高等数学不定积分例题思路和答案超全

合集下载

关于高等数学不定积分例题思路和答案超全

关于高等数学不定积分例题思路和答案超全

第4章不定积分课后习题全解习题4-11.求下列不定积分:知识点:直接积分法的练习——求不定积分的基本方法。

思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!★(1)⎰思路: 被积函数52x-=,由积分表中的公式(2)可解。

解:532223x dx x C--==-+⎰★(2)dx-⎰思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:1141113332223()24dx x x dx x dx x dx x x C--=-=-=-+⎰⎰⎰⎰★(3)22x x dx+⎰()思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:2232122ln 23x xxx dx dx x dx x C +=+=++⎰⎰⎰()★(4)3)x dx -思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:3153222223)325x dx x dx x dx x x C -=-=-+⎰⎰★★(5)4223311x x dx x +++⎰ 思路:观察到422223311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。

解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++⎰⎰⎰ ★★(6)221x dx x +⎰ 思路:注意到222221111111x x x x x+-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。

解:2221arctan .11x dx dx dx x x C x x =-=-+++⎰⎰⎰注:容易看出(5)(6)两题的解题思路是一致的。

一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。

★(7)x dx x x x⎰34134(-+-)2 思路:分项积分。

解:3411342x dx xdx dx x dx x dx x x x x --=-+-⎰⎰⎰⎰⎰34134(-+-)2 ★(8)23(1dx x -+⎰ 思路:分项积分。

不定积分的例题讲解

不定积分的例题讲解

三、典型例题解析例1 求下列不定积分.(1). (2)1)dx ⎰.分析 利用幂函数的积分公式111n n x dx x C n +=++⎰求积分时,应当先将被积函数中幂函数写成负指数幂或分数指数幂的形式. 解 (1)532251252121()3x dx x C x C --+-==+=-++-⎰. (2)35312222231221)(1)353dx x x x dx x x x x C =+--=+--+⎰⎰.例2求2(x dx ⎰. 分析 将被积函数的平方展开,可化为幂函数的和.解12221((2)x dx x x dx x +=++⎰⎰12212x d x x d x d xx=++⎰⎰⎰ 32314ln 33x x x C =+++. 例3 求下列不定积分.(1)2523x x x e dx ⋅-⋅⎰. (2)4223311x x dx x +++⎰.分析 (1)将被积函数拆开,用指数函数的积分公式;(2)分子分母都含有偶数次幂,将其化成一个多项式和一个真分式的和,然后即可用公式.解 (1)22()5()2522332()5()3331ln 3ln 2ln 3x xxxx x xe e e dx dx dx C ⋅⋅⋅-⋅=-=-+--⎰⎰⎰. (2)42232233113arctan 11x x dx x dx dx x x C x x++=+=++++⎰⎰⎰. 例4 求下列不定积分.(1)24221(1)x x dx x x +++⎰. (2)421x dx x +⎰. (3)221(1)dx x x +⎰. 分析 根据被积函数分子、分母的特点,利用常用的恒等变形,例如:分解因式、直接拆项、“加零”拆项、指数公式和三角公式等等,将被积函数分解成几项之和即可求解.解 (1)242222111(1)(1)1x x dx dx x x x x++=+-++⎰⎰ 22111dx dx dx x x =+-+⎰⎰⎰ 1a r c t a n x x Cx=--+.(2)4422(1)111x x dx dx x x -+=++⎰⎰222(1)(1)11x x dx x-++=+⎰ 221(1)1x dx dx x =-++⎰⎰C x x x ++-=arctan 313. (3)22222211(1)(1)x x dx dx x x x x +-=++⎰⎰ 22111dx dx x x =-+⎰⎰1a r c t a n x C x=--+.例5 求下列不定积分. (1)11cos2dx x +⎰. (2)cos2cos sin xdx x x-⎰.(3)2cot xdx ⎰. (4)22cos2sin cos xdx x x⎰.