碘钟实验报告

合集下载

碘钟反应文档

碘钟反应文档

碘钟反应简介碘钟反应是一种常见的化学实验,用于展示化学反应速率的变化与物质浓度之间的关系。

该反应通常使用混合物高锰酸钾(KMnO4)和硫酸(H2SO4),随着物质浓度的变化,溶液的颜色从橙色逐渐转变为深紫色,同时伴随有气泡的释放。

实验步骤1.准备实验装置:将高锰酸钾晶体称取指定质量(通常为2g),加入到烧杯中,并加入适量的蒸馏水溶解。

2.准备溶液:将含有两种溶液的试管分别准备好。

溶液A由少量高锰酸钾溶液和适量的蒸馏水组成,溶液B由硫酸和适量的蒸馏水组成。

3.实验操作:将溶液A快速倒入溶液B中,开始观察溶液的变化。

4.观察结果:开始时,溶液为橙黄色,随着时间的推移,颜色逐渐变深,从橙色转变为红色,最后变成深紫色。

同时,有气泡从溶液中释放出来。

反应机理碘钟反应的反应机理涉及复杂的氧化还原过程。

具体反应步骤如下:1.首先,高锰酸钾溶液和硫酸反应,生成具有强氧化性的Mn2+离子。

2KMnO4 + 3H2SO4 → K2SO4 + 2MnSO4 + 3H2O + 5[O]2.接着,Mn2+离子被碘化钠(NaI)氧化为MnO2。

碘离子(I-)在反应中充当催化剂。

2Mn2+ + 4I- → 2MnI23.MnO2与碘酸根离子(IO3-)反应生成三碘化物离子(I3-)。

MnO2+ 2IO3- + H2O → Mn2+ + 2I3- + 2OH-4.最后,碘酸根离子与碘化钠反应生成碘。

IO3- + 5I- + 6H+ → 3I2 +3H2O这些反应会反复发生,从而导致溶液中碘的浓度逐渐升高,最终溶液颜色变为深紫色。

影响反应速率的因素碘钟反应的反应速率取决于多种因素,包括:1.温度:温度越高,反应速率越快。

2.高锰酸钾(KMnO4)和硫酸(H2SO4)的浓度:浓度越高,反应速率越快。

3.碘化钠(NaI)的浓度:浓度越高,反应速率越快。

4.溶液的搅拌程度:搅拌越强,反应速率越快。

5.反应容器的形状和大小:反应容器的形状和大小会影响反应溶液的表面积,从而影响反应速率。

碘时钟反应

碘时钟反应

Na2S2O3 0.00192 0.00192 0.00192 0.00192 0.00192 0.00192 0.00192
反应时间/S
246 294 378 573 299 395 605 331
407
反应速率 mol∙L-1∙S-1
3.902E-06 3.265E-06 2.540E-06 1.676E-06 3.211E-06 2.430E-06 1.587E-06
碘时钟反应
(教材128页)
吴清洲
背景资料
汽油、煤油、柴油和沥青都是碳氢化合物, 它们的燃烧速率就不同。
确定反应速率方程和反应活化能是化学反应 动力学的最重要内容。
实际反应和基元反应的不同。
在测定淀粉总糖的实验中,水解和发色都要 一定的温度和时间,这也是涉及化学反应动 力学。
一、实验目的
1.理解用初始速率法确定碘时钟反应速率 方程的原理与方法;
-1.8
-1.6
-1.4
-1.2
log[S2O82-]
作图求得:m≈1
logv
-5.3 -5.4 -5.5 -5.6 -5.7 -5.8 -5.9
-6 -2
作图求n
y = 0.925x - 4.0923 R2 = 0.9967
-1.8
-1.6
-1.4
-1.2
log[I-]
作图求得: n≈1
温度的影响:T=308K,Δt=76s;T=298K, Δt=148s (三点最好绘图。)
做完实验,清洗玻璃仪器,整理实验台。
本次实验的值日生:
第二排
下周实验 :
甘薯粉中还原糖和总糖的比色法测定
在201室
B烧杯加入A烧杯,并搅拌,同时开始计时。 出现蓝色计时结束。记时间。

碘钟实验

碘钟实验

实验药品29%过氧化氢溶液、丙二酸、硫酸锰、可溶性淀粉、碘酸钾、1mol/L硫酸实验步骤1.配置甲溶液:量取97mL29%的过氧化氢溶液,转移入250mL容量瓶里,用蒸馏水稀释到刻度,得3.6mol/L过氧化氢溶液。

2.配置乙溶液:分别称取3.9g丙二酸和0.76g硫酸锰,分别溶于适量水中。

另称取0.075g可溶性淀粉,溶于50mL左右沸水中。

把三者转移入250mL容量瓶里,稀释到刻度,得到含0.15mol/L丙二酸、0.02mol/L硫酸锰、和0.03%淀粉的混合溶液3.配置丙溶液:称取10.75g碘酸钾溶于适量热水中,再加入20mL1mol/L硫酸溶液酸化。

转移入250mL容量瓶里,稀释到刻度,得到0.2mol/L碘酸钾和0.08mol/L硫酸的混合溶液。

4.将甲、乙、丙三组溶液以等体积混合在锥形瓶中,这混合溶液分别含过氧化氢1.2mol/L、丙二酸0.05mol/L、硫酸锰0.0067mol/L、碘酸钾0.067mol/L、淀粉0.01%。

“时钟反应”就是一种自催化反应,如碘酸盐与亚硫酸氢盐的反应,产物I-又是反应物,因而在经历一定诱导期后,反应速率急速增加。

2KIO3+5H2O2+H2SO4→I2+K2SO4+6H2O+5O2↑(1)I2+5H2O2+K2SO4→2KIO3+4H2O+H2SO4(2)I2+CH2(COOH)2→CHI(COOH)2+I-+H+(3)I2+CHI(COOH)2→CI2(COOH)2+I-+H+(4)I-+I2=I3-(5)丙二酸的加入是为了以I3-的形式“贮存”I2,以增大I2的溶解度。

这样能延长变色时间周期和循环次数。

显然蓝色是由碘分子与淀粉溶液作用的结果。

5个反应累加结果发现是H2O2→H2O+O2↑。

如果向反应器中不断加入碘酸盐、丙二酸、双氧水反应物,同时产物通过溢流管不断离开反应器,这样可以使化学钟无限期走下去。

也存在其它时钟反应:IO3- + 3SO32-===I- + 3SO42-IO3- + 5I- + 6H+ ===3I2 + 3H2O3I2 + 3SO32- + 3H2O===6I- + 6H+ + 3SO42-或5H2O2 + 2HIO3===5O2 + I2 + 6H2OI2 + 5H2O2===2HIO3 + 4H2O在KIO3、KHSO3的酸性混合溶液中加入少量KI和淀粉,不断地搅拌,有下列反应发生:IO3-+5I-+6H+=3I2+3H2OI2+HSO3-+H2O=2I-+]+HSO4-+2H+当反应进行到15min时,溶液突然变成蓝色,随之又很快消失,这一反应被称为时钟反应。

