锐角三角函数—知识讲解
初三数学锐角三角函数知识精讲
初三数学锐角三角函数知识精讲锐角三角函数1. 锐角三角函数的定义直角三角形中有两条直角边和一条斜边,从这三条边中适当取两条边可以得到不同的比,这些比值的大小显然只与直角三角形中锐角的大小有关,这样便定义了直角三角形中锐角的三角函数,常用的有正弦函数sin A a c =余弦函数cos A bc =正切函数tan A ab =余切函数cot A ba=BCAcab2. 互余角的三角函数间的关系sin cos()cos sin()tan cot()cot tan()αααααααα=︒-=︒-=︒-=︒-909090903. 同余角三角函数间的关系 (1)倒数关系tan cot αα⋅=1(2)商的关系tan sin cos cot cos sin αααααα==, (3)平方关系sin cos 221αα+=4. 三角函数值角度三角函数0°30°45°60°90°sin α 0 12 22 32 1 cos α1 32 22 120 tan α 0 33 13 不存在 cot α不存在3133 0(2)锐角三角函数值的变化情况 <1>锐角三角函数值都是正数且当090︒<<︒α时,01101<<>>+>sin cos sin cos αααα,,,tan α>0,cot α>0。
<2>当角度在090︒︒~间变化时正弦值随着角度的增大(或减小)而增大(或减小) 余弦值随着角度的增大(或减小)而减小(或增大) 正切值随着角度的增大(或减小)而增大(或减小) 余切值随着角度的增大(或减小)而减小(或增大)我们利用以上锐角三角函数的定义及性质,可以解决一些求值、化简以及等式证明等问题。
例(1999某某)已知∆ABC 的两边长a c ==35,,且第三边长b 为关于x 的一元二次方程x x m 240-+=的两个正整数根之一,求sinA 的值。
锐角三角函数 知识梳理
锐角三角函数知识梳理一、锐角三角函数的定义:在Rt△ABC中,∠C=90°.(1)正弦:我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sinA.即sinA=∠A的对边斜边=ac.(2)余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA.即cosA=∠A的邻边斜边=bc.(3)正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA.即tanA=∠A的对边∠A的邻边=ab.(4)三角函数:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.二、锐角三角函数的增减性:(1)锐角三角函数值都是正值.(2)当角度在0°~90°间变化时,①正弦值随着角度的增大(或减小)而增大(或减小);②余弦值随着角度的增大(或减小)而减小(或增大);③正切值随着角度的增大(或减小)而增大(或减小).(3)当角度在0°≤∠A≤90°间变化时,0≤sinA≤1,1≥cosA≥0.当角度在0°<∠A<90°间变化时,tanA>0三、同角三角函数的关系:(1)平方关系:sin2A+cos2A=1(2)正余弦与正切之间的关系(积的关系):一个角的正切值等于这个角的正弦与余弦的比,即tanA=sinAcosA 或sinA=tanA•cosA.(3)正切之间的关系:tanA•tanB=1.四、互余两角的函数关系:在直角三角形中,∠A+∠B=90°时,正余弦之间的关系为:①一个角的正弦值等于这个角的余角的余弦值,即sinA=(90°-∠A);②一个角的余弦值等于这个角的余角的正弦值,即cosA=sin(90°-∠A);也可以理解成若∠A+∠B=90°,那么sinA=cosB或sinB=cosA.五、特殊角的三角函数值:(1)特指30°、45°、60°角的各种三角函数值.sin30°=;cos30°=;tan30°=;sin45°=;cos45°=;tan45°=1;sin60°=;cos60°=; tan60°=;(2)应用中要熟记特殊角的三角函数值,一是按值的变化规律去记,正弦逐渐增大,余弦逐渐减小,正切逐渐增大;二是按特殊直角三角形中各边特殊值规律去记.(3)特殊角的三角函数值应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.六、计算器-三角函数(1)用计算器可以求出任意锐角的三角函数值,也可以根据三角函数值求出锐角的度数.(2)求锐角三角函数值的方法:如求tan46°35′的值时,先按键“tan”,再输入角的度数46°35′,按键“=”即可得到结果.注意:不同型号的计算器使用方法不同.(3)已知锐角三角函数值求锐角的方法是:如已知sinα=0.5678,一般先按键“SHIFT”,再按键“sin”,输入“0.5678”,再按键“=”即可得到结果.注意:一般情况下,三角函数值直接可以求出,已知三角函数值求角需要用第二功能键七、解直角三角形1、(1)解直角三角形的定义在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.(2)解直角三角形要用到的关系①锐角直角的关系:∠A+∠B=90°;②三边之间的关系:a2+b2=c2;③边角之间的关系:sinA=∠A的对边斜边=ac,cosA=∠A的邻边斜边=bc,tanA=∠A的对边∠A的邻边=ab.(a,b,c分别是∠A、∠B、∠C的对边)2、解直角三角形的应用(1)通过解直角三角形能解决实际问题中的很多有关测量问.如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.(2)解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案3、坡度角问题(1)坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.(2)把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=hl=tanα.(3)在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.应用领域:①测量领域;②航空领域③航海领域:④工程领域等.4、仰角俯角问题(1)概念:仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.(2)解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.5、方向角问题(1)在辨别方向角问题中:一般是以第一个方向为始边向另一个方向旋转相应度数.(2)在解决有关方向角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方向角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.。
最全锐角三角函数概念超经典讲义完整版.doc
锐角三角函数知识点一:锐角三角函数1、锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数。
2、锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即斜边的对边A A ∠=sin 。
3、锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即斜边的邻边A A ∠=cos 。
4、锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即的邻边的对边A A A ∠∠=tan 。
