初中数学综合测试及答案
(苏科版)初中数学七年级上册 第3章综合测试试卷03及答案
第3章综合测试一、选择题1.单项式27x y -,23x yz ,12xy -,25x y ,0.5xy ,34x -的和是()A .五次三项式B .五次四项式C .三次多项式D .四次多项式2.下列判断错误的是()A .多项式2524x x -+是二次三项式B .单项式2343a b c -的系数是3-,次数是9C .式子5m +,ab ,26(1)a -,2-,st都是代数式D .若a 为有理数,则9a 一定大于a3.已知代数式2x y -的值是3,则代数式124x y +-的值是( )A .4-B .4C .7D .7-4.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度是60 km/h ,水流速度是km/h a ,3 h 后两船相距( )A .6a 千米B .3a 千米C .360千米D .180千米5.如图1,将一个边长为m 的正方形纸片剪去两个小长方形得到一个如图2所示的图形,再将剪下的两个小长方形拼成如图3所示的一个新的长方形,则图3中的长方形的周长为()A .23m n -B .48m n -C .24m n-D .410m n-6.有一组单项式如下:2x -,23x ,34x -,45x ……,则第100个单项式是( )A .100100x B .100100x -C .100101x D .100101x -7.当4x =时,多项式7533ax bx cx ++-∣的值为4-,则当4x =-时,该多项式的值为( )A .4B .3-C .2-D .答案不确定8.如图所示的运算程序中,若开始输入的x 值为24,我们发现第1次输出的结果为12,第2次输出的结果为6,……则第1 006次输出的结果为()A .6B .3C .24D .129.如果a ,b 互为相反数,x ,y 互为倒数,m 的倒数等于它本身,则26()3a b m xy ++-的值是( )A .2-B .1-C .0D .110.把四张形状大小完全相同的小长方形卡片(如图1)不重复地放在一个底面为长方形(长为 cm m ,宽为 cm n )的盒子底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示.则图2中两块阴影部分周长和是()cmA .m n +B .2m n +C .4nD .4m二、填空题11.多项式2324xy x y --的各项为________,次数为________.12.小明说:“请你任意想一个数,把这个数乘3-后加12,然后除以6,再加上你原来所想的那个数的一半,我可以知道你计算的结果”请你写出这个计算结果是________.13.某商品的原价是每件x 元,在销售时每件加价20元,再降价15%,则现在每件的售价是________元.14.已知多项式225y y -+的值为7,则多项式2421y y -+的值等于________.15.若多项式的一次项系数是5-,二次项系数是8,常数项是2-,且只含一个字母x ,请写出这个多项式________.16.若a 是最小的正整数,b 是绝对值最小的整数,c 的绝对值是12,则22234a bc c -+的值是________.17.若27m n a b -+与443a b -的和仍是一个单项式,则m n -=________.18.如图所示的运算程序中,若开始输入的x 的值为1-,我们发现第一次输出的结果为2,第二次输出的结果为1,则第2 018次输出的结果为________.三、解答题19.()()22222253253a b a b a b ++---,其中满足2|2|(1)0a b -++=.20.已知22335A x y xy =+-,22234B xy y x =-+.(1)化简:2B A -;(2)已知22x a b +-与13y ab 为同类项,求出2B A -的值.21.某家具厂生产一种课桌和椅子,课桌每张定价200元,椅子每把定价80元,厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:每买一张课桌就赠送一把椅子;方案二:课桌和椅子都按定价的80%付款.某校计划添置100张课桌和x 把椅子.(1)若100x =,请计算哪种方案划算;(2)若100x >,请用含x 的代数式分别把两种方案的费用表示出来;(3)若300x =,如果两种方案可以同时使用,请帮助学校设计一种最省钱的方案.22.已知多项式2313256(2)(3)4mx y m xy n x y -+-+--是六次三项式,记作A .(1)求m ,n 的值;(2)若333321B x y xy =-+-,证明:无论x ,y 取何值,2A B +的值不变.23.对任意的有理数a ,b ,c ,d ,我们规定:a bad bc c d=-,根据这一规定,解答以下问题:若x ,y 同时满足136 5x y -=-,3 44y x =-,求3 2x y--的值.24.阅读下列材料,并解决后面的问题.材料:一般地,若n a b =(0a >且1a ¹,0b >),则n 叫做以a 为底b 的对数,记为log a b (即log a b n =),如43=81,则4叫做以3为底81的对数,记为3log 81(即3log 814=).(1)计算以下各对数的值:3log 9=________,3log 27=________,3log 243=________.(2)通过(1)的计算,写出3log 9,3log 27,3log 243这三个对数之间的关系式;你能归纳一个一般性的结论吗?即log log a a M N +=?(0a >且1a ¹,0M >,0N >).(3)运用(2)的规律解决以下问题:设2log 3a =,2log 5b =,分别用含a ,b 的代数式表示2log 15,222log (35).第3章综合测试答案解析1.【答案】D【解析】解:依题意得()222322317350.543242x y x yz xy x y xy x x yz x y x æö++-+++-=--ç÷èø;所得多项式的项为:23x yz 、22x y -、34x -,其中多项式的最高次项为23x yz ,\多项式的次数为:2114++=.2.【答案】D【解析】解:A 、多项式2524x x -+是二次三项式,正确,B 、单项式2343a b c -的系数是3-,次数是9,正确,C 、式子5m +,ab ,26(1)a -,2-,s t都是代数式,正确,D 、若a 为有理数,则9a 不一定大于a ,故D 错误.3.【答案】C【解析】解:Q 代数式2x y -的值是3,246x y \-=.\代数式的值124167x y =+-=+=.4.【答案】C【解析】解:由题意知甲顺水航行的速度为(60) km/h a +,乙逆水航行的速度为(60) km/h a -,则3 h 后两船相距3(60)3(60)360(km)a a ++-=.5.【答案】B【解析】解:由图可得:剪下的两小长方形的长为m n -,宽之和为3m n -,\新的长方形的长为m n -,宽为3m n -,∴新长方形的周长可表示为:2(3)2(24)48m n m n m n m n -+-=-=-.6.【答案】C【解析】解:由2x -,23x ,34x -,45x ……得,单项式的系数的绝对值为序数加1,系数的正负为(1)n-,字母的指数为n ,\第100个单项式为100100100(1)(1001)101x x -+=.7.【答案】C【解析】解:当4x =时,75331638410246434ax bx cx a b c ++-=++-=-,所以163841024641a b c ++=-,当4x =-时,7533163841024643(16384102464)3132ax bx cx a b c a b c a ++-=----=-++-=-=-.8.【答案】A【解析】解:根据运算程序,得第1次输出的结果为12,第2次输出的结果为6,第3次输出的结果为3,第4次输出的结果为6,第5次输出的结果为3,……(10061)25021\-¸=…,\第1 006次输出的结果为6.9.【答案】A【解析】解:a Q ,b 互为相反数,x ,y 互为倒数,m 的倒数等于它本身,0a b \+=,1xy =,1m =±,21m \=,26()3601310132a b m xy \++-=´+-´=+-=-.10.【答案】C【解析】解:设小长方形的长为a ,宽为b ,上面的长方形周长:2()m a n a -+-,下面的长方形周长:2(22)m b n b -+-,两式联立,总周长为:2()2(22)444(2)m a n a m b n b m n a b -+-+-+-=+-+,2a b m +=Q (由图可得),\阴影部分总周长为444(2)4444m n a b m n m n +-+=+-=.二、11.【答案】2、2xy -、34x y -4【解析】解:多项式2324xy x y --的各项分别是2、2xy -、34x y -;次数为314+=.根据多项式的次数和项的定义进行解答即可,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.12.【答案】2【解析】解:设所想的数为x ,根据题意,得1111(312)226222x x x x -++=-++=.13.【答案】(115%)(20)x -+或0.8517x +【解析】解:根据题意可得:(115%)(20)x -+或0.8517x +.故答案是:(115%)(20)x -+或0.8517x +.14.【答案】5【解析】解:2257y y -+=Q ,即222y y -=,\原式()2221415y y =-+=+=,故答案为:5.15.【答案】2852x x --【解析】解:由题意可知:2852x x --.故答案为:2852x x --.16.【答案】3【解析】解:由a 是最小的正整数,b 是绝对值最小的整数,c 的绝对值是12,得1a =,0b =,12c =或12c =-.当1a =,0b =,12c =时,原式2120432æö=-+´=ç÷èø;当1a =,0b =,12c =-时,原式2120432æö=-+´-=ç÷èø,故答案为:3.17.【答案】9【解析】解:27m n a b -+Q 与443a b -的和仍是一个单项式,24m \-=,74n +=,解得:6m =,3n =-,故6(3)9m n -=--=.故答案为:9.18.【答案】1【解析】解:第一次输出为2,第二次输出为1,第三次输出为4,第四次输出为2,第五次输出为1,第六次输出为4,……从第三次起开始循环,并且从第二次开始,输出的次数除以3余数是1时,结果是2;出的次数除以3余数是2时,结果是1,被3整除时,结果是4.因为201836722¸=…,故第2 018次输出的结果为1.三、19.【答案】解:原式2222222253225324a b a b a b a b =++--+=+,2|2|(1)0a b -++=Q ,20a \-=,10b +=,解得:2a =,1b =-,则原式8412=+=.【解析】具体解题过程见答案.20.【答案】(1)22335A x y xy =+-Q ,22234B xy y x =-+,()()222222222222234335468335599B A xy y x x y xy xy y x x y xy x xy y \-=-+-+-=-+--++=+-.(2)22x a b +-Q 与13yab 的同类项,21x \+=,2y =,解得:1x =-,2y =,当1x =-,2y =时,原式225(1)9(1)29249=´-+´-´-´=-.【解析】具体解题过程见答案.21.【答案】(1)当100x =时,方案一:10020020000´=(元);方案二:100(20080)80%22400´+´=(元),2000022400Q <,\方案一省钱.(2)当100x >时,方案一:10020080(100)8012000x x ´+-=+;方案二:(10020080)80%6416000x x ´+´=+,答:方案一、方案二的费用为:(8012000)x +、(6416000)x +元.(3)当300x =时,①按方案一购买:1002008020036000´+´=(元);②按方案二购买:(10020080300)80%35200´+´´=(元);③先按方案一购买100张课桌,同时送100把椅子;再按方案二购买200把椅子,1002008020080%32800´+´´=(元),360003520032800>>,则先按方案一购买100张桌子,同时送100把椅子;再按方案二购买200把椅子最省.【解析】具体解题过程见答案.22.【答案】(1)Q 多项式2313256(2)(3)4m x y m xy n x y -+-+--是六次三项式,23103020m n m ì+-=ï\-=íï-¹î,解得:2m =-,3n =.(2)由(1)得333644A x y xy =--,又333321B x y xy =-+-,()333333333333264423216446426A B x y xy x y xy x y xy x y xy \+=--+-+-=---+-=-,故无论x ,y取何值,2A B +的值不变.【解析】具体解题过程见答案.23.【答案】解:根据题意得5613344x y x y -=ìí+=î①②,23´+´①②,得1938x =,解得2x =,把2x =代入②得,644y +=,解得12y =-,12 11122323 2223 2x y -==´-´=---.【解析】具体解题过程见答案.24.【答案】(1)235(2)927243´=Q ,333log 9log 27log 243\+=,能,log log log a a a M N MN +=.(3)2log 3a =Q ,2log 5b =,2222log 15log 35log 3log 5a b \=´=+=+,()2323222log 35log 3log 523a b =+=+.【解析】(1)239=Q ,3327=,53243=,3log 92\=,3log 273=,3log 2435=,故答案为2,3,5.(2)具体解题过程见答案.(3)具体解题过程见答案.。
(苏科版)初中数学七年级上册 第4章综合测试试卷01及答案
第四章综合测试一、单选题1.下列判断错误的是()A .若a b =,则33ac bc -=-B .若a b =,则33a b =--C .若ax bx =,则a b=D .若2x =,则22x x=2.已知3x k =-,2y k =+,则y 与x 的关系是( )A .5x y +=B .1x y +=C .1x y -=D .1y x =-3.下列各式不是方程的是( )A .20x x +=B .0x y +=C .1x x+D .0x =4.将372x x -=变形正确的是( )A .327x x +=B .327x x -=-C .327x x +=-D .327x x -=5.下列等式的变形中,不正确的是( )A .若x y =,则55x y +=+B .若(0)x ya a a=¹,则x y =C .若33x y -=-,则x y=D .若mx my =,则x y=6.有一应用题:“李老师存了一个两年的定期储蓄5 000元,到期后扣除20%的利息税能取5 176元,求这种储蓄的年利率是多少?”四位同学都是设这种储蓄的年利率是x ,可他们列出的方程却不同,下列列出的方程中正确的是()A .5000(1220%)5176x +´´=B .5000(12)80%5176x +´=C .50005000280%5176x +´´=D .5000500080%5176x +´=7.下列方程为一元一次方程的是( )A .123+=B .423m n m+=C .2223x x+=D .423x x-=8.下列利用等式的性质,错误的是()A .若a b =,则11a b -=-B .若237a b +=-,则255a b +=-C .若a b =,则22ma mb =D .若ac bc =,则a b=二、填空题9.一件商品按成本价提高20%后标价,又以9折销售,售价为270元.设这件商品的成本价为x 元,则可列方程:________10.若13x --=,则x =________11.一组数:2,1,3,x ,7,9-,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a b -”,例如这组数中的第三个数“3”是由“221´-”得到的,那么这组数中x 表示的数为________.12.若代数式7y -与21y -的值相等,则y 的值是________.13.已知关于x 的方程231x a -=-的解为1x =-,则a 的值等于________.14.当x =________时,代数式21x +与58x -的值互为相反数.15.当x =________时,式子1x -与式子214x -的值相等.16.写出一个满足下列条件的一元一次方程:①某个未知数的系数是3;②方程的解是2;这样的方程是________.17.已知3x =-是方程(21)40k x +-=的解,则k =________.三、计算题18.解方程:(1)2523163x x x +--=-;(2)2130.20.5x x -+-=.19.解方程:(1)3723x x+=-(2)3(2)(21)x x x -=--(3)12123x x-=+.20.解方程:31112x x -+=+.四、综合题21.已知方程323452x x -=-(1)求方程的解;(2)若上述方程与关于x 的方程383()2a x a a +=+-是同解方程,求a 的值;(3)在(2)的条件下,a 、b 在数轴上对应的点在原点的两侧,且到原点的距离相等,c 是倒数等于本身的数,求2005()a b c ++的值.第四章综合测试答案解析一、1.【答案】C【解析】A .利用等式性质1,两边都减去3,得到33a b -=-,所以A 成立;B .利用等式性质2,两边都除以3-,得到33a b=--,所以B 成立;C .因为x 必须不为0,所以C 不成立;D .利用等式性质2,两边都乘x ,得到22x x =,所以D 成立;故选C .2.【答案】A【解析】3x k =-Q ,2y k =+,325x y k k \+=-++=.故选:A .3.【答案】C【解析】解:A .20x x +=是方程,x 是未知数,式子又是等式,故本选项不符合题意;B .0x y +=是方程,x 、y 是未知数,式子又是等式,故本选项不符合题意;C .1x x+是分式,不是等式,故本选项符合题意;D .0x =是方程,x 是未知数,式子又是等式,故本选项不符合题意;故选:C .4.【答案】D【解析】等式两边都加7得:327x x =+,等式两边都减2x 得:327x x -=.故选D .5.【答案】D【解析】A .若x y =,根据等式的性质1,两边同时加5可得55x y +=+,故正确;B .若(0)x ya a a=¹,根据等式的性质2,两边同时乘以(0)a a ¹可得x y =,故正确;C .若33x y -=-,根据等式的性质2,两边同时除以3-可得x y =,故正确;D .若mx my =,根据等式的性质2,两边同时除以m ,(0)m ¹,才可得x y =,缺少条件,错误.故选D .6.【答案】C【解析】解:设这种储蓄的年利率为x ,由题意得500050002(120%)5176x +´´-=,即50005000280%5176x +´´=.故答案为:C .7.【答案】D【解析】A .不含有未知数,是等式,不是方程,故选项错误;B .是二元一次方程,故选项错误;C .未知数的最高次数是2次,不是一元一次方程,故选项错误;D .符合一元一次方程的定义,故选项正确.故选D .8.【答案】D【解析】当0c =时,0ac bc ==,但a 不一定等于b ,故D 错误.故答案为:D .二、9.【答案】(120%)0.9270x +´=【解析】解:标价为(120%)x ´+,\可列方程为:(120%)0.9270x +´=.10.【答案】4-【解析】解:等式的两边同时加1得,1131x --+=+,即4x -=,等式的两边同时除以1-得,4x =-.故答案为:4-.11.【答案】1-【解析】解:Q 该组数列满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a b -”,2131x \=´-=-.故答案为:1-.12.【答案】6-【解析】解:Q 代数式7y -与21y -的值相等,7=21y y \--,移项、合并同类项,可得:=6y -.故答案为:6-.13.【答案】13-【解析】解:把1x =-代入方程231x a -=-得:231a --=-,解得:13a =-,故答案为:13-.14.【答案】1【解析】解:根据题意得:21580x x ++-=,移项合并得:77x =,解得:1x =,故答案为:1.15.【答案】32【解析】由式子1x -与式子214x -的值相等,得2114x x --=,去分母得:4421x x -=-解得:32x =.16.【答案】360x -=【解析】解:由题意可知:3a =,2x =.则将a 与x 的值代入0ax b +=中得:320b ´+=,解得:6b =-,所以,该一元一次方程为:360x -=.故答案为:360x -=.17.【答案】76-【解析】解: 3 x =-Q 是方程(21)40k x +-=的解,(2k 1)(3)40\+´--=,解得:76k =-.故答案为:76-.三、18.【答案】(1)解:去分母得:625646x x x --=-+,移项合并得:817x =,解得:178x =.(2)解:方程整理得:510223x x ---=,移项合并得:315x =,解得:5x =.【解析】(1)方程去分母,去括号,移项合并,把未知数系数化为1,即可求出解.(2)方程整理后,去分母,去括号,移项合并,把未知数系数化为1,即可求出解.19.【答案】(1)移项合并得:416x =,解得:4x =.(2)去括号得:3621x x x -=-+,移项合并得:47x =,解得:74x =.(3)去分母得:3(1)46x x -=+,去括号得:3346x x -=+,解得:9x =-.【解析】(1)方程移项合并,把x 系数化为1,即可求出解.(2)方程去括号,移项合并,把x 系数化为1,即可求出解.(3)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.20.【答案】解:方程两边都乘2得:31222x x -+=+,移项得:32212x x -=+-,合并同类项得:1x =.【解析】按照去分母,移项,合并的计算过程计算即可.四、21.【答案】(1)解:方程两边同时乘以10得:2(32)53410x x -=´-´,去括号得:641540x x -=-,移项得:615440x x -=-,合并同类项得:936x -=-,系数化为1得:4x =.(2)解:4x =Q 是方程383()2a x a a +=+-的解,383(4)2a a a \+=+-,解得:2a =.(3)解:2a =Q ,2b \=-,又c Q 是倒数等于本身的数,1c \=±,当1c =时,20052005()(221)1a b c \++=-+=;当1c =-时,20052005()(221)1a b c \++=--=-;综上所述:2005()a b c ++的值为1±.【解析】(1)根据解一元一次方程的步骤:去分母——去括号——移项——合并同类项——系数化为1.(2)将4x =代入方程383()2a x a a +=+-解得2a =.(3)根据题意可得2a =,2b =-,1c =±,再分情况求得代数式的值即可.。
2023年人教版初中数学九年级(下)期末综合测试卷及部分答案(共五套)
人教版初中数学九年级(下)期末综合测试卷及答案(一)一、选择题(每题3分,共30分)1.在双曲线y =1-3mx上有两点A (x 1,y 1),B (x 2,y 2),x 1<0<x 2,y 1<y 2,则m 的取值范围是( ) A .m >13B .m <13C .m ≥13D .m ≤132.若△ABC ∽△A ′B ′C ′,其相似比为3:2,则△ABC 与△A ′B ′C ′的面积比为( ) A .3:2B .9:4C .2:3D .4:93.在Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A .53B .52 C .32 D .2554.反比例函数y =-m 2-5x的图象位于( )A .第一、三象限B .第二、三象限C .第二、四象限D .无法判断5.如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB =1 m ,CD =4 m ,点P 到CD 的距离是2 m ,则点P 到AB 的距离是( ) A .13mB .12m C .23m D .1 m6.如图,反比例函数y 1=k 1x和正比例函数y 2=k 2x 的图象交于A (-1,-3),B (1,3)两点,若k 1x>k 2x ,则x 的取值范围是( ) A .-1<x <0B .-1<x <1C .x <-1或0<x <1D .-1<x <0或x >17.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20 cm ,到屏幕的距离为60 cm ,且幻灯片中的图形的高度为6 cm ,则屏幕上图形的高度为( ) A .6 cmB .12 cmC .18 cmD .24 cm8.如图,在▱ABCD 中,E 为CD 上一点,连接AE ,BD ,且AE ,BD 交于点F ,S △DEF :S △ABF =4:25,则DE EC =( )A .2:3B .2:5C .3:5D .3:29.如图,在一笔直的海岸线l 上有A ,B 两个观测站,AB =2 km.从A 站测得船C 在北偏东45°的方向,从B 站测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为( )A .4 kmB .(2+2)kmC .22kmD .(4-2)km10.如图,边长为1的正方形ABCD 中,点E 在CB 的延长线上,连接ED 交AB 于点F ,AF =x (0.2≤x ≤0.8),EC =y .则在下面函数图象中,大致能反映y 与x 之间函数关系的是( )二、填空题(每题3分,共30分)11.写出一个反比例函数y =k x(k ≠0),使它的图象在每个象限内,y 的值随x 值的增大而减小,这个函数的解析式为____________.12.在△ABC 中,∠B =45°,cos A =12,则∠C 的度数是________.13.如图,AB ∥CD ,AD =3AO ,则OB OC=________.14.在某一时刻,测得一根高为2 m 的竹竿的影长为1 m ,同时测得一栋建筑物的影长为12m ,那么这栋建筑物的高度为________m.15.活动楼梯如图所示,∠B =90°,斜坡AC 的坡度为1:1,斜坡AC 的坡面长度为8 m ,则走这个活动楼梯从A 点到C 点上升的高度BC 为________.16.如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是________.17.如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E .若AD =1,DB =2,则△ADE 的面积与△ABC 的面积的比是________.18.如图,正方形ABCD 的边长是4,点P 是CD 的中点,点Q 是线段BC 上一点,当CQ =________时,以Q ,C ,P 三点为顶点的三角形与△ADP 相似.19.如图,在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象与反比例函数y =k x(k ≠0)的图象交于第二、四象限的A ,B 两点,与x 轴交于C 点.已知A (-2,m ),B (n ,-2),tan ∠BOC =25,则此一次函数的解析式为________________.20.如图,在矩形纸片ABCD 中,AB =6,BC =10,点E 在CD 上,将△BCE 沿BE 折叠,点C恰好落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰好落在线段BF 上的点H 处,有下列结论:①∠EBG =45°;②△DEF ∽△ABG ;③S △ABG =32S △FGH ;④AG+DF =FG .其中正确的是________(把所有正确结论的序号都填上).三、解答题(21题4分,22题8分,23题10分,26题14分,其余每题12分,共60分) 21.计算:2cos 245°-(tan 60°-2)2-(sin 60°-1)0+(sin 30°)-2.22.如图所示是某几何体的表面展开图.(1)这个几何体的名称是 ________; (2)画出这个几何体的三视图; (3)求这个几何体的体积.(π≈3.14)23.如图,在平面直角坐标系中,▱OABC 的顶点A ,C 的坐标分别为(2,0),(-1,2),反比例函数y =k x(k ≠0)的图象经过点B . (1)求k 的值;(2)将▱OABC 沿x 轴翻折,点C 落在点C ′处,判断点C ′是否在反比例函数y =kx(k ≠0)的图象上,请通过计算说明理由.24.如图,一棵大树在一次强台风中折断倒下,未折断树干AB 与地面仍保持垂直的关系,而折断部分AC 与未折断树干AB 形成53°的夹角.树干AB 旁有一座与地面垂直的铁塔DE ,测得BE =6 m ,塔高DE =9 m .在某一时刻太阳光的照射下,未折断树干AB 落在地面的影子FB 长为4 m ,且点F ,B ,C ,E 在同一条直线上,点F ,A ,D 也在同一条直线上.求这棵大树没有折断前的高度.(结果精确到0.1 m ,参考数据:sin 53°≈0.798 6,cos 53°≈0.601 8,tan 53°≈1.327 0)25.如图①,AB 为半圆的直径,O 为圆心,C 为圆弧上一点,AD 垂直于过C 点的切线,垂足为D ,AB 的延长线交直线CD 于点E . (1)求证:AC 平分∠DAB ;(2)若AB =4,B 为OE 的中点,CF ⊥AB ,垂足为点F ,求CF 的长;(3)如图②,连接OD 交AC 于点G ,若CG GA =34,求sin E 的值.26.已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得点B 落在CD 边上的点P 处.(1)如图①,已知折痕与边BC 交于点O ,连接AP ,OP ,O A . ① 求证:△OCP ∽△PDA ;② 若△OCP 与△PDA 的面积比为1:4,求边AB 的长.(2)如图②,在(1)的条件下,擦去AO 和OP ,连接BP .动点M 在线段AP 上(点M 不与点P ,A 重合),动点N 在线段AB 的延长线上,且BN =PM ,连接MN 交PB 于点F ,作ME⊥BP 于点E .试问动点M ,N 在移动的过程中,线段EF 的长度是否发生变化?若不变,求出线段EF 的长度;若变化,请说明理由.答案一、1.B 2.B 3.D 4.C 5.B 6.C 7.C 8.A 9.B 10.C 二、11.y =3x (答案不唯一) 12.75° 13.1214.24 15.4 2 m 16.6或7或8 17.1918.1或4 点拨:设CQ =x .∵四边形ABCD 为正方形,∴∠C =∠D =90°.∵点P 为CD 的中点,∴CP =DP =2.当CQ PD =CP AD 时,△QCP ∽△PDA ,此时x 2=24,∴x =1.当CQ AD =CPPD时,△QCP ∽△ADP ,此时x 4=22,∴x =4.19.y =-x +320.①③④ 点拨:∵△BCE 沿BE 折叠,点C 恰好落在边AD 上的点F 处,∴∠1=∠2,CE =FE ,BF =BC =10.在Rt △ABF 中,∵AB =6,BF =10,∴AF =102-62=8,∴DF =AD -AF =10-8=2.设EF =x ,则CE =x ,DE =CD -CE =6-x .在Rt △DEF 中,∵DE 2+DF 2=EF 2,∴(6-x )2+22=x 2,解得x =103,∴DE =83.∵△ABG 沿BG 折叠,点A 恰好落在线段BF 上的点H 处,∴∠BHG =∠A =90°,∠3=∠4,BH =BA =6,AG =HG ,∴∠EBG =∠2+∠3=12∠ABC =45°,∴①正确;HF =BF -BH =10-6=4,设AG =y ,则GH =y ,GF =8-y .在Rt △HGF 中,∵GH 2+HF 2=GF 2,∴y 2+42=(8-y )2,解得y =3,∴AG =GH =3,GF =5.∵∠A =∠D ,AB DE =94,AG DF =32,∴AB DE ≠AG DF ,∴△ABG 与△DEF 不相似,∴②错误;∵S △ABG =12AB ·AG =12×6×3=9,S △FGH =12GH ·HF =12×3×4=6,∴S △ABG =32S △FGH ,∴③正确;∵AG +DF =3+2=5,而GF =5,∴AG +DF =GF ,∴④正确.三、21.解:原式=2×⎝ ⎛⎭⎪⎫222-(2-3)-1+⎝ ⎛⎭⎪⎫12-2=1-(2-3)-1+4=3+2.22.解:(1)圆柱 (2)如图所示.(3)这个几何体的体积为πr 2h ≈3.14×⎝ ⎛⎭⎪⎫1022×20=1 570. 23.解:(1)∵四边形OABC 是平行四边形, ∴OA ∥BC ,OA =BC . 又A (2,0),C (-1,2), ∴点B 的坐标为(1,2). 将(1,2)代入y =k x,得k =2.(2)点C ′在反比例函数y =2x的图象上.理由如下:∵将▱OABC 沿x 轴翻折,点C 落在点C ′处,C (-1,2), ∴点C ′的坐标是(-1,-2).由(1)知,反比例函数的解析式为y =2x.令x =-1,则y =2-1=-2.故点C ′在反比例函数y =2x的图象上.24.解:根据题意,得AB ⊥EF ,DE ⊥EF , ∴∠ABC =90°,AB ∥DE ,∴△ABF ∽△DEF ,∴AB DE =BF EF ,即AB 9=44+6,解得AB =3.6 m. 在Rt △ABC 中,∵cos ∠BAC =AB AC, ∴AC =ABcos 53°≈5.98(m),∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m. 25.(1)证明:连接OC ,如图①. ∵DC 切半圆O 于C ,∴OC ⊥DC , 又AD ⊥CD .∴OC ∥AD .∴∠OCA =∠DAC . ∵OC =OA ,∴∠OAC =∠OCA . ∴∠DAC =∠OAC ,即AC 平分∠DAB .(2)解:∵AB =4,∴OC =2.在Rt △OCE 中,∵OC =OB =12OE ,∴∠E =30°.∴∠COF =60°.∴在Rt △OCF 中,CF =OC ·sin60°=2×32= 3. (3)解:连接OC ,如图②.∵CO ∥AD ,∴△CGO ∽△AGD .∴CG GA =CO AD =34.不妨设CO =AO =3k ,则AD =4k .又易知△COE ∽△DAE ,∴CO AD =EO AE =34=EO3k +EO .∴EO =9k .在Rt △COE 中,sin E =CO EO =3k 9k =13.26.(1)①证明:如图①,∵四边形ABCD 是矩形, ∴∠C =∠D =∠B =90°,∴∠1+∠3=90°. 由折叠可得∠APO =∠B =90°, ∴∠1+∠2=90°.∴∠3=∠2. 又∵∠C =∠D ,∴△OCP ∽△PDA .②解:∵△OCP 与△PDA 的面积比为1:4,且△OCP ∽△PDA ,∴OP PA =CP DA =12.∴CP =12AD =4. 设OP =x ,则易得CO =8-x . 在Rt △PCO 中,∠C =90°, 由勾股定理得 x 2=(8-x )2+42.解得x =5.即OP =5.∴AB =AP =2OP =10.(2)解:线段EF 的长度不发生变化.作MQ ∥AN ,交PB 于点Q ,如图②. ∵AP =AB ,MQ ∥AN ,∴∠APB =∠ABP =∠MQP . ∴MP =MQ .又BN =PM ,∴BN =QM .∵MQ ∥AN ,∴∠QMF =∠BNF ,∠MQF =∠FBN , ∴△MFQ ≌△NFB .∴QF =FB .∴QF =12QB .∵MP =MQ ,ME ⊥PQ ,∴EQ =12PQ .∴EF =EQ +QF =12PQ +12QB =12PB .由(1)中可得PC =4,又∵BC =AD =8,∠C =90°. ∴PB =82+42=45,∴EF =12PB =2 5.∴在(1)的条件下,点M ,N 在移动的过程中,线段EF 的长度不变,它的长度恒为2 5.人教版初中数学九年级(下)期末综合测试卷及答案(二)一、选择题(每题3分,共30分)1.已知反比例函数y =k x的图象经过点P (-1,2),则这个函数的图象位于( )A .第二、三象限B .第一、三象限C .第三、四象限D .第二、四象限2.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是( )3.若Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A.53B.52C.32D.2554.在双曲线y =1-3mx上有两点A (x 1,y 1),B (x 2,y 2),x 1<0<x 2,y 1<y 2,则m 的取值范围是( ) A .m >13B .m <13C .m ≥13D .m ≤135.如图,在等边三角形ABC 中,点D ,E 分别在AB ,AC 边上,如果△ADE ∽△ABC ,AD ∶AB=1∶4,BC =8 cm ,那么△ADE 的周长等于( ) A .2 cmB .3 cmC .6 cmD .12 cm(第5题) (第7题) (第8题)6.小芳和爸爸在阳光下散步,爸爸身高1.8 m ,他在地面上的影长为2.1 m .小芳比爸爸矮0.3 m ,她的影长为( ) A .1.3 mB .1.65 mC .1.75 mD .1.8 m7.一次函数y 1=k 1x +b 和反比例函数y 2=k 2x(k 1k 2≠0)的图象如图所示,若y 1>y 2,则x 的取值范围是( ) A .-2<x <0或x >1B .-2<x <1C .x <-2或x >1D .x <-2或0<x <18.