分析 当被积函数是三角函数时,常利用一些三角恒等式,将其向基本积分公式表中有的形式转化,这就要求读者要牢记基本积分公式表.解 (1)2111tan 1cos22cos 2dx dx x C x x ==++⎰⎰.(2)22cos2cos sin cos sin cos sin x x xdx dx x x x x-=--⎰⎰(cos sin )sin cos x x dx x x C =+=-+⎰.(3)22cot (csc 1)cot xdx x dx x x C =-=--+⎰⎰.(4)222222cos2cos sin sin cos sin cos x x xdx dx x x x x-=⎰⎰2211sin cos dx dx x x=-⎰⎰ 22csc sec xdx xdx =-⎰⎰cot tan x x C =--+.例6 求下列不定积分.(1)99(79)x dx -⎰. (2)12()nx ax b dx +⎰.(0a ≠) (3)232(cos )x dx x ⎰. (4). (5)1sin(ln )x dx x ⎰. (6)211cos()dx x x⎰.(7)2cos sin 6sin 12xdxx x -+⎰. (8).(9). (10)2.(11)322(arctan )1x x dx x++⎰. 分析 这些积分都没有现成的公式可套用,需要用第一类换元积分法. 解 (1)999910011(79)(79)(79)(79)7700x dx x d x x C -=--=-+⎰⎰. (2)112221()()()2n n x ax b dx ax b d ax b a+=++⎰⎰12()2(1)n n n ax b C a n +=+++. (3)232(cos )x dx x ⎰333211tan 3(cos )3dx x C x ==+⎰.(4)2C ==.(5)1sin(ln )x dx x⎰sin(ln )(ln )cos(ln )x d x x C ==-+⎰.(6)211cos dx x x ⎰111cos ()sin d C x x x=-=-+⎰. (7)2cos sin 6sin 12xdxx x -+⎰2(sin 3)(sin 3)3d x C x -=-+⎰. (8)(tan )arcsin(tan )x x C ==+.(9)12[1(cot )](cot )x d x =-+⎰12cot (cot )cot d x x d x =--⎰⎰ 322cot (cot )3x x C =--+.(10)2231arcsin (arcsin )(arcsin )3xd x x C ==+⎰.(11)322(arctan )1x x dx x ++⎰3222(arctan )11x x dx dx x x =+++⎰⎰ 32221(1)(a r c t a n )(a r c t a n )21d x x d x x+=++⎰⎰ 52212ln(1)(arctan )25x x C =+++.注 用第一类换元积分法(凑微分法)求不定积分,一般并无规律可循,主要依靠经验的积累.而任何一个微分运算公式都可以作为凑微分的运算途径.因此需要牢记基本积分公式,这样凑微分才会有目标.下面给出常见的12种凑微分的积分类型.(1)11()()()(0)n n n n f ax b x dx f ax b d ax b a na-+=++≠⎰⎰; (2)1()()ln x x x x f a a dx f a da a=⎰⎰; (3)(sin )cos (sin )(sin )f x xdx f x d x =⎰⎰;适用于求形如21sin cos m n x xdx +⎰的积分,(,m n 是自然数). (4)(cos )sin (cos )(cos )f x xdx f x d x =-⎰⎰;适用于求形如21sin cos m n x xdx -⎰的积分,(,m n 是自然数). (5)2(tan )sec (tan )(tan )f x xdx f x d x =⎰⎰;适用于求形如2tan sec m n x xdx ⎰的积分,(,m n 是自然数). (6)2(cot )csc (cot )(cot )f x xdx f x d x =-⎰⎰;适用于求形如是2cot csc m n x xdx ⎰的积分,(,m n 是自然数).(7)1(ln )(ln )ln f x dx f x d x x=⎰⎰;(8)(arcsin (arcsin )(arcsin )f x f x d x =⎰⎰;(9)(arccos (arccos )(arccos )f x f x d x =-⎰⎰;(10)2(arctan )(arctan )(arctan )1f x dx f x d x x =+⎰⎰;(11)2(cot )(cot )(cot )1f arc x dx f arc x d arc x x =-+⎰⎰;(12)()1(())()()f x dx d f x f x f x '=⎰⎰; 例7 求下列函数的不定积分:(1)3cos xdx ⎰. (2)4sin xdx ⎰. (3)sin 7cos(3)4x x dx π-⎰. (4)6csc xdx ⎰.(5)34sin cos x xdx ⎰. (6)35sec tan x xdx ⎰.