sin α,cos α,tan α都是一个完整的符号,单独的 “sin”没有意义,其中α前面的“∠”一般省略不写;但当用三个大写字母表示一个角时,“∠”的符号就不能省略。
考点一:锐角三角函数的定义 1、在Rt △ABC 中,∠C=90°,cosB=54,则AC :BC :AB=( )A 、3:4:5B 、5:3:4C 、4:3:5D 、3:5:42、已知锐角α,cosα=35,sinα=_______,tanα=_______。
3、在△ABC 中,∠C=90°,若4a=3c ,则cosB=______.tanA = ______。
4、在△ABC 中,∠C=90°,AB=15,sinA=13,则BC 等于_______。
5、在△ABC 中,∠C=90°,若把AB 、BC 都扩大n 倍,则cosB 的值为( )A 、ncosBB 、1n cosB C 、cos nBD 、不变考点二:求某个锐角的三角函数值——关键在构造以此锐角所在的直角三角形例1、如图,在矩形ABCD 中,E 是BC 边上的点,AE BC =,DF AE ⊥,垂足为F ,连接DE 。
(1)求证:ABE △DFA ≌△;(2)如果10AD AB =,=6,求sin EDF ∠的值。
6、如图,在△ABC 中,∠A=60°,∠B=45°,AB=8,求△ABC 面积(结果可保留根号)。
7、如图(1),∠α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一个点P (3,4),则sin α=______ 8、如图(2)所示,在正方形网格中,sin ∠AOB 等于( ) A 5B 25C 、12D 、2注意:正弦、余弦、正切是在一个直角三角形中引入的,实际上是两条边的比,它们是正实数,没单位,其大小只与角的大小有关,而与所在直角三角形无关。
中考复习: 锐角三角函数
中考复习:锐角三角函数知识梳理一、锐角三角函数(正弦、余弦、正切)1、定义:在Rt △ABC 中,∠C =90°,我们把锐角A的对边与斜边的比叫做∠A 的正弦(sinc ), 记作sin A ,即sin A aA c∠==的对边斜边。
把∠A 的邻边与斜边的比叫做∠A 的余弦(cosine ),记作cos A ,即;把∠A 的对边与邻边的比叫做∠A 的正切(tangent ),记作tan A ,即。
锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数(trigonometric function of acute angle )。
当锐角A 的大小确定时,∠A 的对边与斜边的比(正弦)、∠A 的邻边与斜边的比(余弦)、∠A 的对边与邻边的比(正切)分别是确定的。
2、增减性:在0°到90°之间,正弦值、正切值随着角度的增大而增大,余弦随着角度的增大而减小。
3、取值范围:当∠A 为锐角时,三角函数的取值范围是:0<sin A <1,0<cos A <1,tan A >0。
4、互余两角的函数关系:如果两角互余,则其中一有的正弦等于另一角的余弦,即:若α是一个锐角,则sin α=cos (90°-α),cos α=sin (90°-α)。
5、正、余弦的平方关系:sin 2α+ cos 2α=1。
二、300、450、600的正弦值、余弦值和正切值如下表:三、解直角三角形bcos c A A ∠==的邻边斜边atan bA A A ∠=∠的对边=的邻边C ∠A 的邻边b∠A 的对边a在直角三角形中,由已知元素求未知元素的过程就是解直角三角形。
1、在Rt△ABC 中,∠C=90°,设三个内角A 、B 、C 所对的边分别为a 、b 、c (以下字母同),则解直角三角形的主要依据是:(1)边角之间的关系: sinA =cosB =a c , cosA =sinB =bc,tanA =cotB =a b ,cotA =tanB =b a。
《锐角三角函数》 讲义
《锐角三角函数》讲义一、锐角三角函数的定义在直角三角形中,我们把锐角的对边与斜边的比值叫做正弦(sin),锐角的邻边与斜边的比值叫做余弦(cos),锐角的对边与邻边的比值叫做正切(tan)。
以一个锐角为 A 的直角三角形为例,假设其对边为 a,邻边为 b,斜边为 c。
那么,sin A = a / c,cos A = b / c,tan A = a / b 。
需要注意的是,锐角三角函数的值只与角的大小有关,而与三角形的大小无关。
二、特殊角的三角函数值我们要牢记一些特殊角的三角函数值,这在解题中会经常用到。
30°角:sin 30°= 1 / 2,cos 30°=√3 / 2,tan 30°=√3 / 3 。
45°角:sin 45°=√2 / 2,cos 45°=√2 / 2,tan 45°= 1 。
60°角:sin 60°=√3 / 2,cos 60°= 1 / 2,tan 60°=√3 。
三、锐角三角函数的应用锐角三角函数在实际生活中有广泛的应用。
比如,测量物体的高度。
如果我们知道一个物体与我们的水平距离,以及我们观测物体顶部的仰角,就可以通过三角函数来计算物体的高度。
假设我们站在水平地面上,距离一个建筑物为 d 米,观测建筑物顶部的仰角为α,那么建筑物的高度 h 就可以通过tanα = h / d 来计算,即 h =d × tanα 。
再比如,测量河流的宽度。
我们可以在河的一岸选择一个点,然后测出对岸一个目标点与这个点的连线和河岸的夹角,以及这个点到河岸的垂直距离,从而计算出河流的宽度。
四、锐角三角函数的性质1、取值范围正弦和余弦的值域都在-1, 1之间,而正切的值域是全体实数。
2、增减性在锐角范围内,正弦函数值随着角度的增大而增大,余弦函数值随着角度的增大而减小,正切函数值随着角度的增大而增大。
初步了解锐角三角函数
初步了解锐角三角函数锐角三角函数(Trigonometric Functions)是数学中重要的概念之一,用于描述锐角三角形内角的关系。
锐角三角函数包括正弦(Sine)、余弦(Cosine)、正切(Tangent)三种基本函数,它们在计算机图形、物理学、工程学等领域有广泛的应用。
本文将初步介绍锐角三角函数的定义、性质以及常见的应用。
一、正弦函数(Sine Function)正弦函数是根据锐角三角形的定义得出的一种函数。
一般表示为sin(x),其中x为角度。
正弦函数的值域为[-1, 1],即sin(x)的取值范围在-1到1之间。
当角度增大时,正弦函数的值逐渐增大,当角度减小时,正弦函数的值逐渐减小。
二、余弦函数(Cosine Function)余弦函数也是根据锐角三角形的定义得出的一种函数。
一般表示为cos(x),其中x为角度。
余弦函数的值域也是[-1, 1],即cos(x)的取值范围在-1到1之间。
与正弦函数不同的是,当角度增大时,余弦函数的值逐渐减小,当角度减小时,余弦函数的值逐渐增大。
三、正切函数(Tangent Function)正切函数是根据正弦函数和余弦函数的定义得出的一种函数,能够表示角度的斜率。
一般表示为tan(x),其中x为角度。
正切函数的定义域为所有实数,而值域不受限制,即tan(x)的值可以是任意实数。
当角度接近90度时,正切函数的值趋于正无穷大,当角度接近270度时,正切函数的值趋于负无穷大。
锐角三角函数在实际应用中有着广泛的用途。
以下介绍几个常见的应用场景:1. 计算机图形学:锐角三角函数被广泛应用于计算机图形学中的旋转、缩放、平移等操作。
例如,通过正弦函数和余弦函数可以准确地计算出物体的旋转角度和位置。
2. 物理学:在天体运动、弹道学和振动学等物理学领域,锐角三角函数常用于描述物体的运动和振动规律。
通过正弦函数和余弦函数可以计算出物体的位移、速度和加速度等重要参数。
3. 工程学:锐角三角函数在工程学中也有广泛的应用。
锐角三角函数知识点