如图,△ABO 缩小后变为△A ′B ′O ,其中A ,B 的对应点分别为A ′,B ′,点A ,B ,A ′,B ′均在图中格点上,若线段AB 上有一点P (m ,n ),则点P 在A ′B ′上的对应点P ′的坐标为( )A.⎝ ⎛⎭⎪⎫m2,n B .(m ,n )C.⎝ ⎛⎭⎪⎫m ,n 2 D.⎝ ⎛⎭⎪⎫m 2,n2 9.如图,在两建筑物之间有一旗杆GE ,高15 m ,从A 点经过旗杆顶点恰好看到矮建筑物的墙脚C 点,且俯角α为60°,又从A 点测得D 点的俯角β为30°,若旗杆底部点G 为BC 的中点,则矮建筑物的高CD 为( ) A .20 mB .10 3 mC .15 3 mD .5 6 m(第9题) (第10题)10.如图,已知第一象限内的点A 在反比例函数y =3x的图象上,第二象限内的点B 在反比例函数y =k x 的图象上,且OA ⊥OB ,cos A =33,则k 的值为( ) A .-3B .-6C .- 3D .-2 3二、填空题(每题3分,共24分)11.计算:2cos 245°-(tan 60°-2)2=________.12.如图,山坡的坡度为i =1∶3,小辰从山脚A 出发,沿山坡向上走了200 m 到达点B ,则他上升了________m.(第12题) (第13题) (第14题) (第15题)13.如图,在△ABC 中,DE ∥BC ,DE BC =23,△ADE 的面积是8,则△ABC 的面积为________.14.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为32,AC =2,则sin B的值是__________.15.如图,一艘轮船在小岛A 的北偏东60°方向距小岛80 n mile 的B 处,沿正西方向航行3 h 后到达小岛A 的北偏西45°方向的C 处,则该船行驶的速度为__________n mile/h.16.如图是一个几何体的三视图,若这个几何体的体积是48,则它的表面积是________.(第16题) (第17题) (第18题)17.如图,点A 在双曲线y =1x 上,点B 在双曲线y =3x上,点C ,D 在x 轴上,若四边形ABCD为矩形,则它的面积为________.18.如图,正方形ABCD 的边长为62,过点A 作AE ⊥AC ,AE =3,连接BE ,则tan E =________. 三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分)19.如图,△ABC 三个顶点的坐标分别为A (4,6),B (2,2),C (6,4),请在第一象限内,画出一个以原点O 为位似中心,与△ABC 的相似比为12的位似图形△A 1B 1C 1,并写出△A 1B 1C 1各个顶点的坐标.(第19题)20.由几个棱长为1的小立方块搭成的几何体的俯视图如图所示,小正方形中的数字表示在该位置小立方块的个数.(第20题)(1)请在方格纸中分别画出该几何体的主视图和左视图;(2)根据三视图,这个几何体的表面积为________个平方单位(包括底面积).21.如图,一棵大树在一次强台风中折断倒下,未折断树干AB与地面仍保持垂直的关系,而折断部分AC与未折断树干AB形成53°的夹角.树干AB旁有一座与地面垂直的铁塔DE,测得BE=6 m,塔高DE=9 m.在某一时刻太阳光的照射下,未折断树干AB落在地面的影子FB长为4 m,且点F,B,C,E在同一条直线上,点F,A,D也在同一条直线上.求这棵大树没有折断前的高度(结果精确到0.1 m,参考数据:sin 53°≈0.798 6,cos 53°≈0.601 8,tan 53°≈1.327 0).(第21题)22.如图,在平面直角坐标系xOy 中,一次函数y =3x +2的图象与y 轴交于点A ,与反比例函数y =kx()k ≠0在第一象限内的图象交于点B ,且点B 的横坐标为1,过点A 作AC ⊥y 轴,交反比例函数y =k x(k ≠0)的图象于点C ,连接BC .求:(第22题)(1)反比例函数的解析式; (2)△ABC 的面积.23.如图,AB 是⊙O 的直径,过点A 作⊙O 的切线并在其上取一点C ,连接OC 交⊙O 于点D ,BD 的延长线交AC 于点E ,连接AD .(第23题)(1)求证△CDE ∽△CAD ;(2)若AB =2,AC =22,求AE 的长.24.如图,将矩形ABCD 沿AE 折叠得到△AFE ,且点F 恰好落在DC 上.(第24题)(1)求证△ADF ∽△FCE ;(2)若tan ∠CEF =2,求tan ∠AEB 的值.25.如图,直线y =2x +2与y 轴交于点A ,与反比例函数y =kx(x >0)的图象交于点M ,过点M 作MH ⊥x 轴于点H ,且tan ∠AHO =2. (1)求k 的值.(2)在y 轴上是否存在点B ,使以点B ,A ,H ,M 为顶点的四边形是平行四边形?如果存在,求出点B 的坐标;如果不存在,请说明理由.(3)点N (a ,1)是反比例函数y =k x(x >0)图象上的点,在x 轴上有一点P ,使得PM +PN 最小,请求出点P 的坐标.(第25题)答案一、1.D 2.C 3.D 4.B 5.C 6.C7.A 8.D9.A 点拨:∵点G是BC的中点,EG∥AB,∴EG是△ABC的中位线.∴AB=2EG=30.在Rt△ABC中,∠CAB=30°,则BC=AB·tan∠BAC=30×33=10 3.延长CD至F,使DF⊥AF.在Rt△AFD中,AF=BC=103,∠FAD=30°,则FD=AF·tan∠FAD=103×33=10.∴CD=AB-FD=30-10=20(m).10.B 点拨:∵cos A=33,∴可设OA=3a,AB=3a(a>0).∴OB=(3a)2-(3a)2=6a.过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F.∵点A 在反比例函数y =3x的图象上,∴可设点A 的坐标为⎝ ⎛⎭⎪⎫m ,3m .∴OE =m ,AE =3m .易知△AOE ∽△OBF ,∴AE OF =OA OB ,即3m OF =3a 6a,∴OF =32m.同理,BF =2m ,∴点B 的坐标为⎝⎛⎭⎪⎫-32m,2m .把B ⎝⎛⎭⎪⎫-32m,2m 的坐标代入y =k x,得k =-6. 二、11.3-1 12.100 13.18 14.2315.40+403316.88 点拨:由题中的三视图可以判断,该几何体是一个长方体.从主视图可以看出,该长方体的长为6, 从左视图可以看出,该长方体的宽为2. 根据体积公式可知,该长方体的高为486×2=4,∴该长方体的表面积是2×(6×2+6×4+2×4)=88.17.2 点拨:如图,延长BA 交y 轴于点E ,则四边形AEOD ,BEOC 均为矩形.由点A 在双曲线y =1x 上,得矩形AEOD 的面积为1;由点B 在双曲线y =3x上,得矩形BEOC 的面积为3,故矩形ABCD 的面积为3-1=2.(第17题)18.23点拨:∵正方形ABCD 的边长为62,∴AC =12. 过点B 作BF ⊥AC 于点F ,则CF =BF =AF =6.设AC 与BE 交于点M ,∵BF ⊥AC ,AE ⊥AC ,∴AE ∥BF .∴△AEM ∽△FBM . ∴AM FM =AE FB =36=12.∴AM AF =13. ∴AM =13AF =13×6=2.∴tan E =AM AE =23.三、19.解:画出的△A 1B 1C 1如图所示.(第19题)△A 1B 1C 1的三个顶点的坐标分别为A 1(2,3),B 1(1,1),C 1(3,2). 20.解:(1)如图所示.(第20题) (2)2421.解:根据题意,得AB ⊥EF ,DE ⊥EF ,∴∠ABC =90°,AB ∥DE . ∴△ABF ∽△DEF . ∴AB DE =BF EF ,即AB 9=44+6, 解得AB =3.6.在Rt △ABC 中,∵cos ∠BAC =AB AC, ∴AC =ABcos 53°≈5.98.∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m.22.解:(1)∵点B 在一次函数y =3x +2的图象上,且点B 的横坐标为1,∴y =3×1+2=5. ∴点B 的坐标为(1,5).∵点B 在反比例函数y =k x (k ≠0)的图象上,∴5=k1,则k =5.∴反比例函数的解析式为y =5x.(2)∵一次函数y =3x +2的图象与y 轴交于点A ,当x =0时,y =2, ∴点A 的坐标为(0,2).∵AC ⊥y 轴, ∴点C 的纵坐标为2.∵点C 在反比例函数y =5x的图象上,当y =2时,2=5x ,x =52, ∴AC =52.过点B 作BD ⊥AC 于点D , ∴BD =y B -y C =5-2=3.∴S △ABC =12AC ·BD =12×52×3=154.23.(1)证明:∵AB 是⊙O 的直径,∴∠ADB =90°. ∴∠ABD +∠BAD =90°. 又∵AC 是⊙O 的切线, ∴AB ⊥AC ,即∠BAC =90°. ∴∠CAD +∠BAD =90°. ∴∠ABD =∠CAD . ∵OB =OD ,∴∠ABD =∠BDO =∠CDE . ∴∠CAD =∠CDE . 又∵∠C =∠C , ∴△CDE ∽△CAD . (2)解:∵AB =2, ∴OA =OD =1.在Rt △OAC 中,∠OAC =90°, ∴OA 2+AC 2=OC 2, 即12+(22)2=OC 2. ∴OC =3,则CD =2. 又由△CDE ∽△CAD ,得CD CE =CACD, 即2CE =222,∴CE = 2. ∴AE =AC -CE =22-2= 2. 24.(1)证明:∵四边形ABCD 是矩形,∴∠B =∠C =∠D =90°.∵矩形ABCD 沿AE 折叠得到△AFE ,且点F 在DC 上, ∴∠AFE =∠B =90°.∴∠AFD +∠CFE =180°-∠AFE =90°. 又∵∠AFD +∠DAF =90°, ∴∠DAF =∠CFE . ∴△ADF ∽△FCE .(2)解:在Rt △CEF 中,tan ∠CEF =CF CE=2,设CE =a ,CF =2a (a >0), 则EF =CF 2+CE 2=5a .∵矩形ABCD 沿AE 折叠得到△AFE ,且点F 在DC 上, ∴BE =EF =5a ,BC =BE +CE =(5+1)a ,∠AEB =∠AEF . ∴AD =BC =(5+1)a . ∵△ADF ∽△FCE , ∴AF FE =AD CF =(5+1)a 2a =5+12. ∴tan ∠AEF =AFFE=5+12. ∴tan ∠AEB =tan ∠AEF =5+12. 25.解:(1)由y =2x +2可知A (0,2),即OA =2.∵tan ∠AHO =2,∴OH =1. ∵MH ⊥x 轴,∴点M 的横坐标为1. ∵点M 在直线y =2x +2上, ∴点M 的纵坐标为4.∴M (1,4).∵点M 在反比例函数y =k x(x >0)的图象上,∴k =1×4=4. (2)存在.如图所示.[第25(2)题]当四边形B 1AHM 为平行四边形时,B 1A =MH =4, ∴OB 1=B 1A +AO =4+2=6,即B 1(0,6). 当四边形AB 2HM 为平行四边形时,AB 2=MH =4, ∴OB 2=AB 2-OA =4-2=2, 此时B 2(0,-2).综上,存在满足条件的点B ,且点B 的坐标为(0,6)或(0,-2). (3)∵点N (a ,1)在反比例函数y =4x(x >0)的图象上,∴a =4,即点N 的坐标为(4,1).如图,作N 关于x 轴的对称点N 1,连接MN 1,交x 轴于点P ,连接PN ,此时PM +PN 最小.[第25(3)题]∵N 与N 1关于x 轴对称,N 点坐标为(4,1), ∴N 1的坐标为(4,-1).设直线MN 1对应的函数解析式为y =k ′x +b (k ′≠0), 由⎩⎪⎨⎪⎧4=k ′+b ,-1=4k ′+b ,解得⎩⎪⎨⎪⎧k ′=-53,b =173. ∴直线MN 1对应的函数解析式为y =-53x +173.令y =0,得x =175,∴点P 的坐标为⎝ ⎛⎭⎪⎫175,0.人教版初中数学九年级(下)期末综合测试卷及答案(三)一、选择题(每题3分,共30分)1.下列四个几何体中,主视图为三角形的是( )2.【教材P 6练习T 2变式】反比例函数y =-m 2-5x的图象位于( )A .第一、三象限B .第二、三象限C .第二、四象限D .第一、四象限3.若△ABC ∽△A ′B ′C ′,其相似比为32,则△ABC 与△A ′B ′C ′的周长比为( )A .3∶2B .9∶4C .2∶3D .4∶94.在Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A .53B .52C .32D .2555.如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB =1 m ,CD =4 m ,点P到CD 的距离是2 m ,则点P 到AB 的距离是( )A .13mB .12mC .23mD .1 m6.【教材P 22复习题T 10改编】如图,反比例函数y 1=k 1x和正比例函数y 2=k 2x 的图象交于A (-1,-3),B (1,3)两点,若k 1x>k 2x ,则x 的取值范围是( )A.-1<x<0 B.-1<x<1C.x<-1或0<x<1 D.-1<x<0或x>17.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20 cm,到屏幕的距离为60 cm,且幻灯片中的图形的高度为6 cm,则屏幕上图形的高度为( )A.6 cm B.12 cm C.18 cm D.24 cm8.如图,在▱ABCD中,E为CD上一点,连接AE,BD,且AE,BD交于点F,S△DEF∶S△ABF=4∶25,则DE∶EC=( )A.2∶3 B.2∶5 C.3∶5 D.3∶29.如图,在一笔直的海岸线l上有A,B两个观测站,AB=2 km.从A站测得船C在北偏东45°的方向,从B站测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD 的长)为( )A.4 km B.(2+2)km C.22km D.(4-2)km10.如图,边长为1的正方形ABCD中,点E在CB的延长线上,连接ED交AB于点F,AF=x (0.2≤x ≤0.8),EC =y ,则在下面函数图象中,大致能反映y 与x 之间函数关系的是( )二、填空题(每题3分,共24分)11.写出一个反比例函数y =kx(k ≠0),使它的图象在每个象限内,y 的值随x 值的增大而减小,这个函数的解析式为____________.12.在△ABC 中,∠B =45°,cos A =12,则∠C 的度数是________.13.如图,AB ∥CD ,AD =3AO ,则OB OC=________.14.【教材P 41练习T 1变式】在某一时刻,测得一根高为2 m 的竹竿的影长为1 m ,同时测得一栋建筑物的影长为12 m ,那么这栋建筑物的高度为________m. 15.活动楼梯如图所示,∠B =90°,斜坡AC 的坡度为1∶1,斜坡AC 的坡面长度为8 m ,则走这个活动楼梯从A 点到C 点上升的高度BC 为________.16.【教材P 102习题T 5变式】如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是________.17.如图,在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象与反比例函数y =kx(k ≠0)的图象交于第二、四象限的A ,B 两点,与x 轴交于C 点.已知A(-2,m ),B (n ,-2),tan ∠BOC =25,则此一次函数的解析式为____________.18.如图,正方形ABCD 的边长是4,点P 是CD 的中点,点Q 是线段BC 上一点,当CQ =________时,以Q ,C ,P 三点为顶点的三角形与△ADP 相似.三、解答题(19题6分,20题10分,24题14分,其余每题12分,共66分) 19.计算:3tan30°+cos 245°-(sin30°-1)0.20.【教材P 110复习题T 6变式】如图所示的是某几何体的表面展开图.(1)这个几何体的名称是 ________; (2)画出这个几何体的三视图; (3)求这个几何体的体积.(π≈3.14)21.如图,在平面直角坐标系中,▱OABC 的顶点A ,C 的坐标分别为(2,0),(-1,2),反比例函数y =kx(k ≠0)的图象经过点B . (1)求k 的值;(2)将▱OABC 沿x 轴翻折,点C 落在点C ′处,判断点C ′是否在反比例函数y =k x(k ≠0)的图象上,请通过计算说明理由.22.如图,一棵大树在一次强台风中折断倒下,未折断树干AB 与地面仍保持垂直的关系,而折断部分AC 与未折断树干AB 形成53°的夹角.树干AB 旁有一座与地面垂直的铁塔DE ,测得BE =6 m ,塔高DE =9 m .在某一时刻太阳光的照射下,未折断树干AB 落在地面的影子FB 长为4 m ,且点F ,B ,C ,E 在同一条直线上,点F ,A ,D 也在同一条直线上.求这棵大树没有折断前的高度.(结果精确到0.1 m ,参考数据: sin 53°≈0.798 6, cos 53°≈0.601 8,tan 53°≈1.327 0)23.如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD ⊥CE ,垂足为D ,AC 平分∠DAB .(1)求证:CE 是⊙O 的切线;(2)若AD =4,cos ∠CAB =45,求AB 的长.24.【教材P 85复习题T 11拓展】已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得点B落在CD 边上的点P 处,然后展开.(1)如图①,已知折痕与边BC 交于点O ,连接AP ,OP ,OA .① 求证:△OCP ∽△PDA ;② 若△OCP 与△PDA 的面积比为1∶4,求边AB 的长.(2)如图②,在(1)的条件下,擦去AO 和OP ,连接BP .动点M 在线段AP 上(点M 不与点P ,A 重合),动点N 在线段AB 的延长线上,且BN =PM ,连接MN 交PB 于点F ,作ME ⊥BP 于点E .试问动点M ,N 在移动的过程中,线段EF 的长度是否发生变化?若不变,求出线段EF 的长度;若变化,请说明理由.答案一、1.A 2.C 3.A 4.D 5.B 6.C 7.C 8.A 9.B 10.C 二、11.y =3x (答案不唯一) 12.75° 13.1214.24 15.4 2 m 16.6或7或8 17.y =-x +318.1或4 点拨:设CQ =x .∵四边形ABCD 为正方形,∴∠C =∠D =90°.∵点P 为CD 的中点,∴CP =DP =2.当CQ PD =CP AD 时,△QCP ∽△PDA ,此时x 2=24,∴x =1.当CQ AD =CPPD 时,△QCP∽△ADP ,此时x 4=22,∴x =4.三、19.解:原式=3×33+⎝ ⎛⎭⎪⎫222-1=12. 20.解:(1)圆柱(2)如图所示.(3)这个几何体的体积为πr 2h ≈3.14×⎝ ⎛⎭⎪⎫1022×20=1 570.21.解:(1)∵四边形OABC 是平行四边形,∴OA ∥BC ,OA =BC . 又A (2,0),C (-1,2), ∴点B 的坐标为(1,2).将点B (1,2)的坐标代入y =k x,得k =2.(2)点C ′在反比例函数y =2x的图象上.理由如下:∵将▱OABC 沿x 轴翻折,点C 落在点C ′处,C (-1,2), ∴点C ′的坐标是(-1,-2). 由(1)知,反比例函数的解析式为y =2x.令x =-1,则y =2-1=-2.故点C ′在反比例函数y =2x的图象上.22.解:根据题意,得AB ⊥EF ,DE ⊥EF ,∴∠ABC =90°,AB ∥DE , ∴△ABF ∽△DEF , ∴AB DE =BF EF ,即AB 9=44+6, 解得AB =3.6 m.在Rt △ABC 中,∵cos ∠BAC =AB AC,∠BAC =53°, ∴AC =ABcos 53°≈5.98(m),∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m. 23.(1)证明:连接OC .∵AC 平分∠DAB ,∴∠DAC =∠BAC . ∵OA =OC ,∴∠BAC =∠OCA , ∴∠DAC =∠OCA ,∴AD ∥OC , 又∵AD ⊥CE ,∴OC ⊥CE .又∵OC 是⊙O 的半径,∴CE 是⊙O 的切线.(2)解:连接BC .在Rt △ADC 中,cos ∠DAC =cos ∠CAB =45=AD AC =4AC ,∴AC =5,∵AB 为⊙O 的直径,∴∠ACB =90°. 在Rt △ABC 中,cos ∠CAB =AC AB =5AB =45,∴AB =254. 24.(1)①证明:如图①,∵四边形ABCD 是矩形,∴∠C =∠D =∠B =90°,∴∠1+∠3=90°. 由折叠可得∠APO =∠B =90°, ∴∠1+∠2=90°.∴∠3=∠2. 又∵∠C =∠D ,∴△OCP ∽△PDA .②解:∵△OCP 与△PDA 的面积比为1∶4,且△OCP ∽△PDA , ∴OP PA =CP DA =12.∴CP =12AD =4. 设OP =x ,则易得CO =8-x . 在Rt △PCO 中,∠C =90°, 由勾股定理得 x 2=(8-x )2+42.解得x =5,即OP =5.∴AB =AP =2OP =10.(2)解:线段EF 的长度不发生变化.作MQ ∥AN ,交PB 于点Q ,如图②. ∵AP =AB ,MQ ∥AN ,∴∠APB =∠ABP =∠MQP . ∴MP =MQ .又BN =PM ,∴BN =QM .∵MQ ∥AN ,∴∠QMF =∠BNF ,∠MQF =∠FBN , ∴△MFQ ≌△NFB .∴QF =FB .∴QF =12QB .∵MP =MQ ,ME ⊥PQ ,∴EQ =12PQ .∴EF =EQ +QF =12PQ +12QB =12PB .∵BC =AD =8,∠C =90°,PC =4. ∴PB =82+42=45,∴EF =12PB =2 5.∴在(1)的条件下,动点M ,N 在移动的过程中,线段EF 的长度不变,它的长度恒为2 5.人教版初中数学九年级(下)期末综合测试卷(四)一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的。
(苏科版)初中数学八年级上册 第3章综合测试(含答案)
第3章综合测试一、选择题(共10小题,满分30分,每小题3分) 1.以下列各组数据为边长,可以构成直角三角形的是( ) A .3,5,6B .2,3,4C .1.5,2,2.5D .6,7,92.在ABC △中,若90B C ∠+∠=︒,则( ) A .BC AB AC =+B .222AC AB BC =+C .222AB AC BC =+D .222BC AB AC =+3.如图,分别以直角ABC △三边为边向外作三个正方形,其面积分别用1S 、2S 、3S 表示,若27S =,32S =,那么1S =( )A .9B .5C .53D .454.已知直角三角形的两条直角边的长分别为3和5,则斜边的长为( )A .3B .4C .5D 5.在直角三角形ABC 中,::2::4A B C m ∠∠∠=,则m 的值是( ) A .3B .4C .2或6D .2或46.如图,直线AB CD ∥,等腰直角三角形的直角顶点E 在AB 上,若1290∠+∠=︒,则图中与1∠互余的角的个数是( )A .5B .6C .7D .87.如图,甲船以20海里/时的速度从港口O 出发向西北方向航行,乙船以15海里/时的速度同时从港口O 出发向东北方向航行,则2小时后,两船相距( )A .40海里B .45海里C .50海里D .55海里8.如图,Rt ABC △中,90ACB ∠=︒,5AB =,3AC =,把Rt ABC △沿直线BC 向右平移3个单位长度得到'''A B C △,则四边形''ABC A 的面积是( )A .15B .18C .20D .229.如图,用4个相同的直角三角形与一个小正方形拼成的大正方形,若图中直角三角形较短的直角边长是5,小正方形的边长是7,则大正方形的面积是( )A .121B .144C .169D .19610.在直角三角形ABC 中,90C ∠=︒,两直角边长及斜边上的高分别为a ,b ,h ,则下列关系式成立的是( )A .222221a b h +=B .222111a b h +=C .2h ab =D .222h a b =+二、填空题(共6小题,满分24分,每小题4分)11.ABC △的三边分别是6,8,10,则这个三角形的最大内角的度数是________. 12.在Rt ABC △中,斜边10BC =,则222BC AB AC ++=________.13.如图,一架2.5 m 长的梯子斜靠在垂直的墙AO 上,这时AO 为2 m .如果梯子的顶端A 沿墙下滑0.5 m ,那么梯子的底端B 向外移动________m .14.如图,Rt ABC △中,90ACB ∠=︒,12AC =,5BC =,延长BC 至点D ,连接AD ,若ABD △是以AD 为其中一腰的等腰三角形,则线段DC 的长等于________.15.如图,一根长20 cm 的吸管置于底面直径为9 cm ,高为12 cm 的圆柱形水杯中,吸管露在杯子外面的长度最短是________cm .16.如图,已知1OB =,以OB 为直角边作等腰直角三角形1A BO ,再以1OA 为直角边作等腰直角三角形21A A O ,如此下去,则线段2020OA 的长度为________.三、解答题(共8小题,满分66分)17.(7分)学校校内有一块如图所示的三角形空地ABC ,其中13AB =米,14BC =米,15AC =米,计划将这块空地建成一个花园,以美化校园环境,预计花园每平方米造价为60元,学校修建这个花园需要投资多少元?18.(7分)如图,四边形ABCD 中,AB AD ⊥,已知3cm AD =,4cm AB =,12cm CD =,13cm BC =,求四边形ABCD 的面积.19.(7分)如图,ABC DBE △≌△,60CBE ∠=︒,30DCB ∠=︒.求证:222DC BE AC +=.20.(8分)我们规定:三角形任意一条边的“线高差”等于这条边与这条边上的高之差.如图①,在ABC △中,CD 为AB 边上的高,AB 的“线高差”等于AB CD -,记为()h AB .(1)如图②,在ABC △中,AB AC =,AD BC ⊥,垂足为D ,6AD =,4BD =,则()h BC =________; (2)如图③,在ABC △中,90C ∠=︒,6AC =,8BC =,求()h AB .21.(8分)在一条东西走向河的一侧有一村庄C ,河边原有两个取水点A ,B ,其中AB BC =,由于某种原因,由C 到B 的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点D (A 、D 、B 在同一条直线上),并新修一条路CD ,测得 6.5CA =千米,6CD =千米, 2.5AD =千米. (1)问CD 是否为从村庄C 到河边最近的路?请通过计算加以说明; (2)求原来的路线BC 的长.22.(8分)两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B ,C ,E 在同一条直线上,连结DC .(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母); (2)证明:DC BE ⊥.23.(10分)如图,ABC △中,90ACB ∠=︒,10AB =,6BC =,若点P 从点A 出发,以每秒1个单位长度的速度沿折线A C B A ---运动,设运动时间为t 秒()t >0.(1)若点P 在AC 上,且满足PA PB =时,求此时t 的值; (2)若点P 恰好在BAC ∠的平分线上,求t 的值.24.(11分)(1)教材在探索平方差公式时利用了面积法,面积法可以帮助我们直观地推导或验证公式,俗称“无字证明”,例如,著名的赵爽弦图(如图①,其中四个直角三角形较大的直角边长都为a ,较小的直角边长都为b ,斜边长都为c ),大正方形的面积可以表示为2c ,也可以表示为()2142ab a b ⨯+-,所以()22142ab a c b ⨯+-=,即222a b c +=.由此推导出重要的勾股定理:如果直角三角形两条直角边长为a ,b ,斜边长为c ,则222a b c +=.图②为美国第二十任总统伽菲尔德的“总统证法”,请你利用图②推导勾股定理.(2)试用勾股定理解决以下问题:如果直角三角形ABC 的两直角边长为3和4,则斜边上的高为________.(3)试构造一个图形,使它的面积能够解释()222244a b a ab b -=-+,画在上面的网格中,并标出字母a ,b 所表示的线段.第3章综合测试答案解析一、 1.【答案】C【解析】解:A .222356+≠,∴不可以构成直角三角形;B .222234+≠,∴不可以构成直角三角形;C .2221.52 2.5+=,∴可以构成直角三角形;D .222679+≠,∴不可以构成直角三角形.故选:C .2.【答案】D【解析】解:在ABC △中,若90B C ︒∠+∠=,90A ∴∠=︒,222BC AB AC =+∴,故选:D . 3.【答案】A【解析】解:在Rt ABC △中,222AB BC AC =+,21S AB =,22S BC =,23S AC =,123S S S ∴=+.27S =,32S =,1729S ∴=+=.故选:A .4.【答案】D【解析】解:直角三角形的两条直角边的长分别为3和5,∴故选:D . 5.【答案】C【解析】解:设A ∠、B ∠、C ∠的度数分别为2x 、mx 、4x ,当C ∠为直角时,24x mx x +=,解得,2m =,当B ∠为直角时,24x mx x +=,解得,6m =,故选:C . 6.【答案】C 【解析】解:FEG △是等腰直角三角形,90FEG ︒∴∠=,1390︒∴∠+∠=,直线AB CD ∥,378∴∠=∠=∠,4256∠=∠=∠=∠,1290︒∠+∠=,2345678∴∠=∠=∠=∠=∠=∠=∠,∴图中与1∠互余的角的个数是7个,故选:C .7.【答案】C【解析】解:两船行驶的方向是西北方向和东北方向,90BOC ∴∠=︒,两小时后,两艘船分别行驶了20240⨯=海里,15230⨯=50=(海里).故选:C .8.【答案】A 【解析】解:把Rt ABC △沿直线BC 向右平移3个单位长度得到''''A B C △,''5A B AB ∴==,''3A C AC ==,'''90A C B ACB ∠=∠=︒,''3A A CC ==,''4B C ∴==,''AC A C ∥,∴四边形''ACC A 是矩形,∴四边形'''ABC A 的面积()11''(343)31522AA BC AC =+⋅=⨯++⨯=,故选:A . 9.【答案】C【解析】解:直角三角形较短的直角边长是5,小正方形的边长是7,∴直角三角形的较长直角边5712=+=,∴直角三角形斜边长13=,∴大正方形的边长是13,∴大正方形的面积是1313169⨯=.故选:C . 10.【答案】B【解析】解:设斜边为c ,根据勾股定理得出c =,1122ab ch =,ab h ∴=,即222222a b a h b h =+,222222222222222a b a h b h a b h a b h a b h ∴=+,即222111a b h+=.故选:B .二、11.【答案】90【解析】解:2226810+=,∴以6,8,10为边能组成直角三角形,最大的角的度数是90︒,故答案为:90.12.【答案】200【解析】解:在Rt ABC △中,斜边10BC =,222100AB AC BC ∴+==,22222200BC AB AC BC ∴++==.故答案是:200. 13.【答案】0.5【解析】解:Rt OAB △中, 2.5 m AB =, 2 m AO =, 1.5 m OB ∴==;同理,Rt OCD △中,2.5 m CD =,20.5 1.5 m OC =-=, 2 m OD ∴===,2 1.50.5(m)BD OD OB ∴=-=-=.答:梯子底端B 向外移了0.5米,故答案为:0.5.14.【答案】5或11910【解析】解:Rt ABC △中,90ACB ∠=︒,12AC =,5BC =,13AB ∴===,ABD △是以AD 为其中一腰的等腰三角形,∴分两种情况:①当AD AB =时,AC BD ⊥,5DC BC ∴==.②当AD BD =时,设DC x =,则5AD BD x ==+.Rt ADC △中,90ACD ∠=︒,222DC AC AD ∴+=,即22212(5)x x +=+,解得11910x =.综上所述,线段DC 的长等于5或11910.故答案为:5或11910.15.【答案】5【解析】解:如图,当吸管、底面直径、杯子的高恰好构成直角三角形时,h 最短,此时15(cm)AB =,故 20155(cm)h =-=最短;故答案为:5.16.【答案】10102【解析】解:1OBA △为等腰直角三角形,1OB =,11BA OB ∴==,1OA ==12OA A △为等腰直角三角形,121A A OA ∴==212OA ==,23OA A △为等腰直角三角形,2322A A OA ∴==,32OA =34OA A △为等腰直角三角形,343A A OA ∴==434OA ==,45OA A △为等腰直角三角形,4544A A OA ∴==,54OA ==,56OA A △为等腰直角三角形,56542A A OA ∴==-,658OA =.n OA ∴的长度为n .当2020n =时,2020101020202OA ==,故答案为:10102. 三、17.【答案】解:过点A 作AD BC ⊥于点D ,设BD x =,则14CD x =-,在Rt ABD △与Rt ACD △中,222AD AB BD =-,222AD AC CD =-,2222AB BD AC CD ∴-=-,即22221315(14)x x -=--,解得5x =,22222135144AD AB BD ∴=-=-=,12()AD ∴=米,∴学校修建这个花园的费用11412605040()2=⨯⨯⨯=元.答:学校修建这个花园需要投资5040元.18.【答案】解:连接BD , 4 cm AD =, 3 cm AB =,AB AD ⊥,5(cm)BD ∴=()216cm 2ABD S AB AD ∴=⋅=△.在BDC △中,22251213+=,即222BD BC CD +=,BDC ∴△为直角三角形,即90DBC ∠=︒,()2130cm 2DBC S BD BC ∴=⋅=△.()230624cm BDC ABD ABCD S S S ∴=-=-=△△四边形. :四边形ABCD 的面积为224 cm .19.【答案】证明:ABC DBE △≌△,BE BC ∴=,AC ED =;连接EC .则BCE △为等边三角形,BC CE ∴=,60BCE ∠=︒,30DCB ︒∠=,90DCE ︒∴∠=,在Rt DCE △中,222DC CE DE +=,222DC BE AC ∴+=.20.【答案】(1)在ABC △中,AB AC =,AD BC ⊥,2248BC BD ∴==⨯=,()2h BC BC AD =-=.(2)在 ABC △中,90C ∠=︒,6AC =,8BC =,10AB ∴=,()10 4.8 5.2h AB =-=.21.【答案】(1)是,理由:2226 2.5 6.5+=,222CD AD AC ∴+=,ADC ∴△为直角三角形,CD AB ∴⊥,CD ∴是从村庄C 到河边最近的路.(2)设BC x =千米,则()2.5BD x =-千米,CD AB ⊥,2226( 2.5)x x ∴+-=,解得:8.45x =,答:路线BC 的长为8.45千米. 22.【答案】(1)ABE ACD △≌△. 证明:ABE △与AED △均为等腰直角三角形,AB AC ∴=,AE AD =,90BAC EAD ︒∠=∠=.BAC CAE EAD CAE ∴∠+∠=∠+∠.即BAE CAD ∠=∠,在ABE △与ACD △中,AB ACBAE CAD AE AD ∠∠=⎧⎪=⎨⎪=⎩,ABE ACD ∴△≌△.(2)证明ABE ACD △≌△,45ACD ABE ︒∴∠=∠=,又45ACB ︒∠=,90BCD ACB ACD ∴∠=∠+∠=︒,DC BE ∴⊥.23.【答案】(1)如图1,PA PB =,在Rt ACB △中,8AC =,设AP t =,则8PC t =-,在Rt PCB △中,依勾股定理得:222(8)6t t -+=,解得254t =,即此时t 的值为254. (2)分两种情况:①点P 在BC 上时,如图2所示:过点P 作PE AB ⊥,则8PC t =-,14PB t =-,AP初中数学 八年级上册 11 / 11 平分BAC ∠且PC AC ⊥,PE PC ∴=,在ACP △与AEP △中,C AEP CAP EAP AP AP ∠∠∠∠=⎧⎪=⎨⎪=⎩,()ACP AEP AAS ∴△≌△,8AE AC ∴==,2BE ∴=,在Rt PEB △中,依勾股定理得:222PE EB PB +=,即:222(8)2(14)t t -+=- 解得:323t =. ②点P 又回到A 点时,861024AC BC AB ++=++=,24t ∴=. 综上所述,点P 在BAC ∠的平分线上时,t 的值为323秒或24秒.24.【答案】(1)梯形ABCD 的面积为22111()()222a b a b a ab b ++=++,也利用表示为2111222ab c ab ++,2221111122222a ab b abc ab ∴++=++,即222a b c +=. (2)直角三角形的两直角边分别为3,4,∴斜边为5,设斜边上的高为h ,直角三角形的面积为1134522h ⨯⨯=⨯⨯,125h ∴=,故答案为125. (3)图形面积为:222(2)44a b a ab b -=-+,∴边长为2a b -,由此可画出的图形为:。
中考数学综合模拟测试题(附答案解析)
三、解答题(本大题共9小题,共90分)
19.计算:(π﹣3.14)0+|1﹣2 |﹣ +( )﹣1
20.先化简,再求值: ﹣ ÷ ,其中x=2.