分析 在运用第一类换元法求以三角函数为被积函数的积分时,主要思路就是利用三角恒等式把被积函数化为熟知的积分,通常会用到同角的三角恒等式、倍角、半角公式、积化和差公式等.解 (1)被积函数是奇次幂,从被积函数中分离出cos x ,并与dx 凑成微分(sin )d x ,再利用三角恒等式22sin cos 1x x +=,然后即可积分.322cos cos (sin )(1sin )(sin )xdx xd x x d x ==-⎰⎰⎰2sin sin sin d x xd x =-⎰⎰31sin sin 3x x C =-+.(2)被积函数是偶次幂,基本方法是利用三角恒等式21cos2sin 2xx -=,降低被积函数的幂次.421cos2sin ()2x xdx dx -=⎰⎰311(cos2cos4)828x x dx =-+⎰311sin 2sin 48432x x x C =-++. (3)利用积化和差公式将被积函数化为代数和的形式.1sin7cos(3)[sin(4)sin(10)]4244x x dx x x dx πππ-=++-⎰⎰ 11sin(4)(4)sin(10)(10)8442044x d x x d x ππππ=+++--⎰⎰ 11cos(4)cos(10)84204x x C ππ=-+--+. (4)利用三角恒等式22csc 1cot x x =+及2csc (cot )xdx d x =-.622222csc(csc )csc (1cot )(cot )xdx x xdx x d x ==-+⎰⎰⎰24(12cot cot )cot x x d x =-++⎰3521cot cot cot 35x x x C =---+.(5)因为322sin sin (sin )sin (cos )xdx x xdx xd x ==-,所以3424sincos sin cos (cos )x xdx x xd x =-⎰⎰24(1cos )cos (cos )x xd x =--⎰46cos (cos )cos (cos )xd x xd x =-+⎰⎰5711cos cos 57x x C =-++.(6)由于sec tan (sec )x xdx d x =,所以3524sectan sec tan (sec )x xdx x xd x =⎰⎰222sec (sec 1)(sec )x x d x =-⎰642(sec 2sec sec )(sec )x x x d x =-+⎰ 753121sec sec sec 753x x x C =-++.注 利用上述方法类似可求下列积分3sinxdx ⎰、2cos xdx ⎰、cos3cos2x xdx ⎰、6sec xdx ⎰、25sin cos x xdx ⎰,请读者自行完成.例8 求下列不定积分: (1)x x dx e e -+⎰. (2)x x dx e e --⎰. (3)11x dx e+⎰. 分析 可充分利用凑微分公式:x x e dx de =;或者换元,令x u e =.解 (1)xx dx e e -+⎰221arctan ()1()1x x xx x e dx de e C e e ===+++⎰⎰. (2)解法1 xxdxe e--⎰221()1()1x x x x e dx de e e ==--⎰⎰, 然后用公式2211ln 2x adx C x a a x a-=+-+⎰,则 x x dxe e --⎰11ln 21x x e C e -=++.解法2 x xdx e e--⎰21111()()1211xx x x x de de e e e ==---+⎰⎰ 1(1)(1)()211x x x x d e d e e e -+=--+⎰⎰ 11ln 21x x e C e -=++. (3)解法1 11x dx e +⎰1(1)11x x x x xe e e dx dx e e +-==-++⎰⎰ 1(1)1x xdx d e e=-++⎰⎰ ln(1)x x e C =-++.解法2 11xdx e +⎰(1)ln(1)11x x x xx e d e dx e C e e -----+==-=-++++⎰⎰. 解法3 令x u e =,x du e dx =,则有11x dx e +⎰1111()ln()111udu du C u u u u u=⋅=-=++++⎰⎰ ln()ln(1)1x xxe C e C e -=+=-+++.注 在计算不定积分时,用不同的方法计算的结果形式可能不一样,但本质相同.验证积分结果是否正确,只要对积分的结果求导数,若其导数等于被积函数则积分的结果是正确的.例9 求下列不定积分:(1)ln tan sin cos xdx x x ⎰. (2). 分析 在这类复杂的不定积分的求解过程中需要逐步凑微分.解 (1)2ln tan ln tan sin cos tan cos x xdx dx x x x x=⎰⎰ ln tan (tan )ln tan (ln tan )tan xd x xd x x==⎰⎰ 21ln (tan )2x C =+. (2)2=22a r c (a n r c t a n )C ==+⎰. 例10 求21arctan1x dx x +⎰.分析 若将积分变形为1arctan (arctan )d x x ⎰,则无法积分,但如果考虑到凑出1x,将被积函数变形为221arctan 111()x x x⋅+,再将21x 与dx 结合凑成1()d x -,则问题即可解决. 