锐角三角函数知识点锐角三角函数:一、基本概念:1、什么是锐角三角函数:锐角三角函数是一类特殊的函数,涉及到角度和角度对应的三角函数值,用于计算平面向量在多边形中和求解三角形的面积。
2、锐角三角函数的定义:锐角三角函数是基于角度θ,从而定义的三角函数值。
一般情况下,它用半圆线直叙指函数如下所示:sinθ,cosθ,tanθ,cotθ,secθ,cscθ。
3、锐角三角函数的基本关系:cosθ= sin (π/2-θ);sinθ= cos (π/2-θ);tanθ=cot (π/2-θ);cotθ=tan (π/2-θ);secθ=csc(π/2-θ);cscθ=sec (π/2-θ)。
二、圆周角:1、什么是圆周角:圆周角是指以圆等分线在a轴上的量度,即由圆心和两个点确定的弧的长度。
圆周角定义在一个圆的周围,与半径的长度有关,可以用角度μ来表示。
2、单位:圆周角的单位是弧度rad,又称为radian,表示当一个圆的半径为1时,圆周角的长度。
三、锐角的余弦定理:1、锐角余弦定理是用弦和角定义的三角形问题,可以求解共有三角形A、B、C三个锐角所对应边长a、b、c满足关系:a²=b²+c²-2bc cosA;b²=a²+c²-2ac cosB;c²=a²+b²-2ab cosC。
2、此外,锐角余弦定理也可以利用三角形所有边长求解A、B、C三个锐角所对应的角度值,记为A=cos-1[(b²+c²-a²)/2bc];B=cos-1[(a²+c²-b²)/2ac];C=cos-1[(a²+b²-c²)/2ab]。
四、锐角的正弦定理:1、锐角正弦定理是求解三角形的已知一边和两个对边角的问题,满足条件如下:a=b sinA/sinB;b=a sinB/sinA;c=a sinC/sinA,c=bsinC/sinB。
锐角三角函数--讲义资料
锐角三角函数 讲义一、基础知识点: 1.定义:如图在△ABC 中,∠C 为直角,我们把锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sin A ;ca A =sin 把锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cos A ;cb A =cos 把锐角∠A 的对边与邻边的比叫做∠A 的正切,记作tan A ;ba A =tan 2、三角函数值(1)特殊角的三角函数值角度 三角函数 0° 30° 45° 60° 90° s inA 0 12 22 321cosA 1 32 22 12 0tanA313不存在(2)锐角三角函数值的变化:(1)当α为锐角时,各三角函数值均为正数,且0<s inα<1,0<c os α<1,当0°≤α≤45°时,sin α,tan α随角度的增大而_______,co sα随角度的增大而_______.(3)当0°<α<45°时,sin α_____c os α;当45°<α<90°时,sin α______c os α.3、 同角、互余角的三角函数关系:(1)同角三角函数关系:1cos sin 22=+A A .; AA A cos sin tan =;(2)互余锐角的三角函数关系:)90cos(cos sin A B A -︒==,)90sin(sin cos A B A -︒==。
1、 解直角三角形:由直角三角形中除直角以外的两个已知元素(其中至少有一条边),求出所有未知元素的过程,叫做解直角三角形。
直角三角形的可解条件及解直角三角形的基本类型如下表: 已知条件 解法 一条边和一个锐角 斜边c和 锐角A290,sin ,cos ,sin cos B A a c A b c A S c A A ο=-===直角边a 和锐角A 90,,,tan sin a aB A b c A Aο=-==两条边两条直角 边a 和b 22c a b =+,1,90,2A B A S ab ο=-=直角边a和 斜边c22,sin ,,90ab c a A A B A cο=-==-备注:a 、b、c 为三角形的三边;A 、B 、C 为三角形的三个内角、S 为三角形的面积 三、典型例题:1. 锐角三角函数的相关概念例1、如图1,在RT △A BC中,∠C=90°,si nA =53,则tanB 的值为(ﻩ)A .34ﻩ B.54 ﻩC .45 ﻩﻩD .43例5例2、如图,⊙O 是△A BC 的外接圆,A D是⊙O的直径,若⊙O 的半径是23,AC=2,则sinB 的值是( )A.32ﻩﻩ B.23ﻩﻩﻩC .43 ﻩﻩD .34ﻩ例3:已知在Rt ABC △中,∠C 为直角,A C = 4cm ,BC = 3cm ,sin ∠A = . 例4:在Rt ABC △中,90C ∠=°,a b c ,,分别是A B C ∠∠∠,,的对边,若2b a =,则tan A = .例5:如图,在Rt △ABC 中,∠C =90°,AB =5,AC =2,则cos A的值是( ) A.错误! B.错误! C.错误! D .错误!A CB图1A BCDO例2ACB ACBDBACDE 例6:如图2,在△ABC 中,∠C =90°,AB =10cm ,sinA =54,则B C的长为 ___c m. 例6例7:正方形网格中,AOB ∠如图3放置,则cos AOB ∠的值为( )A.55ﻩ B.255ﻩ C.12ﻩﻩD.2 典型例题题型一:求锐角三角函数的值例1 在Rt △ABC 中,∠C =90°,sin B=35,点D 在BC边上,且∠ADC=45°,DC=6,求∠BAD 的正切值.变式训练1 如图,在ABC △中,90ACB ∠=,CD AB ⊥于D ,若23AC =,32AB =,则tan BCD ∠的值为( ) A.2 B .2C .6ﻩD .3变式训练2如图,在等边△ABC 中,D 为BC 边上一点,E 为AC 边上一点,且∠ADE=60°,BD=4,CE=43,则△ABC 的面积为( )A.83B.15ﻩC.3D.3题型三:化简计算例1(1))计算:20113015(1)()(cos68)338sin 602π---+++-.ABO例7变式1图 变式2图变式:已知α是锐角,且s in(α+15°)=32。
(完整)锐角三角函数—知识讲解
锐角三角函数—知识讲解【学习目标】1.结合图形理解记忆锐角三角函数定义;2.会推算30°、45°、60°角的三角函数值,并熟练准确的记住特殊角的三角函数值; 3.理解并能熟练运用“同角三角函数的关系"及“锐角三角函数值随角度变化的规律".【要点梳理】要点一、锐角三角函数的概念如图所示,在Rt △ABC 中,∠C =90°,∠A 所对的边BC 记为a ,叫做∠A 的对边,也叫做∠B 的邻边,∠B 所对的边AC 记为b ,叫做∠B 的对边,也是∠A 的邻边,直角C 所对的边AB 记为c ,叫做斜边.锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即sin A aA c∠==的对边斜边;锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cos A bA c ∠==的邻边斜边;锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即tan A aA A b∠==∠的对边的邻边.同理sin B b B c ∠==的对边斜边;cos B aB c∠==的邻边斜边;tan B b B B a ∠==∠的对边的邻边.要点诠释:(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化. (2)sinA ,cosA,tanA 分别是一个完整的数学符号,是一个整体,不能写成,,,不能理解成sin 与∠A ,cos 与∠A ,tan 与∠A 的乘积.