21.如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.
(1)求证:△ABC≌△DFE;
(2)连接AF、BD,求证:四边形ABDF是平行四边形.
A. 102°B. 54°C. 48°D. 78°
5.一件服装标价200元,若以六折销售,仍可获利20℅,则这件服装进价是
A. 100元B. 105元C. 108元D. 118元
6.为了了解某校九年级学生的体能情况,随机抽查了其中50名学生,测试1分钟仰卧起坐的成绩(次数),进行整理后绘制成如图所示的频数分布直方图(注:15~20包括15,不包括20,以下同),
23.某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.
请根据以上信息,回答下列问题:
(1)杨老师采用的调查方式是(填“普查”或“抽样调查”);
(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?
【答案】D
【解析】
【详解】试题分析:主视图是三角形,俯视图是两个矩形,左视图是一个矩形,
2022-2023学年新人教版初中七年级数学上册期末综合素养评价测试卷(附参考答案)
2022-2023学年新人教版初中七年级数学上册期末综合素养评价测试卷一、选择题(共12小题,满分36分,每小题3分)1.(3分)(2022•大冶市模拟)a与﹣2互为倒数,则a为()A.﹣2B.2C.12D.−122.(3分)(2022秋•桂平市期中)据猫眼实时数据显示,截止2022年10月16日,电影《万里归途》的累计票房正式突破13亿元,数据13亿用科学记数法表示为()A.1.3×108B.0.13×108C.1.3×109D.1.3×10103.(3分)(2022秋•宿迁期中)下列方程中,是一元一次方程的是()A.x﹣2y+1=0B.2+1x=1C.2x﹣1=0D.xy=44.(3分)(2022秋•如东县期中)下列说法错误的是()A.32ab2c的次数是4次B.多项式2x2﹣3x﹣1是二次三项式C.多项式3x2﹣2x3y+1的次数是6次D.2πr的系数是2π5.(3分)(2022秋•宿城区期中)某商品价格为a元,根据销量的变化,该商品先降价10%,一段时间后又提价10%,提价后这种商品的价格与原价格a相比()A.降低了0.01a B.降低了0.1aC.增加了0.01a D.不变6.(3分)(2022秋•黄浦区期中)分数457介于两个相邻的整数之间,这两个整数是()A.3和4B.4和5C.5和6D.6和77.(3分)(2022秋•扬州期中)下列结论不正确的是()A.单项式﹣ab2的次数是3B.单项式abc的系数是1C.多项式x2y2﹣2x2+1是四次三项式D.−3xy2不是整式8.(3分)(2022秋•丹江口市期中)已知m =n ,则下列变形中正确的个数为( ) ①m +2=n +2;②am =an ;③m n =1;④m a 2+1=na 2+1A .1个B .2个C .3个D .4个 9.(3分)(2022秋•宿城区期中)已知等式a =b ,则下列等式中不一定成立的是( )A .a +1=b +1B .2a ﹣2b =0C .a c =b cD .ac =bc10.(3分)(2022秋•天山区校级期中)如图,点C 是线段AB 上的点,点D 是线段BC 的中点,AB =10,AC =6,则线段BD 的长是( )A .6B .2C .8D .411.(3分)(2022秋•福田区校级期中)下列正方体的展开图中,“勤”的对面是“戴”的展开图是( )A .B .C .D .12.(3分)(2022秋•天山区校级期中)如果线段AB =10cm ,MA +MB =13cm ,那么下面说法中正确的是( )A .M 点在线段AB 上B .M 点在直线AB 上C .M 点可能在直线AB 上也可能在AB 外D .M 点在直线AB 外二、填空题(共6小题,满分18分,每小题3分)13.(3分)(2022秋•黄石期中)若|m 2﹣5m ﹣2|=1,则2m 2﹣10m +2022的值为 .14.(3分)(2021秋•兴庆区校级期末)若12a +1与2a−73互为相反数,则a 的值为 .15.(3分)(2022秋•莱西市期中)下列几何体属于棱柱的是 (填序号)16.(3分)(2022春•碑林区校级月考)如图,∠AOC =∠DOE =90°,如果∠AOE =65°,那么∠COD 的度数是 .17.(3分)(2022秋•城阳区期中)如图,一块长为为acm ,宽为bcm 的矩形硬纸板,在其四个角各剪去1个边长为2cm 的正方形,然后将四周的部分折起,可制成一个无盖长方体盒子,则所得长方体盒子的侧面积为 (用含a ,b 代数式表示).18.(3分)(2022秋•城阳区期中)如图,将图沿虚线折起来,得到一个正方体,那么“我“的对面是 (填汉字).三、解答题(共7小题,满分66分)19.(9分)(2022秋•宜兴市期中)解方程(1)5x ﹣3=2(x ﹣12);(2)1−2x−16=2x+13.20.(9分)(2022秋•黔东南州期中)先化简,再求值:(1)(2a 2﹣b )﹣(a 2﹣4b )﹣(b +c ),其中:a =13,b =12,c =1;(2)3(2x 2﹣3xy ﹣5x ﹣1)+6(﹣x 2+xy ﹣1),其中x 、y 满足:x 是2的相反数,y 是−23的绝对值.21.(9分)(2022秋•陇县期中)计算:(1)﹣21+(﹣14)﹣(﹣18)﹣15;(2)−3.5÷78×|−34|−(−2)÷(−13)×(−3);(3)(−2)3+[−42×(−34)2+3]÷(−35)−|−1−2|.22.(9分)(2021秋•肥东县期末)已知:如图,∠AOB =20°,OB 平分∠AOC .(1)以射线OD 为一边,在∠AOD 的外部作∠DOE ,使∠DOE =COD ;(用直尺和圆规作图,保留作图痕迹,不要求写作法)(2)若∠AOE =105°10′,求∠AOD 的大小.23.(10分)(2022秋•郫都区校级期中)整体代换是数学的一种思想方法,在求代数式的值中,整体代换思想非常常用,例如x 2+x =1,求x 2+x +2022的值,我们将x 2+x 作为一个整体代入,则原式=1+2022=2023.仿照上面的解题方法,完成下面的问题:(1)若x 2+2x ﹣1=0,则x 2+2x ﹣2022= .(2)若a 2+2ab =﹣5,b 2+2ab =3,求2a 2﹣3b 2﹣2ab 的值.24.(10分)(2022秋•顺德区校级月考)如图1至图3是将正方体截去一部分后得到的多面体.(1)根据要求填写表格:面数(f ) 顶点数(v ) 棱数(e ) 图17 14 图28 12 图3 7 10(2)请写出f 、v 、e 三个数量间的关系式.25.(10分)(2022秋•前郭县期中)如图,点A,B是数轴上两点,点A表示的数为﹣16,A,B两点之间的距离为20,动点P、Q分别从A、B出发,点P以每秒2个单位长度的速度沿数轴向右匀速运动,点Q以每秒1个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是;(2)求数轴上点P,Q表示的数(用含t的式子表示);(3)若点P,Q同时出发,t为何值时,这两点相遇?(4)若点P,Q同时出发,t为何值时,点P和点Q刚好相距5个单位长度?参考答案一、选择题(共12小题,满分36分,每小题3分)1.D ; 2.C ; 3.C ; 4.C ; 5.A ; 6.D ; 7.D ; 8.C ; 9.C ; 10.B ; 11.D ;12.C ;二、填空题(共6小题,满分18分,每小题3分)13.2024或202814.8715.①②⑥16.115°17.(4a+4b ﹣32)cm 218.大;三、解答题(共7小题,满分66分)19.解:(1)5x ﹣3=2(x ﹣12),去括号,得5x ﹣3=2x ﹣24,移项,得5x ﹣2x =3﹣24,合并同类项,得3x =﹣21,系数化为1,得x =﹣7;(2)1−2x−16=2x+13,去分母,得6﹣(2x ﹣1)=2(2x +1),去括号,得6﹣2x +1=4x +2,移项,得﹣2x ﹣4x =2﹣6﹣1,合并同类项,得﹣6x =﹣5,系数化为1,得x =56. 20.解:(1)原式=2a 2﹣b ﹣a 2+4b ﹣b ﹣c=a 2+2b ﹣c ,当a =13,b =12,c =1时,原式=19+1﹣1=19;(2)原式=3(2x 2﹣3xy ﹣5x ﹣1)+6(﹣x 2+xy ﹣1)=6x 2﹣9xy ﹣15x ﹣3﹣6x 2+6xy ﹣6=﹣3xy ﹣15x ﹣9,∵x 是2的相反数,y 是−23的绝对值,∴x =﹣2,y =23,∴原式=﹣3×(﹣2)×23−15×(﹣2)﹣9=25.21.解:(1)﹣21+(﹣14)﹣(﹣18)﹣15=﹣21﹣14+18﹣15=﹣35+18﹣15=﹣17﹣15=﹣32;(2)−3.5÷78×|−34|−(−2)÷(−13)×(−3) =−72×87×34−(﹣2)×(﹣3)×(﹣3)=﹣3+18=15;(3)(−2)3+[−42×(−34)2+3]÷(−35)−|−1−2|=﹣8+(﹣16×916+3)×(−53)﹣3=﹣8+(﹣9+3)×(−53)﹣3=﹣8+(﹣6)×(−53)﹣3=﹣8+10﹣3=2﹣3=﹣1.22.解:(1)作图如下:(2)∵∠AOB=20°,OB平分∠AOC.∴∠AOC=2∠AOB=40°,∵∠AOE=105°10′,∴∠COE=∠AOE﹣∠AOC=65°10′,∵∠DOE=∠COD,∠COE=32°35′,∴∠COD=12∴∠AOD=∠AOC+∠COD=72°35′.23.解:(1)∵x2+2x﹣1=0,∴x2+2x=1,∴原式=(x2+2x)﹣2022=1﹣2022=﹣2021,故答案为:﹣2021;(2)∵a2+2ab=﹣5,b2+2ab=3,∴a2﹣b2=﹣5﹣3=﹣8,∴原式=2a2﹣2b2﹣b2﹣2ab=2(a2﹣b2)﹣(b2+2ab)=2×(﹣8)﹣3=﹣16﹣3=﹣19.24.解:(1)图1,面数f=7,顶点数v=9,棱数e=14,图2,面数f=6,顶点数v=8,棱数e=12,图3,面数f=7,顶点数v=10,棱数e=15,故答案为:9,6,15.(2)f+v﹣e=2.25.解:(1)∵A,B两点之间的距离为20,点A表示的数为﹣16,且点B在点A的右侧,∴数轴上点B表示的数是﹣16+20=4.故答案为:4.(2)当运动时间为t(t>0)时,数轴上点P表示的数为(2t﹣16),点Q表示的数为(4﹣t).(3)根据题意得:2t﹣16=4﹣t,解得:t=20.3时,这两点相遇.答:若点P,Q同时出发,t为203(4)根据题意得:|2t﹣16﹣(4﹣t)|=5,即20﹣3t=5或3t﹣20=5,.解得:t=5或t=253时,点P和点Q刚好相距5个单位长度.答:若点P,Q同时出发,t为5或253。
2023年北师大版初中数学九年级(下)期末综合测试卷及部分答案(五套)
北师大版初中数学九年级(下)期末综合测试卷及答案(一)一、选择题(每题3分,共30分)1.在△ABC 中,若⎪⎪⎪⎪⎪⎪sin A -12+⎝ ⎛⎭⎪⎫cos B -122=0,则∠C 的度数是( ) A.30° B.45° C.60° D.90° 2.抛物线y =x 2-3x +2的对称轴是直线( ) A.x =-3 B.x =3 C.x =-32 D.x =323.把抛物线y =-2x 2先向右平移1个单位长度,再向上平移2个单位长度后,所得抛物线对应的函数表达式为( )A.y =-2(x +1)2+2 B.y =-2(x +1)2-2 C.y =-2(x -1)2+2 D.y =-2(x -1)2-2 4.2cos 45°的值等于( ) A.1 B. 2 C. 3 D.25.如图,已知⊙O 是△ABD 的外接圆,AB 是⊙O 的直径,CD 是⊙O 的弦, ∠ABD =58°,则∠BCD 等于( )A.116°B.32°C.58°D.64°6.如图是某水库大坝横断面示意图,其中CD ,AB 分别表示水库上、下底面的水平线,∠ABC =120°,BC 的长是50 m ,则水库大坝的高度h 是( )A.25 3 mB.25 mC.25 2 mD.5033m7.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列说法错误..的是( ) A.图象关于直线x =1对称B.函数y =ax 2+bx +c (a ≠0)的最小值是-52C.-1和3是方程ax 2+bx +c =0(a ≠0)的两个根D.当x <1时,y 随x 的增大而增大8.如图,AB 为⊙O 的切线,切点为B ,连接AO ,AO 与⊙O 交于点C ,BD 为⊙O 的直径,连接C D.若∠A =30°,⊙O 的半径为2,则图中阴影部分的面积为( )A.4π3- 3B.4π3-2 3C.π- 3D.2π3- 39.如图,半圆O 与等腰直角三角形两腰CA ,CB 分别切于D ,E 两点,直径FG 在AB 上,若BG =2-1,则△ABC 的周长为( )A.4+2 2B.6C.2+2 2D.410.如图,一艘渔船在海岛A 南偏东20°方向的B 处遇险,测得海岛A 与B 的距离为20 n mile ,渔船将险情报告给位于A 处的救援船后,沿北偏西80°的方向向海岛C 靠近,同时,从A 处出发的救援船沿南偏西10°方向匀速航行,20 min 后,救援船在海岛C 处恰好追上渔船,那么救援船航行的速度为( )A.10 3 n mile/hB.30 n mile/hC.20 3 n mile/hD.30 3 n mile/h 二、填空题(每题3分,共30分)11.二次函数y =-x 2+bx +c 的部分图象如图所示,若y >0,则x 的取值范围是____________.12.如图,在△ABC 中,∠B =30°,AC =2,cos C =35,则AB 边的长为________.13.抛物线y =2x 2+6x +c 与x 轴的一个交点为(1,0),则这个抛物线的顶点坐标是____________.14.如图,扇形AOB 的圆心角为122°,C 是AB ︵上一点,则∠ACB =________.15.如图,直径为10的⊙A 经过点C (0,6)和点O (0,0),与x 轴的正半轴交于点D ,B 是y轴右侧圆弧上一点,则cos ∠OBC =________.16.已知⊙O 的半径为1,点P 与点O 之间的距离为d ,且关于x 的方程x 2-2x +d =0没有实数根,则点P 在__________(填“圆内”“圆上”或“圆外”).17.一个小球在空中的高度h(m )与时间t(s)满足关系式:h =20t -5t 2,那么这个小球所能达到的最大高度为________m .18.如图,在⊙O 中,AB 是⊙O 的直径,AB =8 cm ,AC ︵=CD ︵=BD ︵,M 是AB 上一动点,则CM+DM 的最小值是__________.(19.如图,某公园入口处有三级台阶,每级台阶高为18 cm ,深为30 cm ,为了方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A ,斜坡的起点为C ,现设计斜坡BC 的坡度i =1∶5,则AC 的长度是________cm.20.如图,在平面直角坐标系中有一正方形AOBC ,反比例函数y =k x的图象经过正方形AOBC对角线的交点,半径为(4-22)的圆内切于△ABC ,则k 的值为________.三、解答题(21题6分,22~24题每题8分,其余每题10分,共60分) 21.计算:2sin 30°-3tan 45°·sin 45°+4cos 60°.22.如图,已知二次函数y =a (x -h)2+3的图象经过O (0,0),A (2,0)两点. (1)写出该函数图象的对称轴;(2)若将线段OA 绕点O 逆时针旋转60°到OA ′,试判断点A ′是否为该函数图象的顶点.23.如图,AB 是半圆O 的直径,C ,D 是半圆O 上的两点,OD ∥BC ,OD 与AC 交于点E . (1)若∠D =70°,求∠CAD 的度数; (2)若AC =8,DE =2,求AB 的长.24.如图,在小山的东侧A 庄,有一热气球,由于受西风的影响,以35 m/min 的速度沿着与水平方向成75°角的方向飞行,40 min 时到达C 处,此时气球上的人发现气球与山顶P 点及小山西侧的B 庄在一条直线上,同时测得B 庄的俯角为30°.又在A 庄测得山顶P的仰角为45°,求A庄与B庄的距离及山高(结果保留根号).25.如图,以△ABC的边BC上一点O为圆心的圆经过A,C两点且与BC边交于点E.点D为下半圆弧的中点,连接AD交线段EO于点F,且AB=BF.(1)求证:AB是⊙O的切线;(2)若CF=4,DF=10,求⊙O的半径r及sin B.26.某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.(1)求y关于x的函数表达式.(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m 的取值范围.27.在平面直角坐标系中,点O 为坐标原点,抛物线y =ax 2+bx +5经过点M (1,3)和N (3,5).(1)试判断该抛物线与x 轴交点的情况;(2)平移这条抛物线,使平移后的抛物线经过点A (-2,0),且与y 轴交于点B ,同时满足以A ,O ,B 为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.答案一、1.D 2.D 3.C 4.B 5.B 6.A 7.D 8.A9.A 点拨:连接OD ,OE ,易证得四边形ODCE 是正方形,△OEB 是等腰直角三角形,设OE=r ,由OB =2OE =2r ,可得方程:2-1+r =2r ,解此方程,即可求得r ,则△ABC 的周长为4+2 2.10.D 点拨:∵∠CAB =10°+20°=30°,∠CBA =80°-20°=60°,∴∠C =90°.∵AB =20 n mile ,∴AC =AB ·cos 30°=10 3 n mile.∴救援船航行的速度为103÷2060=303(n mile/h).二、11.-3<x <1 12.16513.⎝ ⎛⎭⎪⎫-32,-25214.119° 点拨:在扇形AOB 所在圆的优弧AB 上取一点D ,连接DA ,DB .∵∠AOB =122°,∴∠D =61°. ∵∠ACB +∠D =180°, ∴∠ACB =119°.15.4516.圆外 17.20 18.8 cm 19.210 点拨:过点B 作BD ⊥AC 于点D ,则AD =2×30=60(cm),BD =18×3=54(cm).由斜坡BC 的坡度i =1∶5,得CD =5BD =5×54=270(cm).∴AC =CD -AD =270-60=210(cm).20.4 点拨:设正方形OACB 的边长为a ,则AB =2a .根据直角三角形内切圆半径公式得a +a -2a2=4-22,故a =4.所以对角线交点坐标为(2,2),故k =xy =4.三、21.解:原式=2×12-3×1×22+4×12=1-322+2=3-322.22.解:(1)∵二次函数y =a (x -h )2+3的图象经过O (0,0),A (2,0)两点,∴抛物线的对称轴为直线x =1. (2)点A ′是该函数图象的顶点.理由:如图,作A ′B ⊥x 轴于点B .∵线段OA 绕点O 逆时针旋转60°到OA ′,∴OA ′=OA =2,∠AOA ′=60°.又∵A ′B ⊥x 轴,∴OB =12OA ′=1,A ′B =3OB = 3.∴A ′点的坐标为(1,3).∴点A ′是函数y =a (x -1)2+3图象的顶点. 23.解:(1)∵OA =OD ,∠D =70°,∴∠OAD =∠D =70°.∴∠AOD =180°-∠OAD -∠D =40°. ∵AB 是半圆O 的直径,∴∠C =90°. ∵OD ∥BC ,∴∠AEO =∠C =90°,即OD ⊥AC . ∴AD ︵=CD ︵. ∴∠CAD =12∠AOD =20°.(2)由(1)可知OD ⊥AC ,∴AE =12AC =12×8=4.设OA =x ,则OE =OD -DE =x -2. 在Rt △OAE 中,OE 2+AE 2=OA 2,即(x -2)2+42=x 2,解得x =5. ∴AB =2OA =10. 24.解:过点A 作AD ⊥BC ,垂足为D .在Rt △ADC 中,∠ACD =75°-30°=45°,AC =35×40=1 400(m). ∴AD =AC ·sin 45°=1 400×22=7002(m). 在Rt △ABD 中,∠B =30°, ∴AB =2AD =1 400 2 m. 过点P 作PE ⊥AB ,垂足为E , 则AE =PE ,BE =PEtan 30°=3PE .∴(3+1)PE =1 400 2. 解得PE =700(6-2)m.答:A 庄与B 庄的距离是1 400 2 m ,山高是700(6-2)m. 25.(1)证明:如图,连接AO ,DO .∵D 为下半圆弧的中点,∴∠EOD =90°. ∵AB =BF ,OA =OD ,∴∠BAF =∠BFA =∠OFD ,∠OAD =∠ADO .∴∠BAF +∠OAD =∠OFD +∠ADO =90°,即∠BAO =90°. ∴OA ⊥AB . ∴AB 是⊙O 的切线.(2)解:在Rt △OFD 中,OF =CF -OC =4-r ,OD =r ,DF =10.∵OF 2+OD 2=DF 2,∴(4-r )2+r 2=(10)2. ∴r 1=3,r 2=1(舍去).∴半径r =3.∴OA =3,OF =CF -OC =4-3=1,BO =BF +FO =AB +1. 在Rt △ABO 中,AB 2+AO 2=BO 2,∴AB 2+32=(AB +1)2.∴AB =4.∴BO =5. ∴sin B =AO BO =35.26.解:(1)y =⎩⎪⎨⎪⎧120x (0<x ≤30),[120-(x -30)]x (30<x ≤m ),[120-(m -30)]x (x >m )=⎩⎪⎨⎪⎧120x (0<x ≤30),-x 2+150x (30<x ≤m ),(150-m )x (x >m ). (2)由(1)可知,当0<x ≤30或x >m 时,y 都随着x 的增大而增大.当30<x ≤m 时,y =-x 2+150x =-(x -75)2+5 625, ∵-1<0,∴当x ≤75时,y 随着x 的增大而增大.∴为了让收取的总费用随着团队中人数的增加而增加,m 的取值范围为30<m ≤75. 27.解:(1)把M ,N 两点的坐标代入抛物线对应的函数表达式,可得:⎩⎪⎨⎪⎧a +b +5=3,9a +3b +5=5,解得⎩⎪⎨⎪⎧a =1,b =-3. ∴抛物线对应的函数表达式为y =x 2-3x +5. 令y =0,可得x 2-3x +5=0.∵Δ=(-3)2-4×1×5=9-20=-11<0, ∴该抛物线与x 轴没有交点.(2)∵△AOB 是等腰直角三角形,点A (-2,0),点B 在y 轴上,∴点B 的坐标为(0,2)或(0,-2).可设平移后的抛物线对应的函数表达式为y =x 2+mx +n .①当抛物线过A (-2,0),B (0,2)时,代入可得⎩⎪⎨⎪⎧n =2,4-2m +n =0,解得⎩⎪⎨⎪⎧m =3,n =2.∴平移后的抛物线对应的函数表达式为y =x 2+3x +2.∵该抛物线的顶点坐标为⎝ ⎛⎭⎪⎫-32,-14,而原抛物线的顶点坐标为⎝ ⎛⎭⎪⎫32,114,∴将原抛物线先向左平移3个单位长度,再向下平移3个单位长度,即可获得符合条件的抛物线.②当抛物线过A (-2,0),B (0,-2)时,代入可得⎩⎪⎨⎪⎧n =-2,4-2m +n =0,解得⎩⎪⎨⎪⎧m =1,n =-2. ∴平移后的抛物线对应的函数表达式为y =x 2+x -2.∵该抛物线的顶点坐标为⎝ ⎛⎭⎪⎫-12,-94,而原抛物线的顶点坐标为⎝ ⎛⎭⎪⎫32,114,∴将原抛物线先向左平移2个单位长度,再向下平移5个单位长度,即可获得符合条件的抛物线.北师大版初中数学九年级(下)期末综合测试卷及答案(二)一、选择题。
(北师大版)初中数学八年级上册 第一章综合测试试卷03及答案
第一章综合测试一、选择题(共10小题,满分30分,每小题3分)1.以下各组数为三角形的三条边长,其中不能构成直角三角形的是()A .3,4,5B .6,8,10C .1,1,2D .5,12,132.如图,以直角三角形的一条直角边和斜边为一边作正方形M 和N ,它们的面积分别为29cm 和225cm ,则直角三角形的面积为( )A .26cmB .212cmC .224cmD .23cm 3.在一个直角三角形中,两直角边长分别为a ,b ,斜边为c ,那么()A .222a b c +>B .222a b c +<C .222a b c +=D .222a b c +¹4.甲乙两艘客轮同时离开港口,航行的速度都是每分钟40m ,甲客轮用15分钟到达点A ,乙客轮用20分钟到达点B ,若A 、B 两点的直线距离为1000m ,甲客轮沿着北偏东30°的方向航行,则乙客轮的航行方向可能是()A .南偏东60°B .南偏西60°C .北偏西30°D .南偏西30°5.如图,一架云梯25米,斜靠在一面墙上,梯子底端离墙7米,如果梯子的顶端下滑4米,那么梯子的底部在水平方向上滑动了( )A .4米B .6米C .8米D .10米6.如图:一个长、宽、高分别为4cm 、3cm 、12cm 的长方体盒子能容下的最长木棒长为( )A .11cmB .12cmC .13cmD .14cm7.如图:在ABC △中,CE 平分ACB Ð,CF 平分ACD Ð,且EF BC ∥交AC 于M ,若5CM =,则22CE CF +等于( )A .75B .100C .120D .1258.如图,在ABC △中,AD BC ^于点D ,BF 平分ABC Ð交AD 于点E ,交AC 于点F ,13AC =,12AD =,14BC =,则AE 的长等于( )A .5B .6C .7D .1529. ABC △中,17AB =,10AC =,高8AD =,则ABC △的周长是()A .54B .44C .36或48D .54或3310.如图是一个66´的正方形网格,每个小正方形的顶点都是格点,Rt ABC △的顶点都是图中的格点,其中点A 、点B 的位置如图所示,则点C 可能的位置共有( )A .9个B .8个C .7个D .6个二、填空题(共6小题,满分24分,每小题4分)11.已知ABC △的三边的长分别是5AB =、4BC =、3AC =,那么C Ð=________.12.在Rt ABC △中,斜边10BC =,则22AB AC +的值是________.13.如图,每个小正方形的边长都为1,则ABC △的三边长a ,b ,c 的大小关系是________(用“>”连接).14.已知一个三角形工件尺寸(单位dm )如图所示,则高h =________dm .15.如图,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短的直角边长为a ,较长的直角边长为b ,那么a b +的值为________.16.如图所示,已知ABC △中,90B Ð=°,16cm BC =,20cm AC =,点P 是ABC △边上的一个动点,点P 从点A 开始沿A B C A ®®®方向运动,且速度为每秒4cm ,设出发的时间为()t s ,当点P 在边CA 上运动时,若ABP △为等腰三角形,则运动时间t =________.三.解答题(共8小题,满分66分)17.(7分)如图,在ABC △中,CD AB ^于点D ,6BC =,8AC =,10AB =.求CD 的长.18.(7分)如图,在四边形ABCD 中,13AB =,3BC =,4CD =,12DA =,90ADB Ð=°,求四边形ABCD 的面积.19.(8分)在ABC △中,已知90C Ð=°,:3:4a b =,20c =,求:(1)a 、b 的值;(2)ABC S △.20.(8分)如图,每个小正方形的边长为1.(1)求BC 与CD 的长;(2)求证:90BCD Ð=°.21.(8分)八年级(2)班的小明和小亮同学学了“勾股定理”之后,为了测得图中风筝的高度CE ,他们进行了如下操作:①测得BD 的长为15米(注:BD CE ^);②根据手中剩余线的长度计算出风筝线BC 的长为25米;③牵线放风筝的小明身高1.6米.(1)求风筝的高度CE .(2)过点D 作DH BC ^,垂足为H ,求BH 、DH .22.(8分)已知:整式()()22212A n n -=+,整式0B >.尝试化简整式A .发现2A B =.求整式B .联想由上可知,()()222212B n n -=+,当1n >时,21n -,2n ,B 为直角三角形的三边长,如图,填写下表中B 的值;直角三角形三边21n -2n B勾股数组Ⅰ8勾股数组Ⅱ3523.(8分)阅读下列内容:设a ,b ,c 是一个三角形的三条边的长,且a 是最长边,我们可以利用a ,b ,c 三条边长度之间的关系来判断这个三角形的形状:①若222a b c =+,则该三角形是直角三角形;②若222a b c +>,则该三角形是钝角三角形;③若222a b c +<,则该三角形是锐角三角形.例如:若一个三角形的三边长分别是4,5,6,则最长边是6,22263645=+<,故由③可知该三角形是锐角三角形,请解答以下问题:(1)若一个三角形的三边长分别是7,8,9,则该三角形是________三角形.(2)若一个三角形的三边长分别是5,12,x ,且这个三角形是直角三角形,求x 的值.24.(12分)观察、思考与验证(1)如图1是一个重要公式的几何解释,请你写出这个公式________;(2)如图2所示,90B D Ð=Ð=°,且B ,C ,D 在同一直线上.试说明:90ACE Ð=°;(3)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(发表在1876年4月1日的《新英格兰教育日志》上),请你写出验证过程.第一章综合测试答案解析一、1.【答案】C【解析】解:A 、222345+=,能组成直角三角形,故此选项错误;B 、2226810+=,能组成直角三角形,故此选项错误;C 、222112+¹,不能组成直角三角形,故此选项正确;D 、22251213+=,能组成直角三角形,故此选项错误;故选:C.2.【答案】A4=(厘米),可得这个直角三角形的面积为:1462=(平方厘米).故选:A.3.【答案】C【解析】解:∵在Rt ACB △中,90C Ð=°,AC b =,AB c =,BC a =,∴由勾股定理得:222a b c +=,故选:C.4.【答案】A【解析】解:如图:∵甲乙两艘客轮同时离开港口,航行的速度都是每分钟40m ,甲客轮用15分钟到达点A ,乙客轮用20分钟到达点B ,∴甲客轮走了()4015600m ´=,乙客轮走了()4020800m ´=,∵A 、B 两点的直线距离为1000m ,2226008001000\+=,90AOB \Ð=°,∵甲客轮沿着北偏东30°的方向航行,∴乙客轮沿着南偏东60°的方向航行,故选:A.5.【答案】C【解析】解:由题意知25AB DE ==米,7BC =米,4AD =米,∵在直角ABC △中,AC 为直角边,24AC \==米,已知4AD =米,则24420CD =-=(米),∵在直角CDE △中,CE 为直角边15CE \==(米),15BE =米7-米8=米.故选:C.6.【答案】C【解析】解:∵侧面对角线2222345BC =+=,5m CB \=,12m AC =Q ,()13m AB \==,∴空木箱能放的最大长度为13m ,故选:C.7.