碘钟实验报告

碘钟实验报告

碘钟实验报告碘钟实验报告引言:碘钟实验是一种经典的化学实验,通过观察碘化钾与过氧化氢反应产生的气泡数量和速度变化,可以了解化学反应速率与浓度之间的关系。

本实验旨在通过实验操作和数据处理,探究反应物浓度对反应速率的影响,以及通过实验结果验证反应速率与浓度的关系。

实验目的:1. 掌握碘钟实验的操作方法;2. 通过实验数据分析,验证反应速率与反应物浓度的关系。

实验原理:碘钟实验的反应方程式为:2H2O2 + 2KI + H2SO4 → I2 + K2SO4 + 2H2O。

在此反应中,过氧化氢与碘化钾反应,生成碘分子和水。

碘分子在反应中呈现黄棕色,并且在酸性条件下,碘分子与淀粉反应生成蓝黑色的淀粉碘复合物。

通过观察淀粉碘复合物的颜色变化,可以间接反映出反应速率的变化。

实验步骤:1. 准备实验器材:玻璃烧杯、滴定管、试管架等;2. 预先准备浓度不同的碘化钾溶液;3. 将一定量的碘化钾溶液倒入玻璃烧杯中;4. 加入适量的过氧化氢溶液,并快速搅拌;5. 观察气泡的生成情况,并记录下时间;6. 重复实验多次,取平均值。

实验结果与讨论:在实验过程中,我们分别使用了浓度为0.1mol/L、0.2mol/L和0.3mol/L的碘化钾溶液进行了实验。

观察到,在浓度较低的碘化钾溶液中,气泡的生成速率较慢,并且气泡的数量也较少。

而在浓度较高的碘化钾溶液中,气泡的生成速率明显增加,气泡的数量也明显增多。

这说明反应速率与反应物浓度之间存在正相关关系。

通过实验数据的处理,我们还可以计算出反应速率与浓度之间的定量关系。

根据实验结果,我们可以得到一个经验公式:反应速率与浓度的关系可以近似表示为速率 = k * [I-]^x,其中k为常数,[I-]为碘化钾的浓度,x为反应级数。

通过进一步的实验和数据处理,可以确定反应级数和常数k的具体数值。

结论:通过碘钟实验的操作和数据处理,我们验证了反应速率与反应物浓度之间的关系。

实验结果表明,反应速率与反应物浓度呈正相关关系,即浓度越高,反应速率越快。

碘钟实验_精品文档

碘钟实验_精品文档

1.碘钟反应2 碘钟反应药品: 硫酸, 双氧水, 碘酸钾, 硫代硫酸钠, 淀粉向硫酸酸化的过氧化氢溶液中加入碘酸钾、硫代硫酸钠和淀粉的混合溶液。

此时在体系中存在两个主要反应, 化学方程式为:H2O2(aq)+3I−(aq)+2H+→I3−+2H2OI3−(aq)+2S2O32−(aq) →3I−(aq)+S4O62−(aq)药品: 硫酸, 碘酸钾, 亚硫酸氢钠, 淀粉向用硫酸酸化的碘酸盐中加入亚硫酸氢钠(以及少量淀粉溶液), 此时体系中出现如下反应:IO3− (aq) + 3HSO3− (aq) →I− (aq) + 3HSO4−(aq)然后过量的碘酸根离子与碘离子发生归中反应:IO3− (aq) + 5I− (aq) + 6H+ (aq) →3I2 + 3H2O (l)接着亚硫酸氢钠将生成的碘还原:I2 (aq) + HSO3− (aq) + H2O (l) →2I− (aq) + HSO4−(aq) + 2H+ (aq)药品: 硫酸, 过硫酸钾, 碘化钾, 淀粉, 硫代硫酸钠通过过硫酸钾、过硫酸钠或过硫酸铵将碘离子氧化成碘单质。

加入硫代硫酸钠可以将碘单质还原回碘离子。

化学方程式如下:2I−(aq) + S2O82−(aq) →I2 (aq)+ 2SO42−(aq)I2 (aq) + 2S2O32−(aq) →2I−(aq) + S4O62−(aq)将卢戈氏碘液、氯酸钠和高氯酸混合, 化学方程式如下:I3− →I− + I2ClO3− + I− + 2H+ →HIO +HClO2ClO3− + HIO + H+ →HIO2 + HClO2ClO3− + HIO2 →IO3− + HClO2[1]。

碘钟实验

碘钟实验
表面活性剂进入水中,在低浓度时呈分子状态,并且三三两两地把亲油基团靠拢而分散在水中。当溶液浓度加大到一定程度时,许多表面活性物质的分子立刻结合成很大的集团,形成”胶束”。以胶束形式存在于水中的表面活性物质是比较稳定的。表面活性物质在水中形成胶束所需的最低浓度称为临界胶束浓度(critical micelle concentration),简称CMC。CMC可看作是表面活性对溶液的表面活性的一种量度。因为CMC越小,则表示此种表面活性剂形成胶束所需浓度越低,达到表面饱和吸附的浓度越低。也就是说只要很少的表面活性剂就可起到润湿、乳化、加溶、起泡等作用。在CMC点上,由于溶液的结构改变导致其物理及化学性质(如表面张力,电导。渗透压,浊度,光学性质等)同浓度的关系曲线出现明显的转折,如图1所示。因此,通过测定溶液的某些物理性质的变化,可以测定CMC。
图1 十二烷基硫酸钠水溶液的物理性质和浓度的关系
这个特征行为可用生成分子聚集体或胶束来说明,当表面活性剂溶于水中后,不但定向地吸附在溶液表面,而且达到一定浓度时还会在溶液中发生定向排列而形成胶束。表面活性剂为了使自己成为溶液中的稳定分子,有可能采取的两种途径:一是把亲水基留在水中,亲油基伸向油相或空气;二是让表面活性剂的亲油基团相互靠在一起,以减少亲油基与水的接触面积。前者就是表面活性剂分子吸附在界面上,其结果是降低界面张力,形成定向排列的单分子膜,后者就形成了胶束。由于胶束的亲水基方向朝外,与水分子相互吸引,使表面活性剂能稳定溶于水中。
式中:к是A=1m2、L=1m的电导,称作比电导或电导率,其单位为Ω-1·m-1;L/A称作电导常数。
电导率к和摩尔电导Λ有下列关系
Λ为1mol电解质溶液的导电能力,C为电解质溶液的摩尔浓度。
Λ随电解质浓度而变,对强电解质的稀溶液

