,s T μ3=,E=3V ,分别求:(1))(1t f 的谱线间隔和带宽(第一零点位置),频率单位以kHz 表示; (2))(2t f 的谱线间隔和带宽; (3) )(1t f 和 )(2t f 的基波幅度之比; (4) )(1t f 基波与)(2t f 三次谐波幅度之比。

解:(1))(1t f s μτ5.0= s T μ1= E=1V 谱线间隔:khZ T 10001==∆带宽:KHzB f 20001==τ(2) )(2t f s μτ5.1= s T μ3= E=3V间隔:khZ T 310001==∆谱线带宽:KHzB f 320001==τ(3) )(1t f 基波幅度:ππτ2)2cos(4201==⎰dt t T E T a )(2t f 基波幅度:ππτ6)2cos(4201==⎰dt t T E T a幅度比:1:3(4) )(2t f 三次谐波幅度:ππτ2)23cos(4203-=⨯=⎰dt t T E T a 幅度比:1:13-5 求题图3-5所示半波余弦信号的傅立叶级数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
即 输 入 x1 ( t ) , x2 ( t ) 得 到 的 输 出 分 别 为 y1 ( t ) , y2 ( t ) , T ⎡ ⎣ x1 ( t ) ⎤ ⎦ = y1 ( t ) ,
T⎡ 。 ⎣ x2 ( t ) ⎤ ⎦ = y2 ( t ) ,则 T ⎡ ⎣ c1 x1 ( t ) + c2 x2 ( t ) ⎤ ⎦ = c1 y1 ( t ) + c2 y2 ( t ) ( c1 , c2 为常数)
(
−t
) u (t )
(2) f ( t ) = 3e + 2e
−t
(
−2 t
) u (t )
2
(3)f ( t ) = 5e − 5e
−t
(
−2 t
) u (t )
(4)f ( t ) = e cos (10π t ) ⎡ ⎣u ( t − 1) − u ( t − 2 ) ⎤ ⎦
−t
1-12 解题过程:
(4) f ( at ) 右移
故(4)运算可以得到正确结果。 注:1-4、1-5 题考察信号时域运算:1-4 题说明采用不同的运算次序可以得到一致的结果; 1-5 题提醒所有的运算是针对自变量 t 进行的。如果先进行尺度变换或者反转变换,再进行 移位变换,一定要注意移位量和移位的方向。 1-9 解题过程: (1) f ( t ) = 2 − e
解题过程:
(a-1)
(a-2)
(a-3)
4
(a-4)
(b) f ( t ) 为偶函数,故只有偶分量,为其本身
(c-1)
(c-2)
(c-3)
(c-4)
(d-1)
(d-2)
(d-3)
(d-4)
1-20 分析过程:本题为判断系统性质:线性、时不变性、因果性 (1)线性(Linearity) :基本含义为叠加性和均匀性
⎧ ⎪= h ( t ) u ( t ) ⎪ ⎩≠ h ( t ) u ( t ) ⎧ ⎪= h ( n ) u ( n ) ⎪ ⎩≠ h ( n ) u ( n )
因果系统 非因果系统
因果系统 非因果系统
de ( t ) dt
d⎡ de1 ( t ) de2 ( t ) ⎣c1e1 ( t ) + c2 e2 ( t ) ⎤ ⎦ =cr t +c r t 、 r2 ( t ) = ,则 1 1( ) 2 2( ) dt dt dt
t0 ⎡ ⎛ t ⎞⎤ : f ⎢ a ⎜ t + 0 ⎟ ⎥ = f ( at + t0 ) ≠ f ( t0 − at ) a ⎣ ⎝ a ⎠⎦ t0 ⎡ ⎛ t ⎞⎤ : f ⎢ − a ⎜ t − 0 ⎟ ⎥ = f ( − at + t0 ) = f ( t0 − at ) a ⎣ ⎝ a ⎠⎦
f (t )
1
f (t )
1
(1)
1
(2)
1
f (t ) f (t )
1 1 (3) 1 (4) -1
f (t )
1 3 2
f (t )
(5)
1
(6)
2
3
3
f (t )
1 2 3
(7) -2 注:1-9、1-12 题中的时域信号均为实因果信号,即 f ( t ) = f ( t ) u ( t ) 1-18 分析过程:任何信号均可分解为奇分量与偶分量之和的形式,即
线性系统是指系统的全响应可以分解为零输入响应和零状态响应, 并且二者均分别具有 线性性质。 本题未说明初始条件,可认为系统起始状态为零( “松弛”的) ,故零输入响应为零,只 需判断系统的输入——输出是否满足线性。 (2)时不变性(Time-Invariblity) :是指当激励延迟一段时间 t0 时,其响应也同样延迟 t0 , 波形形状不变。 (3)因果性(Causality) :是指系统在 t0 时刻的响应只与 t = t0 和 t < t0 的时刻有关,与未来 的时刻无关。 满足因果性的系统又称为物理可实现系统。 判断因果性的方法: ① 通过时域关系式: y ( t ) = T ⎡ ⎣ x ( t )⎤ ⎦ 判断是否可能有 y ( t1 ) = T ⎡ ⎣ x ( t2 ) ⎤ ⎦ ,t1 < t2 的时刻出 现。若有则非因果系统,否则为因果系统; ② 对于时间连续系统 冲激响应 h ( t ) ⎨ ③ 对于时间离散系统 单位冲激响应 h ( n ) ⎨ 解题过程: (1) r ( t ) =
1-4 分析过程: (1)例 1-1 的方法: f ( t ) → f ( t − 2 ) → f ( 3t − 2 ) → f ( −3t − 2 ) (2)方法二: f ( t ) → f ( 3t ) → f ⎢3 ⎜ t −
⎡ ⎛ ⎣ ⎝
2 ⎞⎤ ⎟ → f ( −3t − 2 ) 3 ⎠⎥ ⎦
f (t )
1 1
f ( 3t )→→来自-2-10
1
-2/3
f ( 3t − 2 )

1/3
f ( −3t − 2 )
2/3 1 方法三:
-1 -2/3
1
f (t )
1
f ( −t )

1

-2
-1
0
1
-1
0
1
2
f ( −t − 2 )
1
f ( −3t − 2 )

-3
-2
-1
0
-1 -2/3
1-5 解题过程: (1) f ( − at ) 左移 t0 : f ⎡ ⎣ − a ( t + t0 ) ⎤ ⎦ = f ( −at − at0 ) ≠ f ( t0 − at ) (2) f ( at ) 右移 t0 : f ⎡ ⎣ a ( t − t0 ) ⎤ ⎦ = f ( at − at0 ) ≠ f ( t0 − at ) (3) f ( at ) 左移
f (t ) = fe (t ) + fo ( t )
(1)
其中, f e ( t ) 为偶分量, f o ( t ) 为奇分量,二者性质如下:
f e ( t ) = f e ( −t ) f o ( t ) = − f o ( −t )
( 2) ( 3)
(1) ∼ ( 3) 式联立得
1 ⎡ f ( t ) + f ( −t ) ⎤ ⎦ 2⎣ 1 fo ( t ) = ⎡ f ( t ) − f ( −t ) ⎤ ⎦ 2⎣ fe ( t ) =
(3)方法三: f ( t ) → f ( −t ) → f ⎡ ⎣− ( t + 2 )⎤ ⎦ → f ( −3t − 2 ) 解题过程: (1)方法一:
f (t )
1
f (t − 2)
1

-2 -1 0 1 1 2 3

f ( 3t − 2 )
1
f ( −3t − 2 )

-1 -2/3
2/3 1 方法二:
相关文档
最新文档