【答案】B【解析】解:CE Q 平分ACB Ð,CF 平分ACD Ð,12ACE ACB \Ð=Ð,12ACF ACD Ð=Ð,即()1902ECF ACB ACD Ð=Ð+Ð=°,EFC \△为直角三角形,又EF BC Q ∥,CE 平分ACB Ð,CF 平分ACD Ð,ECB MEC ECM \Ð=Ð=Ð,DCF CFM MCF Ð=Ð=Ð,5CM EM MF \===,10EF =,由勾股定理可知222100CE CF EF +==.故选:B.8.【答案】D【解析】解:AD BC ^Q ,90ADC ADB \Ð=Ð=°,12AD =Q ,13AC =,5DC \===,14BC =Q ,1459BD \=-=,由勾股定理得:15AB ==,过点E 作EG AB ^于G ,BF Q 平分ABC Ð,AD BC ^,EG ED \=,在Rt BDE △和Rt BGE △中,EG ED BE BE=ìí=îQ ,()Rt Rt BDE BGE HL \△≌△,9BG BD \==,1596AG \=-=,设AE x =,则12ED x =-,12EG x \=-,Rt AGE △中,()222612x x =+-,152x =,152AE \=.故选:D.9.【答案】C【解析】解:分两种情况:①如图1所示:∵AD 是BC 边上的高,90ADB ADC \Ð=Ð=°,15BD \===,6CD ===,15621BC BD CD \=+=+=;此时,ABC △的周长为:17102148AB BC AC ++=++=.②如图2所示:同①得:15BD =,6CD =,1569BC BD CD \=-=-=;此时,ABC △的周长为:1710936AB BC AC ++=++=.综上所述:ABC △的周长为48或36.故选:C.10.【答案】A解:如图所示:,共9个点,故选:A.二、11.【答案】90°【解析】解:ABC ∵△中,5AB =、4BC =、3AC =,222AB BC AC \=+,ABC ∴△是直角三角形,90C \Ð=°.故答案为:90°.12.【答案】100【解析】解:在Rt ABC △中,∵斜边10BC =,222100AB AC BC \+==,故答案是:100.13.【答案】c a b>>【解析】解:由勾股定理可得:a ==b ==c ==c a b \>>.故答案为:c a b >>.14.【答案】4【解析】解:过点A 作AD BC ^于点D ,则AD h =,5dm AB AC ==Q ,6dm BC =,AD \是BC 的垂直平分线,13dm 2BD BC \==.在Rt ABD △中,4dm AD ===,即()4dm h =.答:h 的长为4dm .故答案为:4.15.【答案】5【解析】解:根据勾股定理可得2213a b +=,四个直角三角形的面积是:14131122ab ´=-=,即:212ab =,则()2222131225a b a ab b +=++=+=,则5a b +=.故答案为:5.16.【答案】425或9或192【解析】解:如图,过点B 作BH AC ^于H .90ABC Ð=°Q ,20AC =,16BC =,12AB \===,BH AC ^Q ,1122ABC S AC BH AB BC \=××=××△,121648205BH ´\==,365AH \===,当1BA BP =时,1365AH HP==,17216820161255AB BC AP \++=++-=,此时425t =,当2AB AP =时,22016121236AB BC CP ++=++-=,此时9t =,当33AP BP =时,32016121038AB BC CP ++=++-=,此时192t =,综上所述,满足条件的t 的值为425或9或192.三、17.【答案】解:∵在ABC △中,6BC =,8AC =,10AB =,222BC AC AB \+=,90ACB \Ð=°,∵由三角形的面积公式得:AC BC AB CD ´=´,6810CD \´=´,解得: 4.8CD =.18.【答案】解:在Rt ABD △中,222BD AB AD =-,222131225BD \=-=,又22223425BC CD +=+=Q ,222BC CD BD \+=,90BCD \Ð=°,51234 3622ABD BCD ABCD S S S ´´\=+=+=△△四边形.19.解:(1)如图所示::3:4a b =Q ,∴设3a x =,4b x =,由勾股定理得:5c x =,20c =Q ,520x \=,解得:4x =,12a \=,16b =;(2)11216962ABC S =´´=△.20.解:(1)由题意可知,BC CD ===;(2)证明:连接BD .BD ==Q ,BC CD ==;222BC CD BD \+=,BCD \△是直角三角形,即90BCD Ð=°.21.【答案】解:(1)在Rt CDB △中,由勾股定理,得20CD ===(米).所以20 1.621.6CE CD DE =+=+=(米);(2)由1122BD DC BC DH ´=´得15201225DH ´==,在Rt BHD △中,9BH ==.22.【答案】解:()()()222242242212214211A n n n n n n n n =-+=-++=++=+,2A B =Q ,0B >,21B n \=+,当28n =时,4n =,2214115n \-=-=,2214117n +=+=;当2135n -=时,6n =±(负值舍去),22612n \=´=,2137n +=.直角三角形三边21n -2n B 勾股数组Ⅰ15817勾股数组Ⅱ351237故答案为:15,17;12,37.23.【答案】(1)锐角(2)当最长边是12时,x ==当最长边是x 时,13x ==,即13x =【解析】(1)解:2278113+=Q ,2981=,222978\+<,∴该三角形是锐角三角形,故答案为:锐角;(2)当最长边是12时,x ==当最长边是x 时,13x ==,即13x =24.【答案】(1)解:这个公式是完全平方公式:()2222a b a ab b +=++;理由如下:∵大正方形的边长为a b +,∴大正方形的面积()2a b =+,又∵大正方形的面积=两个小正方形的面积+两个矩形的面积22222a b ab ab a ab b =+++=++,∴()2222a b a ab b +=++;故答案为:()2222a b a ab b +=++;(2)证明:ABC CDE Q △≌△,BAC DCE \Ð=Ð,90ACB BAC Ð+Ð=°Q ,90ACB DCE \Ð+Ð=°,90ACE \Ð=°;(3)证明:90B D Ð=Ð=°Q ,180B D \Ð+Ð=°,AB DE \∥,即四边形ABDE 是梯形,∴四边形ABDE 的面积21111()()2222a b a b ab c ab =++=++,整理得:222a b c +=.。
数学测试初中试卷及答案
一、选择题(每题2分,共20分)1. 下列各数中,不是有理数的是()A. 2B. -3/4C. √2D. 0.52. 如果a和b是相反数,那么a+b的值是()A. 0B. aC. bD. ab3. 下列各式中,正确的是()A. 2x + 3 = 2(x + 3)B. 2(x + 3) = 2x + 6C. 2x + 3 = 2x + 3D. 2(x + 3) = 2x + 94. 下列各数中,绝对值最大的是()A. -5B. 3C. -2D. 05. 如果x²=9,那么x的值是()A. ±3B. ±4C. ±5D. ±66. 下列各式中,正确的是()A. (a + b)² = a² + b²B. (a + b)² = a² + 2ab + b²C. (a - b)² = a² - 2ab + b²D. (a - b)² = a² + 2ab - b²7. 如果一个数的平方是25,那么这个数是()A. ±5B. ±10C. ±15D. ±208. 下列各式中,正确的是()A. a²b² = (ab)²B. (a + b)² = a² + 2ab + b²C. (a - b)² = a² - 2ab + b²D. (a + b)(a - b) = a² - b²9. 下列各数中,有最小值的是()A. 2x + 1B. -2x + 1C. 2x - 1D. -2x - 110. 下列各式中,正确的是()A. (a + b)² = a² + b²B. (a + b)² = a² + 2ab + b²C. (a - b)² = a² - 2ab + b²D. (a + b)(a - b) = a²+ b²二、填空题(每题2分,共20分)11. 如果a = 3,b = -2,那么a² - b²的值是______。
(人教版)初中数学九年级上册 第二十三章综合测试试卷01及答案
第二十三章综合测试一、选择题(每小题4分,共28分)1.如图所示,在等腰直角三角形ABC 中,90B Ð=°,48C Ð=°,如果将ABC △绕顶点A 逆时针方向旋转60°后得到AB C ¢¢△,那么BAC ¢Ð等于( )A .60°B .102°C .120°D .132°2.如图所示,ABC △和BCD △都为等腰直角三角形,若ABC △经旋转后能与BCD △重合,下列说法正确的是( )A .旋转中心为点C ,旋转角为45°B .旋转中心为点B ,旋转角为45°C .旋转中心为点C ,旋转角为90°D .旋转中心为点B ,旋转角为90°3.正方形ABCD 在平面直角坐标系中的位置如图所示,将正方形ABCD 绕D 点顺时针旋转90°后,B 点的对应点的坐标为( )A .()2,2-B .()4,1C .()3,1D .()4,04.如图所示,把ABC △绕点C 顺时针旋转30°得到A B C ¢¢△,其中A B ¢¢与AC 交于点D ,若90A DC ¢Ð=°,则A Ð为( )A .90°B .60°C .30°D .无法确定5.已知点()11,1P a -和()22,1P b -关于原点对称,则b a 的值为( )A .0B .1C .1-D .1±6.将如图所示的图案绕正六边形的中心旋转n °时与原图案完全重合,那么n 的最小值是()A .60B .90C .120D .1807.下列说法正确的是( )A .中心对称的两个图形一定是全等形B .中心对称图形是旋转90°后能与自身重合的图形C .两个形状、大小完全相同的图形一定中心对称D .中心对称图形一定是轴对称图形二、填空题(每空5分,共20分)8.若ABC △绕点A 旋转能与ADE △重合,其中AB 与AD 重合,AC 与AE 重合.若120EAD Ð=°,则CAB Ð=________;若35CAE Ð=°,则BAD Ð=________.9.在平面直角坐标系中,已知点0P 的坐标为()1,0,将点0P 绕原点O 逆时针旋转60°得点1P ,延长1OP 到点2P ,使212OP OP =,再将点2P 绕原点O 逆时针旋转60°得点3P ,则点3P 的坐标是________.10.如图所示,用两块完全相同的矩形拼成“L ”形,则ACF Ð的大小是________,ACF △的形状是________.11.已知点()221,25P a a a --+在y 轴上,则点P 关于原点O 对称的点的坐标为________.三、解答题(共52分)12.(12分)如图所示,画出四边形ABCD 绕点A 逆时针旋转90°后的图形.13.(12分)如图所示,ABC △绕点A 旋转得到ADE △,恰好使点C 旋转后落在直线BC 上的点E 处,已知105ACB Ð=°,10CAD Ð=°,求DFE Ð和B Ð的度数.14.(14分)用四块如左图所示的正方形卡片拼成一个新的正方形,使拼成的图案是一个轴对称图形,请你在右图①②③中各画出一种拼法(要求三种拼法各不相同),且其中至少有一种既是轴对称图形又是中心对称图形.15.(14分)在如图所示的网格中按要求画出图形,并回答问题:(1)先画出ABC △向下平移5格后的111A B C △,再画出ABC △以点O 为旋转中心顺时针旋转90°后的222A B C △;(2)在与同学交流时,你打算如何描述(1)中所画的222A B C △的位置?第二十三章综合测试答案解析一、1.【答案】B【解析】因为90B Ð=°,48C Ð=°,所以42BAC Ð=°.又CAC ¢Ð是旋转角,所以60CAC ¢Ð=°.所以4260102BAC BAC CAC ¢¢Ð=Ð+Ð=°+°=°.2.【答案】D【解析】因为点B 始终没有改变位置,所以点B 为旋转中心,旋转角为90ABC Ð=°.3.【答案】D【解析】作出旋转后的图形,结合旋转的性质可得点B 的对应点的坐标为()4,0.4.【答案】B【解析】由题意知,旋转角为30ACA ¢Ð=°,所以903060A ¢Ð=°-°=°.由旋转性质得60A A ¢Ð=Ð=°.5.【答案】B【解析】由题意得120a -+=,110b -+=,解得1a =-,0b =.所以()011b a =-=.6.【答案】C【解析】观察图形的组成特点可以发现图形外围的图案至少旋转120°后可以与原来的图案重合,内部的图案在旋转120°后也和原来的图案重合,故选C .7.【答案】A二、8.【答案】120° 35°【解析】由能互相重合的边得到对应边,从而确定对应角是解题关键.题中AB 与AD 重合,AC 与AE 重合,EAD Ð与CAB Ð是对应角,CAE Ð与BAD Ð是旋转角.9.【答案】(-【解析】画图确定点3P 的位置,过该点作x 轴、y 轴的垂线段,得到直角三角形,可求出点3P 的坐标.解答此题结合图形比较简便.10.【答案】90° 等腰直角三角形【解析】矩形FGCE 可以看作是由矩形ABCD 绕点C 顺时针旋转90°得到的,则90ACF Ð=°,AC FC =,所以ACF △是等腰直角三角形.11.【答案】()0,8-或()0,4-【解析】因为点()221,25P a a a --+在y 轴上,所以210a -=,所以1a =或1a =-.当1a =时,2254a a -+=,当1a =-时,2258a a -+=,所以点P 的坐标为()0,8-或()0,4-,所以点P 关于原点O 对称的点的坐标为()0,8-或()0,4-.三、12.【答案】如图所示.13.【答案】因为105ACB Ð=°,所以18010575ACF Ð=°-°=°.又因为10CAD Ð=°,所以180751095AFC Ð=°-°-°=°.所以95DFE AFC Ð=Ð=°.又ABC ADE △≌△,所以AC AE =,105AED ACB Ð=Ð=°,B D Ð=Ð,所以75AEC ACE Ð=Ð=°.所以1057530DEF AED AEC Ð=Ð-Ð=°-°=°.所以180180953055D DFE DEF Ð=°-Ð-Ð=°-°-°=°.所以55B D Ð=Ð=°.14.【答案】答案不唯一,如图所示,三种拼法仅供参考.15.【答案】(1)如图所示.(2)建立如图所示的平面直角坐标系,222A B C △各顶点的坐标分别为()25,2A ,()21,4B ,()23,1C .。
人教版九年级数学上册期末综合测试题(含答案)
12.
13.
14.
15.20
16.(1)解: ,
,
,
,
,
∴ , ;
(2)解: ,
,
,
或 ,
∴ , ;
(3)解: ,
化简整,得 ,
,
或 ,
∴ , .
17.(1)解:∵参与 活动的人数为36人,占总人数 ,
∴总人数 人,
则参与 活动的人数为: (人);
补全统计图如下:
(2)解:扇形 的圆心角为: ,
A.18°B.28°C.37°D.58°
10.如图,某公司准备在一个等腰直角三角形 的绿地上建造一个矩形的休闲书吧 ,其中点P在 上点N,M分别在 , 上,记 , ,图中阴影部分的面积为S,若 在一定范围内变化,则y与x,S与x满足的函数关系分别是()
A.一次函数关系,一次函数关系B.二次函数关系,一次函数关系
(3)解: 与 相交于 点,如图3,
,
为 的直径,
四边形 是 的神奇四边形,
,
, , ,
, ,
在 中, ,
,
设 ,则 ,
在 中, ,
解得 ,
即 ,
在 中, ,
,
,
.
23.(1)பைடு நூலகம்明:∵ ,
∴ ,
∴ ,
∴弦 平分圆周角 ,
∴圆中存在“爪形 ”;
(2)延长 至点E,使得 ,连接 ,
∵ ,
∴ ,
∵ , ,
根据以上信息,解答下列问题:
(1)参与此次抽样调查的学生人数是______人,补全统计图①;
(2)图②中扇形C的圆心角度数为______度;
(3)若参加成果展示活动的学生共有3600人,估计其中最喜爱“测量”项目的学生人数是多少;
2023年人教版(五四制)初中数学九年级(下)期末综合测试卷及部分答案(3套)
人教版(五四制)初中数学九年级(下)期末综合测试卷及答案(一)一、选择题(共10题,共30分)1.(3分)关于x的方程kx2−6x+9=0有实数根,k的取值范围是( )A.k<1且k≠0B.k<1C.k≤1且k≠0D.k≤12.(3分)如图,△ABC是一张纸片,∠C=90∘,AC=6,BC=8,现将其折叠,使点B与点A重合,折痕为DE,则DE的长为( )A.1.75B.3C.3.75D.43.(3分)如果x,y之间满足的关系是xy=−6,那么y是x的( )A.正比例函数B.反比例函数C.一次函数D.二次函数4.(3分)在做“抛掷一枚质地均匀的硬币”试验时,下列说法正确的是( )A.随着抛掷次数的增加,正面朝上的频率越来越小B.当抛掷的次数很多时,正面朝上的次数一定占总抛掷次数的12C.不同次数的试验,正面朝上的频率可能会不相同D.连续抛掷11次硬币都是正面朝上,则第12次抛掷出现正面朝上的概率小于12 5.(3分)甲队修路120m与乙队修路100m所用天数相同,已知甲队比乙队每天多修10m,设甲队每天修路x m.依题意,下面所列方程正确的是( )A.120x =100x−10B.120x=100x+10C.120x−10=100xD.120x+10=100x6.(3分)如图,菱形ABCD的边长为13,对角线AC=24,点E,F分别是边CD,BC的中点,连接EF并延长与AB的延长线相交于点G,则EG=( )A.13B.10C.12D.57.(3分)如图,AB是⊙O的直径,CD是弦,AE⊥CD于点E,BF⊥CD于点F,若FB=FE=2,FC=1,则AC的长是( )A.5√22B.3√52C.4√53D.5√238.(3分)如图,已知AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=α,则下列结论中不正确的是( )A.∠BOE=12(180∘−α)B.OF平分∠BODC.∠POE=∠BOF D.∠POB=2∠DOF9.(3分)如图,在△ABC中,BD,BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE交BD于G,交BC于H,下列结论:① ∠DBE=∠F;② 2∠BEF=∠BAF+∠C;③ ∠F=12(∠BAC−∠C);④ ∠BGH=∠ABE+∠C,其中正确的是( )A.①②④B.①③④C.①②③D.①②③④10.(3分)如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90∘,M,N分别是BA,CD延长线上的点,∠EAM和∠EDN的平分线交于点F.下列结论:①AB∥CD;②∠AEB+∠ADC=180∘;③DE平分∠ADC;④∠F为定值,其中结论正确的有( )A.1个B.2个C.3个D.4个二、填空题(共7题,共28分)11.(4分)18和30的最小公倍数是.12.(4分)近似数7.30×104精确到位.13.(4分)小明爸爸把10000元按一年期定期储蓄存入银行,年利率为1.95%,到期后可得本利和为元.14.(4分)如图,在直角坐标系中,⊙A的圆心的坐标为(−2,0),半径为2,点P为x+6上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ的直线y=−34最小值是.15.(4分)如图,△ABC的两条高线BD,CE相交于点F,已知∠ABC=60∘,AB=a,CF=EF,则△ABC的面积为(用含a的代数式表示).16.(4分)三个连续奇数,中间一个为a,则它们的积为.17.(4分)将正方形ABCD的各边按如图延长,从射线AB开始,分别在各射线上标记点A1,A2,A3,⋯,按此规律,点A2019在射线上.三、解答题(共8题,共62分)18.(6分)目前节能灯在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3300元购进节能灯100只,这两种节能灯的进价、售价如表:进价(元/只)售价(元/只)甲种节能灯3040乙种节能灯3550(1) 求甲、乙两种节能灯各进多少只?(2) 全部售完100只节能灯后,该商场获利多少元?19.(6分)解答下列问题.(1) 计算:4sin60∘−√12+(√3−1)0;).(2) 化简(x+1)÷(1+1x20.(7分)计算:(1) 37∘49ʹ+44∘28ʹ.(结果用度、分、秒表示)(2) 108∘18ʹ−56.5∘.(结果用度表示)21.(7分)我们约定:如果身高在选定标准的±2%范围之内都称为“普通身高”.为了了解某校九年级男生中具有“普通身高”的人数,我们从该校九年级男生中随机抽出10名男生,分别测量出他们的身高(单位:cm),收集并整理如下统计表:男生序号①②③④⑤⑥⑦⑧⑨⑩根据以上信息,身高x(cm)163171173159161174164166169164解答如下问题:(1) 计算这组数据的三个统计量:平均数、中位数、众数;(2) 请你选择其中一个统计量作为选定标准,找出这10名男生中具有“普通身高”是哪几位男生?并说明理由.22.(8分)如图,先把一矩形ABCD纸片对折,设折痕为MN,再把B点叠在折痕线上,得到△ABE.过B点折纸片使D点叠在直线AD上,得折痕PQ.(1) 求证△PBE∽△QAB;(2) 你认为△PBE和△BAE相似吗?如果相似给出证明,若不相似请说明理由.23.(8分)果子成熟从树上落到地面,它落下的高度与经过的时间有如下的关系:时间t/秒0.50.60.70.80.91⋯高度ℎ/米 4.9×0.25 4.9×0.36 4.9×0.49 4.9×0.64 4.9×0.81 4.9×1⋯(1) 上表反映了哪两个变量之间的关系?其中自变量是什么?因变量是什么?(2) 请你按照表中呈现的规律,列出果子落下的高度ℎ(米)与时间t(秒)之间的关系式.(3) 如果果子经过2秒落到地上,请计算这果子开始落下时离底面的高度是多少米?24.(10分)在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A(−3,0),B(1,0),与y轴交于点D(0,3),过顶点C作CH⊥x轴于点H.(1) 求抛物线的解析式和顶点C的坐标;(2) 连接AD,CD,若点E为抛物线上一动点(点E与顶点C不重合),当△ADE与△ACD面积相等时,求点E的坐标;(3) 若点P为抛物线上一动点(点P与顶点C不重合),过点P向CD所在的直线作垂线,垂足为点Q,以P,C,Q为顶点的三角形与△ACH相似时,求点P的坐标.25.(10分)已知:四边形ABCD中,AD∥BC,AD=AB=CD,∠BAD=120∘,点E是射线CD上的一个动点(与C、D不重合),将△ADE绕点A顺时针旋转120∘后,得到△ABEʹ,连接EEʹ.(1) 如图1,∠AEEʹ=∘;(2) 如图2,如果将直线AE绕点A顺时针旋转30∘后交直线BC于点F,过点E作EM∥AD交直线AF于点M,写出线段DE、BF、ME之间的数量关系;(3) 如图3,在(2)的条件下,如果CE=2,AE=2√7,求ME的长.答案一、选择题(共10题,共30分)1. 【答案】D2. 【答案】C3. 【答案】B4. 【答案】C5. 【答案】A6. 【答案】B7. 【答案】B8. 【答案】D9. 【答案】D10. 【答案】C二、填空题(共7题,共28分) 11. 【答案】 9012. 【答案】百13. 【答案】 1019514. 【答案】 4√215. 【答案】√3a 2516. 【答案】 a 3−a17. 【答案】 AB三、解答题(共8题,共62分)18. 【答案】(1) 设商场购进甲种节能灯 x 只,购进乙种节能灯 y 只,根据题意,得{30x +35y =3300,x +y =100.解这个方程组,得{x =40,y =60.答:甲、乙两种节能灯分别购进 40,60 只.(2) 商场获利=40×(40−30)+60×(50−35)=1300(元).答:商场获利1300元.19. 【答案】(1) 原式=4×√32−2√3+1=2√3−2√3+1=1.(2) 原式=(x+1)÷(xx+1x)=(x+1)÷x+1x=(x+1)⋅xx+1=x.20. 【答案】(1) 82∘17ʹ.(2) 51.8∘21. 【答案】(1) 平均数为:163+171+173+159+161+174+164+166+169+16410=166.4(cm);10名同学身高从小到大排列如下:159,161,163,164,164,166,169,171,173,174,中位数:166+1642=165(cm);众数:164(cm).(2) 选平均数作为标准:身高x满足166.4×(1−2%)≤x≤166.4×(1+2%),即163.072≤x≤169.728时为普通身高,此时⑦⑧⑨⑩男生的身高具有“普通身高”.选中位数作为标准:身高x满足165×(1−2%)≤x≤165×(1+2%),即161.7≤x≤168.3时为普通身高,此时①⑦⑧⑩男生的身高具有“普通身高”.选众数作为标准:身高x满足164×(1−2%)≤x≤164×(1+2%),即160.72≤x≤167.28时为普通身高,此时①⑤⑦⑧⑩男生的身高具有“普通身高”.22. 【答案】(1) ∵∠PBE+∠ABQ=90∘,∠PBE+∠PEB=90∘,∴∠ABQ=∠PEB.又∵∠BPE=∠AQB=90∘,∴△PBE∽△QAB.(2) 相似,理由如下:∵△PBE∽△QAB,∴BEAB =PEBQ,又∵BQ=PB,∴BEAB =PEPB,即BEEP=ABPB,又∵∠ABE=∠BPE=90∘,∴△PBE∽△BAE.23. 【答案】(1) 上表反映了果子成熟从树上落到地面时落下的高度ℎ与经过的时间t的关系;其中时间t是自变量,高度ℎ是因变量.(2) 观察可知,下落t秒时,高度为4.9t2,即ℎ=4.9t2.(3) 当t=2时,ℎ=4.9×22=19.6(m).故果子开始落下时离底面的高度是19.6米.24. 【答案】(1) 把点A,B,D的坐标代入二次函数表达式得:{a+b+c=0,9a−3b+c=0,c=3,解得:{a=−1,b=−2,c=3,则抛物线的表达式为:y=−x2−2x+3 ⋯⋯①,函数的对称轴为:x=−b2a=−1,则点C的坐标为(−1,4);(2) 过点C作CE∥AD交抛物线于点E,交y轴于点H,则△ADE与△ACD面积相等,直线AD过点D,则其表达式为:y=mx+3,将点A的坐标代入上式得:0=−3m+3,解得:m=1,则直线AD的表达式为:y=x+3,CE∥AD,则直线CE表达式的k值为1,设直线CE的表达式为:y=x+n,将点C的坐标代入上式得:4=−1+n,解得:n=5,则直线CE的表达式为:y=x+5 ⋯⋯②,则点H的坐标为(0,5),联立①②并解得:x=−1或−2(x=1为点C的横坐标),即点E的坐标为(−2,3);在y轴取一点Hʹ,使DH=DHʹ=2,过点 Hʹ 作直线 EʹEʺ∥AD ,则 △ADEʹ,△ADEʺ 与 △ACD 面积相等,同理可得直线 EʹEʺ 的表达式为:y =x +1 ⋯⋯③, 联立 ①③ 并解得:x =−3±√172, 则点 Eʺ,Eʹ 的坐标分别为 (−3+√172,−1+√172),(−3−√172,−1−√172), 点 E 的坐标为:(−2,3) 或 (−3+√172,−1+√172),(−3−√172,−1−√172);(3) 设:点 P 的坐标为 (m,n ),n =−m 2−2m +3,把点 C ,D 的坐标代入一次函数表达式:y =kx +b 得:{4=−k +b,b =3, 解得:{k =−1,b =3,即直线 CD 的表达式为:y =−x +3 ⋯⋯④,直线 AD 的表达式为:y =x +3,直线 CD 和直线 AD 表达式中的 k 值的乘积为 −1, 故 AD ⊥CD ,而直线 PQ ⊥CD ,故直线 PQ 表达式中的 k 值与直线 AD 表达式中的 k 值相同, 同理可得直线 PQ 表达式为:y =x +(n −m ) ⋯⋯⑤, 联立 ④⑤ 并解得:x =3+m−n2, 即点 Q 的坐标为 (3+m−n 2,3−m+n2),则:PQ 2=(m −3+m−n2)2+(n −3−m+n2)=(m+n−3)22=12(m +1)2⋅m 2.同理可得:PC 2=(m +1)2[1+(m +1)2], AH =2,CH =4,则 AC =2√5, 当 △ACH ∽△CPQ 时, PCPQ =ACAH =√52,即:4PC 2=5PQ 2,整理得:3m 2+16m +16=0,解得:m =−4 或 −43, 点 P 的坐标为 (−4,−5) 或 (−43,359);当 △ACH ∽△PCQ 时,同理可得:点 P 的坐标为 (−23,359) 或 (2,−5),故:点 P 的坐标为:(−4,−5) 或 (−43,359) 或 (−23,359) 或 (2,−5).25. 【答案】(2) 当点E在线段CD上时,DE+BF=2ME;∵∠EʹAE=120∘,AE=AEʹ,∴∠AEEʹ=∠AEʹE=30∘.∵∠EAF=30∘,∴AN=EN,∠EʹAF=90∘,∴AN=12NEʹ,EN=12NEʹ.即NEʹ=2EN.∵EM∥AD∥BC,∴△EMN∽△EʹFN,∴MEFEʹ=ENEʹN=12.∵DE=BEʹ,∴DE+BF=BEʹ+BF=FEʹ=2ME.即DE+BF=2ME.当点E在CD的延长线上,0∘<∠EAD<30∘时,BF−DE=2ME;∵△ADE旋转到△ABEʹ,∴ED=BEʹ.EʹF=BF−BEʹ=BF−ED同上可证:△MEN∽△FEʹN,AN=EN=12NEʹ∴EʹFME =EʹNEN=2.即BF−DE=2ME.30∘<∠EAD≤90∘时,DE+BF=2ME;∵EM∥BC,∴△EMN∽△EʹFN,∴EʹFEM =EʹNEN=2.同上可证:AN=EN=12NEʹ,∴EʹF=2EM.∵ED=BEʹ,∴DE+BF=BEʹ+BF=EʹF=2EM.90∘<∠EAD<120∘时,DE−BF=2ME.∵ED=BEʹ,DE−BF=BEʹ−BF=EʹF,EM∥BC,∴△EMN∽△EʹFN,EʹF EM =EʹNEN,AN=EN=12NEʹ,∴EʹF=2EM,DE−BF=2ME.(3) 作AG⊥BC于点G,作DH⊥BC于点H.由AD∥BC,AD=AB=CD,∠BAD=120∘,得∠ABC=∠DCB=60∘,易知四边形AGHD是矩形和两个全等的直角三角形△ABG、△DCH.则GH=AD,BG=CH.∵∠ABEʹ=∠ADC=120∘,∴点Eʹ、B、C在一条直线上.设AD=AB=CD=x,则GH=x,BG=CH=12x,.作EQ⊥BC于Q.在Rt△EQC中,CE=2,∠C=60∘,∴CQ=1,EQ=√3.∴EʹQ=BC−CQ+BEʹ=2x−1+x−2=3x−3.作AP⊥EEʹ于点P.∵△ADE绕点A顺时针旋转120∘后,得到△ABEʹ.∴△AEEʹ是等腰三角形,∠AEʹE=30∘,AEʹ=AE=2√7.∴在Rt△APEʹ中,EʹP=√21.∴EEʹ=2EʹP=2√21.∴在Rt△EQEʹ中,EʹQ=√EʹE2−EQ2=9.∴3x−3=9.∴x=4.∴DE=BEʹ=2,BC=8,BG=2.∴EʹG=4在Rt△EʹAF中,AG⊥BC,∴Rt△AGEʹ∽Rt△FAEʹ.∴AEʹEʹG =EʹFAEʹ∴EʹF=7.∴BF=EʹF−EʹB=5.由(2)知:DE+BF=2ME.∴ME=72人教版(五四制)初中数学九年级(下)期末综合测试卷(二)一、单项选择题:本大题总共8小题,每小题3分,共24分。
(苏科版)初中数学八年级上册 第3章综合测试试卷03及答案