碘钟反应实验报告

碘钟反应实验报告

碘钟反应实验报告碘钟反应实验报告引言:碘钟反应是一种经典的化学实验,通过观察反应物浓度变化来研究反应速率。

本实验旨在探究碘钟反应中反应物浓度对反应速率的影响,并分析反应机理。

实验原理:碘钟反应是一种氧化还原反应,反应涉及到亚硫酸钠、过氧化氢和淀粉等物质。

亚硫酸钠与过氧化氢反应生成硫酸和水,过程中产生的硫酸与淀粉反应生成蓝色复合物。

该反应是一个自催化反应,其中过氧化氢起到催化剂的作用。

实验中,我们可以通过改变亚硫酸钠和过氧化氢的浓度来观察反应速率的变化。

实验步骤:1. 准备实验所需的试剂和器材,包括亚硫酸钠溶液、过氧化氢溶液、淀粉溶液、滴定管、烧杯等。

2. 将一定量的亚硫酸钠溶液倒入烧杯中,加入适量的淀粉溶液,搅拌均匀。

3. 在另一个烧杯中加入过氧化氢溶液。

4. 缓慢将过氧化氢溶液滴加到含有亚硫酸钠和淀粉的烧杯中,并同时用计时器计时。

5. 观察反应液颜色的变化,当颜色由无色变为蓝色时停止计时。

6. 记录反应时间,并根据不同浓度条件下的实验结果进行对比分析。

实验结果与讨论:我们进行了多组实验,分别改变了亚硫酸钠和过氧化氢的浓度。

实验结果表明,亚硫酸钠和过氧化氢的浓度对反应速率有明显的影响。

当亚硫酸钠浓度较高时,反应速率更快,反应时间更短;而当过氧化氢浓度较高时,反应速率也更快,反应时间更短。

进一步分析发现,亚硫酸钠的浓度增加会提供更多的反应物分子,增加反应物之间的碰撞频率,从而加快反应速率。

而过氧化氢的浓度增加则会提供更多的催化剂,加速反应过程中的氧化还原反应。

因此,实验结果与反应物浓度的变化相符。

此外,我们还观察到反应过程中颜色的变化。

初始时,反应液呈无色,随着反应的进行,颜色逐渐变为淡蓝色,最终变为浓蓝色。

这是由于反应过程中产生的硫酸与淀粉形成的蓝色复合物。

颜色变化的观察也可以作为反应速率的指标之一。

结论:通过碘钟反应实验,我们发现亚硫酸钠和过氧化氢的浓度对反应速率有显著影响。

亚硫酸钠浓度和过氧化氢浓度的增加都会加快反应速率。

碘钟反应 - zh

碘钟反应 - zh

碘钟反应一、实验目的1. 掌握“碘钟”反应的原理。

学会运用“碘钟”反应设计动力学实验的方法。

2.测定过硫酸根与碘离子的反应速率常数.反应级数和反应活化能.二 、实验原理在水溶液中, 过二硫酸铵与碘化钾发生如下反应:22284332S O I SO I ----+=+ (1)为了能够测定一定时间(Δt )内S2O82- 浓度的变化量, 在混合过二硫酸铵、碘化钾溶液的同时加入一定体积已知浓度并含有淀粉(指示剂)的Na2S2O3 溶液, 在式(1)进行的同时, 有下列反应进行:222334623S O I S O I ----+=+ (2)反应(2)进行得非常快, 而反应(1)却缓慢得多, 故反应(1)生成的I3 -立即与S2O32- 作用生成无色的S4O62- 和I − , 因此反应开始一段时间内溶液无颜色变化, 但当Na2S2O3耗尽, 反应(1)生成的微量碘很快与淀粉作用, 而使溶液呈现特征性的蓝色。

由于此时(即Δt ) S2O32- 全部耗尽, 所以S2O82- 的浓度变化相当于全部用于消耗Na2S2O3。

由上可知, 控制在每个反应中硫代硫酸钠的物质的量均相同, 这样从反应开始到出现蓝色的这段时间可作为反应初速的计量。

由于这一反应能显示自身反应进程, 故称为“碘钟”反应。

1.反应级数和速率常数的确定当反应温度和离子强度相同时, (1)式的反应速率方程可写为:222828[][][]m n d S O k S O I dt----= (3)在测定反应级数的方法中, 反应初速法能避免反应产物的干扰求的反应物的真实级数。

如果选择一系列初始条件, 测得对应于析出碘量为Δ[I2]的蓝色出现的时间Δt, 则反应的初始速率为:22833[][][]d S O d I I dt dt t---∆-==∆ (4) 根据(2)式的反应计量关系结合硫代硫酸钠的等量假设, 可知 2323[]2[]I S O t t--∆∆=∆∆ (5) 根据(3)(4)(5)可知,2223282[][][]m n S O k S O I t---∆=∆ (6) 移项, 两边取对数可得2282231lnln ln[]ln[]2[]k m S O n I t S O ---=++∆∆ (7) 因而固定, 以对ln 作图, 根据直线的斜率即可求出;固定, 同理可以求出。

物理化学实验—碘钟反应

物理化学实验—碘钟反应
4
2.实验原理
对于碘钟反应, S2O82- + 2I- → 2SO42- + I2
d[S2O82-] = d[I-] = d[SO24-] = d[I2]
dt
2dt 2dt dt
当采用初始速率法测定时,其反应速率又可写成:
Δ[S2O82- ] = Δ[I- ] = Δ[SO24- ] = Δ[I2 ]
碘钟反应
1.实验目的
1. 测定过硫酸根离子与碘离子反应的反应级数、 速率常数及反应活化能。
2. 理解碘钟反应的基本原理。 3. 了解初始浓度法测定动力学常数。
2
2.实验原理
1. 将过硫酸根与碘离子在溶有少量硫代硫酸钠与淀粉 指示剂的情况下混合,混合液在特定的时间内保持无色, 而后突然转变为蓝色。由于混合液由无色到蓝色这段时间 可以精确计时,因此这一反应被称为碘钟反应。反应原理 如下:
(1)取上表中编号1、2、3、4的数据,以ln(t)对 ln[I] 作图,根据直线斜率n; (2)取编号4、5、6、7的数据,以ln(t)对 ln[S2O82-] 作图 根据直线斜率求m。 (3)根据(21-6)式,用实验所得数据计算不同温度下的 速率常数k。 用作图法求反应的活化能。
13
将KI 溶液及Na2S2O3溶液加入 b 池。将b烧杯溶液迅速 倒入 a 烧杯,并开始记时,来回晃动使混合均匀。当混 合溶液变为蓝色即停止计时。
注意:整个溶液应同时变为蓝色,否则说明溶液未混 合均匀。
9
3.实验内容和步骤
表1 初速度法各组试剂浓度及取量
编号
1 2 3 4 5 6 7
0.1mol·L-1 (NH4)2S2O8 /mlΔt源自2Δt 2Δt Δt5
2.实验原理

碘钟反应实验报告

碘钟反应实验报告

碘钟反应实验报告班级:高二理十实验员:江嘉伟曹俊章和毅方蕾潘隽晗谢辰谢延靖朱海蓓朱正真方屹舟方杜娟指导老师:蔡建实验时间:2017年12月一、实验目的掌握碘钟反应反应过程及原理。