书写时习惯上省略∠A 的角的记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan ∠AEF ”,不能写成 “tanAEF";另外,、、常写成、、.(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在. (4)由锐角三角函数的定义知:当角度在0°〈∠A〈90°间变化时,,,tanA >0.要点二、特殊角的三角函数值锐角Ca bc30°45°160°要点诠释:(1)通过该表可以方便地知道30°、45°、60°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)仔细研究表中数值的规律会发现:、、的值依次为、、,而、、的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:①正弦、正切值随锐角度数的增大(或减小)而增大(或减小);②余弦值随锐角度数的增大(或减小)而减小(或增大).要点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,;(2)平方关系:; (3)倒数关系:或;(4)商数关系:.要点诠释:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.【典型例题】类型一、锐角三角函数值的求解策略1.(2016•安顺)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A .2B .C .D .【思路点拨】根据勾股定理,可得AC 、AB 的长,根据正切函数的定义,可得答案. 【答案】D . 【解析】 解:如图:,由勾股定理,得AC=,AB=2,BC=, ∴△ABC 为直角三角形, ∴tan ∠B==,故选:D .【总结升华】本题考查了锐角三角函数的定义,先求出AC 、AB 的长,再求正切函数. 举一反三:【变式】在Rt ΔABC 中,∠C =90°,若a =3,b =4,则c = ,sinA = , cosA = ,sinB = , cosB = .【答案】c = 5 ,sinA = 35 , cosA =45,sinB =45, cosB =35.类型二、特殊角的三角函数值的计算2.求下列各式的值:(1)(2015•茂名校级一模) 6tan 230°﹣sin60°﹣2sin45°;ACa bc(2)(2015•乐陵市模拟)sin60°﹣4cos230°+sin45°•tan60°;(3)(2015•宝山区一模)+tan60°﹣.【答案与解析】解:(1)原式==122-.(2)原式=×﹣4×()2+×=﹣3+=63-;(3)原式=+﹣=2+﹣=3﹣2+2=322+.【总结升华】熟记特殊角的三角函数值或借助两个三角板推算三角函数值,先代入特殊角的三角函数值,再进行化简.举一反三:【变式】在RtΔABC中,∠C=90°,若∠A=45°,则∠B=,sinA=,cosA=,sinB=,cosB=.【答案】∠B=45°,sinA=22,cosA=22,sinB=22,cosB=22.类型三、锐角三角函数之间的关系3.(2015•河北模拟)已知△ABC中的∠A与∠B满足(1﹣tanA)2+|sinB﹣|=0(1)试判断△ABC的形状.(2)求(1+sinA )2﹣2﹣(3+tanC )0的值.【答案与解析】解:(1)∵|1﹣tanA)2+|sinB ﹣|=0,∴tanA=1,sinB=,∴∠A=45°,∠B=60°,∠C=180°﹣45°﹣60°=75°,∴△ABC 是锐角三角形;(2)∵∠A=45°,∠B=60°,∠C=180°﹣45°﹣60°=75°,∴原式=(1+)2﹣2﹣1=.【总结升华】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.类型四、锐角三角函数的拓展探究与应用4.如图所示,AB 是⊙O 的直径,且AB =10,CD 是⊙O 的弦,AD 与BC 相交于点P , 若弦CD =6,试求cos ∠APC 的值.【答案与解析】连结AC,∵ AB 是⊙O 的直径,∴ ∠ACP =90°, 又∵ ∠B =∠D ,∠PAB =∠PCD ,∴ △PCD ∽△PAB,∴ PC CD PA AB=. 又∵ CD =6,AB =10, ∴ 在Rt △PAC 中,63cos 105PC CD APC PA AB ∠====.【总结升华】直角三角形中,锐角的三角函数等于两边的比值,当这个比值无法直接求解,可结合相似三角形的性质,利用对应线段成比例转换,间接地求出这个比值.锐角的三角函数是针对直角三角形而言的,故可连结AC,由AB 是⊙O 的直径得∠ACB =90°,cos PC APC PA ∠=,PC 、PA 均为未知,而已知CD =6,AB =10,可考虑利用△PCD ∽△PAB 得PC CDPA AB=.5.通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图1①,在△ABC 中,AB =AC,顶角A 的正对记作sadA ,这时sadA BCAB==底边腰.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:(1)sad60°=________.(2)对于0<A <180°,∠A 的正对值sadA 的取值范围是_______.(3)如图1②,已知sinA =35,其中∠A 为锐角,试求sadA 的值.【答案与解析】(1)1; (2)0<sadA <2;(3)如图2所示,延长AC 到D ,使AD =AB ,连接BD .设AD =AB =5a ,由3sin 5BC A AB ==得BC =3a,∴ 22(5)(3)4AC a a a =-=,∴ CD =5a-4a =a ,22(3)10BD a a a =+=, ∴ 10sadA 5BD AD ==. 【总结升华】(1)将60°角放在等腰三角形中,底边和腰相等,故sadA =1;(2)在图①中设想AB =AC 的长固定,并固定AB 让AC 绕点A 旋转,当∠A 接近0°时,BC 接近0,则sadA 接近0但永远不会等于0,故sadA >0,当∠A 接近180°时,BC 接近2AB ,则sadA 接近2但小于2,故sadA <2;(3)将∠A 放到等腰三角形中,如图2所示,根据定义可求解.。
锐角三角函数知识点
《锐角三角函数》知识点一:锐角三角函数(正弦、余弦、正切)(1)在Rt △ABC 中,∠C =90°,把锐角A 的对边与斜边的比叫做∠A 的正弦 ,记作sin A ,即sin A aA c∠==的对边斜边;(2)在Rt △ABC 中,∠C =90°,把∠A 的邻边与斜边的比叫做∠A 的余弦,记作cos A ,即 bcos cA A ∠==的邻边斜边;(3)在Rt △ABC 中,∠C =90°,把∠A 的对边与邻边的比叫做∠A 的正切, 记作tan A ,即atan bA A A ∠=∠的对边=的邻边。
锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数。
知识点二、300、450、600的正弦值、余弦值和正切值如下表知识点三、解直角三角形在直角三角形中,由已知元素求未知元素的过程就是解直角三角形。
在Rt△ABC 中,∠C=90°,设三个内角A 、B 、C 所对的边分别为a 、b 、c (以下字母同),则解直角三角形的主要依据是:(1)两锐角之间的关系: A +B =90° (2)三条边之间的关系:(3)边角之间的关系: ①斜边)(sin =A =______, 斜边)(sin =B =______; ②斜边)(cos =A =______,斜边)(cos =B =______;③的邻边A A ∠=)(tan =______,)(tan 的对边B B ∠==______.已知∠A 为锐角,sinA 随着角度的增大而 增大 正比cosA 随着角度的增大而 减小 反比tanA 随着角度的增大而 增大 正比知识点一、二、三对应基础练习1.在Rt ABC △中,9032C AB BC ∠===°,,,则cos A 的值是 。