解2222111arctan arctan arctan11()1111()1()x x x dx dx d x x x x x =⋅=-+++⎰⎰⎰11arctan (arctan )d x x=-⎰211(arctan )2C x=-+.例11 求21ln (ln )xdx x x +⎰. 分析 仔细观察被积函数的分子与分母的形式,可知(ln )1ln x x x '=+.解 221ln 11(ln )(ln )(ln )ln x dx d x x C x x x x x x+==-+⎰⎰. 例12(04研) 已知()x x f e xe -'=,且(1)0f =,则()_________f x =. 分析 先求()f x ',再求()f x . 解 令x e t =,即ln x t =,从而ln ()tf t t'=.故 2ln 1()ln (ln )ln 2x f x dx xd x x C x ===+⎰⎰, 由(1)0f =,得0C =,所以21()ln 2f x x =.例13求sin 22sin dxx x+⎰.分析 被积函数为三角函数,可考虑用三角恒等式,也可利用万能公式代换. 解法1 sin 22sin dx x x+⎰3122sin (cos 1)4sin cos 22x d dx x x x x ⎛⎫ ⎪⎝⎭==+⎰⎰ 22tan 1tan 1122tan 442tan cos tan222x x d x d x x x ⎛⎫+ ⎪⎛⎫⎝⎭== ⎪⎝⎭⎰⎰ 211tan ln tan 8242x xC =++. 解法2 令cos t x =,则 sin 22sin dxx x +⎰2sin 2sin (cos 1)2sin (1cos )dx xdx x x x x ==++⎰⎰212(1)(1)dt t t=--+⎰21112811(1)dt t t t ⎛⎫=-++ ⎪-++⎝⎭⎰ 12(ln |1|ln |1|)81t t C t =--++++ 111ln(1cos )ln(1cos )884(1cos )x x C x =--++++. 解法3 令tan 2x t =,则22sin 1t x t =+,221cos 1t x t -=+,221dx dt t =+,则sin 22sin dxx x +⎰21111ln ||484t dt t t C t ⎛⎫=+=++ ⎪⎝⎭⎰ 211tan ln |tan |8242x xC =++.例14求分析 被积函数含有根式,一般先设法去掉根号,这是第二类换元法最常用的手段之一.解t ,即21x t =-,2dx tdt =,则212(1)11t dt dt t t==-++⎰⎰ 22ln 1t t C =-++2ln(1C =+例15求分析 被积函数中有开不同次的根式,为了同时去掉根号,选取根指数的最小公倍数. 解t ,34dx t dt =-,则2414(1)11tdt t dtt t-==--+++⎰⎰214(l n1)2t t t C=--+++ln(1)]C=-++.例16解t=,即3211xt=--,2326(1)tdx dtt=-,则233232164(1)(1)tdtt ttt==⋅-⋅-⎰132313131()2221xdt C Ct t x+==-⋅+=-+-⎰.例17求x⎰.分析2sinx t=消去根式.解2cos(0)2t tπ=<<,2cosdx tdt=,则224sin2cos2cos4sin2x t t tdt t dt=⋅⋅=⋅⎰⎰⎰12(1cos4)2sin42t dt t t C=-=-+⎰222sin cos(12sin)t t t t C=--+212arcsin)22xx C=-+.注1 对于三角代换,在结果化为原积分变量的函数时,常常借助于直角三角形.注2在不定积分计算中,为了简便起见,一般遇到平方根时总取算术根,而省略负平方根情况的讨论.对三角代换,只要把角限制在0到2π,则不论什么三角函数都取正值,避免了正负号的讨论.例18求221(1)dxx+⎰.分析 虽然被积函数中没有根式,但不能分解因式,而且分母中含有平方和,因此可以考虑利用三角代换,将原积分转换为三角函数的积分.解设tanx t=,2secdx tdt=,()2241secx t+=,则222241seccos(1)sectdx dt tdtx t==+⎰⎰⎰111(1c o s 2)s i n 2224t d t t t C =+=++⎰ 21a r c t an 22(1)xx C x =+++. 例19求. 分析故作代换sec x a t =, 将被积函数化成三角有理式.解 令sec x a t =,sec tan dx a t tdt =⋅,则22tan sec tan tan (sec 1)sec a ta t tdt a tdt a t dt a t=⋅⋅==-⎰⎰⎰ (tan )a t t C =-+arccos )aa C x=-+.例20求.解 由于2248(2)4x x x ++=++,故可设22tan x t +=,22sec dx tdt =,2(2tan 2)2sec 2sec tan 2sec 2sec t t dt t tdt tdt t -⋅==-⎰⎰⎰12s e c 2l n s ec t a n t t t C =-++2ln(2x C ++.