二、实验器材29%过氧化氢溶液、丙二酸、硫酸锰、可溶性淀粉、碘酸钾、1mol/L硫酸。

三、实验步骤1.配置甲溶液:量取97ml29%过氧化氢溶液转移入250ml容量瓶里,用蒸馏水稀释至刻度。

2.配置乙溶液:分别称取3.9g丙二酸、0.76g硫酸锰病5溶于适量水中。

另称0.075g可溶性淀粉溶于50ml沸水中。

将三者转移入250ml容量瓶里,用蒸馏水稀释至刻度。

3.配置丙溶液:称取10.75g碘酸钾溶于适量热水中,再加入20ml1mol/L硫酸溶液酸化,转移入250ml容量瓶里,用蒸馏水稀释至刻度。

4.将甲、乙、丙三组溶液以等体积混合在锥形瓶中,观察现象。

四、实验现象混合后产生大量微小气泡,且反应液由无色变为琥珀色,几秒后褪为无色,接着又变为琥珀色且逐渐加深,随机变为蓝紫色,几秒后又褪为无色,呈周期性变化。

经测定,振荡周期约为11秒,持续时间约为10分钟。

五、实验原理首先在酸性溶液中,碘酸根氧化过氧化氢得碘离子、水和氧气。

(气体符号省略,下同)IO3-+3H2O2==I -+3H2O+3O2同时,二价锰离子具有较强的还原性,可以还原过氧化氢,生成琥珀色的三价锰离子,于是溶液呈琥珀色。

反应刚开始时,浓度较低的碘离子也参与反应并被氧化为碘。

2Mn2++2H2O2+4H++2I-==2Mn3++4H2O+I2生成的碘会与具有活泼α-H的丙二酸反应,结果是碘取代了丙二酸中的α-H。

I2+HOOCCH2COOH==I-+H++HOOCHICOOH溶液中存在的三价锰离子此时会将碘代丙二酸氧化成二氧化碳,观察到的大量气泡就是二氧化碳和第一步产生的氧气。

随着反应进行,三价锰离子消耗殆尽,溶液渐渐褪成无色。

4Mn3++HOOCCHICOOH+2H2O==2CO2+HCOOH+4Mn2++5H++I-当碘离子浓度达到一定程度时便会和碘酸根发生归中反应得到碘,碘与淀粉形成蓝紫色包合物,此时观察到溶液显蓝紫色。

碘钟反应实验报告

碘钟反应实验报告

碘钟反应实验报告碘钟反应⼀实验⽬的1.了解浓度、温度对反应速率的影响。

2.学习测定K 2S 2O 8 氧化KI 的反应速率常数及活化能的原理和⽅法。

3.练习⽤计算法、作图法处理实验数据。

⼆实验原理⽔溶液中,K2S2O8 与KI 发⽣如下反应的离⼦⽅程式S 2O 82-+2I -=I 2+2SO 42-在温度和离⼦强度不变,反应速率与反应物浓度的关系可近似表⽰为即动⼒学⽅程:V=-d [S 2O 82-]/dt =k [S 2O 82-]m [I-]n通常⼈们认为S 2O 82-氧化I -通常经历两个步骤S 2O 82-+I -= [IS 2O 8]3-。

(1)[IS 2O 8]3-+ I - = I 2+2SO 42-。

(2)反应(1)为速控步骤,则其速率⽅程为-d[S 2O 82-]/dt =k[S 2O 82-][I -]若[I -]不变( [I -] > >[S 2O 82-])则其速率⽅程为-d[S 2O 82-]/dt =k 1[S 2O 82-]k 1=k[I -],上述反应假定为准⼀级反应,则㏑[S 2O 82-] =-k 1t +㏑[S 2O 82-]0以㏑[S 2O 82-] 对时间t 作图,即可求得反应速率常数k 1为了保持[I-] 不变,本实验采⽤加⼊S2O32⽅法:2S2O32-+I2=2I-+S4O62- 此反应很快,可认为瞬间完成。

由加⼊的Na2S2O3的体积及其浓度,可以算出每次溶液呈现蓝⾊时所消耗的Na2S2O3的量,从⽽求出此时刻的S2O82-,得到⼀系列K2S2O8的浓度及其对应的反应时间,从⽽求的速率常数k1,改变反应温度,可求得不同反应温度的k1值,根据阿仑尼乌斯公式K=Ae-Ea/RT 取对数㏑K=-Ea/RT+㏑A以㏑K对1/T 作图,求出直线斜率,即可求得活化能Ea三装置和流程简图四原始数据及数据处理五实验结果及讨论思考题:1.碘钟反应的基本条件是什么?答:(1)在反应过程中维持[I-]不变,为此本实验采⽤补偿法,通过加⼊⼀定浓度的Na2S2O3来维持[I-]在反应过程中不变。

碘钟实验实验报告

碘钟实验实验报告

碘钟反应实验报告班级:化基二班 姓名:刘威 指导老师:邓立志 实验日期:2013年11月20日 星期二一、实验目的1、用初速法测定过硫酸根与碘离子的反应速率常数、反应级数级反应活化能2、掌握碘钟反应过程及其原理二、实验原理在水溶液中,过二硫酸铵与碘化钾发生如下反应:22284332S O I SO I ----+=+ (1)事先同时加入少量的硫代硫酸钠溶液和淀粉指示剂,则(1)式中产生的少量的3I -会优先和223S O -反应而被还原成I -:222334623S O I S O I ----+=+ (2)这样,当溶液中的硫代硫酸钠全部反应掉后,(1)式生成的碘才会和淀粉指示剂反应,使溶液呈蓝色。

由上可知,控制在每个反应中硫代硫酸钠的物质的量均相同,这样从反应开始到出现蓝色的这段时间即可用来度量本反应的初速。

当反应温度和离子强度相同时,(1)式的反应速率方程可写为:222828[][][]m n d S O k S O I dt----= (3)根据(1)式中的反应计量关系,可以认为:22833[][][]d S O d I I dt dt t---∆-==∆ (4) 根据(2)式的反应计量关系结合硫代硫酸钠的等量假设,可知2323[]2[]I S O t t--∆∆=∆∆ (5) 根据(3)(4)(5)可知,2223282[][][]m n S O k S O I t---∆=∆ (6) 移项,两边取对数可得2282231lnln ln[]ln[]2[]k m S O n I t S O ---=++∆∆ (7) 因而固定[]I -,以1lnt∆对228[]S O -作图,根据直线的斜率即可求出m ;固定228[]S O -,同理可以求出n 。

然后根据求出的m 和n ,计算出在室温下“碘钟反应”的反应速率常数k 。

最后改变温度,测出不同温度下从反应开始到出现蓝色所需的时间t ∆,计算出不同温度下的反应速率常数,由Arrhenius 公式,以ln k 对1T 作图,根据直线的斜率即可求出活化能。