2.在Rt △ABC 中,∠C=90°,BC = 1,AB = 4 , 则sin A 的值是( )A .1515 B .41 C .31 D .4153. 如图1,在Rt △ABC 中,ACB ∠90=,CD ⊥AB 于D ,若3BC =,4AC =,则tan BCD ∠的值为 ( )A.34 B.43 C.35 D.454.在△ABC 中,90C ∠=,12sin 13A =,周长为60,CD 是斜边AB 上的高,则CD 的长是 。
完整版)锐角三角函数超经典讲义
完整版)锐角三角函数超经典讲义锐角三角函数锐角三角函数是三角函数的一种,包括正弦、余弦和正切。
在一个锐角三角形中,锐角的对边、邻边和斜边之间的比例就是锐角三角函数。
具体来说,对于锐角A,其正弦、余弦和正切分别表示为sinA、cosA和XXX。
其中,XXX表示A的对边与斜边的比,cosA表示A的邻边与斜边的比,XXX表示A的对边与邻边的比。
这些符号都是完整的,单独的“sin”没有意义。
在用大写字母表示角度时,一般省略“∠”符号。
在求解锐角三角函数时,关键在于构造以此锐角所在的直角三角形。
例如,在一个直角三角形ABC中,如果已知∠C=90°,cosB=4/5,则AC:BC:AB=3:4:5.另外,需要注意的是,正弦、余弦和正切是实数,没有单位,它们的大小只与角的大小有关,而与所在直角三角形无关。
例1:在矩形ABCD中,E是BC边上的点,AE=BC,DF⊥AE,垂足为F,连接DE。
证明△ABE≌△DFA,并求sin∠EDF的值。
解:首先,连接AC,易得△ABC为等腰直角三角形,∠BAC=45°。
又因为AE=BC,所以△ABE和△ACD相似,即∠ABE=∠ACD,∠XXX∠ADC。
又因为∠ADC=90°,所以∠AEB=90°。
因此,△ABE和△DFA是全等三角形。
接下来,求sin∠EDF的值。
由于∠BAC=45°,所以∠AED=45°。
由于△ABE和△DFA全等,所以∠XXX∠BAE=45°。
因此,sin∠EDF=sin45°=1/√2.例2:在△ABC中,∠A=60°,∠B=45°,AB=8,求△ABC面积(结果可保留根号)。
解:由于∠A=60°,∠B=45°,所以∠C=75°。
根据三角函数的定义,可以得到:sin75°=cos15°=(sin60°cos45°+cos60°sin45°)/2=√6+√2/4cos75°=sin15°=(sin60°cos45°-cos60°sin45°)/2=√6-√2/4因此,△ABC面积为S=(1/2)AB·BC·sin75°=4(√6+√2)。
锐角三角函数知识点总结
锐角三角函数知识点总结一、引言锐角三角函数是数学中的基础知识点,它在解决与直角三角形相关的问题中扮演着重要角色。
本文将总结锐角三角函数的基本概念、性质和公式,以及它们在实际问题中的应用。
二、基本概念1. 锐角:角度小于90度的角。
2. 直角三角形:一个角为90度的三角形。
3. 边的命名:- 对边(Opposite side):锐角所对的边。
- 邻边(Adjacent side):锐角旁边的边,但不包括斜边。
- 斜边(Hypotenuse):直角三角形中最长的边,对直角的两边进行闭合。
4. 锐角三角函数:- 正弦(Sine, sin):锐角的对边与斜边的比值。
- 余弦(Cosine, cos):锐角的邻边与斜边的比值。
- 正切(Tangent, tan):锐角的对边与邻边的比值。
三、基本公式1. 定义公式:- sin(θ) = 对边 / 斜边- cos(θ) = 邻边 / 斜边- tan(θ) = 对边 / 邻边2. 互余关系:- sin(90° - θ) = cos(θ)- cos(90° - θ) = sin(θ)- tan(90° - θ) = cot(θ)3. 基本恒等式:- sin²(θ) + cos²(θ) = 1- 1 + tan²(θ) = sec²(θ)- 1 + cot²(θ) = csc²(θ)4. 特殊角的三角函数值:- sin(30°) = 1/2, cos(30°) = √3/2, tan(30°) = √3/3 - sin(45°) = √2/2, cos(45°) = √2/2, tan(45°) = 1- sin(60°) = √3/2, cos(60°) = 1/2, tan(60°) = √3四、应用1. 解直角三角形问题:- 利用三角函数求解边长。
锐角三角函数
一、知识讲解1.锐角三角函数的定义2.特殊角三角函数锐角三角函数如图所示,在中,、、分别为、、的对边.()正弦:中,锐角的对边与斜边的比叫做的正弦,记作,即.()余弦:中,锐角的邻边与斜边的比叫做的余弦,记作,即.()正切:中,锐角的对边与邻边的比叫做的正切,记作,即.【注意】()对于锐角的每一个确定的值:、、都有唯一的一个确定的值与其对应,所以、、是的函数.锐角的正弦、余弦、正切都叫做的三角函数.()正弦、余弦、正切都是在直角三角形中给出的,要避免应用时对任意三角形随便套用定义.()、、分别是正弦、余弦、正切的数学表达符号,是一个整体,不能理解为与、与、与的乘积.()是线段之间的一个比值,所以是没有单位的.三角函数【注意】的三角函数值作为了解.通过观察上面的表格,可以总结出:()当时,的正弦值随着角度的增大而增大;()当时,的余弦值随着角度的增大而减小;()当时,的正切值随着角度的增大而增大;()当两个角都为锐角时,若两角的某一种三角函数值相等时,角相等;()记忆方法:爱智康2018/06/12Rt △ABC a b c ∠A ∠B ∠C 1Rt △ABC A ∠A sin A sin A ==BC AB ac 2Rt △ABC A ∠A cos A cos A ==AC AB bc 3Rt △ABC A ∠A tan A tan A ==BC AC ab1A sin A cos A tan A sin A cos A tan A ∠A A ∠A 23sin A cos A tan A sin A cos A tan A 4sin A 0∘30∘45∘60∘90∘15∘sin A 0122√23√21−6√2√4cos A 13√22√21206+−−−√2√4tan A3√313√−2−3√15∘10⩽α⩽90∘∘α20⩽α⩽90∘∘α30⩽α⩽90∘∘α453.锐角三角函数的取值范围4.三角函数关系①从到的值为,;从到的值为,,;②画图形结合三角函数定义去求.()一次函数的为图象与轴正方向夹角的正切值,即斜率.在中,,,又,,,所以.()由三角函数的定义和勾股定理,可以得出同角三角函数的关系:①;②.对于①的变形如下:;.()互余角三角函数关系:①任意锐角的正弦值等于它的余角的余弦值:;②任意锐角的余弦值等于它的余角的正弦值:;()锐角三角函数值的变化规律:①、是锐角,若,则;若,则;② 、是锐角,若,则;若,则;③、是锐角,若,则;若,则.爱智康2018/06/12sin 30∘60∘12,2√23√2cos 30∘60∘3√22√2126k x Rt △ABC ∠C =90∘a >0,b >0,c >0,a <c ,b <c sin A =a c cos A =bc tan A =ab0<sin A <1,0<cos A <1,tan A >01A +A =1sin 2cos 2tan A =sin Acos AA =1−A =(1+cos A )(1−cos A )sin 2cos 2A =1−A =(1+sin A )(1−sin A )cos 2sin 22sin A =cos(90−A )∘cos A =sin(90−A )∘3AB A >B sin A >sin B A <B sin A <sin B A B A >B cos A <cos B A <B cos A >cos B A B A >B tan A >tan B A <B tan A <tan B。