()12ln 2C C =+ 注由00a a ><可作适当的三角代换, 使其有理化.例21求.解322[3(1)]dx x =+-⎰,令1x t -,则322321sec 11cos sin 3sec 33[3(1)]dxt dt tdt t C t x ===++-⎰⎰⎰C +. 故C =+.例22 求421(1)dx x x +⎰.分析 当有理函数的分母中的多项式的次数大于分子多项式的次数时,可尝试用倒代换.解 令1x t=,21dx dt t =-,于是421(1)dx x x +⎰44221111t t dt dt t t --+==-++⎰⎰221(1)1t dt dt t =---+⎰⎰31arctan 3t t t C =--+3111arctan 3C x x x=--+. 注 有时无理函数的不定积分当分母次数较高时,也可尝试采用倒代换,请看下例. 例23求. 解 设1x t=,2dtdx t =-,则4t =1222(1)a t t dt =--⎰.当0x >时,12222221(1)(1)2a t d a t a=---⎰ 32222(1)3a t C a -=-+322223()3a x C a x -=-+.当0x <时,有相同的结果.故322223()3a x C a x -=-+.注1 第二类换元法是通过恰当的变换,将原积分化为关于新变量的函数的积分,从而达到化难为易的效果,与第一类换元法的区别在于视新变量为自变量,而不是中间变量.使用第二类换元法的关键是根据被积函数的特点寻找一个适当的变量代换.注2 用第二类换元积分法求不定积分,应注意三个问题: (1)用于代换的表达式在对应的区间内单调可导,且导数不为零. (2)换元后的被积函数的原函数存在. (3)求出原函数后一定要将变量回代.注3 常用的代换有:根式代换、三角代换与倒代换.根式代换和三角代换常用于消去被积函数中的根号,使其有理化,这种代换使用广泛.而倒代换的目的是消去或降低被积函数分母中的因子的幂.注4 常用第二类换元法积分的类型:(1)(,f x dx t ⎰令(2)(,f x dx t =⎰令.(3)(f x dx ⎰,可令sin ax t b=或cos a x t b =.(4)(f x dx ⎰,可令tan a x t b =或ax sht b =.(5)(f x dx ⎰,可令sec a x t b =或ax cht b=.(6240)q pr -<时,利用配方与代换可化为以上(3),(4),(5)三种情形之一.(7)当被积函数分母中含有x 的高次幂时,可用倒代换1x t=.例24 求下列不定积分:(1)3x xe dx -⎰. (2)2sin 4x xdx ⎰. (3)2ln x xdx ⎰.(4)arcsin xdx ⎰. (5)arctan x xdx ⎰. (6)sin ax e bxdx ⎰22(0)a b +≠. 分析 上述积分中的被积函数是反三角函数、对数函数、幂函数、指数函数、三角函数中的某两类函数的乘积,适合用分部积分法.解 (1)3x xe dx -⎰33333111()33339xx x x x x x xd e e e dx e e C -----=-=-+=--+⎰⎰. (2)2sin 4x xdx ⎰2211(cos4)cos4cos4442x x d x x x xdx =-=-+⎰⎰22111cos4(sin 4)cos4sin 4sin 448488x x x xd x x x x xdx =-+=-+-⎰⎰211cos4sin 4cos44832x x x x x C =-+++.(3)2ln x xdx ⎰3333211ln ()ln ln 33339x x x xd x x x dx x C ==-=-+⎰⎰.(4)解法1 arcsin xdx ⎰arcsin arcsin x x x x C =-=.解法2 令arcsin t x =,即sin x t =,则arcsin (sin )sin sin sin cos xdx td t t t tdt t t t C ==-=++⎰⎰⎰arcsin x x C =+(5)解法1 a r c t a n x x d x ⎰222211arctan arctan 2221x x xdx x dx x==-+⎰⎰ 2211arctan (1)221x x dx x =--+⎰ 21arctan arctan 222x x x x C =-++. 解法221arctan arctan (1)2x xdx xd x =+⎰⎰ 22111arctan arctan 2222x x xx dx x C ++=-=-+⎰.(6)解法1 sin ax e bxdx ⎰11sin ()sin cos ax ax ax bbxd e e bx e bxdx a a a==-⎰⎰21s i n c o s ()a x a xbe b x b x d ea a=-⎰2221sin cos sin ax ax axb b e bx e xbx e bxdx a a a=--⎰ 从而21221(1)sin sin cos ax ax ax b be bxdx e bx e bx C a a a+=-+⎰,则221sin (sin cos )ax axe bxdx e a bx b bx C a b =-++⎰. 