碘钟实验实验报告数据

碘钟实验实验报告数据

碘钟实验实验报告数据实验名称:碘钟实验实验目的:通过碘钟实验探究化学反应速率与反应物浓度的关系,并验证速率与浓度的关系符合速率方程式。

实验原理:碘钟实验是一种反应速率实验,反应为亚硫酸钠与过氧化氢的反应。

该反应为一级反应,可以用速率方程式v = k [S2O3^2-]^x [H2O2]^y 来描述。

实验步骤:步骤1:制备所需试剂。

准备浓度为0.05mol/L的硫酸钠溶液、浓度为0.1mol/L 的过氧化氢溶液、浓度为0.005mol/L的淀粉溶液。

步骤2:取一定体积的硫酸钠溶液和过氧化氢溶液混合,使其反应开始。

同时开始计时。

步骤3:在适当的时间内,取少量试剂混合溶液,加入淀粉溶液中,观察产生的颜色变化。

步骤4:记录混合溶液的颜色变化时间和实验所用的反应物浓度。

实验结果:以下是实验结果的一个示例数据:实验时间(s)[S2O3^2-] (mol/L)[H2O2] (mol/L)颜色变化时间(s)0 0.1 0.05 /10 0.09 0.05 12020 0.08 0.05 9030 0.07 0.05 6040 0.06 0.05 30实验讨论与分析:根据实验结果可以看出,随着[S2O3^2-]浓度的逐渐降低,颜色变化时间逐渐减少,反应速率逐渐加快。

这与速率方程式中的[S2O3^2-]的指数x为正相关的关系相吻合。

此外,实验过程中保持[H2O2]浓度不变,观察到反应速率并未受到[H2O2]浓度的影响,说明反应速率与[H2O2]的指数y为零,与速率方程式中的反应物[H2O2]的浓度相关项为一次方程相符。

结论:根据实验结果和分析可知,碘钟实验的反应速率与反应物[S2O3^2-]的浓度呈正相关关系,并且与反应物[H2O2]的浓度无关。

这符合速率方程式v = k[S2O3^2-]^x [H2O2]^y 的描述。

实验中可能存在的误差及改进方案:1. 多组数据对比:为了增加实验的准确性,可以进行多组实验,取平均值或绘制图表进行数据分析。

碘钟实验原理

碘钟实验原理

碘钟实验原理碘钟实验是一种常见的化学实验,通过这个实验可以展示化学反应速率与温度的关系。

实验中主要使用碘化钾和过氧化氢,通过观察反应速率的变化,可以了解温度对化学反应速率的影响。

实验原理:碘钟实验的原理基于化学反应速率与温度的关系。

在实验中,过氧化氢与碘化钾发生反应,生成氧气和碘化钾。

这个反应是一个放热反应,温度的升高会促进反应速率的增加。

因此,通过观察反应速率的变化,可以推断温度对反应速率的影响。

实验步骤:1. 准备实验器材,玻璃烧杯、试管、温度计等。

2. 将碘化钾和过氧化氢混合在一起,观察反应开始时的情况。

3. 测量反应开始时的温度,并记录下来。

4. 观察反应进行的过程,记录下反应的时间和温度变化。

5. 根据实验数据,分析温度对反应速率的影响。

实验结果:通过碘钟实验可以得出以下结论:1. 随着温度的升高,反应速率会增加。

这是因为温度升高会增加分子的平均动能,促进反应物分子的碰撞,从而增加反应速率。

2. 反应速率与温度之间存在着一定的关系,可以通过实验数据进行定量分析,得出反应速率与温度的函数关系。

实验意义:碘钟实验不仅可以帮助我们理解化学反应速率与温度的关系,还可以应用于实际生活中。

在工业生产中,控制反应速率是非常重要的,通过了解温度对反应速率的影响,可以更好地控制化学反应的进行,提高生产效率。

总结:碘钟实验是一种简单而有效的化学实验,通过观察反应速率与温度的关系,可以深入理解化学反应的基本原理。

这个实验不仅可以帮助学生掌握化学知识,还可以为工业生产提供理论支持。

希望通过这个实验,大家能够更加深入地了解化学反应速率与温度的关系,为未来的学习和工作打下坚实的基础。

碘钟反应实验报告

碘钟反应实验报告

碘钟反应20123‎01040‎010 杨平一、实验目的1.掌握“碘钟”反应的原理‎。

学会运用“碘钟”反应设计动‎力学实验的‎方法。

2.测定过硫酸‎根与碘离子‎的反应速率‎常数.反应级数和‎反应活化能‎.二、实验原理在水溶液中‎,过二硫酸铵‎与碘化钾发‎生如下反应‎:22284332S O I SO I ----+=+ (1)为了能够测‎定一定时间‎(Δt )内S2O8‎2-浓度的变化‎量,在混合过二‎硫酸铵、碘化钾溶液‎的同时加入‎一定体积已‎知浓度并含‎有淀粉(指示剂)的Na2S ‎2O 3 溶液,在式(1)进行的同时‎,有下列反应‎进行:222334623S O I S O I ----+=+ (2)反应(2)进行得非常‎快,而反应(1)却缓慢得多‎,故反应(1)生成的I3‎ -立即与S 2O 32-作用生成无‎色的S4O ‎62-和I −,因此反应开‎始一段时间‎内溶液无颜‎色变化,但当Na2‎S 2O3耗‎尽,反应(1)生成的微量‎碘很快与淀‎粉作用,而使溶液呈‎现特征性的‎蓝色。

由于此时(即Δt )S2O32‎-全部耗尽,所以S2O ‎82-的浓度变化‎相当于全部‎用于消耗N ‎a 2S2O ‎3。

由上可知,控制在每个‎反应中硫代‎硫酸钠的物‎质的量均相‎同,这样从反应‎开始到出现‎蓝色的这段‎时间可作为‎反应初速的‎计量。

由于这一反‎应能显示自‎身反应进程‎,故称为“碘钟”反应。

1、反应级数和‎速率常数的‎确定当反应温度‎和离子强度‎相同时,(1)式的反应速‎率方程可写‎为:222828[][][]m n d S O k S O I dt----= (3)在测定反应‎级数的方法‎中,反应初速法‎能避免反应‎产物的干扰‎求的反应物‎的真实级数‎。

如果选择一‎系列初始条‎件,测得对应于‎析出碘量为‎Δ[I 2]的蓝色出现‎的时间Δt ‎,则反应的初‎始速率为:22833[][][]d S O d I I dt dt t---∆-==∆ (4) 根据(2)式的反应计‎量关系结合‎硫代硫酸钠‎的等量假设‎,可知2323[]2[]I S O t t--∆∆=∆∆ (5) 根据(3)(4)(5)可知,2223282[][][]m n S O k S O I t---∆=∆ (6) 移项,两边取对数‎可得2282231lnln ln[]ln[]2[]km S O n I t S O ---=++∆∆ (7) 因而固定[]I -,以对ln 作‎1lnt∆228[]S O -图,根据直线的‎斜率即可求‎出m ;固定228[]S O -,同理可以求‎出n 。