《锐角三角函数》(解析版)
《锐角三角函数》(解析版)锐角三角函数一、定义三角函数是数学中一类重要的函数,它们与三角关系密切相关。
而锐角三角函数是指在直角三角形中,角度小于90°的三角函数。
1. 正弦函数(sin)正弦函数是指在锐角三角形中,对应的直角边比斜边的比值。
可以用以下公式表示:sinθ = 对边 / 斜边2. 余弦函数(cos)余弦函数是指在锐角三角形中,对应的直角边比斜边的比值。
可以用以下公式表示:cosθ = 邻边 / 斜边3. 正切函数(tan)正切函数是指在锐角三角形中,对边比邻边的比值。
可以用以下公式表示:tanθ = 对边 / 邻边二、性质1. 值域和定义域正弦函数和余弦函数的值域都在[-1, 1]之间,定义域为锐角三角形中的角度范围。
2. 周期性正弦函数和余弦函数在每个周期内都有相同的波形形状,它们的周期都为360°或2π弧度。
3. 正交性正弦函数和余弦函数之间具有正交性,即它们的乘积积分为0。
4. 切线斜率正切函数的斜率可以表示为tanθ的导数,即:f'(θ) = sec^2(θ)5. 三角恒等式锐角三角函数之间满足一系列的三角恒等式,如:sin^2(θ) + cos^2(θ) = 1三、图像与应用1. 图像正弦函数和余弦函数的图像为周期性的正弦波和余弦波,可以通过函数图像进行可视化。
2. 应用锐角三角函数广泛应用于物理学、工程学和计算机图形学等领域。
例如在电路分析中,可以通过正弦函数来表示交流电压的变化;在计算机图形学中,可以通过正弦函数和余弦函数来生成动画效果。
四、常见问题1. 如何计算锐角三角函数的值?通过查阅三角函数表或使用计算器等数学工具,可以准确地计算出锐角三角函数的值。
2. 如何利用锐角三角函数解决实际问题?在实际问题中,可以通过建立三角函数模型并利用已知条件来解决问题。
例如在测量中,可以利用正弦函数或余弦函数计算出某个角度的值。
3. 锐角三角函数与钝角三角函数有什么区别?锐角三角函数与钝角三角函数在定义上有所不同,钝角三角函数可定义为任意角度,而锐角三角函数仅限于小于90°的角度范围。
锐角三角函数基础知识点
锐角三角函数基本知识复习1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
3、特殊角的锐角三角函数值4、当0°<α<90°时sin α 、tan α均随α的增大而增大cos α随α的增大而减小。
5、解直角三角形:(1)解直角三角形的依据:①边的关系:222c b a =+;②角的关系:∠A+∠B=90°;③边角关系:三角函数的定义。
(注意:尽量避免使用中间数据和除法)(2)解直角三角形的基本类型(解直角三角形共有五个元素,即三条边和两个锐角。
解直角三角形至少需要知道2个条件,条件中至少要知道一边 。
)6、应用举例:(1)仰角:视线在水平线上方的角; 俯角:视线在水平线下方的角。
(2) 坡度(坡比):坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。
用字母i 表示,即h i l=。
(坡度一般写成1:m 的形式,如1:5i =等。
) 坡角:把坡面与水平面的夹角记作α(叫做坡角), 那么 tan hi lα==。
(3)方位角:从某点的指北方向按顺时针转到目标方向 的水平角叫做方位角。
如图3,OA 、OB 、OC 、OD的方向角分别是:45°、135°、225°。
(4)方向角:指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。
如图4,OA 、OB 、OC 、OD 的方向角分别是: 北偏东30°, 南偏东45°南偏西60°, 北偏西60° (东北方向)(东南方向),(西南方向)(西北方向)。
7、解直角三角形的应用(1)利用直角三角形或构造直角三角形解决实际问题。
(2)构造直角三角形后,一般寻找等量关系式,列方程,用方程方法求高度问题。
总结:利用解直角三角形求高度时,通常有锐角三角函数把与已知线段在通一条直线上的两条未知线段表示出来,然后构建方程。
初中数学锐角三角函数知识点
初中数学锐角三角函数知识点锐角三角函数是高中数学的重要内容,它涉及到三角函数的定义、性质以及与三角函数相关的常见解题方法。
以下将详细介绍锐角三角函数的知识点。
一、锐角三角函数的定义1. 正弦函数(sine function):在锐角ABC中,以角A为自变量,以对边AB与斜边AC的比值作为函数值。
记作sinA = AB/AC。
2. 余弦函数(cosine function):在锐角ABC中,以角A为自变量,以邻边BC与斜边AC的比值作为函数值。
记作cosA = BC/AC。
3. 正切函数(tangent function):在锐角ABC中,以角A为自变量,以对边AB与邻边BC的比值作为函数值。
记作tanA = AB/BC。
4. 余切函数(cotangent function):在锐角ABC中,以角A为自变量,以邻边BC与对边AB的比值作为函数值。
记作cotA = BC/AB。
5. 正割函数(secant function):在锐角ABC中,以角A为自变量,以斜边AC与邻边BC的比值作为函数值。
记作secA = AC/BC。
6. 余割函数(cosecant function):在锐角ABC中,以角A为自变量,以斜边AC与对边AB的比值作为函数值。
记作cscA = AC/AB。
二、锐角三角函数的性质1. 正弦函数的定义域为[0, π/2],值域为[0, 1],是一个奇函数,即sin(π/2 - A) = cosA。
2. 余弦函数的定义域为[0, π/2],值域为[0, 1],是一个偶函数,即cos(π/2 - A) = sinA。
3.正割函数和余割函数的定义域为(0,π/2)∪(π/2,π),值域为R^+∪R^-。
4.正弦函数和余弦函数的图像是一条周期为2π的曲线,对称于直线x=π/25.正切函数和余切函数的定义域为(0,π/2)∪(π/2,π),值域为R^+∪R^-。
6.正切函数和余切函数的图像是一条周期为π的曲线,对称于直线x=π/2三、常用的锐角三角函数解题方法1. 利用定义求函数值:根据三角函数的定义,利用已知信息计算出函数值。
锐角三角函数的知识点
锐角三角函数的知识点
一、锐角三角函数:(∠A 为锐角)
1.三角函数的定义:∠A 在直角三角形中
⑴正弦:sinA=
斜边的对边A ∠; ⑵余弦:cosA=斜边的邻边
A ∠;
⑶正切:tanA=
的邻边的对边A ∠∠A ; ⑷余切:cotA=的对边
的邻边
A A ∠∠.
2.取值范围:⑴ 1>sinA (cosA )>0;⑵ tanA (cotA )>0.
3.互余两角的三角函数关系:⑴sin α= cos (900
-α)
⑵cos α= sin (900
-α)
⑶tan α=cot (900
-α)
⑷cot α= tan (900
-α) 4.特殊角的三角函数值:
5.增减性:(0
0<α<0
90)
⑴ sin α(tan α)随着α的增大而增大;
⑵ cos α(cot α)随着α的增大而减小.
6.同角三角函数关系:
⑴ 平方关系:sin 2α+ cos 2
α=1. ⑵ 倒数关系:tan αcot α=1. ⑶ 商数关系:tan α=
ααcos sin ;cot α=α
α
sin cos .
二、解直角三角形:
1.定义:在直角三角形中,由已知元素求出所有未知元素的过程叫做解这个直角三角形.
2.解直角三角形的基本工具:⑴三边关系;⑵两锐角的关系;⑶边与角的关系.