解法21sin cos axaxebxdx e d bx b =-⎰⎰,然后用分部积分,余下的解答请读者自行完成.注 在用分部积分法求()f x dx ⎰时关键是将被积表达式()f x dx 适当分成u 和dv 两部分.根据分部积分公式udv uv vdu =-⎰⎰,只有当等式右端的vdu 比左端的udv 更容易积出时才有意义,即选取u 和dv 要注意如下原则:(1)v 要容易求;(2)vdu ⎰要比udv ⎰容易积出.例25 求cos ln(cot )x x dx ⎰.分析 被积函数为三角函数与对数函数的乘积, 可采用分部积分法. 解cos ln(cot )ln(cot )(sin )x x dx x d x =⎰⎰21sin ln(cot )sin (csc )cot x x x x dx x=⋅-⋅⋅-⎰ sin ln(cot )sec x x xdx =⋅+⎰sin ln(cot )ln sec tan x x x x C =+++例26 求ln(x dx +⎰.分析 被积函数可以看成是多项式函数与对数函数的乘积,可采用分部积分法.解1ln(ln((12x dx x x x dx +=-+⎰⎰ln(x x =+-12221ln((1)(1)2x x x d x -=-++⎰ln(x x C =.例27 求x .分析 可利用凑微分公式x x e dx de =,然后用分部积分;另外考虑到被积函数中含有根式,也可用根式代换.解法1x 2x xd ==⎰2⎡⎤=⎣⎦,令t ,则2ln(1)x t =+,221tdtdx t =+,则 21222(arctan )1t dtt t C t ==-++⎰,故x (2Cz =+2C =.解法2tz =,则x22222ln(1)2ln(1)41t t dt t t dt t =+=+-+⎰⎰ 22ln(1)44arctan t t t t C =+-++2C =.注 求不定积分时,有时往往需要几种方法结合使用,才能得到结果.例28(01研) 求2arctan xxe dx e⎰. 分析 被积函数是指数函数和反三角函数的乘积,可考虑用分部积分法. 解法1 2arctan x xe dx e ⎰222211arctan ()arctan 22(1)x x x x xx x de e d e e e e e --⎡⎤=-=--⎢⎥+⎣⎦⎰⎰ 21arctan arctan 2x x x xe e e e C --⎡⎤=-+++⎣⎦. 解法2 先换元,令x e t =,再用分部积分法,请读者自行完成余下的解答.例29 求3csc xdx ⎰.分析 被积函数含有三角函数的奇次幂,往往可分解成奇次幂和偶次幂的乘积,然后凑微分,再用分部积分法.解32csc csc (csc )csc (cot )xdx x x dx xd x ==-⎰⎰⎰ 2csc cot cot csc x x x xdx =--⋅⎰ 3csc cot csc csc x x xdx xdx =--+⎰⎰ 3csc cot csc ln csc cot x x xdx x x =--+-⎰,从而31csc (csc cot ln csc cot )2xdx x x x x C =---+⎰. 注 用分部积分法求不定积分时,有时会出现与原来相同的积分,即出现循环的情况,这时只需要移项即可得到结果.例30 求下列不定积分:(1)22221(1)x x x e dx x ---⎰. (2)2ln 1(ln )x dx x -⎰. 解 (1)2222222112(1)1(1)xx xx x xdx e dx e dx e x x x --=----⎰⎰⎰ 221()11x x e dx e d x x =+--⎰⎰ 22221111x x x x e e e e dx dx C x x x x =+-=+----⎰⎰.(2)22ln 111(ln )ln (ln )x dx dx dx x x x -=-⎰⎰⎰ 221ln (ln )(ln )x x dx dx x x x x =+-⎰⎰ ln xC x=+. 注 将原积分拆项后,对其中一项分部积分以抵消另一项,或对拆开的两项各自分部积分后以抵消未积出的部分,这也是求不定积分常用的技巧之一.例31 求sin(ln )x dx ⎰.分析 这是适合用分部积分法的积分类型,连续分部积分,直到出现循环为止. 解法1 利用分部积分公式,则有1sin(ln )sin(ln )cos(ln )x dx x x x x dx x=-⋅⎰⎰ s i n (l n )c o s (l n x x xd x =-⎰s i n (l n )c o s (l n )s i n (x x xx x d x =--⎰, 所以1sin(ln )[sin(ln )cos(ln )]2x dx x x x C =-+⎰. 解法2 令 ln x t =,t dx e dt =,则sin(ln )x dx ⎰=sin sin sin sin cos sin t t t t t t e tdt e t e tdt e t e t e tdt =-=--⎰⎰⎰,所以11sin(ln )(sin cos )[sin(ln )cos(ln )]22t tx dx e t e t C x x x C =-+=-+⎰. 