碘钟反应实验报告

碘钟反应实验报告

碘钟反应实验报告碘钟反应实验报告实验目的:通过观察碘钟反应,了解反应过程中物质的不断转化和反应速率的变化。

实验原理:碘钟反应是由亚硫酸铵和过碘酸钾在酸性介质中反应产生的。

反应过程中,碘化物离子氧化成碘分子,而过碘酸钾被还原成碘化钾。

反应过程中生成的碘的蓝色颜色在反应开始时会快速消失,然后又会重新出现。

这种颜色变化的周期性重复,形成了碘钟反应。

实验步骤:1. 准备实验仪器和试剂:取一个干燥的烧杯,称取10毫升的亚硫酸铵溶液,再称取10毫升的硫酸溶液,将两液分别倒入两个干净的试管中。

另外,取10毫升的过碘酸钾溶液和30毫升的浓硫酸放入两个分液漏斗中备用。

2. 开始反应:将亚硫酸铵和硫酸的试管放置在为高温热的烧杯中。

将两个分液漏斗倒置放置在一个容器中,用滴定管将过碘酸钾溶液滴入一个分液漏斗中,用滴定管将浓硫酸滴入另一个分液漏斗中。

3. 观察颜色变化:观察反应过程中的颜色变化。

开始时两液混合,溶液呈淡黄色,随着过碘酸钾溶液的滴加,溶液的颜色逐渐变深,直到变为暗蓝色。

然后颜色又逐渐变浅,直到最后又恢复为淡黄色。

4. 记录反应时间:记录颜色变化的周期和时间。

实验结果:在实验过程中,观察到了颜色变化的周期性重复。

每次反应周期大约为1-2分钟,整个实验持续了约10分钟。

实验分析:碘钟反应中,亚硫酸铵和过碘酸钾分别是还原剂和氧化剂。

亚硫酸铵被硫酸催化分解,产生SO2气体,SO2气体与过碘酸钾反应生成H2SO4,过程中还产生了碘,从而形成了蓝色的碘溶液。

随着反应进行,碘的浓度逐渐降低,使得颜色逐渐变淡,直到碘完全消失。

然后亚硫酸铵和过碘酸钾再次反应生成碘,颜色又恢复为蓝色。

通过该实验,我们可以观察到反应速率和颜色的周期性变化,了解了碘钟反应的特点和原理。

实验中还可以通过改变反应物浓度、温度等条件,来观察对反应速率和周期的影响,从而深入研究反应动力学的特点。

碘钟实验实验报告

碘钟实验实验报告

碘钟反应实验报告班级:化基二班 姓名:刘威 指导老师:邓立志 实验日期:2013年11月20日 星期二一、实验目的1、用初速法测定过硫酸根与碘离子的反应速率常数、反应级数级反应活化能2、掌握碘钟反应过程及其原理二、实验原理在水溶液中,过二硫酸铵与碘化钾发生如下反应:22284332S O I SO I ----+=+ (1)事先同时加入少量的硫代硫酸钠溶液和淀粉指示剂,则(1)式中产生的少量的3I -会优先和223S O -反应而被还原成I -:222334623S O I S O I ----+=+ (2)这样,当溶液中的硫代硫酸钠全部反应掉后,(1)式生成的碘才会和淀粉指示剂反应,使溶液呈蓝色。

由上可知,控制在每个反应中硫代硫酸钠的物质的量均相同,这样从反应开始到出现蓝色的这段时间即可用来度量本反应的初速。

当反应温度和离子强度相同时,(1)式的反应速率方程可写为:222828[][][]m n d S O k S O I dt----= (3)根据(1)式中的反应计量关系,可以认为:22833[][][]d S O d I I dt dt t---∆-==∆ (4) 根据(2)式的反应计量关系结合硫代硫酸钠的等量假设,可知2323[]2[]I S O t t--∆∆=∆∆ (5) 根据(3)(4)(5)可知,2223282[][][]m n S O k S O I t---∆=∆ (6) 移项,两边取对数可得2282231lnln ln[]ln[]2[]k m S O n I t S O ---=++∆∆ (7) 因而固定[]I -,以1lnt∆对228[]S O -作图,根据直线的斜率即可求出m ;固定228[]S O -,同理可以求出n 。

然后根据求出的m 和n ,计算出在室温下“碘钟反应”的反应速率常数k 。

最后改变温度,测出不同温度下从反应开始到出现蓝色所需的时间t ∆,计算出不同温度下的反应速率常数,由Arrhenius 公式,以ln k 对1T 作图,根据直线的斜率即可求出活化能。

碘钟实验实验报告

碘钟实验实验报告

碘钟实验实验报告碘钟实验实验报告引言:碘钟实验是一种经典的化学实验,通过观察碘化物与亚硫酸盐反应产生的颜色变化来研究化学反应速率。

本实验旨在通过实际操作和数据分析,探究影响碘化物与亚硫酸盐反应速率的因素,并深入理解化学反应动力学的基本原理。

实验目的:1. 研究碘化物与亚硫酸盐反应速率与浓度之间的关系。

2. 探究温度对碘化物与亚硫酸盐反应速率的影响。

3. 分析碘化物与亚硫酸盐反应速率与反应物浓度和温度之间的关系。

实验原理:碘化物与亚硫酸盐反应产生的碘分子呈现深褐色,而亚硫酸盐则具有还原碘的性质。

实验中,我们将在不同浓度和温度条件下进行碘化物与亚硫酸盐反应,观察反应过程中深褐色的碘分子生成速率,并通过数据分析得出结论。

实验步骤:1. 准备实验所需材料,包括碘化钾溶液、亚硫酸钠溶液、稀硫酸溶液、试管、计时器等。

2. 在试管中加入一定量的碘化钾溶液和稀硫酸溶液,混合均匀。

3. 加入一定量的亚硫酸钠溶液,开始计时。

4. 观察溶液颜色变化,当溶液由无色变为深褐色时停止计时。

5. 记录实验数据,包括反应时间、反应物浓度、反应温度等。

6. 重复实验步骤2-5,改变碘化钾溶液和亚硫酸钠溶液的浓度,或者改变反应温度,进行多组实验。

实验结果与讨论:通过实验数据的记录和分析,我们得出了以下结论:1. 反应物浓度对碘化物与亚硫酸盐反应速率有明显影响。

当碘化钾溶液和亚硫酸钠溶液浓度增加时,反应速率加快,生成的深褐色碘分子数量增多。

2. 温度对碘化物与亚硫酸盐反应速率也有显著影响。

随着温度升高,反应速率增加,反应时间缩短,生成的碘分子数量增多。

3. 反应物浓度和温度对碘化物与亚硫酸盐反应速率的影响是相互独立的。

即使在相同温度下,不同浓度的反应物也会产生不同的反应速率。

结论:通过碘钟实验,我们深入理解了化学反应速率与反应物浓度和温度之间的关系。

实验结果表明,反应物浓度和温度的增加都会促进碘化物与亚硫酸盐反应速率的提高。

这一实验结果对于理解化学反应动力学以及实际应用中的反应速率调控具有重要意义。

实验二十一 “碘钟”反应

实验二十一 “碘钟”反应

“碘钟”反应Ⅰ、目的要求用初速法测定过硫酸根与碘离子的反应速率常数和反应级数。

Ⅱ、仪器与试剂Ⅲ、实验原理过硫酸根与碘离子的反应式如下:如事先同时加入少量硫代硫酸钠标准溶液和淀粉指示剂,则(2-21-1)式产生的碘便很快被还原为碘离子:直到S 2O 32-消耗完,游离碘遇上淀粉即显示蓝色。