三、应用举例:
1. 俯角、仰角的概念:
2. 坡度(即坡比):i=h ︰l
坡角为α,则tan
视线
俯角仰角水平线视线铅
垂
线。
锐角三角函数讲义
锐角三角函数第一课时:三角函数定义与特殊三角函数值知识点一:锐角三角函数的定义:一、锐角三角函数定义:在Rt△ABC中,∠C=900, ∠A、∠B、∠C的对边分别为a、b、c,则∠A的正弦可表示为:sinA= ,∠A的余弦可表示为cosA=∠A的正切:tanA= ,它们弦称为∠A的锐角三角函数例1.如图所示,在Rt△ABC中,∠C=90°.①=______,=______;②=______,=______;③=______,=______.例2. 锐角三角函数求值:在Rt △ABC 中,∠C =90°,若a =9,b =12,则c =______,sin A =______,cos A =______,tan A =______, sin B =______,cos B =______,tan B =______.例3.已知:如图,Rt △TNM 中,∠TMN =90°,MR ⊥TN 于R 点,TN =4,MN =3.求:sin ∠TMR 、cos ∠TMR 、tan ∠TMR .对应练习:1、 在Rt △ABC 中,a =5,c =13,求sinA ,cosA ,tanA .2、 如图,△ABC 中,AB=25,BC=7,CA=24.求sinA 的值.25247C BA3、 已知α是锐角,且cos α=34,求sin α、tan α的值.4、在Rt ABC △中,90C ∠=,5AC =,4BC =,则tan A = . 5、在△ABC 中,∠C=90°,sinA=53,那么tanA 的值等于().A.35B. 45C. 34D. 436、在△ABC中,∠C=90°,cosA=,c=4,则a=_______.7、如图,P是∠α的边OA上一点,且P点坐标为(2,3),则sinα=_______,cosα=_________,tanα=______ _.知识点二:特殊角的三角函数值当时,正弦和正切值随着角度的增大而余弦值随着角度的增大而例1.求下列各式的值.(1).计算:︒-︒+︒60tan 45sin 230cos 2.(2)计算:︒-︒+︒30cos 245sin 60tan 2.例2.求适合下列条件的锐角α .(1)21cos =α(2)33tan =α(3)已知α 为锐角,且3)30tan(0=+α,求αtan 的值例3. 三角函数的增减性 1.已知∠A 为锐角,且sin A <21,那么∠A 的取值范围是A. 0°< A < 30°B. 30°< A <60°C. 60°< A < 90°D. 30°< A < 90°2. 已知A 为锐角,且030sin cos <A ,则 ( )A. 0°< A < 60°B. 30°< A < 60°C. 60°< A < 90°D. 30°< A < 90°类型一 特殊三角函数值与计算 1、(1)计算:3-1+(2π-1)0-33tan30°-tan45°(2)计算:030tan 2345sin 60cos 221⎪⎪⎭⎫ ⎝⎛︒-︒+︒+.(3)计算: ;(4)222sin =α (5)33)16cos(6=- α(6)在ABC ∆中,若0)22(sin 21cos 2=-+-B A ,B A ∠∠,都是锐角,求C ∠.类型二:利用网格构造直角三角形1、 如图所示,△ABC 的顶点是正方形网格的格点,则sinACBA2、如图,△ABC 的顶点都在方格纸的格点上,则sin A =_______.3、如图,A 、B 、C 三点在正方形网络线的交点处,若将ABC ∆绕着点A 逆时针旋转得到''B AC ∆,则'tan B 的值为A.41 B. 31 C.21 D. 14、正方形网格中,AOB ∠如图放置,则tan AOB ∠的值是( ) A . 5 5 B. 2 5 5 C.12D. 2ABO类型三:直角三角形求值1、已知Rt △ABC 中,,12,43tan ,90==︒=∠BC A C 求AC 、AB 和cos B .2、如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,⋅=∠43sin AOC 求AB 及OC 的长.3、已知:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,⋅=∠53sin AOC(1)求⊙O 的半径OA 的长及弦心距OC ; (2)求cos ∠AOC 及tan ∠AOC .4、已知A ∠是锐角,,求A cos ,A tan 的值 类型四. 利用角度转化求值:1、已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点.DE ∶AE =1∶2.求:sin B 、cos B 、tan B .2、 如图,直径为10的⊙A 经过点(05)C ,和点(00)O ,,与x 轴的正半轴交于点D ,B 是y 轴右侧圆弧上一点,则cos ∠OBC 的值为( ) A .12B 3C .35D .45D C B A Oy x第8题图3、如图,角 的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= .4、如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,,则这个菱形的面积= cm 2.5、如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为32,2AC =,则sin B 的值是( )A .23B .32C .34D .436、如图,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =,AB=8,则tan EFC ∠的值为 ( )A.34B.43C.35D.457、如图,在等腰直角三角形ABC ∆中,90C ∠=︒,6AC =,D 为AC 上一点,若 ,则AD 的长为( )A 2.2 C .1 D .228、如图,在Rt△ABC中,∠C=90°,AC=8,∠A的平分线AD=求∠B的度数及边BC、AB的长.类型五. 化斜三角形为直角三角形1、如图,在△ABC中,∠A=30°,∠B=45°,AC=23,求AB的长.2、已知:如图,在△ABC中,∠BAC=120°,AB=10,AC =5.求:sin∠ABC的值.3、如图,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形.若AB=2,求△ABC的周长.(结果保留根号)4、已知:如图,△ABC中,AB=9,BC=6,△ABC的面积等于9,求sin B.5、ABC中,∠A=60°,AB=6 cm,AC=4 cm,则△ABC的面积是A.23cm2.43cm2 C.63cm2D.12 cm2第二课时:解直角三角形知识点三:解直角三角形1.在解直角三角形的过程中,一般要用的主要关系如下:在Rt△ABC中,∠C=90°,AC=b,BC=a,AB=c,①三边之间的等量关系:________________________________.②两锐角之间的关系:__________________________________.③边与角之间的关系:A sincos_______;=Bsin______;==BA cos=_____;______.④直角三角形中成比例的线段.在Rt△ABC中,∠C=90°,CD⊥AB于D.CD2=_________;AC2=_________;BC2=_________;AC·BC=_________.类型一例1.在Rt△ABC中,∠C=90°.(1)已知:a=35,2c,求∠A、∠B,b;=35(2)已知:3a,2=b,求∠A、∠B,c;=2(3)已知:,6=c,求a、b;(4)已知:求a、c;(5)已知:∠A=60°,△ABC的面积,3S求a、b、c及∠=12B.例2.已知:如图,△ABC中,∠A=30°,∠B=60°,AC =10cm.求AB及BC的长.例3.已知:如图,Rt △ABC 中,∠D =90°,∠B =45°,∠ACD =60°.BC =10cm .求AD 的长.例4.已知:如图,△ABC 中,∠A =30°,∠B =135°,AC =10cm .求AB 及BC 的长.知识点四:三角函数应用类型一: 三角函数在几何中的应用1.已知:如图,在菱形ABCD 中,DE ⊥AB 于E ,BE =16cm ,⋅=1312sin A 求此菱形的周长.2.已知:如图,Rt △ABC 中,∠C =90°,3==BC AC ,作∠DAC =30°,AD 交CB 于D 点,求:(1)∠BAD ;(2)sin ∠BAD 、cos ∠BAD 和tan ∠BAD .3. 已知:如图△ABC 中,D 为BC 中点,且∠BAD =90°,,求:sin ∠CAD 、cos ∠CAD 、tan ∠CAD .4. 如图,在Rt △ABC 中,∠C=90°,53sin =B ,点D 在BC 边上,DC= AC = 6,求tan ∠BAD 的值.DCBA5.如图,△ABC中,∠A=30°,,AC AB的长.ACB第三课时,解直角三角形应用类型二:解直角三角形的实际应用一、仰角与俯角:仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【答案与解析】 (1)1; (2)0<sadA<2; (3)如图 2 所示,延长 AC 到 D,使 AD=AB,连接 BD.
设 AD=AB=5a,由 sin A BC 3 得 BC=3a, AB 5
∴ AC (5a)2 (3a)2 4a ,
∴ CD=5a-4a=a, BD a2 (3a)2 10a ,
=.
【总结升华】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.
类型四、锐角三角函数的拓展探究与应用
4.如图所示,AB 是⊙O 的直径,且 AB=10,CD 是⊙O 的弦,AD 与 BC 相交于点 P, 若弦 CD=6,试求 cos∠APC 的值.
【答案与解析】 连结 AC,∵ AB 是⊙O 的直径,∴ ∠ACP=90°, 又∵ ∠B=∠D,∠PAB=∠PCD,∴ △PCD∽△PAB,
∴
sadA BD
10
.