第3章综合测试一、选择题(共10小题)1.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是( )A .75°B .60°C .45°D .30°2.如图,ABC △中,90ACB Ð=°,沿CD 折叠CBD △,使点B 恰好落在AC 边上的点E 处,若25A Ð=°,则BDC Ð等于( )A .44°B .60°C .67°D .70°3.直角三角形的边长分别为a ,b ,c ,若29a =,216b =,那么2c 的值是( )A .5B .7C .25D .25或74.在Rt ABC △中,90B Ð=°,1BC =,2AC =,则AB 的长是( )A .1B C .2D 5.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若6AC =,5BC =,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是()A .72B .52C .80D .766.如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a ,较短直角边为b ,则ab 的值是()A .4B .6C .8D .107.若ABC △的三边a 、b 、c 满足22220a b a b c -++-=(),则ABC △是()A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形8.在下列长度的各组线段中,不能构成直角三角形的是( )A .3,4,5B .7,24,25C .1,1D 9.下列各组数中能够作为直角三角形的三边长的是( )A .1,2,3B .2,3,4C .3,4,5D .4,5,610.下列四组数据中,不能作为直角三角形的三边长是( )A .6,8,10B .7,24,25C .2,5,7D .9,12,15二、填空题(共8小题)11.若直角三角形的一个锐角为50°,则另一个锐角的度数是________度.12.直角三角形两锐角平分线相交所成的钝角的度数是________.13.直角三角形两直角边长分别为3和4,则它斜边上的高为________.14.一个直角三角形的两条直角边长为6和8,则它的斜边上的高是________.15.我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形ABCD 的边长为14,正方形IJKL 的边长为2,且IJ AB ∥,则正方形EFGH 的边长为________.16.如图1,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案的示意图如图2,其中四边形ABCD 和四边形EFGH 都是正方形,ABF △、BCG △、CDH △、DAE △是四个全等的直角三角形.若2EF =,8DE =,则AB 的长为________.17.三角形的三边长为a 、b 、c ,且满足等式222a b c ab +-=(),则此三角形是________三角形(直角、锐角、钝角).18.若ABC △的三边长分别为5、13、12,则ABC △的形状是________.三、解答题(共8小题)19.如图,在平面直角坐标系中,AOB △是直角三角形,90AOB Ð=°,斜边AB 与y 轴交于点C .(1)若A AOC Ð=Ð,求证:B BOC Ð=Ð;(2)延长AB 交x 轴于点E ,过O 作OD AB ^,且DOB EOB Ð=Ð,OAE OEA Ð=Ð,求A Ð度数;(3)如图,OF 平分AOM Ð,BCO Ð的平分线交FO 的延长线于点P ,当ABO △绕O 点旋转时(斜边AB 与y 轴正半轴始终相交于点C ),在(2)的条件下,试问P Ð的度数是否发生改变?若不变,请求其度数;若改变,请说明理由.20.如图,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P ,PH OA ^,垂足为H ,OPH △的重心为G .(1)当点P 在AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度;(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域;(3)如果PGH △是等腰三角形,试求出线段PH 的长.21.如图,ABC △中,90ACB Ð=°, 5 cm AB =, 3 cm BC =,若点P 从点A 出发,以每秒2 cm 的速度沿折线A C B A ---运动,设运动时间为t 秒(0t >).(1)若点P 在AC 上,且满足PA PB =时,求出此时t 的值;(2)若点P 恰好在BAC Ð的角平分线上,求t 的值;(3)在运动过程中,直接写出当t 为何值时,BCP △为等腰三角形.22.如图是单位长度为1的正方形网格.(1)在图1的线段AB ;(2)在图2中画出一个以格点为顶点,面积为5的正方形.23.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中90DAB Ð=°,求证:222a b c +=.证明:连结DB ,过点D 作BC 边上的高DF ,则DF EC b a ==-,21122ACD ABC ADCB S S S b ab =+=+Q △△四边形.又21122ADB DCB ADCB S S S c a b a =+=+-Q △△四边形(),2211112222b abc a b a \+=+-(),222a b c \+=.请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中90DAB Ð=°.求证:222a b c +=.24.一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种新的证明方法.如图2.火柴盒的一个侧面ABCD 倒下到AEFG 的位置,连接CF ,AB a =,BC b =,AC c =.(1)请你结合图1用文字和符号语言分别叙述勾股定理.(2)请利用直角梯形BCFG 的面积证明勾股定理:222a b c +=.25.在一次“构造勾股数”的探究性学习中,老师给出了下表:m 2334…n 1123…a2212+3212+3222+4232+…b 461224…c2212-3212-3222-4232-…其中m 、n 为正整数,且m n >.(1)观察表格,当2m =,1n =时,此时对应的a 、b 、c 的值能否为直角三角形三边的长?说明你的理由.(2)探究a ,b ,c 与m 、n 之间的关系并用含m 、n 的代数式表示:a =________,b =________,c =________.(3)以a ,b ,c 为边长的三角形是否一定为直角三角形?如果是,请说明理由;如果不是,请举出反例.26.如图,已知 6 m CD =,8 m AD =,90ADC Ð=°,24 m BC =,26 m AB =;求图中阴影部分的面积.第3章综合测试答案解析一、1.【答案】D【解析】解:Q 在一个直角三角形中,有一个锐角等于60°,\另一个锐角的度数是906030°-°=°.故选:D .【考点】直角三角形两锐角互余的性质2.【答案】D【解析】解:ABC Q △中,90ACB Ð=°,25A Ð=°,9065B A \Ð=°-Ð=°,由折叠的性质可得:65CED B Ð=Ð=°,BDC EDC Ð=Ð,40ADE CED A \Ð=Ð-Ð=°,()1180702BDC ADE \Ð=-Ð=o o .故选:D .【考点】折叠的性质,三角形内角和定理,三角形外角的性质3.【答案】D【解析】解:当b 为直角边时,22225c a b =+=,当b 为斜边时,2227c b a =-=,故选:D .【考点】勾股定理4.【答案】B【解析】解:在Rt ABC △中,90B Ð=°,1BC =,2AC =,AB \==,故选:B .【考点】勾股定理5.【答案】D【解析】解:依题意,设“数学风车”中的四个直角三角形的斜边长为x ,则212252169x =+=,所以13x =,所以“数学风车”的周长是:136476+´=().故选:D .6.【答案】A【解析】解:由题意得:大正方形的面积是9a ,较短直角边为b ,即229a b +=,1a b -=,解得a =,b =,则4ab =.解法2,4个三角形的面积和为918-=;每个三角形的面积为2;则122ab =;所以4ab =故选:A .【考点】勾股定理在直角三角形中的灵活运用,正方形面积的计算7.【答案】C【解析】解:22220a b a b c -++-=Q(),0a b \-=,2220a b c +-=,解得:a b =,222a b c +=,ABC \△的形状为等腰直角三角形;故选:C .【考点】勾股定理逆定理以及非负数的性质8.【答案】D【解析】解:A 、222345+=Q ,\能构成直角三角形;B 、22272425+=Q ,\能构成直角三角形;C 、22211+=Q ,\能构成直角三角形.D 、222+¹Q ,\不能构成直角三角形;故选:D .【考点】勾股定理的逆定理9.【答案】C【解析】解:A 、222123+¹,不能构成直角三角形,故此选项错误;B 、22223=4+,不能构成直角三角形,故此选项错误;C 、22234=5+,能构成直角三角形,故此选项正确;D 、22245=6+,不能构成直角三角形,故此选项错误.故选:C .【考点】勾股定理逆定理10.【答案】C【解析】解:A 、22268=10+,符合勾股定理的逆定理,故能作为直角三角形的三边长;B 、222724=25+,符合勾股定理的逆定理,故能作为直角三角形的三边长;C 、22252=7+,符合勾股定理的逆定理,故不能作为直角三角形的三边长;D 、222129=15+,符合勾股定理的逆定理,故能作为直角三角形的三边长.故选:C .【考点】勾股定理的逆定理二、11.【答案】40°【解析】解:Q 一个锐角为50°,\另一个锐角的度数905040=°-°=°.故答案为:40°.12.【答案】135°【解析】解:如图:AE Q 、BD 是直角三角形中两锐角平分线,90245OAB OBA \Ð+Ð=°¸=°,两角平分线组成的角有两个:BOE Ð与EOD Ð这两个交互补,根据三角形外角和定理,45BOE OAB OBA Ð=Ð+Ð=°,18045135EOD \Ð=°-°=°,故答案为:135°.【考点】直角三角形内角的性质,三角形内角和13.【答案】125【解析】解:设斜边长为c ,高为h .由勾股定理可得:22234c =+,则5c =,直角三角形面积113422S c h =´´=´´可得125h =,故答案为:125.【考点】勾股定理求直角三角形的边长,面积法求直角三角形的高14.【答案】4.8【解析】解:Q 直角三角形的两直角边长为6和8,斜边长为:10=,三角形的面积168242=´´=,设斜边上的高为x ,则110242x ×=,解得 4.8x =.故答案为:4.8.【考点】勾股定理,三角形的面积公式15.【答案】10【解析】解: 141422819648192824´-´¸=-¸=¸=()(), 24422964100´+´=+=10=.答:正方形EFGH 的边长为10.故答案为:10.【考点】勾股定理的证明16.【答案】10【解析】解:依题意知,8BG AF DE ===,2EF FG ==,6BF BG BF \=-=,\直角ABF △中,利用勾股定理得:10AB ===.故答案是:10.【考点】勾股定理的证明17.【答案】直角【解析】解:222a b c ab +-=Q(),22222a ab b c ab \++-=,222a b c \+=,\三角形是直角三角形.故答案为直角.【考点】勾股定理的逆定理,完全平方公式18.【答案】直角三角形【解析】解:22251213+=Q ,即222a b c +=,ABC \△是直角三角形.故答案为:直角三角形.【考点】勾股定理的逆定理三、19.【答案】(1)AOB Q △是直角三角形,90A B \Ð+Ð=°,90AOC BOC Ð+Ð=°.A AOC Ð=ÐQ ,B BOC \Ð=Ð.(2)90A ABO Ð+Ð=°Q ,90DOB ABO Ð+Ð=°,A DOB \Ð=Ð,即DOB EOB OAE OEA Ð=Ð=Ð=Ð.90DOB EOB OEA Ð+Ð+Ð=°Q ,30DOB \Ð=°,30A \Ð=°.(3)P Ð的度数不变,30P Ð=°,90AOM AOC Ð=°-ÐQ ,BCO A AOC Ð=Ð+Ð,OF Q 平分AOM Ð,CP 平分BCO Ð,1119045222FOM AOM AOC AOC \Ð=Ð=°-Ð=°-Ð(),11112222PCO BCO A AOC A AOC Ð=Ð=Ð+Ð=Ð+Ð().11809045302P PCO FOM A \Ð=°-Ð+Ð+°=°-Ð=°().【解析】(1)易证B Ð与BOC Ð分别是A Ð与AOC Ð的余角,等角的余角相等,就可以证出.(2)易证90DOB EOB OEA Ð+Ð+Ð=°,且DOB EOB OEA Ð=Ð=Ð就可以得到.(3)18090P PCO FOM Ð=°-Ð+Ð+°()根据角平分线的定义,就可以求出.【考点】角平分线的定义,直角三角形的性质20.【答案】(1)当然是GH 不变.延长HG 交OP 于点E ,G Q 是OPH △的重心,23GH EH \=,PO Q 是半径,它是直角三角形OPH 的斜边,它的中线等于它的一半;12EH OP \=,2121(6)23232GH OP æö\=´=´´=ç÷èø.(2)延长PG 交OA 于C ,则23y PC =´.我们令OC a CH ==,在Rt PHC △中,PC =,则23y =Rt PHO △中,有22222636OP x a =+==(),则2294x a =-,将其代入23y =得26)3y x ==<<.(3)如果PG GH =,则2y GH ==,解方程:0x =,那GP 不等于GH ,则不合意义;如果,2PH GH ==则可以解得:2x =;如果,PH PG =,则x y =代入可以求得:x =PH 或2.【解析】(1)由题意可知:重心是三角形中线交点,它把中线分为1:2的比例,如果中线长度不变,题中的三线段长度也不变.在直角三角形OHP 中PO 是直角三角形OPH 的斜边,也是半径是保持不变的所以线段GH 保持不变;则根据直角三角形中斜边的中线是斜边的一半可以求得OP 中线的长度,进而求得GH 的长度.(2)延长PG 交OA 于C ,则23y PC =´;分别再直角三角形OPH 和直角三角形PHC 中运用两次勾股定理即可以求出y 关于x 的函数解析式.(3)分别讨论GH PG =,GH PH =,PH PG =这三种情况,根据(2)中的解析式可以分别求得x 的值.【考点】重心的概念,直角三角形与等腰三角形的性质21.【答案】(1)设存在点P ,使得PA PB =,此时2PA PB t ==,42PC t =-,在Rt PCB △中,222PC CB PB +=,即:2224232t t -+=()(),解得:2516t =,\当2516t =时,PA PB =.(2)当点P 在BAC Ð的平分线上时,如图1,过点P 作PE AB ^于点E ,此时72BP t =-,24PE PC t ==-,541BE =-=,在Rt BEP △中,222PE BE BP +=,即:22224172t t -+=-()(),解得:83t =,当6t =时,点P 与A 重合,也符合条件,\当83t =或6时,P 在ABC △的角平分线上.(3)在Rt ABC △中, 5 cm AB =Q , 3 cm BC =, 4 cm AC \=,根据题意得:2AP t =,当P 在AC 上时,BCP △为等腰三角形,PC BC \=,即423t -=,12t \=,当P 在AB 上时,BCP △为等腰三角形,①CP PB =,点P 在BC 的垂直平分线上,如图2,过P 作PE BC ^于E ,1322BE BC \==,12PB AB \=,即52342t --=,解得:194t =.②PB BC =,即2343t --=,解得:5t =.③PC BC =,如图3,过C 作CF AB ^于F ,∴BF=BP ,90ACB Ð=°Q ,由射影定理得;2BC BF AB =×,即223432t --=,解得:5310t =,\当12t =,5,5310,194时,BCP △为等腰三角形.【解析】(1)设存在点P ,使得PA PB =,此时2PA PB t ==,42PC t =-,根据勾股定理列方程即可得到结论.(2)当点P 在CAB Ð的平分线上时,如图1,过点P 作PE AB ^于点E ,此时72BP t =-,24PE PC t ==-,541BE =-=,根据勾股定理列方程即可得到结论.(3)在Rt ABC △中,根据勾股定理得到 4 cm AC =,根据题意得:2AP t =,当P 在AC 上时,BCP △为等腰三角形,得到PC BC =,即423t -=,求得12t =,当P 在AB 上时,BCP △为等腰三角形,若CP PB =,点P 在BC 的垂直平分线上,如图2,过P 作PE BC ^于E ,求得194t =,若PB BC =,即2343t --=,解得E ,③PC BC =,如图3,过C 作CF ⊥AB 于F ,由射影定理得;2BC BF AB =×,列方程2343252t --=´,即可得到结论.【考点】等腰三角形的判定,三角形的面积22.【答案】(1)(2)【解析】(1)根据勾股定理作出以1和3直角边的三角形的斜边即可.(2.【考点】勾股定理23.【答案】证明:连结BD ,过点B 作DE 边上的高BF ,则BF b a =-,1112222ACB ABE ADE ACBED S S S S ab b ab =++=++Q △△△五边形,又2111()222ACB ABD BDE ACBED S S S S ab c a b a =++=++-Q △△△五边形,22111111()222222ab b ab ab c a b a \++=++-,222a b c \+=.【解析】首先连结BD ,过点B 作DE 边上的高BF ,则BF b a =-,表示出ACBED S 五边形,两者相等,整理即可得证.【考点】勾股定理的证明24.【答案】(1)直角三角形两直角边的平方和等于斜边的平方. Rt ABC △中,90B Ð=°,AB a =,BC b =,AC c =,则有222b c a +=.(2)2211112222B AFG AFC AC BCFG S S S S ab ab c ab c =++=++=+Q △△△梯形,221111()()()2222BCFG S FG BC BG a b a b a ab b =×+×=++=++梯形,222111222ab c a ab b \+=++,整理得:222a b c +=.【解析】(1)直角三角形两直角边的平方和等于斜边的平方.(2)用两种方法求出梯形BCFG 的面积,列出等式,即可证明.【考点】勾股定理25.【答案】(1)当2m =,1n =时,5a =、4b =、3c =,222345+=Q ,a \、b 、c 的值能为直角三角形三边的长.(2)观察得,22a m n =+,2b mn =,22c m n =-.(3)以a ,b ,c 为边长的三角形一定为直角三角形,222242242a m n m m n n =+=++Q (),224224224224242b c m m n n m n m m n n +=-++=++,222a b c \=+,\以a ,b ,c 为边长的三角形一定为直角三角形.【解析】(1)计算出a 、b 、b 的值,根据勾股定理的逆定理判断即可.(2)根据给出的数据总结即可.(3)分别计算出2a 、2b 、2c ,根据勾股定理的逆定理进行判断.【考点】勾股定理的逆定理26.【答案】解:在Rt ADC △中, 6 CD =Q 米,8 AD =米,24 BC =米,26 AB =米,2222286100AC AD CD \=+=+=,10AC \=米(取正值).在ABC △中,22221024676AC BC +=+=Q ,2226676AB ==.222AC BC AB \+=,ACB \△为直角三角形,90ACB Ð=°.2111110248696()2222S AC BC AD CD \=´-´=´´-´´=阴影米.答:图中阴影部分的面积为296 米.【解析】先根据勾股定理求出AC 的长,再根据勾股定理的逆定理判断出ACB △为直角三角形,再根据1122S AC BC AD CD =´-´阴影即可得出结论.【考点】勾股定理的运用,勾股定理的逆定理运用。
2022-2023学年新人教版初中数学八年级上册期末综合素养评价测试卷(附参考答案)
2022-2023学年新人教版初中数学八年级上册期末综合素养评价测试卷一、选择题(共12小题,满分24分,每小题2分)1.(2分)(2022秋•江津区校级月考)下列各组三条线段中,不能构成三角形的是()A.2cm,2cm,3cm B.3cm,8cm,10cmC.三条线段之比为1:2:3D.3a,5a,4a(a>0)2.(2分)(2022秋•望花区月考)在△ABC中,∠C=90°,∠B=2∠A,则∠A=()A.15°B.30°C.45°D.60°3.(2分)(2022秋•越秀区期中)已知一个正n边形的一个外角为40°,则n =()A.10B.9C.8D.74.(2分)(2022秋•天山区校级期中)如图,在△ABC≌△DEF,且AB=3,AE =1,则BD的长为()A.4B.5C.6D.75.(2分)(2022秋•天门期中)如图为轴对称图形的是()A.B.C.D.6.(2分)(2022秋•兴宁区校级期中)如图,过边长为2的等边三角形ABC的顶点C作直线l⊥BC,然后作△ABC关于直线l对称的△A'B′C,P为线段A'C上一动点,连接AP,PB,则AP+PB的最小值是()A.4B.3C.2D.17.(2分)(2022秋•广安区校级期中)点P(5,﹣2)关于y轴的对称的点的坐标是()A.(﹣5,﹣2)B.(﹣5,2)C.(5,﹣2)D.(5,2)8.(2分)(2022秋•任城区期中)下列从左到右的变形属于因式分解的是()A.a2+a+14=(a+12)2B.6a3b=3a2•2abC.a2﹣b2+1=(a+b)(a﹣b)+1D.(x+3)(x﹣3)=x2﹣99.(2分)(2022秋•朝阳区校级期中)下列运算正确的是()A.a3+a6=a9B.a6•a2=a12C.(a3)2=a5D.a4•a2+(a3)2=2a610.(2分)(2022秋•张店区校级月考)分式2x−6x+8的值是零,则x的值为()A.﹣3B.3C.8D.﹣811.(2分)(2022秋•岳阳楼区月考)根据分式的基本性质,分式a−b−x可变形为()A.−a−bx B.a+bxC.−a−bxD.−a+bx12.(2分)(2022秋•冷水滩区校级月考)若1m +1n=2,则代数式5m−2mn+5n−m−n的值为()A.﹣4B.﹣3C.3D.4二、填空题(共6小题,满分18分,每小题3分)13.(3分)(2022秋•海淀区校级期中)如图,D是△ABC的边CA延长线上一点,∠1=°,∠2=°.14.(3分)(2022•菏泽)如果正n边形的一个内角与一个外角的比是3:2,则n=.15.(3分)(2022秋•江阴市期中)如图所示,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,DE=4,BC=9,则BE的长为.16.(3分)(2022秋•大埔县期中)在平面直角坐标系中,A(2022,2023)和B (2022,﹣2023),则A与B关于对称.17.(3分)(2022春•沙坪坝区校级月考)若x+y=3,x2+y2=132,则x﹣y的值为.18.(3分)(2022•秦都区校级开学)关于x的方程x−2x+4=ax+4有增根,则a的值为.三、解答题(共9小题,满分78分)19.(8分)(2022秋•任城区期中)因式分解:(1)x3+10x2+25x;(2)a4﹣8a2b2+16b4.20.(8分)(2022秋•西城区校级月考)计算:(1)(x2y )2⋅xyx2−xy2xy2÷2x;(2)a2b3•(a2b﹣2)﹣2.21.(8分)(2021秋•德江县期末)据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘2000毫克所需的银杏树叶的片数与一年滞尘1100毫克所需的槐树叶的片数相同,求一片槐树叶一年的平均滞尘量.22.(9分)(2022秋•谷城县期中)如图,△ABC中,AD是高,AE,BF是角平分线,它们相交于点O,∠CAB=80°,∠C=60°,求∠DAE和∠BOA的度数.23.(9分)(2022秋•汕尾校级月考)如图,在四边形ABCD中,∠B=∠D=90°,AE,CF分别是∠DAB及∠DCB的平分线.(1)求证:AE∥FC.(2)若∠BCD=56°,求∠DAE.24.(9分)(2022•姑苏区校级二模)已知:如图,AC=BD,AD=BC,AD,BC 相交于点O,过点O作OE⊥AB,垂足为E.求证:(1)△ABC≌△BAD.(2)AE=BE.25.(9分)(2021秋•鄞州区期末)如图,△ABC中,D是BC延长线上一点,满足CD=AB,过点C作CE∥AB且CE=BC,连接DE并延长,分别交AC、AB于点F、G.(1)求证:△ABC≌△DCE;(2)若∠B=50°,∠D=22°,求∠AFG的度数.26.(9分)(2019秋•垦利区期中)如图,直线MN表示一条铁路,A,B是两个城市,它们到铁路的垂直距离分别为AA1=20km,BB1=40km,已知A1B1=80km,现要在A1,B1之间设一个中转站P,使两个城市到中转站的距离之和最短,请你设计一种方案确定P点的位置,并求这个最短距离.27.(9分)(2021秋•寻乌县期末)如图所示,在△ABC中,BE平分∠ABC,DE∥BC.(1)求证:△BDE是等腰三角形;(2)若∠A=35°,∠C=70°,求∠BDE的度数.参考答案一、选择题(共12小题,满分24分,每小题2分)1.C;2.B;3.B;4.B;5.A;6.A;7.A;8.A;9.D;10.B;11.C;12.A;二、填空题(共6小题,满分18分,每小题3分)13.110;7014.515.316.x17.±218.﹣6;三、解答题(共9小题,满分78分)19.解:(1)原式=x(x2+10x+25)=x(x+5)2;(2)原式=(a2﹣4b2)2=(a+2b)2(a﹣2b)2.20.解:(1)原式=x24y2•xyx2−12y•x2=x4y −x4y=0.(2)原式=a2b3•(a﹣4b4)=a﹣2b7=b7a2.21.解:设一片槐树叶一年的平均滞尘量为x毫克,则一片银杏树叶一年的平均滞尘量为(2x﹣4)毫克,依题意得:20002x−4=1100x,解得:x=22,经检验,x=22是原方程的解,且符合题意.答:一片槐树叶一年的平均滞尘量为22毫克.22.解:∵AE 平分∠CAB ,∠CAB =80°, ∴∠BAE =∠CAE =12∠CAB =40°, ∵AD 是△ABC 的高, ∴∠ADC =90°,∴∠CAD =90°﹣∠C =90°﹣60°=30°, ∴∠DAE =∠CAE ﹣∠CAD =40°﹣30°=10°, ∵∠CAB =80°,∠C =60°,∴∠ABC =180°﹣(∠CAB +∠C )=180°﹣(80°+60°)=40°, ∵BF 平分∠ABC , ∴∠ABO =12∠ABC =20°,∴∠BOA =180°﹣(∠ABO +∠BAE )=180°﹣(20°+40°)=120°. 23.(1)证明:∵四边形的内角和是360°, ∴∠DAB +∠DCB =360°﹣∠B ﹣∠D =180°, ∵AE ,CF 分别是∠DAB 和∠DCB 的平分线. ∴∠FCB =12∠DCB ,∠BAE =12∠DAB , ∴∠FCB +∠BAE =12(∠DAB +∠DCB )=90°, ∵∠AEB +∠BAE =90°, ∴∠FCB =∠AEB , ∴AE ∥FC ;(2)解:∵CF 是∠DCB 的平分线. ∴∠DCF =12∠DCB =28°, ∴∠DFC =90°﹣∠DCF =62°, ∵AE ∥FC ,∴∠DAE =∠DFC =62°. 24.证明(1)在ABC 和△BAD 中, {AC =BD BC =AD AB =BA,∴△ABC ≌△BAD (SSS );(2)∵△ABC ≌△BAD , ∴∠CBA =∠DAB , ∴OA =OB , ∵OE ⊥AB , ∴AE =BE .25.(1)证明:∵CE ∥AB , ∴∠B =∠DCE , 在△ABC 与△DCE 中, {BC =CE∠ABC =∠DCE BA =CD, ∴△ABC ≌△DCE (SAS );(2)解:∵△ABC ≌△DCE ,∠B =50°,∠D =22°, ∴∠ECD =∠B =50°,∠A =∠D =22°, ∵CE ∥AB ,∴∠ACE =∠A =22°,∵∠CED =180°﹣∠D ﹣∠ECD =180°﹣22°﹣50°=108°, ∴∠AFG =∠DFC =∠CED ﹣∠ACE =108°﹣22°=86°. 26.解:如图,延长AA 1到D 使A 1D =AA 1,连接BD 交MN 于P , 则P A +PB 的最小值=BD , 过D 作DE ⊥BB 1交BB 1于E ,∵AA 1=20km ,BB 1=40km ,A 1B 1=80km , ∴DE =80km ,BE =60km , ∴BD =√602+802=100km , ∴这个最短距离是100km .27.(1)证明:∵BE平分∠ABC,∴∠DBE=∠CBE,∵DE∥BC,∴∠DEB=∠CBE,∴∠DBE=∠DEB,∴DB=DE,∴△BDE是等腰三角形;(2)解:∵∠A=35°,∠C=70°,∴∠ABC=180°﹣∠A﹣∠C=180°﹣35°﹣70°=75°,∵DE∥BC,∴∠BDE+∠DBC=180°,∴∠BDE=180°﹣75°=105°.。
(北师大版)初中数学八年级上册 第四章综合测试试卷02及答案