从反应开始到蓝色出现所经历的时间,即可作为反应初速的计量。

由于这一反应能自身显示反应进程,故常称为“碘钟”反应。

1.反应级数和速率常数的确定当温度和溶液的离子强度一定时,(2-21-1)式的速率方程可写成:在测定反应级数的方法中.反应初速法能避免反应产物干扰,求得反应物的真实级数。

如果选择一系列初始条件,测出对应于析出碘量为△[I 2]的蓝色出现时间△t ,则反应的初始速率是:设各初始条件下每次加的硫代硫酸钠量不变,即△[I 2]为常数,则将(2-21-5)式代入(2-21-3)式取对数:因此,保持[I-]不变,以ln[1/△t]对ln[S2O82-]作图,从所得直线斜率可求得m;保持[S2O82-]不变,以ln[1/△t]对ln[I-]作图,可求得n。

再根据(2-21-3),(2-21-4)式,可求得反应速率常数K。

Ⅳ、实验步骤1.按照表2-21-1所列数据将(NH4)2S2O8溶液及(NH4)2SO4溶液放入反应器a池,并加2mL 0.5%淀粉指示剂;将KI溶液及Na2S2O3。

溶液加入b池。

在25℃恒温10 min后,用洗耳球将b池溶液迅速压入a池,当溶液压入一半时即开始记时,并可来回吸压一次使混合均匀。

观察蓝色出现即停止记时。

用相同方法进行其他组溶液的实验,记住每次加淀粉指示剂均为2ml。

Ⅴ、数据处理取实验编号1、2、3、4的数据,以ln[1/△t]对ln[I-]作图,从所得直线斜率求n;取实验编号4、5、6、7的数据,以ln[1/△t]对ln[S2O82-]作图,从所得直线斜率求m。

Ⅵ、思考题1、用反应初速法测定动力学参数有何优点?2、本实验是否符合保持其中一种反应物浓度不变的条件?3、溶液中离子强度为何影响反应速率?实验中加入(NH4)2SO4的作用是什么?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

碘钟实验报告篇一:碘钟反应的动力学和热力学参数的测定完整实验报告碘钟反应”的反应级数、速率常数和活化能的测定实验报告化学学院材化班一、实验目的1、用初速法测定过硫酸根与碘离子的反应速率常数和反应级数。

2、掌握碘钟反应过程及其原理。

二、简要实验原理在水溶液中,过二硫酸铵与碘化钾发生如下反应:S2O8?3I2??2???2SO4?I3 (1)[1]我们事先同时加入少量的硫代硫酸钠溶液和淀粉指示剂,则(1)式中产生的少量的I3?会优先和S2O32?反应而被还原成I?:2S2O3?I3?S4O6?3I (2)2???这样,当溶液中的硫代硫酸钠全部反应掉后,(1)式生成的碘才会和淀粉指示剂反应,使溶液呈蓝色。

由上可知,控制在每个反应中硫代硫酸钠的物质的量均相同,这样从反应开始到出现蓝色的这段时间即可用来度量本反应的初速。

当反应温度和离子强度相同时,(1)式的反应速率方程可写为:?d[S2O8]dt2?2?m?n?k[S2O8][I] (3)根据(1)式中的反应计量关系,可以认为:?d[S2O8]dt2??d[I3]dt??[I3]?t?(4)根据(2)式的反应计量关系结合硫代硫酸钠的等量假设,可知?[I3]?t??2?[S2O3]?t2?(5)根据(3)(4)(5)可知,2?[S2O3]?t2??k[S2O8][I] (6)2?m?n移项,两边取对数可得ln1?t?lnk2?[S2O2?3]?mln[S2O8]?nln[I] (7)2??因而固定[I?],以ln1?t对[S2O82?]作图,根据直线的斜率即可求出m;固定[S2O82?],同理可以求出n。

然后根据求出的m和n,计算出在室温下“碘钟反应”的反应速率常数k。

最后改变温度,测出不同温度下从反应开始到出现蓝色所需的时间?t,计算出不同温度下的反应速率常数,由Arrhenius公式,以lnk对作图,根据直线的斜率即可求出活化能。

三、主要的实验仪器及试剂恒温水浴槽一套;50mL烧杯两个;玻璃棒一支;秒表一只;0.20M(NH4)2S2O8溶液; 0.20MKI溶液;0.01MNa2S2O3溶液; 4%淀粉溶液;0.20MKNO3溶液; 0.20M(NH4)2SO4溶液。

四、实验内容1、反应级数和速率常数的测定按照表1所列数据将每组的(NH4)2S2O8溶液、(NH4)2SO4溶液和淀粉溶液放入烧杯A中混合均匀,KI溶液、Na2S2O3溶液和KNO3溶液放入B烧杯中混合均匀。

然后将两份溶液混合,当混合至一半时开始计时,并不断搅拌,当溶液出现蓝色时即停止计时。

表1 “碘钟反应”动力学数据测量的溶液配制表序号0.20M(NH4)2S2O8溶液/mL0.20MKI溶液/mL 0.01MNa2S2O3溶液/mL 0.4%淀粉溶液/mL 0.20MKNO3溶液/mL 0.20M(NH4)2SO4溶液/mL 2、反应活化能的测定按照表1中第1组反应的溶液配制方案配制溶液,分别在10.0、30.0和40.0℃下按照3.1中的操作步骤测量溶液出现蓝色所需的时间?t并记录,要注意必须先将溶液在相应的水浴槽中恒温一段时间,待溶液温度与恒温槽温度相同后再将溶液进行混合。

五、实验数据的记录六、实验数据的处理1、反应级数和速率常数的计算由5、1数据表格,我们可以依次求出反应级数及数率常数K。

(S2O2-8)反应级数的测定 Ln1/△t与ln(S2O8)关系数据表2-1 10.0 10.0 4.0 1.0 0 02 5.0 10.0 4.0 1.0 0 5.03 2.5 10.0 4.0 1.0 0 7.54 10 5.0 4.0 1.0 5.0 05 10.0 2.5 4.0 1.0 7.5 0有计算机做出Ln1/△t与ln(S2O2-8)关系图得:由图可知:Ln1/△t=1.0548ln(S2O8)-0.6377,其中相关系数r=0.99897.对比可知1.0548即为2-(S2O8)的反应级数。

(I)反应级数的测定)关系数据表--2-由计算机做出Ln1/△t与ln(I)关系图得:由图可知:Ln1/△t=1.04122 ln(I)-0.6504.其中相关系数r=0.99827.对比公式可知n=1.04122,-这就是I2的反应级数。

2、反应数率常数的测定根据公式2?[S2O3]?t2?将m、n的值代入,即可算出k的值。

由上可知,此反应数率常数为k=0.0263462 3、反应活化能的测定Lnk对1/T的数据关系见下表:?k[S2O8][I]2?m?nLnk对1/T由计算机作图得:由阿伦尼乌斯公式两边取对数得:lnk=lnA-Ea/RT.线性拟合的结果为lnk=12.471-4781.48/T, 则由此计算出的活化能为Ea=4781.48*8.314=39.752kJ/mol.七、实验结果讨论 1、温度对实验的影响显然,温度越高,反应速率越大。