AD 5
【总结升华】(1)将 60°角放在等腰三角形中,底边和腰相等,故 sadA=1;(2)在图①中设想 AB=AC 的长固定,并固定 AB 让 AC 绕点 A 旋转,当∠A 接近 0°时,BC 接近 0,则 sadA 接近 0 但永远 不会等于 0,故 sadA>0,当∠A 接近 180°时,BC 接近 2AB,则 sadA 接近 2 但小于 2,故 sadA <2;(3)将∠A 放到等腰三角形中,如图 2 所示,根据定义可求解.
最全中学生学习资料整理
锐角三角函数—知识讲解
【学习目标】 1.结合图形理解记忆锐角三角函数定义; 2.会推算 30°、45°、60°角的三角函数值,并熟练准确的记住特殊角的三角函数值; 3.理解并能熟练运用“同角三角函数的关系”及“锐角三角函数值随角度变化的规律”.
【要点梳理】 要点一、锐角三角函数的概念
b a
.
要点诠释: (1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线
段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化.
(2)sinA,cosA,tanA 分别是一个完整的数学符号,是一个整体,不能写成
,
,
,不能理解成 sin 与∠A,cos 与∠A,tan 与∠A 的乘积.书写时习惯上省略∠A 的角的
∴ PC CD . PA AB
又∵ CD=6,AB=10, ∴ 在 Rt△PAC 中,
cos APC PC CD 6 3 . PA AB 10 5
【总结升华】直角三角形中,锐角的三角函数等于两边的比值,当这个比值无法直接求解,可结合相似
最全中学生学习资料整理
三角形的性质,利用对应线段成比例转换,间接地求出这个比值.
A.2 B.
C. D.
【思路点拨】根据勾股定理,可得 AC、AB 的长,根据正切函数的定义,可得答案. 【答案】D. 【解析】 解:如图:
, 由勾股定理,得 AC= ,AB=2 ,BC= , ∴△ABC 为直角三角形, ∴tan∠B= = ,
故选:D. 【总结升华】本题考查了锐角三角函数的定义,先求出 AC、AB 的长,再求正切函数. 举一反三:
记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan∠AEF”,不能写成
“tanAEF”;另外,
、
、
常写成
、
、
.
(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在.
(4)由锐角三角函数的定义知:
当角度在 0°<∠A<90°间变化时,
,
,tanA>0.
类型二、特殊角的三角函数值的计算
2.求下列各式的值: (1)(2020•茂名校级一模) 6tan230°﹣ sin60°﹣2sin45°; (2)(2020•乐陵市模拟) sin60°﹣4cos230°+sin45°•tan60°;
(3)(2020•宝山区一模)
+tan60°﹣
.
【答案与解析】 解:(1)原式=
(1)互余关系:
,
;
(2)平方关系:
;
(3)倒数关系:
或
;
(4)商数关系:
.
要点诠释: 锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算 时巧用这些关系式可使运算简便.
最全中学生学习资料整理
【典型例题】
类型一、锐角三角函数值的求解策略
1.(2020•安顺)如图,在网格中,小正方形的边长均为 1,点 A,B,C 都在格点上,则∠ABC 的正切值是( )
,
sinA =
, cosA =
, sinB =
, cosB =
.
最全中学生学习资料整理
【答案】 ∠B = 45°, sinA =
2
,
cosA
=
2 , sinB =
2
,
cosB
=
2
.
2
2
2
2
类型三、锐角三角函数之间的关系
3.(2020•河北模拟)已知△ABC 中的∠A 与∠B 满足(1﹣tanA)2+|sinB﹣ |=0
如图所示,在 Rt△ABC 中,∠C=90°,∠A 所对的边 BC 记为 a,叫做∠A 的对边,也叫做∠B 的邻 边,∠B 所对的边 AC 记为 b,叫做∠B 的对边,也是∠A 的邻边,直角 C 所对的边 AB 记为 c,叫做斜边.
B c
a
A
b
C
锐角 A 的对边与斜边的比叫做∠A 的正弦,记作 sinA,即 sin A A的对边 a ; 斜边 c
对记作 sadA,这时 sadA 底边 BC .容易知道一个角的大小与这个角的正对值也是相互唯一确定 腰 AB
的.根据上述角的正对定义,解下列问题: (1)sad60°=________. (2)对于 0<A<180°,∠A 的正对值 sadA 的取值范围是_______.
3
(3)如图 1②,已知 sinA= ,其中∠A 为锐角,试求 sadA 的值.
锐角的三角函数是针对直角三角形而言的,故可连结 AC,由 AB 是⊙O 的直径得∠ACB=90°,
cos APC PC ,PC、PA 均为未知,而已知 CD=6,AB=10,可考虑利用△PCD∽△PAB 得 PC CD .
PA
PA AB
5.通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确 定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们 定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图 1①,在△ABC 中,AB=AC,顶角 A 的正
【变式】在R tΔA B C 中, ∠C = 90°,若 a = 3 , b = 4 ,则 c =
,
sinA =
, cosA =
, sinB =
, cosB =
.
【答 案】 c = 5 , sinA =
cosB
=
3
.
5
3 , cosA = 4 , sinB = 4 ,
5
5
5
A
B c
a
b
C
最全中学生学习资料整理
最全中学生学习资料整理
要点二、特殊角的三角函数值 利用三角函数的定义,可求出 30°、45°、60°角的各三角函数值,归纳如下: 锐角
30°
45°
1
60°
要点诠释: (1)通过该表可以方便地知道 30°、45°、60°角的各三角函数值,它的另一个应用就是:如果知
道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若
,则锐角
.
(2)仔细研究表中数值的规律会发现:
、
、
的值依次为 、 、 ,而
、
、
的值的
顺序正好相反,
、
、
的值依次增大,其变化规律可以总结为:
①正弦、正切值随锐角度数的增大(或减小)而增大(或减小); ②余弦值随锐角度数的增大(或减小)而减小(或增大). 要点三、锐角三角函数之间的关系 如图所示,在 Rt△ABC 中,∠C=90°.
(1)试判断△ABC 的形状.
(2)求(1+sinA)2﹣2
﹣(3+tanC)0 的值.
【答案与解析】
解:(1)∵|1﹣tanA)2+|sinB﹣ |=0,
∴tanA=1,sinB= ,
∴∠A=45°,∠B=60°,∠C=180°﹣45°﹣60°=75°, ∴△ABC 是锐角三角形; (2)∵∠A=45°,∠B=60°,∠C=180°﹣45°﹣60°=75°, ∴原式=(1+ )2﹣2 ﹣1
锐角 A 的邻边与斜边的比叫做∠A 的余弦,记作 cosA,即 cos A A的邻边 b ; 斜边 c
锐角 A 的对边与邻边的比叫做∠A 的正切,记作 tanA,即 tan A A的对边 a . A的邻边 b
同理 sin
B
B的对边 斜边
b c
; cos
B
B的邻边 斜边
a c
;
tanΒιβλιοθήκη BB的对边 B的邻边
=1 2. 2
(2) 原式= × ﹣4×( )2+ ×
= ﹣3+
= 6 3;
(3) 原式=
+﹣
=2 + ﹣
=3 ﹣2 +2
= 32 2.
【总结升华】熟记特殊角的三角函数值或借助两个三角板推算三角函数值,先代入特殊角的三角函数值, 再进行化简.
举一反三:
【变式】在 R tΔA B C 中, ∠C = 90°,若∠A=45°,则 ∠B =