例32 求ln n n I xdx =⎰,其中n 为自然数. 分析 这是适合用分部积分法的积分类型.解 11ln ln ln ln n n n n n n I xdx x x n xdx x x nI --==-=-⎰⎰,即1ln n n n I x x nI -=-为所求递推公式.而1ln ln ln I xdx x x dx x x x C ==-=-+⎰⎰.注1 在反复使用分部积分法的过程中,不要对调u 和v 两个函数的“地位”,否则不仅不会产生循环,反而会一来一往,恢复原状,毫无所得.注2 分部积分法常见的三种作用: (1)逐步化简积分形式; (2)产生循环;(3)建立递推公式.例33 求积分24411(21)(23)(25)x x dx x x x +--+-⎰. 分析 计算有理函数的积分可分为两步进行,第一步:用待定系数法或赋值法将有理分式化为部分分式之和;第二步:对各部分分式分别进行积分. 解 用待定系数法将24411(21)(23)(25)x x x x x +--+-化为部分分式之和.设24411(21)(23)(25)212325x x A B Cx x x x x x +-=++-+--+-,用(21)(23)(25)x x x -+-乘上式的两端得24411(23)(25)(21)(25)(21)(23)x x A x x B x x C x x +-=+-+--+-+, 两端都是二次多项式,它们同次幂的系数相等,即131155311A B C A B C A B C ++=⎧⎪--+=⎨⎪-+-=-⎩, 这是关于A ,B ,C 的线性方程组,解之得12A =,14B =-,34C =.由于用待定系数法求A ,B ,C 的值计算量大,且易出错,下面用赋值法求A ,B ,C .因为等式24411(23)(25)(21)(25)(21)(23)x x A x x B x x C x x +-=+-+--+-+是恒等式,故可赋予x 为任何值.令 12x =,可得12A =.同样,令32x =-得14B =-,令52x =,得34C =,于是 24411(21)(23)(25)x x dx x x x +--+-⎰111131221423425dx dx dx x x x =-+-+-⎰⎰⎰113ln 21ln 23ln 25488x x x C =--++-+ 231(21)(25)ln 823x x C x --=++. 例34 求321452dx x x x +++⎰.解 32452x x x +++是三次多项式,分解因式32322452()3()2(1)x x x x x x x x +++=+++++ 22(1)(32)(1)(2)x x x x x =+++=++ 设221(1)(2)21(1)A B Cx x x x x =+++++++,即2()(23)(22)1A B x A B C x A B C +++++++=,从而0230221A B A B C A B C +=⎧⎪++=⎨⎪++=⎩, 解得1A =,1B =-,1C =,因此3221111()45221(1)dx dx x x x x x x -=++++++++⎰⎰ 211121(1)dx dx dx x x x =-++++⎰⎰⎰ 1ln 2ln 11x x C x =+-+-++. 例35 求22(1)(1)dxx x x +++⎰.解 因为222211(1)(1)11x x x x x x x x -+=+++++++,所以22221()(1)(1)11dx x x dx x x x x x x -+=+++++++⎰⎰222221(1)1(1)1212121d x d x x dxx x x x x +++=-+++++++⎰⎰⎰ 2221()1112ln(1)ln(1)13222()24d x x x x x +=-+++++++⎰2211ln 21x C x x +=-++++.例36 求2425454x x dx x x ++++⎰.解 设24222545414x x Ax B Cx Dx x x x ++++=+++++,则有 23254()()(4)4x x A C x B D x A C x B D ++=+++++++,比较两边同次幂的系数,解得53A =,1B =,53C =-,0D =,从而 24222541535543134x x x xdx dx dx x x x x +++=-++++⎰⎰⎰2222255151ln arctan 3134164x x x dx dx dx x C x x x x +=-+=++++++⎰⎰⎰.例37 求322456x x dx x x +++⎰.分析 322456x x x x +++是假分式,先化为多项式与真分式之和,再将真分式分解成部分分式之和.解 由于32224615656x x x x x x x x +-=--++++ 98132x x x =--+++,则 322498(1)5632x x dx x dx x x x x +=--+++++⎰⎰ 219ln 38ln 22x x x x C =--++++. 例38 求5632x dxx x --⎰. 