第四章综合测试一、选择题(每题3分,共30分)1.下列图象中,表示y 是x 的函数的个数有()A .1个B .2个C .3个D .4个2.若一次函数()21y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .0k <3.一次函数2y x =+的图象与y 轴的交点坐标为( )A .()0,2B .()0,2-C .()2,0D .()2,0-4.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-5.小聪在画一次函数的图象时,当他列表后,发现题中一次函数y x =◆+◆中的k 和b 看不清了,则()x 03y2A .2k =,3b =B .23k =-,2b =C .3k =,2b =D .1k =,1b =-6.点()111,P x y ,()222,P x y 是一次函数43y x =-+图象上的两个点,且12x x <,则1y 与2y 的大小关系是( )A .12y y >B .120y y >>C .12y y <D .12y y =7.为了建设社会主义新农村,某市积极推进“村村通客车工程”.张村和王村之间的道路需要进行改造,施工队在工作了一段时间后,因暴雨被迫停工几天,不过施工队随后加快了施工进度,按时完成了两村之间道路的改造.下面能反映该工程尚未改造的道路里程y (km )与时间x (天)的函数关系的大致图象是()8.一家电信公司提供两种手机的月通话收费方式供用户选择,其中一种有月租费,另一种无月租费.这两种收费方式的通话费用y (元)与通话时间x (min )之间的函数关系如图所示.小红根据图象得出下列结论:①l1描述的是无月租费的收费方式;②12描述的是有月租费的收费方式;③当每月的通话时间为500min 时,选择有月租费的收费方式省钱.其中,正确结论的个数是()第8题图A .0B .1C .2D .39.如图,把直线2y x =-向上平移后得到直线AB ,直线AB 经过点(),m n ,且26m n +=,则直线AB 的解析式是()第9题图A .23y x =--B .26y x =--C .23y x =-+D .26y x =-+10.(天门)甲、乙两车从A 地出发,匀速驶向B 地.甲车以80km/h 的速度行驶1h 后,乙车才沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y (km )与乙车行驶时间x (h )之间的函数关系如图所示.下列说法:①乙车的速度是120km/h ;②160m =;③点H 的坐标是()7,80;④7.5n =.其中说法正确的是( )第10题图A .①②③B .①②④C .①③④D .①②③④二、填空题(每题3分,共24分)11.已知()3221m y m x -=-是一次函数,则m =________.12.直线21y x =+经过点()0,a ,则a =________.13.已知一次函数()12y m x m =-+-,当m ________时,y 随x 的增大而增大.14.已知直线y kx b =+,若5k b +=-,6kb =,那么该直线不经过第________象限.15.直线2y x b =+与x 轴的交点坐标是()2,0,则关于x 的方程20x b +=的解是________.16.一次函数的图象与直线1y x =-+平行,且过点()8,2,那么此一次函数的表达式为________.17.如图,已知点A 和点B 是直线34y x =上的两点,A 点坐标是32,2æöç÷èø.若5AB =,则点B 的坐标是________.18.直线()1110y k x b k =+>与()2220y k x b k =+<相交于点()2,0-,且两直线与y 轴围成的三角形面积为4,那么12b b -=________.三、解答题(19题6分,20,21题每题9分,22~24题每题10分,25题12分,共66分)19.已知一次函数y ax b =+.(1)当点(),P a b 在第二象限时,直线y ax b =+经过哪几个象限?(2)如果0ab <,且y 随x 的增大而增大,则函数的图象不经过哪些象限?20.一个正比例函数和一个一次函数,它们的图象都经过点()2,2P -,且一次函数的图象与y 轴相交于点()0,4Q .(1)求出这两个函数的表达式;(2)在同一坐标系中,分别画出这两个函数的图象;(3)直接写出一次函数图象在正比例函数图象下方时x 的取值范围.21.如图,直线23y x =+与x 轴相交于点A ,与y 轴相交于点B .(1)求点A ,B 的坐标;(2)求当2x =-时,y 的值,当10y =时,x 的值;(3)过点B 作直线BP 与x 轴相交于点P ,且使2OP OA =,求ABP △的面积.22.某城市居民用水实行阶梯收费,每户每月用水量如果未超过20t ,按每吨1.9元收费.如果超过20t ,未超过的部分按每吨1.9元收费,超过的部分按每吨2.8元收费.设某户每月用水量为t x ,应收水费为y 元.(1)分别写出每月用水量未超过20t 和超过20t 时,y 与x 之间的函数表达式;(2)若该城市某户5月份水费平均每吨为2.2元,求该户5月份用水多少吨?23.某销售公司推销一种产品,设x (件)是推销产品的数量,y (元)是付给推销员的月报酬.公司付给推销员的月报酬的两种方案如图所示,推销员可以任选一种与公司签订合同,看图解答下列问题:(1)求每种付酬方案y 关于x 的函数表达式;(2)当选择方案一所得报酬高于选择方案二所得报酬时,求x 的取值范围.24.一次函数()0y kx b k =+¹的图象由直线3y x =向下平移得到,且过点()1,2A .(1)求一次函数的解析式;(2)求直线y kx b =+与x 轴的交点B 的坐标;(3)设坐标原点为O ,一条直线过点B ,且与两条坐标轴围成的三角形的面积是12,这条直线与y 轴交于点C ,求直线AC 对应的一次函数的解析式.25.甲、乙两车分别从A ,B 两地同时出发相向而行,并以各自的速度匀速行驶,甲车途经C 地时休息一小时,然后按原速度继续前进到达B 地;乙车从B 地直接到达A 地,如图是甲、乙两车和B 地的距离y (km )与甲车出发时间x (h )的函数图象.(1)直接写出a ,m ,n 的值;(2)求出甲车与B 地的距离y (km )与甲车出发时间x (h )的函数关系式(写出自变量x 的取值范围);(3)当两车相距120km 时,乙车行驶了多长时间?第四章综合测试答案一、1.【答案】B 2.【答案】B 3.【答案】A 4.【答案】A 5.【答案】B 6.【答案】A 7.【答案】D 8.【答案】D 9.【答案】D【解析】原直线的2k =-,向上平移后得到了新直线,那么新直线的2k =-.∵直线AB 经过点(),m n ,且26m n +=,∴直线AB 经过点(),62m m -.可设新直线的解析式为12y x b =-+,把点(),62m m -代到12y x b =-+中,可得16b =.∴直线AB 的解析式是26y x =-+.10.【答案】A【解析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.解:由图象可知,乙出发时,甲乙相距80km ,2小时后,乙车追上甲.则说明乙每小时比甲快40km ,则乙的速度为120km/h .①正确;由图象第2-6小时,乙由相遇点到达B ,用时4小时,每小时比甲快40km ,则此时甲乙距离440160km ´=,则160m =,②正确;当乙在B 休息1h 时,甲前进80km ,则H 点坐标为()7,80,③正确;乙返回时,甲乙相距80km ,到两车相遇用时()80120800.4¸+=小时,则610.47.4n =++=,④错误.故选A.二、11.【答案】112.【答案】113.【答案】1<14.【答案】一15.【答案】2x =16.【答案】10y x =-+17.【答案】96,2æöç÷èø或32,2æö--ç÷èø【解析】由题意可得,3,4A B A B =两点的纵坐标之差两点的横坐标之差,再由222,,AB A B A B =+两点的纵坐标之差两点的横坐标之差,求得4,A B =两点的横坐标之差,,3A B =两点的纵坐标之差.再分两种情况讨论求解即可.18.【答案】4【解析】如图,在ABC △中,BC 为底,AO 为高,且高为2,面积为4,故ABC △的底边4224BC =´¸=.因为点B 的坐标为()10,b ,点C 的坐标为()20,b ,所以12b b -即是BC 的长,为4.三、19.【答案】解:(1)因为点(),P a b 在第二象限,所以0,0a b <>.所以直线y ax b =+经过第一、二、四象限.(2)因为y 随x 的增大而增大,所以0a >.又因为0ab <,所以0b <.所以一次函数y ax b =+的图象不经过第二象限.20.【答案】解:(1)设正比例函数的表达式为1y k x =,则()122k =´-,解得11k =-.所以正比例函数的表达式为y x =-.设一次函数的表达式为2y k x b =+,则()222k b =´-+,4b =,解得4b =,21k =,所以一次函数的表达式为4y x =+.(2)图略.(3)2x -<.21.【答案】解:(1)当0y =时,230x +=,得32x =-,则3,02A æö-ç÷èø.当0x =时,3y =,则()0,3B .(2)当2x =-时,1y =-;当10y =时,72x =.(3)2OP OA =,3,02A æö-ç÷èø,则点P 的位置有两种情况,点P 在x 轴的正半轴上或点P 在x 轴的负半轴上.当点P 在x 轴负半轴上时,()3,0P -,则ABP △的面积为13933224æö´-´=ç÷èø;当点P 在x 轴的正半轴上时,()3,0P ,则ABP △的面积为132733224æö´´+=ç÷èø.22.【答案】解:(1)当20x ≤时, 1.9y x =;当20x >时,()1.92020 2.8 2.818y x x =´+-´=-.(2)因为5月份水费平均为每吨2.2元,月用水量如果未超过20t ,按每吨1.9元收费,所以该户5月份用水量超过了20t .由2.818 2.2x x -=,解得30x =.答:该户5月份用水30t .23.【答案】解:(1)设方案一的解析式为y kx =,把()40,1600代入解析式,可得40k =,故解析式为40y x =;设方案二的解析式为y ax b =+,把()40,1400和()0,600代入解析式,可得20a =,600b =,故解析式为20600y x =+;(2)根据两直线相交可得方程4020600x x =+,解得30x =.根据两函数图象可知,当30x >时,选择方案一所得报酬高于选择方案二所得报酬.24.【答案】解:(1)根据题意,得3k =,2k b +=,解得1b =-31y x \=-;(2)在31y x =-中,当0y =时,13x =,∴点B 的坐标为1,03æöç÷èø;(3)设直线AC 的解析式为y mx n =+(其中0m ¹),则点C 的坐标为()0,n ,根据题意得111||232BOC S n ´==△,3n \=,3n \=±.当3n =时,2m n +=,解得1m =-,3y x \=-+;当3n =-时,2m n +=,解得5m =,53y x \=-.∴直线AC 的解析式为3y x =-+或53y x =-.25.【答案】解:(1)∵甲车途经C 地时休息一小时,2.51m \-=, 1.5m \=.乙车的速度为1202a m =,即601.5a=,解得90a =.甲车的速度为3003001201 1.5n -=-,解得 3.5n =;(2)设甲车的y 与x 的函数关系式为y kx b =+.①休息前,0 1.5x ≤≤,函数图象经过点()0,300和()1.5,120,所以300b =,1.5120k b +=,所以120k =-,所以120300y x =-+;②休息时,1.5 2.5x <<,120y =;③休息后,2.5 3.5x ≤≤,函数图象经过点()3.5,0,又由题意可知120k =-,故420b =,所以120420y x =-+.综上,y 与x 的函数关系式为 120300(0 1.5),120(1.5 2.5),120420(2.5 3.5);x x y x x x -+ìï=<<íï-+î…………(3)设当两车相距120km 时,乙车行驶了h x .甲车的速度为()()300120 1.5120km/h -¸=,乙车的速度为()120260km/h ¸=.①若相遇前,则12060300120x x +=-,解得1x =;②若相遇后,则()120160300120x x -+=+,解得3x =.答:当两车相距120km 时,乙车行驶了1h 或3h .。
(华师大版)初中数学七年级上册 第4章综合测试 (含答案)
第4章综合测试一、选择题(共15小题)1.如图,下列图形全部属于柱体的是()A B C D2.将下面四个图形绕着虚线旋转一周,能够得到如图所说的立体图形的是()A B C D3.10个棱长为1的正方体木块堆成如图所示的形状,则它的表面积是()A.30B.34C.36D.484.下列说法中,正确的是()A.两点确定一条直线B.顶点在圆上的角叫做圆心角C.两条射线组成的图形叫做角D.三角形不是多边形5.下列平面图形不能够围成正方体的是()A B C D6.下列图形中()可以折成正方体.A B C D7.如图是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么2x y z -+的值是( )A .1B .4C .7D .98.用平面截一个几何体,如果截面的形状是长方形(或正方形),那么该几何体不可能是( ) A .圆柱B .棱柱C .圆锥D .正方体9.下面四个立体图形,从正面、左面、上面看都不可能看到长方形的是( )A B C D10.下列物体的主视图是圆的是( )A .圆柱B .圆锥C .球D .正方体11.如图,它是由5个完全相同的小正方体搭建的几何体,若将最右边的小正方体拿走,则下列结论正确的是( )A .主视图不变B .左视图不变C .俯视图不变D .三视图都不变12.如图所示的几何体的左视图是( )A BC D13.由大小相同的正方体木块堆成的几何体的三视图如图所示,则该几何体中正方体木块的个数是()主视图左视图俯视图A.6个B.5个C.4个D.3个14.一仓库管理员需要清点仓库的物品,物品全是一些大小相同的正方体箱子,他不能搬下箱子进行清点.后来,他想出了一个办法,通过观察物品的三视图求出了仓库里的存货.他所看到的三视图如图,那么仓库管理员清点出存货的个数是()主视图左视图俯视图A.5B.6C.7D.815.某同学画出了如图所示的几何体的三种视图,其中正确的是()几何体①主视图②左视图③俯视图A.①②B.①③C.②③D.②二、填空题(共8小题)16.若一个棱柱有30条棱,那么该棱柱有________个面.17.笔尖在纸上快速滑动写出英文字母C,这说明了________.18.李强同学用棱长为1的正方体在桌面上堆成如图所示的图形,然后把露出的表面都染成红色,则表面被他染成红色的面积为________.19.将一个圆分割成三个扇形,它们的圆心角的度数比为1:2:3,这三个圆心角中最小的圆心角度数为________.20.写出两个三视图形状都一样的几何体为________.21.如图,在四个小正方体搭成的几何体中,每个小正方体的棱长都是1,则该几何体的三视图的面积之和是________.22.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是________.主视图左视图俯视图23.如图,是由一些大小相同的小正方体组合成的简单几何体(1)图中有________块小正方体;(2)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图.三、解答题(共4小题)24.将下列几何体分类,并说明理由.正方体圆柱长方体球圆锥三棱锥25.用第一行的图形绕轴旋转一周,便得到第二行的几何体,用线连一连.A B C D①②③④26.如图,是一个小正方体所搭几何体从上面看得到的平面图形,正方形中的数字表示在该位置小正方体的个数,请你画出它从正面和从左面看得到的平面图形.27.如图是由几个小正方体所搭成的几何体上面看到的图形,小正方形中的数字表示在该位置的小正方体的个数,请你画出从正面、左面可以看到的图形.第4章综合测试答案解析一、 1.【答案】C【解析】根据柱体的定义,结合图形即可作出判断. 解:A 、左边的图形属于锥体,故本选项错误; B 、上面的图形是圆锥,属于锥体,故本选项错误; C 、三个图形都属于柱体,故本选项正确; D 、上面的图形不属于柱体,故本选项错误. 故选:C . 2.【答案】A【解析】根据面动成体结合常见立体图形的形状解答即可. 解:根据面动成体结合常见立体图形的形状得出只有A 选项符合, 故选:A . 3.【答案】C【解析】如图所示:第一层露出5个面;第二层露出422⨯+个面;第三层露出423212⨯++⨯+;底面6个面.解:根据以上分析露出的面积5422423212636=+⨯++⨯++⨯++=. 故选:C . 4.【答案】A【解析】A 、根据直线的性质可知:两点确定一条直线,故本选项正确;B 、根据圆心角的定义知,顶点在圆心的角是圆心角,顶点在圆上的角角圆周角,故本选项错误;C 、根据角的静态定义,两条不重合的射线,同时还得有公共端点才能构成角,两条射线若能组成角,则必须有公共端点,而如图所示图形则不是角.,故本选项错误;D 、由n 条线段首尾顺次连结而成的封闭图形叫n 边形(3n ≥). 三角形有3条边组成,所以三角形是多边形,故本选项错误; 5.【答案】B【解析】直接利用正方体的表面展开图特点判断即可.解:根据正方体展开图的特点可判断A 、D 属于“1,4,1”格式,能围成正方体,C 、属于“2,2,2”的格式也能围成正方体,B 、不能围成正方体.故选:B . 6.【答案】B【解析】由平面图形的折叠及正方体的展开图解题.解:A ,C ,D 围成几何体时,有两个面重合,故不能围成正方体;只有B 能围成正方体. 故选:B . 7.【答案】A【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点确定出相对面,再求出x 、y 、z 的值,然后代入代数式计算即可得解.解:正方体的表面展开图,相对的面之间一定相隔一个正方形, “x ”与“8-”是相对面, “y ”与“2-”是相对面, “z ”与“3”是相对面,相对面上所标的两个数互为相反数,8x ∴=,2y =,3z =-, 282231x y z ∴-+=-⨯-=.故选:A . 8.【答案】C【解析】用一个平面截一个几何体得到的面叫做几何体的截面. 解:A 、圆柱的轴截面是长方形,不符合题意; B 、棱柱的轴截面是长方形,不符合题意;C 、圆锥的截面为与圆有关的或与三角形有关的形状,符合题意;D 、正方体的轴截面是正方形,不符合题意; 故选:C . 9.【答案】B【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.依此找到从正面、左面、上面观察都不可能看到长方形的图形.解:A 、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误;B 、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;C 、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;D 、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误. 故选:B . 10.【答案】C【解析】主视图是从物体的正面看所得到的图形.解:A 、圆柱的主视图是长方形,不合题意,故此选项错误;B、圆锥的主视图是三角形,不合题意,故此选项错误;C、球的主视图是圆形,符合题意,故此选项正确;D、正方体的主视图是正方形,不合题意,故此选项错误;故选:C.11.【答案】B【解析】根据三视图的定义,即可判断.解:根据三视图的定义,若将最右边的小正方体拿走,俯视图、主视图都发生变化,左视图不变.故选:B.12.【答案】D【解析】从左面观察几何体,能够看到的线用实线,看不到的线用虚线.解:图中几何体的左视图如图所示:故选:D.13.【答案】C【解析】由三视图可以看出,底面一层为三个正方体块,上层中间有一个,两侧没有.解:由主视图上,有两层,从俯视图上看,底面一层为三个正方体块,从左视图上看,上层中间有一个,两侧没有.故选:C.14.【答案】D【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解:综合主视图,俯视图,左视图底层有6个正方体,第二层有2个正方体,所以仓库里的正方体箱子的个数是8.故选:D.15.【答案】B【解析】从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.依此即可解题.解:根据几何体的摆放位置,主视图和俯视图正确.左视图中间有一条横线,故左视图不正确.故选:B.二、16.【答案】12【解析】根据棱柱的概念和定义,可知有30条棱的棱柱是十棱柱,据此解答.解:一个棱柱有30条棱,这是一个十棱柱,它有12个面.故答案为:12.17.【答案】点动成线【解析】线是由无数点组成,字是由线组成的,所以点动成线;解:笔尖在纸上快速滑动写出英文字母C,这说明了点动成线;故答案为:点动成线18.【答案】33【解析】此题可根据表面积的计算分层计算得出红色部分的面积再相加.解:根据题意得:第一层露出的表面积为:116115⨯⨯-⨯=;第二层露出的表面积为:1164111311⨯⨯⨯-⨯⨯=;第三层露出的表面积为:1169113717⨯⨯⨯-⨯⨯=.所以红色部分的面积为:5111733++=.故答案为:33.19.【答案】60︒【解析】将一个圆分割成三个扇形,它们的圆心角的和为360︒,再由三个圆心角的度数比为1:2:3,可求出最小的圆心角度数.解:由题意可得,三个圆心角的和为360︒,又因为三个圆心角的度数比为1:2:3,所以最小的圆心角度数为:1360606⨯=︒︒.故答案为:60︒.20.【答案】球、正方体【解析】找到从物体正面、左面和上面看得到的图形全等的几何体即可.解:三视图形状都一样的几何体为球、正方体.故答案为:球、正方体(答案不唯一).21.【答案】9【解析】根据三视图的定义求解即可.解:主视图是第一层是三个小正方形,第二层右边一个小正方形,主视图的面积是4,俯视图是三个小正方形,俯视图的面积是3,左视图是下边一个小正方形,第二层一个小正方形,左视图的面积是2,几何体的三视图的面积之和是4+3+2=9,故答案为:9.22.【答案】4【解析】根据主视图以及左视图可得出该小正方形共有两行搭成,俯视图可确定几何体中小正方形的列数,从而得出答案.解:由主视图可得有2列,根据左视图和俯视图可得每列的方块数如图,++=个.则搭成这个几何体的小正方体的个数是2114故答案为:4.23.【答案】(1)11(2)【解析】(1)根据如图所示即可得出图中小正方体的个数;根据如图所示即可数出有11块小正方体;(2)读图可得,左视图有2列,每列小正方形数目分别为2,2;俯视图有4列,每行小正方形数目分别为2,2,1,1.如图所示;左视图,俯视图分别如下图:三、24.【答案】①按平面分:正方体,长方体,三棱锥;②按曲面分:圆柱,圆锥,球.理由是:正方体的面是六个正方形组成,长方体的面是六个长方形组成,三棱锥的面是四个三角形组成,都是平面图形;而圆柱和圆锥的侧面都是曲面,球的整个面是曲面.【解析】可以按平面和曲面进行分类,也可以按柱体、锥体和球进行分类,方法不同,答案不同,只要合理即可.25.【答案】初中数学 七年级上册 11 / 11【解析】如图本题是一个平面图形围绕一条轴旋转一周根据面动成体的原理即可解.解:图①旋转一周形成一个圆柱与一个圆锥的组合体,即B ;图②旋转一周形成圆锥,即D ;图③旋转一周形成圆柱,即A ;图④旋转一周形成半球,即C .26.【答案】作图如下:主视图 左视图【解析】由已知条件可知,主视图有3列,每列小正方形数目分别为3,2,3,左视图有2列,每列小正方形数目分别为3,3.据此可画出图形.27.【答案】作图如下:主视图 左视图【解析】由已知条件可知,主视图有3列,每列小正方数形数目分别为2,3,4;左视图有2列,每列小正方形数目分别为4,2.据此可画出图形.。
(北师大版)初中数学九年级上册 第二章综合测试(含答案)
第二章综合测试一、选择题(共10题;共30分)1.已知关于x 的一元二次方程250x x m +-=的一个根是2,则另一个根是( )A .7-B .7C .3D .3-2.已知1x ,2x 是一元二次方程220x x -=的两根,则12x x +的值是( )A .0B .2C .2-D .43.一元二次方程22630x x ++=经过配方后可变形为( )A .2(3)6x +=B .()2312x -= C .23324x ⎛⎫+= ⎪⎝⎭ D .231524x ⎛⎫-= ⎪⎝⎭ 4.一元二次方程220x x +=的解是( )A .0x =B .2x =-C .1220x x ==D .1220x x =-=5.若方程2680x x -+=的两根分别是等腰三角形的底和腰,则这个三角形的周长为( )A .10B .8C .10或8D .10或146.一个正方形的边长增加了2 cm ,面积相应增加了232 cm ,则原正方形的边长为( )A .5 cmB .6 cmC .7 cmD .8 cm7.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是13,则每个支干长出( )A .2根小分支B .3根小分支C .4根小分支D .5根小分支8.如图,在长为100 m ,宽为80 m 的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为27 644 m ,则道路的宽应为多少米?设道路的宽为 m x ,则可列方程为( )A .10080100807 644x x ⨯--=B .()()2100807 644x x x --+=C .()()100807 644x x --=D .2100807 644x x x +-=9.关于x 的一元二次方程2410kx x -+=有实数根,则k 的取值范围是( )A .4k -≥B .4k -≥且0k ≠C .4k ≤D .4k ≤且0k ≠10.某农户种植花生,原来种植的花生亩产量为200千克,出油率为50%(即每100千克花生可加工成花生油50千克).现在种植新品种花生后,每亩收获的花生可加工成花生油132千克,其中花生出油率的增长率是亩产量的增长率的12.则新品种花生亩产量的增长率为( ) A .20%B .30%C .50%D .120% 二、填空题(共6题;共18分)11.已知1x =是关于x 的一元二次方程()221--10k x k x +=的根,则常数k 的值为________.12.当x =________时,代数式2x x -与1x -的值相等.13.设m 、n 是方程2 2 0210x x +-=的两个实数根,则²2m m n ++的值为________.14.关于x 的一元二次方程()22210a x x --+=有两个不相等的实数根,则整数a 的最小值是________.15.如图,已知AB BC ⊥,12 cm AB =,8 cm BC =.一动点N 从C 点出发沿CB 方向以1 cm/s 的速度向B 点运动,同时另一动点M 由点A 沿AB 方向以2 cm/s 的速度也向B 点运动,其中一点到达B 点时另一点也随之停止,当MNB △的面积为224 cm 时运动的时间t 为________秒.16.一元二次方程2680x x -+=的根为菱形的两条对角线长,则菱形的周长为________.三、解答题(共7题;共52分)17.解方程:(1)()224x +=(自选方法)(2)2210x x --=(配方法)(3)²14x x -=(公式法)(4)²122x x -=+(因式分解法)18.已知关于x 的一元二次方程2240x x m ++-=有两个实数根.(1)求m 的取值范围;(2)写出一个满足条件的m 的值,并求出此时方程的根.19.熊组长准备为我们年级投资1万元围一个矩形的运动场地(如图),其中一边靠墙,另外三边选用不同材料建造且三边的总长为50 m,墙长24 m,平行于墙的边的费用为200元/m,垂直于墙的边的费用150x.元/m,设平行于墙的边长为/m300 m,求x的值;(1)若运动场地面积为2(2)当运动场地的面积最大时是否会超过了预算?20.某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元.为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价5元,商场平均每天可多售出10件.求:(1)若商场每件衬衫降价4元,则商场每天可盈利多少元?(2)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(3)要使商场平均每天盈利1600元,可能吗?请说明理由.21.开学初期,天气炎热,水杯需求量大.双福育才中学门口某超市购进一批水杯,其中A种水杯进价为每个15元,售价为每个25元;B种水杯进价为每个12元,售价为每个20元(1)该超市平均每天可售出60个A种水杯,后来经过市场调查发现,A种水杯单价每降低1元,则平均每天的销量可增加10个.为了尽量让学生得到更多的优惠,某天该超市将A种水杯售价调整为每个m元,结果当天销售A种水杯获利630元,求m的值.(2)该超市准备花费不超过1600元的资金,购进A、B两种水杯共120个,其中B种水杯的数量不多于A种水杯数量的两倍.请为该超市设计获利最大的进货方案,并求出最大利润.22.如图,在ABC △中,90B ∠=︒,12 cm AB =,16 cm BC =.点P 从点A 开始沿AB 边向点B 以1 cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2 cm/s 的速度移动.如果P 、Q 分别从A 、B 同时出发,当一个点到达终点时,另一个点也随之停止运动.设运动的时间为t 秒.(1)当t 为何值时,PBQ △的面积等于235 cm ?(2)当t 为何值时,PQ 的长度等于?(3)若点P 、Q 的速度保持不变,点P 在到达点B 后返回点A ,点Q 在到达点C 后返回点B ,一个点停止,另一个点也随之停止.问:当t 为何值时,PCQ △的面积等于232 cm ?23.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从去年年底至今年3月20日,猪肉价格不断走高,3月20日比去年年底价格上涨了60%.某市民在今年3月20日购买2.5千克猪肉至少要花200元钱,那么去年年底猪肉的最低价格为每千克多少元?(2)3月20日,猪肉价格为每千克60元,3月21日,某市决定投入储备猪肉并规定其销售价在每千克60元的基础上下调%a 出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克60元的情况下,该天的两种猪肉总销量比3月20日增加了%a ,且储备猪肉的销量占总销量的34,两种猪肉销售的总金额比3月20日提高了1%10a ,求a 的值.第二章综合测试答案解析一、1.【答案】A【解析】设另一个根为x ,则25x +=-,解得7x =-.故答案为:A .2.【答案】B【解析】1x ∵,2x 是一元二次方程220x x -=的两根,122x x +=∴.故答案为:B .3.【答案】C【解析】22630x x ++=∵2332x x +=-∴ 29393424x x ++=-+∴ 23324x ⎛⎫+= ⎪⎝⎭∴ 故答案为:C4.【答案】D【解析】220x x +=∵, ()20x x +=∴,0x =∴或2-,故答案为:D .5.【答案】A【解析】方程2680x x -+=,得12x =,24x =,∵当2为腰,4为底时,224+=,不符合三角形三边关系,∴不能构成等腰三角形;∵当4为腰,2为底时,能构成等腰三角形,周长为44210++=.故答案为:A .6.【答案】C【解析】设原正方形的边长为 cm x ,则面积增加后的正方形的边长为()2 cm x +,根据题意得:()22232x x +=+解之:7x =.故答案为:C7.【答案】B【解析】设每个支干长出x 个分支,根据题意得 113x x x ++⋅=,整理得2120x x +-=,解得13x =,24x =-(不符合题意舍去),即每个支干长出3个分支.故应选B .8.【答案】C【解析】设道路的宽应为x 米,由题意有()()100807 644x x --=,故答案为:C9.【答案】D【解析】∵关于x 的一元二次方程2410kx x -+=有实数根,0k ≠∴且()2440k =--≥,解得:4k ≤且0k ≠.故答案为:D .10.【答案】A【解析】设新品种花生亩产量的增长率为x , 根据题意得()1200150%11322x x ⎛⎫+⋅+= ⎪⎝⎭, 解得10.220%x ==,2 3.2x =-(不合题意,舍去),则新品种花生亩产量的增长率为20%,故选A .二、11.【答案】0【解析】将1x =代入()22110k x k x -+-=中,得20k k -=,解得1k =或0,10k -≠∵,1k ≠∴,0k =∴.故答案为:0.12.【答案】1【解析】根据题意得21x x x -=-,整理得:2210x x -+=,()210x -=∴,解得:1x =故答案为:1.13.