且观察发现,随着温度的升高,碘最终与淀粉的显色越深,可能是由于高温下淀粉糊化,支链结构发生改变,影响碘与淀粉的络合。

2、其他因素对实验的影响反应计时起始时间,搅拌的程度,溶液体积的变化均会对实验结果产生影响。

篇二:“我的碘钟反应”林卓君申报书(新疆第二师华山中学)注意:本页信息请认真填写,打印获奖证书以此为准。

请将本页复印粘贴在项目申报材料档案袋正面。

附件3.3全国青少年科技创新大赛青少年科技实践活动申报书活动名称:制取“蓝宝石”活动申报者(实施群体或小组):林卓君所在学校(全称):新疆第二师华山中学辅导教师:陈博辅导机构(全称):新疆第二师华山中学(提醒:以上五项信息请申报者核实准确无误,打印证书以此为准!)活动所属学科: (请在确认的学科上划“√”)□√物质科学(MS)□技术与设计(TD)□生命科学(LS)□行为与社会科学(SO)□地球与空间科学(ES)□其他(OT)活动申报类别:(请在确认的类别上划“√”)□√小学生活动□初中生活动□高中生活动全国青少年科技创新大赛组织委员会制A、申报者情况B、活动情况- 2 -- 3 -C、申报者确认事宜E、省级组织机构审查及推荐意见- 4 -- 5 -篇三:《冶金热力学与动力学实验》指导手册《冶金热力学与动力学实验》指导书实验一、碳的气化反应一.实验目的1.测定恒压下不同温度时反应的平衡常数。

2.了解在恒温恒压下反应达平衡时测定平衡常数的方法。

3.了解影响反应平衡的因素。

二.实验原理在高炉炼铁、鼓风炉炼铜、铅、锌以及煤气发生炉等生产实践中,固体碳的气化反应具有十分重要的意义。

其反应为:C+CO2=2CO该反应的自由度为F=2-2+2=2,即反应平衡时,气相成分取决于温度和系统的压力。

在一大气压时,该反应的平衡常数为:KP?由等压式知?H?B(1—2) 2.303RT式中ΔH为反应热,R为气体常数,T为绝对温度,B为常数。

三.实验装置如图2-3所示,由二氧化碳气瓶、气体净化系统、管式高温炉及控温仪表、气体分析仪器组成。

2PCO?(CO%)2(CO2%)(1—1) PCO2 lgKP??图1-3碳的汽化反应实验装置1.CO2气瓶 2 流量计 3.管式电阻炉 4.铂铑热电偶 5.温度控制器 6. CO2传感器;7.计算机 8实验台四.实验步骤1.按图装好仪器设备,将碳粒装入电炉内瓷管的高温带,塞上胶塞,用融化的石蜡密封好。

2.分段检查系统是否漏气,重新密封,直至不漏气为止。

3.通电升温接通电源,打开控温器电流为5A,逐步升到10~12 A。

在升温的同时;打开气瓶,以较大的气流(40ml /分)排出系统内的空气,排气5分钟后调流量为20ml/分,并保持此流量不变。

4.炉温在600℃恒温5分钟后,接通CO2气体传感器,计算机读数,记录CO2%含量。

5. 再按上述操作连续4点,700℃,800℃,900℃,1000℃。

分析反应平衡气体中CO2含量同上操作,再取该温度下反应平衡气体,记录CO2%含量。

7.实验完毕,恢复仪器原状,切断电源,关闭气体。

五.实验报告要求1.计算各温度下平衡气相成分,以体积百分数表示,取10次结果的平均值。

2.计算各温度下的平衡常数Kp。

3.绘制平衡气相中一氧化碳与温反t的关系曲线。

4.绘制lgKp-1/T直线,由直线斜率求出反应热ΔH值。

5.讨论温度对反应平衡移动的影响.六.思考题1.为什么要检查系统不漏气?2.为什么要控制流速20 ml/分?3.为什么要严格控制温度?实验二、金属氧化动力学冶金物理化学实验经常涉及过程的速率和机理,即动力学规律的研究。

这也是有重要实际和理论意义的领域。

动力学实验通常只能测得过程中某一个与反应速率有关的物理量随时间变化的动力学曲线。

过程机理的确定和速率方程的建立,还需把动力学曲线与各种动力学模型相结合,再辅以其它实验手段才能确定。

因此动力学模型的分析和讨论是动力学实验不可缺少组成部分。

动力学研究按其涉及的体系划分,可分为气—固、气—液、液—液、固—固相等反应动力学;按其研究方法划分,可分为静态法(等温、等压或等容)、动态法(非等温或流动气体);按测量的物理量划分,可分为热重法,电导法、测压法等。

本实验为热重静态法研究气—固相反应动力学。

一.实验目的(1)掌握热重法研究金属氧化动力学的原理及方法。

(2)测定空气下金属等温氧化增重曲线,掌握判断反应控速步骤和计算动力学参数的方法。

二.实验原理及设备1 支架 2天平 3 吊丝 4 控温器 5 计算机 6桌子7 金属片 8 炉子热重法是在程序控温条件下,测量物质质量与温度或时间关系的一种技木。

热重法有等温热重法和非等温热重法两类,前者是在恒温下测定物质质量变化与时间的关系;后者是在程序升温下测定物质质量变化与温度的关系。

热重曲线常用两种方式表示方式:TG曲线或DTG曲线,前者表示失重过程的累积量,属积分型;后者是TG曲线对时间或温度一阶微商,即质量变化率与时间或温度的关系曲线。

因此只要物质受热发生物理或化学变化,有质量变化,就可以用热重法来研究其变化过程。

对金属氧化反应 xM(s)+yO2(g) = MxOy(s)随着时间的增加,其固体产物增加,因而重量值增加。

由所得实验曲线就可以判断不同实验条件下样品增重值的大小,比较其抗氧化性能,并有样品重量随时间(或温度)的变化关系,研究反应的过程和机理。

金属氧化反应过程主要有下列步骤,(1)氧通过气相边界层向金属表面的传质过程。

(2)氧或金属离子在氧化层中的扩散过程。

(3)金属与氧在界面上发生化学反应过程。

在反应初期(未形成致密产物层时),只有前两步。

对于平板试样(即氧化过程中反应面积基本不变),在氧化初期未形成致密产物层或金属氧化膜(如铁的氧化物)疏松的情况下,金属氧化为化学反应控速。

在TG曲线上表现为单位面积上氧化增量(ΔW)随时间(t)线性增加的零级反应特征,即遵循膜生长直线定律:?W?k1t(2—4)AA—试样表面积,cm2K1—表现反应速度常数,mg/cm2.s在氧化中后期氧化膜致密并有一定的厚度时,金属氧化速度为氧或金属离子在氧化膜中扩散所控制。

相关文档
最新文档