【答案】2 020【解析】m ∵、n 是方程2 2 0210x x +-=的两个实数根 2 2 0210m m +-=∴,1m n +=-2 2 021m m +=∴∴原式2 2 0211 2 020m m m n =+++=-=.故答案为:2 020.14.【答案】3【解析】根据题意得20a -≠,且()()224210a =---⨯>,解得:1a >且2a ≠, ∴整数a 的最小值为:3.故答案为:3.15.【答案】2【解析】根据题意可知CN t =,2AM t =,8BN t =-∴,122BM t =-,MNB ∵△的面积为224 cm()()11228242x t t -⨯-=∴ 解得12x =,212x =(舍去)故答案为:2.16.【答案】4=【解析】解方程2680x x -+=得:2x =和4,即4AC =,2BD =,∵四边形ABCD 是菱形,90AOD ∠=︒∴,2AO OC ==,1BO DO ==,由勾股定理得:AD ==4三、17.【答案】(1)22x +=±10x =,24x =-(2)2210x x --=21112102168x x ⎛⎫+-= ⎪⎝⎭- 2192048x ⎛⎫-= ⎪⎝⎭ 219248x ⎛⎫-= ⎪⎝⎭ 219416x ⎛⎫-= ⎪⎝⎭ 1344x -=± 11x =∴,212x =(3)2410x x --=x12x =+22x =(4)21220x x ---=2230x x --=()()310x x -+=13x =,21x =-18.【答案】(1)1a =,2b =,4c m =-24b ac ∆=-∴()2244m =--204m =-∵一元二次方程2240x x m ++-=有两个实数根,2040m -∴≥5m ≤.(2)当1m =时,2230x x +-=.则()()130x x -+=解得11x =,23x =-(答案不唯一).19.【答案】(1)根据题意,得:503002x x -⎛⎫= ⎪⎝⎭, 解得:20x =或30x =,∵墙的长度为24 m ,20x =∴(2)设菜园的面积是S , 则502x S x -⎛⎫= ⎪⎝⎭ 21252x x =+ ()216252522x =-+, 0-12∵<, ∴当25x <时,S 随x 的增大而增大,24x ∵≤,∴当24x =时,S 取得最大值,∴总费用24200261508 700 1 000=⨯+⨯=<, ∴没有超过预算20.【答案】(1)()41020404 1 0085⎛⎫⨯+-= ⎪⎝⎭(元). 答:商场每件衬衫降价4元,则商场每天可盈利1 008元.(2)设每件衬衫应降价x 元,根据题意,得()()40202 1 200x x -+=,整理,得2302000x x -+=,解得110x =,220x =,∵要尽量减少库存,20x =∴.答:每件衬衫应降价20元.(3)不可能.理由如下:令()()40202 1 600x x -+=,整理得2304000x x -+=,90044000∆=-⨯∵<,∴商场平均每天不可能盈利1 600元.21.【答案】(1)设超市将A 种水杯售价调整为每个m 元,则单件利润为()15m -元,销量为()()60102531010m m ⎡⎤⎣=-⎦+-个,依题意得: ()()1531010630m m --=,解得:122m =,224m =,答:为了尽量让学生得到更多的优惠,22m =.(2)设购进A 种水杯x 个,则B 种水杯()120x -个.设获利y 元,依题意得:()1512120 1 6001202x x x x⎧+-⎪⎨-⎪⎩≤≤, 解不等式组得:140533x ≤≤,本次利润()()()251512020122960y x x x =-+--=+.20∵>,y ∴随x 增大而增大,当53x =时,最大利润为1 066元.22.【答案】(1)()12cm BP AB AP t =-=-,2 cm BQ t =. 根据三角形的面积公式,得3251PB BQ ⋅=, 即()2212351t t -⋅=, 整理,得212350t t -+=,解得15t =,27t =.故当t 为5或7时,PBQ △的面积等于235 cm .(2)根据勾股定理,得()()()22222212282PQ BP BQ t t =+=-+=, 整理,得2524160t t -+=, 解得145t =,24t =.故当t 为45或4时,PQ 的长度等于. (3)①当08t <≤时,()12c m PB t =-,()2c 16m CQ t =- 由题意,得()()162123212t t -⨯-=, 解得:14t =,216t =(舍去).②当812t <≤时,()12c m PB t =-,()1c 26m CQ t =-, 由题意,得()()216122123t t -⨯-=,此方程无解. ③当1216t <≤时,()12cm PB t =-,()1c 26m CQ t =-, 由题意,得()()216122132t t -⨯-=, 解得:14t =(舍去),216t =.综上所述,当t 为4或16时,PCQ △的面积等于232 cm .23.【答案】(1)设去年年底猪肉价格为每千克x 元;根据题意得:()2.5160%200x ⨯+≥,解得:50x ≥.答:去年年底猪肉的最低价格为每千克50元;(2)设3月20日的总销量为1; 根据题意得:31160(1%)(1%)60(1%)601%4410a a a a ⎛⎫-⨯++⨯+=+ ⎪⎝⎭, 令%a y =,原方程化为:()31160(1)160(1)6014410y y x y y ⎛⎫-⨯+++=+ ⎪⎝⎭, 整理得:250y y -=,解得:0.2y =,或0y =(舍去),则%0.2a =,20a =∴;答:a的值为20.。
(苏科版)初中数学八年级上册 第2章综合测试试卷03及答案
第2章综合测试一、选择题(共10小题)1.如图,AD 是ABC △的角平分线,DF AB ^,垂足为F ,DE DG =,ADG △和AED △的面积分别为60和35,则EDF △的面积为( )A .25B .5.5C .7.5D .12.52.如图,80A Ð=°,点O 是AB ,AC 垂直平分线的交点,则BCO Ð的度数是()A .40°B .30°C .20°D .10°3.如图,已知AB AC BD ==,那么()A .1=2ÐÐB .21+2=180Ðа C .1+32=180ÐаD .312=180-Ðа4.如图,B 是直线l 上的一点,线段AB 与l 的夹角为()0180a a °°<<,点C 在l 上,若以A 、B 、C 为顶点的三角形是等腰三角形,则满足条件的点C 共有( )A .2个B .3个C .2个或4个D .3个或4个5.如图,在ABC △中,AB AC =,AD 平分BAC Ð,DE AB ^,DF AC ^,E 、F 为垂足,则下列四个结论:(1)DEF DFE Ð=Ð;(2)AE AF =;(3)AD 平分EDF Ð;(4)EF 垂直平分AD .其中正确的有( )A .1个B .2个C .3个D .4个6.将一张矩形的纸对折,然后用笔尖在上面扎出“B ”,再把它铺平,你可见到()A B C D7.如图,ABC △与ADC △关于AC 所在的直线对称,35BCA Ð=°,80B Ð=°,则DAC Ð的度数为()A .55°B .65°C .75°D .85°8.下列“表情”中属于轴对称图形的是()A B C D9.如图,图中显示的是从镜子中看到背后墙上的电子钟读数,由此你可以推断这时的实际时间是()A .10:05B .20:01C .20:10D .10:0210.如图,将ABC △沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的1A 处,称为第1次操作,折痕DE 到BC 的距离记为1h ,还原纸片后,再将ADE △沿着过AD 中点1D 的直线折叠,使点A 落在DE 边上的2A 处,称为第2次操作,折痕11D E 到BC 的距离记为2h ,按上述方法不断操作下去…经过第2018次操作后得到的折痕20172017D E 到BC 的距离记为2018h ,若11h =,则2018h 的值为( )A .2017122-B .201712C .2016112-D .2016122-二、填空题(共8小题)11.如图,AD 是ABC △的角平分线,DE AB ^,垂足为E ,若ABC △的面积为9,2DE =,5AB =,则AC 长是________.12.如图,等腰ABC △中,AB AC =,AB 的垂直平分线MN 交AC 于点D ,15DBC Ð=°,则A Ð的度数是________度.13.等腰三角形有一个角为70°,则底角的度数为________.14.在ABC △中,80A Ð=°,当B Ð=________时,ABC △是等腰三角形.15.数学在我们的生活中无处不在,就连小小的台球桌上都有数学问题.如图所示,12Ð=Ð,若330Ð=°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证1Ð等于________.16.一个等边三角形的对称轴有________条.17.在字母A B C D E F G I J 、、、、、、、、中不是轴对称图形的有________个.18.在上学的路上,小刚从电瓶车的后视镜里看到一辆汽车,车顶字牌上的字在平面镜中的像是IXAT ,则这辆车车顶字牌上的字实际是________.三、解答题(共8小题)19.如图,已知在Rt ABC △中,90A Ð=°,BD 是ABC Ð的平分线,DE 是BC 的垂直平分线.试说明2BC AB =.20.如图,已知ABE △,AB 、AE 边上的垂直平分线1m 、2m 交BE 分别为点C 、D ,且BC CD DE ==,求BAE Ð的度数.21.如图,在ABC △中,2C ABC A Ð=Ð=Ð,BD 是AC 边上的高,求DBC Ð的度数.22.如图,点D 、E 在ABC △的边BC 上,AD AE =,BD CE =,(1)求证:AB AC =;(2)若108BAC Ð=°,36DAE Ð=°,直接写出图中除ABC △与ADE △外所有的等腰三角形.23.如图,已知ABC △中,AB AC =,D 是ABC △外一点且60ABD Ð=°,1902ADB BDC Ð=°-Ð.求证:AC BD CD =+.24.ABC △的三边长分别为:227AB a a =--,210BC a =-,AC a =,(1)求ABC △的周长(请用含有a 的代数式来表示);(2)当 2.5a =和3时,三角形都存在吗?若存在,求出ABC △的周长;若不存在,请说出理由;(3)若ABC △与DEF △成轴对称图形,其中点A 与点D 是对称点,点B 与点E 是对称点,24EF b =-,3DF b =-,求a b -的值.25.如图,在平面直角坐标系中,(1,5)A -,(1,0)B -,(4,3)C -.(1)求出ABC △的面积;(2)在图中作出ABC △关于y 轴的对称图形111A B C △;(3)写出点1A ,1B ,1C 的坐标.26.请你在图中以直线l 为对称轴作出所给图形的另一半.第2章综合测试答案解析一、1.【答案】D【解析】解:如图,过点D 作DH AC ^于H ,AD Q 是ABC △的角平分线,DF AB ^,DF DH \=,在Rt ADF △和Rt ADF △中,AD AD DF DH =ìí=î,()Rt ADF Rt ADH HL \△≌△,t R ADF Rt ADH S S \=△△,在Rt DEF △和Rt DGH △中,DE DG DF DH =ìí=î,()Rt DEF Rt DGH HL \△≌△,t R DEF Rt DGH S S \=△△,ADG Q △和AED △的面积分别为60和35,3560Rt DEF Rt DGH S S \+=-△△,252Rt DEF S \=△.故选:D .2.【答案】D【解析】解:连接OA 、OB ,80A Ð=°Q ,100ABC ACB \Ð+Ð=°,O Q 是AB ,AC 垂直平分线的交点,OA OB \=,OA OC =,OAB OBA \Ð=Ð,OCA OAC Ð=Ð,OB OC =,80OBA OCA \Ð+Ð=°,1008020OBC OCB \Ð+Ð=°-°=°,OB OC =Q ,10BCO CBO \Ð=Ð=°,故选:D .3.【答案】D【解析】解:AB AC BD ==Q ,B C \Ð=Ð,1BAD Ð=Ð,12C Ð=Ð+ÐQ ,12BAD C \Ð=Ð=Ð+Ð,1180B BAD Ð+Ð+Ð=°Q ,21180C \Ð+Ð=°12C Ð=Ð-ÐQ ,1221180\Ð-Ð+Ð=°,即312=180-Ðа°.故选:D .4.【答案】C 【解析】解;如图1,当=90a °,\只有两个点符合要求,如图2,当a 为锐角与钝角时,符合条件的点有4个,分别是3AC AB =,2AB BC =,1AC BC =,AB BC =.\满足条件的点C 共有:2或4个.故选:C .5.【答案】C【解析】解:AB AC =Q ,AD 平分BAC Ð,DE AB ^,DF AC ^,ABC \△是等腰三角形,AD BC ^,BD CD =,90BED DFC =Ð=°Ð,DE DF \=,AD \垂直平分EF ,\(4)错误;又AD Q 所在直线是ABC △的对称轴,\(1)DEF DFE Ð=Ð;(2)AE AF =;(3)AD 平分EDF Ð.故选:C .6.【答案】C【解析】解:观察选项可得:只有C 是轴对称图形.故选:C .7.【答案】B【解析】解:35BCA Ð=°Q ,80B Ð=°,180180358065BAC BCA B \Ð=°-Ð-Ð=°-°-°=°,ABC Q △与ADC △关于AC 所在的直线对称,65DAB BAC \Ð=Ð=°.故选:B .8.【答案】C【解析】解:A .不是轴对称图形,故本选项错误;B .不是轴对称图形,故本选项错误;C .是轴对称图形,故本选项正确;D .不是轴对称图形,故本选项错误;故选:C .9.【答案】B【解析】解:由图分析可得题中所给的“10:05”与“20:01”成轴对称,这时的时间应是20:01.故选:B .10.【答案】A【解析】解:连接1AA .由折叠的性质可得:1AA DE ^,1DA DA =,又D Q 是AB 中点,DA DB \=,1DB DA \=,1BA D B \Ð=Ð,12ADA B \Ð=Ð,又12ADA ADE Ð=ÐQ ,ADE B \Ð=Ð,DE BC \∥,1AA BC \^,12AA \=,1211h \=-=,同理,2122h =-,3211122222h =-´=-…\经过第n 次操作后得到的折痕11u n D E --到BC 的距离1122n n h -=-.20182017122h \=-,故选:A .二、11.【答案】4【解析】解:过D 作DF AC ^于F ,AD Q 是ABC △的角平分线,DE AB ^,2DE DF \==,1152522ADB S AB DE =´=´´=Q △,ABC Q △的面积为9,ADC \△的面积为954-=,142AC DF \´=,1242AC \´=,4AC \=故答案为:4.12.【答案】50【解析】解:DM Q 是AB 的垂直平分线,AD BD \=,ABD A \Ð=Ð,Q 等腰ABC △中,AB AC =,1802A ABC C °-Ð\Ð=Ð=,180152A DBC ABC ABD A °-Ð\Ð=Ð-Ð=-Ð=°,解得:50A Ð=°.故答案为:50.13.【答案】70°或55°【解析】解:根据题意,一个等腰三角形的一个角等于70°,①当这个角是底角时,即该等腰三角形的底角的度数是70°,②当这个角是顶角时,设该等腰三角形的底角是x ,则270180x +°=°,解得55x =°,即该等腰三角形的底角的度数是55°.故答案为:70°或55°.14.【答案】80° 50° 20°【解析】解:80A Ð=°Q ,\①当80B Ð=°时,ABC △是等腰三角形;②当()18080250B Ð=°-°¸=°时,ABC △是等腰三角形;③当18080220 B Ð=°-°´=°时,ABC △是等腰三角形;故答案为:80°、50°、20°.15.【答案】60°【解析】解:Q 由题意可得:2390+Ð=°Ð,330Ð=°,260\Ð=°,12Ð=ÐQ ,160\Ð=°.故答案为:60°.16.【答案】3【解析】解:如图:一个等边三角形的对称轴有 3条,故答案为:3.17.【答案】3【解析】解:A ,B ,C ,D ,E ,H 、I 是轴对称图形,F 、G 、J 都不是轴对称图形.故不是轴对称图形的有3个,故答案为:3.18.【答案】TAXI【解析】解:IXAT 是经过镜子反射后的字母,则这车车顶上字牌上的字实际是TAXI .故答案为TAXI .三、19.【答案】证明:DE Q 是BC 的垂直平分线,BE EC \=,DE BC ^,90A Ð=°Q ,DA AB \^.又BD Q 是ABC Ð的平分线,DA DE \=,又BD BD =Q ,ABD EBD \△≌△,AB BE \=,2BC AB \=.【解析】DE 垂直平分BC ,则有2BC BE =,只要证明BE AB =即可,由BD 是B Ð的平分线,90DAB DEB Ð=Ð=°,BD BD =,可证ABD EBD △≌△,从而有BE AB =.20.【答案】解:AB Q 、AE 边上的垂直平分线1m 、2m 交BE 分别为点C 、D ,AC BC \=,AD DE =,B BAC \Ð=Ð,E EAD Ð=Ð,BC CD DE ==Q ,AC CD AD \==,ACD \△是等边三角形,60CAD ACD ADC \Ð=Ð=Ð=°,30BAC EAD \Ð=Ð=°,120BAE BAC CAD EAD \Ð=Ð+Ð+Ð=°.【解析】由AB 、AE 边上的垂直平分线1m 、2m 交BE 分别为点C 、D ,根据线段垂直平分线的性质,可得AC BC =,AD DE =,又由BC CD DE ==,易得ACD △是等边三角形,继而求得BAE Ð的度数.21.【答案】解:2C ABC A Ð=Ð=ÐQ ,5180C ABC A A \Ð+Ð+Ð=Ð=°,36A \Ð=°.则272C ABC A Ð=Ð=Ð=°.又BD 是AC 边上的高,则9018DBC C Ð=°-Ð=°.【解析】根据三角形的内角和定理与2C ABC A Ð=Ð=Ð,即可求得ABC △三个内角的度数,再根据直角三角形的两个锐角互余求得DBC Ð的度数.22.【答案】(1)证明:过点A 作AF BC ^于点F ,AD AE =Q ,DF EF \=,BD CE =Q ,BF CF \=,AB AC \=.(2)B BAD Ð=ÐQ ,C EAC Ð=Ð,BAE BEA =ÐÐ,ADC DAC Ð=Ð,\除ABC △与ADE △外所有的等腰三角形为:ABD △、AEC △、ABE △、ADC △.【解析】(1)首先过点A 作AF BC ^于点F ,由AD AE =,根据三线合一的性质,可得DF EF =,又由BD CE =,可得BF CF =,然后由线段垂直平分线的性质,可证得AB AC =.(2)根据等腰三角形的判定解答即可.23.【答案】证明:以AD 为轴作ABD △的对称'AB D △(如图),则有'B D BD =,'AB AB AC ==,'60B ABD Ð=Ð=°,1'902ADB ADB BDC Ð=Ð=°-Ð,所以'180180ADB ADB BDC BDC BDC Ð+Ð+Ð=°-Ð+Ð=°,所以C 、D 、'B 在一条直线上,所以'ACB △是等边三角形,所以'+'CA CB CD DB CD BD ===+.【解析】以AD 为轴作ABD △的对称'AB D △,后证明C 、D 、'B 在一条直线上,及'ACB △是等边三角形,继而得出答案.24.【答案】(1)ABC △的周长22227103AB BC AC a a a a a =++=--+-+=+.(2)当 2.5a =时,2272 6.25 2.573AB a a =--=´--=,21010 6.25 3.75BC a =-=-=, 2.5AC a ==,3 2.5 3.75+Q >,\当 2.5a =时,三角形存在,23 6.2539.25a =+=+=周长;当3a =时,22729378AB a a =--=´--=,2101091BC a =-=-=,3AC a ==,318+Q <.\当3a =时,三角形不存在.(3)ABC Q △与DEF △成轴对称图形,点A 与点D 是对称点,点B 与点E 是对称点,EF BC \=,DF AC =,22104a b \-=-,即226a b -=;3a b =-,即3a b +=、把3a b +=代入226a b -=,3()6a b -= 2a b \-=.【解析】(1)利用三角形周长公式求解: ABC △的周长AB BC AC =++.(2)利用三角形的三边关系求解:AB BC AC +>,AB AC BC +>,AC BC AB +>,再分别代入a 的两个值验证三边关系是否成立即可.(3)利用轴对称图形的性质求解:ABC DEF △≌△,可得,EF BC =,DF AC =,代入值再分解因式即可.25.【答案】(1)如图所示:ABC △的面积:1357.52´´=.(2)如图所示:(3)1(1,5)A,1(1,0)B,1(4,3)C.【解析】(1)利用三角形的面积求法即可得出答案.(2)首先找出A、B、C三点关于y轴的对称点,再顺次连接即可.(3)根据坐标系写出各点坐标即可.26.【答案】解:【解析】利用轴对称图形的性质,从图形中的各点向l引垂线并延长相同的距离,找到对应点顺次连接.。
八年级下册数学期末试卷综合测试卷(word含答案)(1)
八年级下册数学期末试卷综合测试卷(word含答案)(1) 一、选择题1.函数y=35xx--的自变量x的取值范围是()A.x≠5B.x>3且x≠5C.x≥3D.x≥3且x≠5 2.由下列线段组成的三角形不是直角三角形的是()A.7,24,25 B.4,5,41C.3,5,4 D.4,5,6 3.下列关于平行四边形的命题中,错误的是()A.两组对角分别相等的四边形是平行四边形B.一组对边相等,另一组对边平行的四边形是平行四边形C.一组对边平行,一组对角相等的四边形是平行四边形D.一组对边平行且相等的四边形是平行四边形4.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数()cm183183183183方差 5.7 3.5 6.78.6要从中选择一名发挥稳定的运动员去参加比赛,应该选择()A.甲B.乙C.丙D.丁5.如图,已知矩形ABCD的对角线AC的长为10cm,连结矩形各边中点E、F、G、H得四边形EFGH,则四边形EFGH的周长为()cm.A.20 B.202C.203D.256.如图,已知E为邻边相等的平行四边形ABCD的边BC上一点,且∠DAE=∠B=80º,那么∠CDE的度数为()A.20º B.25º C.30º D.35º7.如图,在△ABC中,BC=2∠C=45°,若D是AC的三等分点(AD>CD),且AB =BD ,则AB 的长为( )A .2B .5C .3D .528.一条公路旁依次有A 、B 、C 三个村庄,甲、乙两人骑自行车分别从A 村、B 村同时出发前往C 村,甲、乙之间的距离()km s 与骑行时间()t h 之间的函数关系如图所示,下列结论:①A 、B 两村相距8km ;②甲出发2h 后到达C 村;③甲每小时比乙我骑行8km ;④相遇后,乙又骑行了15min 或45min 时两人相距2km .其中正确结论的个数是( )A .1B .2C .3D .4二、填空题9.若13x x --在实数范围内有意义,则x 的取值范围是____________. 10.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,已知4OA =,菱形ABCD 的面积为24,则BD 的长为______.11.如图,两个较大正方形的面积分别为225、289,则字母A 所代表的正方形的边长为_____12.如图,在矩形ABCD 中,点E 在AD 上,且EC 平分BED ∠,若1AB =,45EBC ∠=︒,则DE 的长为__________.13.已知一次函数y x b =-+的图象过点()8,2,那么此一次函数的解析式为__________. 14.若顺次连接四边形ABCD 四边中点所得的四边形是菱形,则原四边形的对角线AC 、BD 所满足的条件是________.15.在平面直角坐标系中,矩形OABC 的顶点O 为坐标原点,顶点A ,C 分别在x 轴和y 轴上,OA =4,OC =3,D 为AB 边的中点,E 是OA 边上的一个动点,当△CDE 的周长最小时,则点E 的坐标为_____.16.如图,∠ABD =∠BDC =90°,AB =12,BC =8,CD =10A 与点D 重合,折痕为HG ,则线段BH 的长为___.三、解答题17.计算:(1)218×12﹣24;(2)48÷3﹣12×12+24. 18.如图,在甲村到乙村的公路一旁有一块山地正在开发.现A 处需要爆破,已知点A 与公路上的停靠站B ,C 的距离分别为400 m 和300 m ,且AC ⊥AB .为了安全起见,如果爆破点A 周围半径260 m 的区域内不能有车辆和行人,问在进行爆破时,公路BC 段是否需要暂时封闭?为什么?19.如图,4×10长方形网格中,每个小正方形的顶点称为格点,每个小正方形的边长均为1,点A ,B ,E ,F 都在格点上,按下列要求作图,使得所画图形的顶点均在格点上. (1)在图中画出以AB 为边的正方形ABCD ;(2)在图中画出以EF 为边的等腰三角形EFG ,且△EFG 的周长为1010+; (3)在(1)(2)的条件下,连接CG ,则线段CG 的长为 .20.如图,在ABCD 中,两条对角线AC 和BD 相交于点O ,并且6BD =,8AC =,5BC =.(1)AC 与BD 有什么位置关系?为什么?(2)四边形ABCD 是菱形吗?为什么?21.阅读材料:规定初中考试不能使用计算器后,小明是这样解决问题的:已知a 23+,求2281a a -+的值.他是这样分析与解的:∵a 23+2323(23)(23)-=+-, ∴23a -= ∴2(2)3,a -= 2443a a -+=∴241a a -=-, ∴2281a a -+=2(24)1a a -+=2(1)11⨯-+=-.请你根据小明的分析过程,解决如下问题:(1)若a 21-,直接写出2481a a -+的值是 . (21315375121119+++++ 22.为丰富同学们的课余活动,某校成立了篮球课外兴趣小组,计划购买一批篮球,需购买A 、B 两种不同型号的篮球共300个.已知购买3个A 型篮球和2个B 型篮球共需340元,购买2个A 型篮球和1个B 型篮球共需要210元.(1)求购买一个A 型篮球、一个B 型篮球各需多少元?(2)若该校计划投入资金W 元用于购买这两种篮球,设购进的A 型篮球为t 个,求W 关于t 的函数关系式;(3)学校在体育用品专卖店购买A 、B 两种型号篮球共300个,经协商,专卖店给出如下优惠:A 种球每个降价8元,B 种球打9折,计算下来,学校共付费16740元,学校购买A 、B 两种篮球各多少个?23.如图,矩形ABCD 中,AB=4,AD=3,∠A 的角平分线交边CD 于点E .点P 从点A 出发沿射线AE 以每秒2个单位长度的速度运动,Q 为AP 的中点,过点Q 作QH ⊥AB 于点H ,在射线AE 的下方作平行四边形PQHM (点M 在点H 的右侧),设P 点运动时间为秒.(1)直接写出的面积(用含的代数式表示).(2)当点M 落在BC 边上时,求的值.(3)在运动过程中,整个图形中形成的三角形是否存在全等三角形?若存在,请写出所有全等三角形,并求出对应的的值;若不存在请说明理由(不能添加辅助线). 24.如图,在平面直角坐标系中,直线28y x =+与x 轴交于点A,与y 轴交于点B,过点B 的直线x 轴于点C ,且AB=BC .(1)求直线BC 的表达式(2)点P 为线段AB 上一点,点Q 为线段BC 延长线上一点,且AP=CQ,PQ 交x 轴于点P ,设点Q 的横坐标为m ,求PBQ ∆的面积(用含m 的代数式表示)(3)在(2)的条件下,点M 在y 轴的负半轴上,且MP=MQ ,若45BQM ︒∠=求点P 的坐标.25.如图,Rt △CEF 中,∠C =90°,∠CEF ,∠CFE 外角平分线交于点A ,过点A 分别作直线CE ,CF 的垂线,B ,D 为垂足.(1)∠EAF = °(直接写出结果不写解答过程);(2)①求证:四边形ABCD 是正方形.②若BE =EC =3,求DF 的长.(3)如图(2),在△PQR 中,∠QPR =45°,高PH =5,QH =2,则HR 的长度是 (直接写出结果不写解答过程).【参考答案】一、选择题1.D解析:D【分析】根据二次根式和分式有意义的条件列出不等式,求解不等式即可.【详解】根据题意得:x﹣3≥0且x﹣5≠0,解得x≥3且x≠5.∴自变量x的取值范围是x≥3且x≠5.故选:D.【点睛】本题考查了二次根式和分式由意义的条件,理解二次根式和分式由意义的条件是解题的关键.2.D解析:D【分析】根据勾股定理的逆定理对各选项进行逐一判断即可.【详解】解:A、∵72+242=625=252,∴能够成直角三角形,故本选项不符合题意;B、∵42+52412,∴能够成直角三角形,故本选项不符合题意;C、∵32+42=52,∴能够成直角三角形,故本选项不符合题意;D、∵42+52≠62,∴不能够成直角三角形,故本选项符合题意.故选:D.【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.3.B解析:B【解析】【分析】根据平行四边形的判定方法,一一判断即可.【详解】解:A. 两组对角分别相等的四边形是平行四边形,正确;根据平行四边形的判定方法,可得结论;B. 一组对边相等,另一组对边平行的四边形是平行四边形,错误;如:等腰梯形;C. 一组对边平行,一组对角相等的四边形是平行四边形正确,由题意可以证明两组对边分别平行,四边形是平行四边形;D. 一组对边平行且相等的四边形是平行四边形,正确,根据平行四边形的判定方法,可得结论.故选:B【点睛】本题考查平行四边形的判定,解题的关键是熟练掌握平行四边形的判定方法,属于中考基础题.4.B解析:B【解析】【分析】首先比较出甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的方差的大小关系,然后根据方差越大,波动性越大,判断出应该选择谁参加比赛即可.【详解】解:因为3.5<5.7<6.7<8.6,所以乙最近几次选拔赛成绩的方差最小,所以要从中选择一名发挥稳定的运动员去参加比赛,应该选择乙.故选:B.【点睛】此题主要考查了方差的含义和应用,要熟练掌握,解答此题的关键是要明确:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.5.A解析:A【分析】连接BD,根据三角形中位线定理易得四边形EFGH的各边长等于矩形对角线的一半,而矩形对角线相等,从而算出周长即可.【详解】连接BD,∵H、G是AD与CD的中点,∴HG是△ACD的中位线,∴HG=1AC=5cm,同理EF=5cm,2∵四边形ABCD是矩形,∴根据矩形的对角线相等,即BD=AC=10cm,∵H、E是AD与AB的中点,∴EH是△ABD的中位线,∴EH=1BD=5cm,同理FG=5cm,2∴四边形EFGH的周长为20cm.故选A.【点睛】熟练掌握矩形对角线相等和三角形中位线等于第三边的一半的性质是解决本题的关键. 6.C解析:C【解析】【分析】依题意得出AE=AB=AD,∠ADE=50°,又因为∠B=80°故可推出∠ADC=80°,∠CDE=∠ADC-∠ADE,从而求解.【详解】∵AD∥BC,∴∠AEB=∠DAE=∠B=80°,∴AE=AB=AD,在三角形AED中,AE=AD,∠DAE=80°,∴∠ADE=50°,又∵∠B=80°,∴∠ADC=80°,∴∠CDE=∠ADC-∠ADE=30°.故选:C.【点睛】考查菱形的边的性质,同时综合利用三角形的内角和及等腰三角形的性质,解题关键是利用等腰三角形的性质求得∠ADE的度数.7.B解析:B【解析】【分析】作BE ⊥AC 于E ,根据等腰三角形三线合一性质可得AE =DE ,根据∠C =45°,得出∠EBC =180°-∠C -∠BEC =180°-45°-90°=45°,可得BE =CE ,利用勾股定理求出CE =BE =2,根据D 是AC 的三等分点得出AE =DE =121233AC AC ⨯==CD ,求出CD =1,利用勾股定理2222215AB BE AE =+=+=即可.【详解】解:作BE ⊥AC 于E ,∵AB =BD ,∴AE =DE ,∵∠C =45°,∴∠EBC =180°-∠C -∠BEC =180°-45°-90°=45°,∴BE =CE ,在Rt △BEC 中,∴()22222+222BE CE CE BC ===,∴CE =BE =2,∵D 是AC 的三等分点, ∴CD =13AC ,AD =AC -CD =1233AC AC AC -=, ∴AE =DE =121233AC AC ⨯==CD , ∴CE =CD +DE =2CD =2,∴CD =1,∴AE =1,在Rt △ABE 中,根据勾股定理2222215AB BE AE =+=+=.故选B .【点睛】本题考查等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段,掌握等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段是解题关键. 8.C解析:C【分析】由图像与纵轴的交点可得出A 、B 两地的距离;当s=0时,即为甲、乙相遇的时候,同理根据图像的拐点判断其他即可.【详解】解:由图像可知A 村、B 村相离8km ,故①正确;甲出发2h 后到达C 村,故②正确;当0≤t≤1时,易得一次函数的解析式为s=-8t+8,故甲的速度比乙的速度快8km/h ,故③正确;当1≤t≤1.5时,函数图象经过点(1,0)(1.5,4)设一次函数的解析式为s=kt+b则有:104 1.5k b k b =+⎧⎨=+⎩解得21k b =⎧⎨=⎩ ∴s=2t+1当s=2时,得2=2t+1,解得t=0.5<1,不符合题意,④错误.故答案为C.【点睛】本题考查了一次函数的应用和函数与方程的思想,解题的关键在于读懂图象,根据图像的信息进行解答.二、填空题9.1≥x 且3x ≠【解析】【分析】根据分母不等于0,且被开方数是非负数列式求解即可.【详解】由题意得10x -≥且30x -≠解得1≥x 且3x ≠故答案为:1≥x 且3x ≠【点睛】本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.10.A解析:6【解析】【分析】根据菱形的性质得到AC =8,根据菱形的面积等于两条对角线乘积的一半,即可求解.【详解】解:∵四边形ABCD 为菱形;∴AC =2OA =8,12ABCD S AC BD =⋅菱形, ∴12482BD =⨯⨯, ∴BD =6,故答案为:6【点睛】本题考查了菱形的性质,解题的关键是熟记菱形面积的两种表示法:(1)底乘高,(2)对角线乘积的一半,本题运用的是第二种.11.E解析:8【解析】【分析】根据正方形的面积等于边长的平方,由正方形PQED 的面积和正方形PRQF 的面积分别表示出PR 的平方及PQ 的平方,又三角形PQR 为直角三角形,根据勾股定理求出QR 的平方,即可求小正方形的边长.【详解】如图,∵正方形PQED 的面积等于225,∴即PQ 2=225,∵正方形PRGF 的面积为289,∴PR 2=289,又△PQR 为直角三角形,根据勾股定理得:PR 2=PQ 2+QR 2,∴QR 2=PR 2−PQ 2=289−225=64,∴QR=8,即字母A 所代表的正方形的边长为8.【点睛】本题考查勾股定理,根据勾股定理求出小正方形的面积是关键.12.D21【分析】由矩形的性质和角平分线的定义得出∠DEC =∠ECB =∠BEC ,推出BE =BC ,求得 AE =AB =1,然后依据勾股定理可求得BC 的长;【详解】解:∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠DEC =∠BCE ,∵EC 平分∠DEB ,∴∠DEC =∠BEC ,∴∠BEC =∠ECB ,∴BE =BC ,∵四边形ABCD 是矩形,∴∠A =90°,AD BC =∵∠ABE =45°,∴∠ABE =∠AEB =45°,∴AB =AE =1,由勾股定理得:BE ==,∴BC =AD =BE, ∴1DE AD AE =-,1.【点睛】本题考查了矩形的性质,等腰三角形的性质与判定,勾股定理的应用;熟练掌握矩形的性质,证出BE =BC 是解题的关键.13.10y x =-+【分析】用待定系数法即可得到答案.【详解】解:把()8,2代入y x b =-+得82b -+=,解得10b =,所以一次函数解析式为10y x =-+.故答案为10y x =-+【点睛】本题考查求一次函数解析式,解题的关键是熟练掌握待定系数法.14.A解析:AC BD =【分析】如下图,根据三角形中位线的定理,可得AG=EF=12AC ,GF=AE=12BD ,再根据菱形四条边相等的性质,可得出AC 与BD 的关系.【详解】如下图,点E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点∵点E、F是AB、BC的中点∴EF=12AC同理可得:AG=EF=12AC,GF=AE=12BD∵要使得四边形HEFG是菱形,则HE=EF=FG=GH ∴只需AC=BD即可故答案为:AC=BD【点睛】本题考查菱形的性质和三角形中位线的性质,解题关键是得出AG=EF=12 AC,GF=AE=12 BD.15.(,0)【分析】作点D关于x轴对称点F,根据题意求出D点的坐标,从而得到F点的坐标,同时连接CF,则CF与x轴的交点即为所求E点,此时满足△CDE的周长最小,利用CF的解析式求解即可.【详解】解析:(83,0)【分析】作点D关于x轴对称点F,根据题意求出D点的坐标,从而得到F点的坐标,同时连接CF,则CF与x轴的交点即为所求E点,此时满足△CDE的周长最小,利用CF的解析式求解即可.【详解】解:作点D关于x轴对称点F,如图,∵四边形OABC 是矩形,∴OC =BD =3,点C 的坐标为()0,3,∵D 为AB 边的中点,∴AD =32, ∵OA =4,∴D 点的坐标为34,2⎛⎫ ⎪⎝⎭,则F 点的坐标为34,2⎛⎫- ⎪⎝⎭, 根据轴对称的性质可得:EF =ED ,∴C △CDE =CD +CE +DE =CD +CE +EF ,其中CD 为定值,当CE +EF 值最小时,△CDE 周长最小,此时点C ,E ,F 三点共线,设直线CF 的解析式为:()0y kx b k =+≠,将()0,3和34,2⎛⎫- ⎪⎝⎭代入解析式得: 3342b k b =⎧⎪⎨+=-⎪⎩,解得:983k b ⎧=-⎪⎨⎪=⎩, ∴直线CF 的解析式为:938y x =-+, 令0y =,得:9308x -+=, 解得:83x =, ∴点E 坐标(83,0), 故答案为:803⎛⎫ ⎪⎝⎭,. 【点睛】本题考查一次函数与轴对称的综合运用,理解最短路径的求解方法,熟悉待定系数法求一次函数解析式是解题关键.16.5【分析】在Rt△BDC中由勾股定理可求出BD,根据翻折变换可得AH=HD,在Rt△BDH 中由勾股定理可得答案.【详解】解:在Rt△BDC中,∵BC=8,CD=2,∴BD=,由题意,得解析:5【分析】在Rt△BDC中由勾股定理可求出BD,根据翻折变换可得AH=HD,在Rt△BDH中由勾股定理可得答案.【详解】解:在Rt△BDC中,∵BC=8,CD=∴BD=由题意,得AH=HD,设BH=x,则AH=12﹣x=HD,在Rt△BDH中,由勾股定理得,HB2+BD2=HD2,即x2)2=(12﹣x)2,解得x=5,即HB=5,故答案为:5.【点睛】本题考查了翻折变换,勾股定理.掌握翻折变换的性质及勾股定理是解题的关键.三、解答题17.(1);(2)【分析】(1)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可;(2)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可.【详解】解:(1)解析:(1)2)4【分析】(1)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可;(2)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可.【详解】解:(1)===(22=4=4=【点睛】本题主要考查了利用二次根式的化简和二次根式的混合运算,熟练掌握相关计算法则是解题的关键.18.需要封闭,理由见解析【分析】过作于 先求解 再利用等面积法求解 再与260比较,可得答案.【详解】解:过作于所以进行爆破时,公路BC 段需要暂时封闭.【点睛】解析:需要封闭,理由见解析【分析】过A 作AK BC ⊥于,K 先求解,BC 再利用等面积法求解,AK 再与260比较,可得答案.【详解】解:过A 作AK BC ⊥于,K,400,300,AB AC AB AC22500,BC AB AC11,AB AC BC AK22AK300400500,240,AK240260,所以进行爆破时,公路BC段需要暂时封闭.【点睛】本题考查的是勾股定理的应用,利用等面积法求解直角三角形斜边上的高,掌握“等面积法求解直角三角形斜边上的高”是解题的关键.19.(1)见解析;(2)见解析;(3)【解析】【分析】(1)根据正方形的判定画出以AB为边的正方形ABCD即可;(2)画出以EF为边的等腰三角形EFG,且△EFG的周长为等腰三角形即可;(3)解析:(1)见解析;(2)见解析;(35【解析】【分析】(1)根据正方形的判定画出以AB为边的正方形ABCD即可;(2)画出以EF为边的等腰三角形EFG,且△EFG的周长为1010(3)由勾股定理求出CG即可.【详解】解:(1)如图,所作正方形ABCD即为以AB为边的正方形ABCD;(2)如图,所作△EFG即为以EF为边的等腰三角形EFG,且△EFG的周长为1010+(3)如图,CG22+512【点睛】本题考查作图-应用与设计,勾股定理,解题的关键是理解题意,根据GE=GF=5画出等腰三角形.20.(1)AC⊥BD,证明见解析;(2)四边形ABCD是菱形,见解析【分析】(1)首先根据平行四边形的性质得出OC, OB的长,再利用勾股定理逆定理求出∠BOC=90,可得AC与BD的位置关系;(解析:(1)AC⊥BD,证明见解析;(2)四边形ABCD是菱形,见解析【分析】(1)首先根据平行四边形的性质得出OC,OB的长,再利用勾股定理逆定理求出∠BOC=90︒,可得AC与BD的位置关系;(2)菱形的判定方法:对角线互相垂直平分的四边形是菱形,可得答案.【详解】解:(1)AC⊥BD;理由如下:在ABCD中,132==OB BD,142OC AC==∵22291625+=+==OB OC BC∴∠BOC=90︒∴AC⊥BD.(2)四边形ABCD是菱形∵四边形ABCD是平行四边形(已知),AC⊥BD(已证)∴四边形ABCD是菱形.【点睛】此题主要考查了菱形的判定,平行四边形的性质,以及勾股定理的逆定理的运用,解题的关键是根据条件证出BO2+CO2=CB2.21.(1)5;(2)5.【解析】【详解】试题分析: 根据平方差公式,可分母有理化,根据整体代入,可得答案.试题解析:(1)∵a=,∴4a2-8a+1=4×()2-8×()+1=5;(2)解析:(1)5;(2)5.【解析】【详解】试题分析: 根据平方差公式,可分母有理化,根据整体代入,可得答案.试题解析:(1)∵, ∴4a 2-8a+1)2-8×)+1=5;(2)原式=12×=12×) =12×10=5.点睛:本题主要考查了分母有理化,利用分母有理化化简是解答此题的关键. 22.(1)一个A 型篮球为80元,一个B 型篮球为50元;(2)函数解析式为:;(3)A 型篮球120个,则B 型篮球为180个.【分析】(1)设一个A 型篮球为x 元,一个B 型篮球为y 元,根据题意列出方程组求 解析:(1)一个A 型篮球为80元,一个B 型篮球为50元;(2)函数解析式为:()30150000300W t t =+≤≤;(3)A 型篮球120个,则B 型篮球为180个.【分析】(1)设一个A 型篮球为x 元,一个B 型篮球为y 元,根据题意列出方程组求解即可得; (2)A 型篮球t 个,则B 型篮球为()300t -个,根据单价、数量、总价的关系即可得; (3)根据A 型篮球与B 型篮球的优惠政策求出单价,然后代入(2)解析式中求解即可得.【详解】解:(1)设一个A 型篮球为x 元,一个B 型篮球为y 元,根据题意可得:323402210x y x y +=⎧⎨+=⎩, 解得:8050x y =⎧⎨=⎩,∴一个A 型篮球为80元,一个B 型篮球为50元;(2)A 型篮球t 个,则B 型篮球为()300t -个,根据题意可得:()()805030030150000300W t t t t =+-=+≤≤,∴函数解析式为:()30150000300W t t =+≤≤;(3)根据题意可得:A 型篮球单价为()808-元,B 型篮球单价为500.9⨯元,则()()16740808500.9300t t =-+⨯⨯-,解得:120t =,300180t -=,∴A 型篮球120个,则B 型篮球为180个. 【点睛】题目主要考查二元一次方程组及一次函数的应用,理解题意,列出相应方程是解题关键.23.(1);(2);(3)存在,如图2(见解析),当时,;如图3(见解析),当时,;如图4(见解析),当时,. 【分析】(1)先根据线段中点的定义可得,再根据矩形的性质、角平分线的定义可得,从而可得是解析:(1);(2);(3)存在,如图2(见解析),当时,;如图3(见解析),当时,;如图4(见解析),当时,.【分析】(1)先根据线段中点的定义可得,再根据矩形的性质、角平分线的定义可得,从而可得是等腰直角三角形,然后根据等腰直角三角形的性质可得AH 的长,最后根据等腰直角三角形的面积公式即可得; (2)先根据平行四边形的性质可得,从而可得,再根据三角形中位线定理可得是的中位线,从而可得,然后与(1)所求的建立等式求解即可得;(3)分①当点H 是AB 的中点时,;②当点Q 与点E 重合时,;③当时,三种情况,分别求解即可得.【详解】 (1)由题意得:,点Q 为AP 的中点,,四边形ABCD 是矩形,,是BAD的角平分线,,,是等腰直角三角形,,则的面积为;(2)如图1,四边形PQHM是平行四边形,,点M在BC边上,,点Q为AP的中点,是的中位线,,由(1)知,,则,解得;(3)由题意,有以下三种情况:①如图2,当点H是AB的中点时,则,四边形PQHM是平行四边形,,,在和中,,由(2)可知,此时;②如图3,当点Q与点E重合时,在和中,,,,则,解得;③如图4,当时,四边形ABCD是矩形,四边形PQHM是平行四边形,,,在和中,,,,在中,,是等腰直角三角形,,,在中,,是等腰直角三角形,,则由得:,解得;综上,如图2,当时,;如图3,当时,;如图4,当时,.【点睛】本题考查了矩形的性质、三角形中位线定理、三角形全等的判定定理与性质、等腰直角三角形的判定与性质等知识点,较难的是题(3),依据题意,正确分三种情况讨论并画出图形是解题关键.24.(1)y=-2x+8;(2)S=16m-2m2;(3)(-2,4)【解析】【分析】(1)先求出点A,点B坐标,由等腰三角形的性质可求点C坐标,由待定系数法可求BC 的解析式;(2)过点P作PG解析:(1)y=-2x+8;(2)S=16m-2m2;(3)(-2,4)【解析】【分析】(1)先求出点A,点B坐标,由等腰三角形的性质可求点C坐标,由待定系数法可求BC 的解析式;(2)过点P作PG⊥AC,PE∥BC交AC于E,过点Q作HQ⊥AC,由“AAS”可证△AGP≌△CHQ,可得AG=HC=m-4,PG=HQ=2m-8,由“AAS”可证△PEF≌△QCF,可得S△PEF=S△QCF,即可求解;(3)如图2,连接AM,CM,过点P作PE⊥AC,由“SSS”可证△APM≌△CQM,△ABM≌△CBM,可得∠PAM=∠MCQ,∠BQM=∠APM=45°,∠BAM=∠BCM,由“AAS”可证△APE≌△MAO,可得AE=OM,PE=AO=4,可求m的值,可得点P的坐标.【详解】解:(1)∵直线y=2x+8与x轴交于点A,与y轴交于点B,∴点B(0,8),点A(-4,0)∴AO=4,BO=8,∵AB=BC,BO⊥AC,∴AO=CO=4,∴点C(4,0),设直线BC解析式为:y=kx+b,由题意可得:804bk b=⎧⎨=+⎩,解得:28kb=-⎧⎨=⎩,∴直线BC解析式为:y=-2x+8;(2)如图1,过点P作PG⊥AC,PE∥BC交AC于E,过点Q作HQ⊥AC,设△PBQ的面积为S,∵AB=CB,∴∠BAC=∠BCA,∵点Q横坐标为m,∴点Q(m,-2m+8)∴HQ=2m-8,CH=m-4,∵AP=CQ,∠BAC=∠BCA=∠QCH,∠AGP=∠QHC=90°,∴△AGP≌△CHQ(AAS),∴AG=HC=m-4,PG=HQ=2m-8,∵PE∥BC,∴∠PEA=∠ACB,∠EPF=∠CQF,∴∠PEA=∠PAE,∴AP=PE,且AP=CQ,∴PE=CQ,且∠EPF=∠CQF,∠PFE=∠CFQ,∴△PEF≌△QCF(AAS)∴S△PEF=S△QCF,∴△PBQ的面积=四边形BCFP的面积+△CFQ的面积=四边形BCFP的面积+△PEF的面积=四边形PECB的面积,∴S=S△ABC-S△PAE=12×8×8-12×(2m-8)×(2m-8)=16m-2m2;(3)如图2,连接AM,CM,过点P作PE⊥AC,∵AB=BC,BO⊥AC,∴BO是AC的垂直平分线,∴AM=CM,且AP=CQ,PM=MQ,∴△APM≌△CQM(SSS)∴∠PAM=∠MCQ,∠BQM=∠APM=45°,∵AM=CM,AB=BC,BM=BM,∴△ABM≌△CBM(SSS)∴∠BAM=∠BCM,∴∠BCM=∠MCQ,且∠BCM+∠MCQ=180°,∴∠BCM=∠MCQ=∠PAM=90°,且∠APM=45°,∴∠APM=∠AMP=45°,∴AP=AM,∵∠PAO+∠MAO=90°,∠MAO+∠AMO=90°,∴∠PAO=∠AMO,且∠PEA=∠AOM=90°,AM=AP,∴△APE≌△MAO(AAS)∴AE=OM,PE=AO=4,∴2m-8=4,∴m=6,∴P(-2,4).【点睛】本题是一次函数综合题,考查了待定系数法求解析式,全等三角形的判定和性质,等腰三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.25.(1)45;(2)①见解析;②DF的长为2;(3)【分析】(1)根据平角的定义得到∠DFE+∠BEF=360°﹣90°=270°,根据角平分线的定义得到∠AFE=DFE,∠AEF=BEF,求得∠解析:(1)45;(2)①见解析;②DF的长为2;(3)15 7【分析】(1)根据平角的定义得到∠DFE+∠BEF=360°﹣90°=270°,根据角平分线的定义得到∠AFE=12∠DFE,∠AEF=12∠BEF,求得∠AEF+∠AFE=12(∠DFE+∠BEF),根据三角形的内角和定理即可得到结论;(2)①作AG⊥EF于G,如图1所示:则∠AGE=∠AGF=90°,先证明四边形ABCD是矩形,再由角平分线的性质得出AB=AD,即可得出四边形ABCD是正方形;②设DF=x,根据已知条件得到BC=6,由①得四边形ABCD是正方形,求得BC=CD=6,根据全等三角形的性质得到BE=EG=3,同理,GF=DF=x,根据勾股定理列方程即可得到结论;(3)把△PQH沿PQ翻折得△PQD,把△PRH沿PR翻折得△PRM,延长DQ、MR交于点G,由(1)(2)得:四边形PMGD是正方形,MR+DQ=QR,MR=HR,DQ=HQ=2,得出MG=DG=MP=PH=6,GQ=4,设MR=HR=a,则GR=6﹣a,QR=a+2,在Rt△GQR 中,由勾股定理得出方程,解方程即可.【详解】解:(1)∵∠C=90°,∴∠CFE+∠CEF=90°,∴∠DFE+∠BEF=360°﹣90°=270°,∵AF平分∠DFE,AE平分∠BEF,∴∠AFE=12∠DFE,∠AEF=12∠BEF,∴∠AEF +∠AFE =12(∠DFE +∠BEF )=12⨯270°=135°,∴∠EAF =180°﹣∠AEF ﹣∠AFE =45°, 故答案为:45;(2)①作AG ⊥EF 于G ,如图1所示:则∠AGE =∠AGF =90°, ∵AB ⊥CE ,AD ⊥CF , ∴∠B =∠D =90°=∠C , ∴四边形ABCD 是矩形,∵∠CEF ,∠CFE 外角平分线交于点A , ∴AB =AG ,AD =AG , ∴AB =AD ,∴四边形ABCD 是正方形; ②设DF =x , ∵BE =EC =3, ∴BC =6,由①得四边形ABCD 是正方形, ∴BC =CD =6,在Rt △ABE 与Rt △AGE 中,AB AGAE AE=⎧⎨=⎩ , ∴Rt △ABE ≌Rt △AGE (HL ), ∴BE =EG =3, 同理,GF =DF =x ,在Rt △CEF 中,EC 2+FC 2=EF 2, 即32+(6﹣x )2=(x +3)2, 解得:x =2, ∴DF 的长为2; (3)解:如图2所示:把△PQH沿PQ翻折得△PQD,把△PRH沿PR翻折得△PRM,延长DQ、MR交于点G,由(1)(2)得:四边形PMGD是正方形,MR+DQ=QR,MR=HR,DQ=HQ=2,∴MG=DG=MP=PH=5,∴GQ=3,设MR=HR=a,则GR=5﹣a,QR=a+2,在Rt△GQR中,由勾股定理得:(5﹣a)2+32=(2+a)2,解得:a=157,即HR=157;故答案为:157.【点睛】本题考查了正方形的判定与性质、全等三角形的判定与性质、角平分线的性质、勾股定理、矩形的判定、翻折变换的性质等知识;本题综合性强,有一定难度.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学综合测试及答案一、选择题(每题4分,共36分)1、抛物线y=3(x-1)+1的顶点坐标是( )A .(1,1)B .(-1,1)C .(-1,-1)D .(1,-1) 2、二次函数26y x x =+-的图像与x 轴交点的横坐标是( ) A. -2和-3 B.-2和3 C. 2和3 D. 2和-33、抛物线2)1(2++=x a y 的一部分如图1所示,该抛物线在y 轴右侧部分与x 轴交点的坐标是( ) A 、(21,0) B 、(1,0) C 、(2,0) D 、(3,0) 4、(2007 长沙市)把抛物线22y x =-向上平移1个单位,得到的抛物线是( )C A .22(1)y x =-+ B .22(1)y x =-- C .221y x =-+ D .221y x =-- 5、若抛物线22y x x c =-+与y 轴的交点为(03)-,,则下列说法不正确的是( ) A .抛物线开口向上B .抛物线的对称轴是1x =C .当1x =时,y 的最大值为4-D .抛物线与x 轴的交点为(10)(30)-,,,6、抛物线c bx x y ++-=2的部分图象如图2所示,若0>y ,则x 的取值范围是( ) A.14<<-x B. 13<<-x C. 4-<x 或1>x D.3-<x 或1>x 7、(2007 常州市)若二次函数222y ax bx a =++-(a b ,为常数)的图象如下(图3),则a 的值为( )A .2-B .C .1D8、一个运动员打尔夫球,若球的飞行高度(m)y 与水平距离(m)x 之间的函数表达式为()21301090y x =--+,则高尔夫球在飞行过程中的最大高度为( ) A .10m B .20m C .30m D .60m9、小敏在某次投篮中,球的运动路线是抛物线5.3512+-=x y 的一部分(如图4),若命中篮圈中心,则他与篮底的距离l 是( )A 、3.5mB 、4mC 、4.5mD 、4.6m二、填空题(每题3分,共27分)10、抛物线y =2x 2+4x+5的对称轴是x=_________ . 11、二次函数()y x =-+122的最小值是_____________.12、已知抛物线的顶点坐标为(-1,4),且其图象与x 轴交于点(-2,0),抛物线的解析式为___________________.13、已知二次函数222c x x y ++-=的对称轴和x 轴相交于点(0,m )则m 的值为_______. 14、请写出一个开口向下,对称轴为直线x=2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .15、二次函数y =x 2+bx +c 的图象经过点A(-1,0)、B(3,0)两点.其顶点坐标是__________. 16、(2007 甘肃省兰州市)抛物线y =ax 2+2ax +a 2+2的一部分如图所示,那么该抛物线在y 轴右侧与x 轴交点的坐标是_____________.17、(2007 甘肃省兰州市)将抛物线y =2x 2先沿x 轴方向向左平移2个单位,再沿y 轴 方向向下平移3个单位,所得抛物线的解析式是________________.18、(2007 佛山市)已知二次函数2y ax bx c =++(a b c ,,是常数),x 与y 的部分对应值如下表,则当x 满足的条件是 时,0y =;当x 满足的条件是 时,0y >.x2- 1- 0 1 2 3y16-6-26-三、解答题(共57分)19、(8分)二次函数2(0)y ax bx c a =++≠的图象如图9 所示,根据图象解答下列问题:(1)写出方程20ax bx c ++=的两个根. (2)写出不等式20ax bx c ++>的解集.(3)写出y 随x 的增大而减小的自变量x 的取值范围.(4)若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围.20、(12分)(1)把二次函数2339424y x x =-++代成2()y a x h k =-+的形式. (2)写出抛物线2339424y x x =-++的顶点坐标和对称轴,并说明该抛物线是由哪一条形如2y ax =的抛物线经过怎样的变换得到的? (3)如果抛物线2339424y x x =-++中,x 的取值范围是03x ≤≤,请画出图象,并试着给该抛物线编一个具有实际意义的情境(如喷水、掷物、投篮等).21、(12分)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y (箱)与销售价x (元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w (元)与销售价x (元/箱)之间的函数关系式. (3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?22、(12分)如图,足球场上守门员在O 处开出一高球,球从离地面1米的A 处飞出(A 在y 轴上),运动员乙在距O 点6米的B 处发现球在自己头的正上方达到最高点M ,距地面约4米高,球落地后又一次弹起.据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式.(2)足球第一次落地点C距守门员多少米?(取7=)(3)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取5=)23、(2007 安徽省)(13分)按右图所示的流程,输入一个数据x,根据y与x的关系式就输出一个数据y,这样可以将一组数据变换成另一组新的数据,要使任意一组都在20~100(含20和100)之间的数据,变换成一组新数据后能满足下列两个要求:(Ⅰ)新数据都在60~100(含60和100)之间;(Ⅱ)新数据之间的大小关系与原数据之间的大小关系一致,即原数据大的对应的新数据也较大.(1)若y与x的关系是y=x+p(100-x),请说明:当p=12时,这种变换满足上述两个要求;(2)若按关系式y=a(x-h)2+k(a>0)将数据进行变换,请写出一个满足上述要求的这种关系式.(不要求对关系式符合题意作说明,但要写出关系式得出的主要过程)参考答案:一、1、A 2、D 3、B 4、C 5、C 6、B 7、D 8、A 9、B二、10、-1 11、2 12、y=-4(x+1)2+4 13、1 14、y=-(x -1)2+7 15、(1,-4) 16、(1,0) 17、y =2x 2+8x +5 18、0或2;20<<x三、19、(1)11x =,23x = (2)13x << (3)2x > (4)2k < 20、解:(1)2339424y x x =-++ 239(2)44x x =--+239(211)44x x =--+-+23(1)34x =--+.(2)由上式可知抛物线的顶点坐标为(13),,其对称轴为直线1x = 该抛物线是由抛物线234y x =-向右平移1个单位,再向上平移3个单位(或向上平移3 个单位,再向右平移1个单位)得到的.(3)抛物线与x 轴交于(30),,与y 轴交于904⎛⎫⎪⎝⎭,,顶点为(13),,把这三个点用平滑的曲线连接起来就 得到抛物线在03x ≤≤的图象(如图所示).(画出的图象没有标注以上三点的减1分)情境示例:小明在平台上,从离地面2.25米处抛出一物体,落在离平台底部水平距离 为3米的地面上,物体离地面的最大高度为3米. (学生叙述的情境只要符合所画出的抛物线即可)21、(1)903(50)y x =--化简得:3240y x =-+ (2)2(40)(3240)33609600w x x x x =--+=-+-(3)233609600w x x =-+-0a <,∴抛物线开口向下.当602bx a=-=时,w 有最大值 又60x <,w 随x 的增大而增大∴当55x =元时,w 的最大值为1125元∴当每箱苹果的销售价为55元时,可以获得1125元的最大利润.22、解:(1)如图,设第一次落地时, 抛物线的表达式为2(6)4y a x =-+.由已知:当0x =时1y =.即1136412a a =+∴=-,. ∴表达式为21(6)412y x =--+. (或21112y x x =-++)(2)(3分)令20(6)4012y x =--+=,.212(6)4861360x x x ∴-===-<.≈,(舍去). ∴足球第一次落地距守门员约13米.(3)如图,第二次足球弹出后的距离为CD根据题意:CD EF =(即相当于将抛物线AEMFC 向下平移了2个单位)212(6)412x ∴=--+解得1266x x =-=+ 1210CD x x ∴=-=. 1361017BD ∴=-+=(米).23、(1)当P=12时,y=x +()11002x -,即y=1502x +. ∴y 随着x 的增大而增大,即P=12时,满足条件(Ⅱ)又当x=20时,y=1100502⨯+=100.而原数据都在20~100之间,所以新数据都在60~100之间,即满足条件(Ⅰ),综上可知,当P=12时,这种变换满足要求;(2)本题是开放性问题,答案不唯一.若所给出的关系式满足:(a )h≤20;(b )若x=20,100时,y 的对应值m ,n 能落在60~100之间,则这样的关系式都符合要求. 如取h=20,y=()220a x k -+,∵a >0,∴当20≤x≤100时,y 随着x 的增大 令x=20,y=60,得k=60 ① 令x=100,y=100,得a×802+k=100 ②由①②解得116060a k ⎧=⎪⎨⎪=⎩, ∴()212060160y x =-+.。