解 令3u x =,23du x dx =,则533636321()123232x dx x d x udux x x x u u ==------⎰⎰⎰ 1112()3(1)(2)912u du du u u u u ==++-+-⎰⎰332121ln 1ln 2ln (1)(2)999u u C x x C =++-+=+-+. 例39 求2100(1)x dx x -⎰. 分析 被积函数2100(1)x x -是有理真分式,若按有理函数的积分法来处理,那么要确定1A ,2A ,…,100A ,比较麻烦.根据被积函数的特点:分母是x 的一次因式,但幂次较高,而分子是x 的二次幂,可以考虑用下列几种方法求解. 解法1 令1x t -=,dx dt =-,则222100100100(1)21(1)x t t t dx dt dt x t t --+=-=--⎰⎰⎰98991002t dt t dt t dt ---=-+-⎰⎰⎰9798991112979899t t t C ---=-⋅++ 979899111(1)(1)(1)974999x x x C ---=---+-+. 解法2 22100100(1)1(1)(1)x x dx dx x x -+=--⎰⎰9910011(1)(1)x dx dx x x +=-+--⎰⎰ 99100(1)21(1)(1)x dx dx x x --=+--⎰⎰ 98991001112(1)(1)(1)dx dx dx x x x =-+---⎰⎰⎰ 979899111(1)(1)(1)974999x x x C ---=---+-+. 解法3 用分部积分法.22991001[(1)](1)99x dx x d x x -=--⎰⎰29999299(1)99(1)x x dx x x =---⎰2989921[(1)]99(1)9998x xd x x -=---⎰ 299989821[]99(1)9998(1)98(1)x x dx x x x =-----⎰ 299989712199(1)9949(1)999897(1)x x C x x x =-⋅-⋅+--⋅-. 注 形如()()P x Q x 的(()P x 与()Q x 均为多项式)有理函数的积分关键是将有理真分式分解成部分分式之和,而部分分式都有具体的积分方法,对于假分式则要化为真分式与多项式之和.例40求.分析 这是无理函数的积分,先要去掉根号化为有理函数的积分,分子分母有理化是常用去根号的方法之一. 解121)=112211(32)(21)44x dx x dx =+--⎰⎰ 332211(32)(21)1212x x C =+--+. 例41求. 解法1a ==+1222221()()2a a x d a x -=---⎰arcsin xa C a=.解法2 令t =余下的请读者自行完成. 例42 求154sin 2dx x+⎰.分析 被积函数是三角有理函数,可用万能公式将它化为有理函数. 解 令tan t x =,211dx dt t=+,则 21154sin 2585dx dt x t t =+++⎰⎰54332543311()3()1d t t =+++⎰ 154arctan()333t C =++154arctan(tan )333x C =++. 注 虽然万能代换公式总能求出积分,但对于具体的三角有理函数的积分不一定是最简便的方法.通常要根据被积函数的特点,采用三角公式简化积分.例43 求1sin cos dxx x++⎰.解法1 令tan2xu =,则 2222211211sin cos 1111dx u du du u u x x u u u +==-+++++++⎰⎰⎰ln 1tan 2x C =++. 解法21s i n c o s dxx x ++⎰22122sin cos 2cos cos (1tan )22222dx dxx x x x x ==++⎰⎰ 2()(tan )22cos (1tan )1tan222x x d d x x x==++⎰⎰ ln 1tan2xC =++. 注 可化为有理函数的积分主要要求熟练掌握如下两类:第一类是三角有理函数的积分,即可用万能代换tan 2xu =将其化为u 的有理函数的积分.第二类是被积函数的分子或分母中带有根式而不易积出的不定积分.对于这类不定积分,可采用适当的变量代换去掉根号,将被积函数化为有理函数的积分.常用的变量代换及适用题型可参考前面介绍过的第二类换元法. 例44 求2max{,1}x dx ⎰.分析 被积函数2max{,1}x 实际上是一个分段连续函数,它的原函数()F x 必定为连续函数,可先分别求出各区间段上的不定积分, 再由原函数的连续性确定各积分常数之间的关系.解 由于221,()max{,1}1,1x x f x x x >⎧==⎨≤⎩, 设()F x 为()f x 的原函数,则312331,13(),11,13x C x F x x C x x x C ⎧+⎪<-⎪=+≤⎨⎪>⎪+⎩, 其中1C ,2C ,3C 均为常数,由于()F x 连续,所以121(1)(1)13F C F C -+-=-+=-=-,231(1)1(1)3F C F C -+=+==+,于是1223C C =-+,3223C C =+,记 2C C =,则32312,133max{,1},112,133x C x x dx x C x x x C⎧-+⎪<-⎪=+≤⎨⎪>⎪++⎩⎰. 注 对于一些被积函数中含有绝对值符号的不定积分问题,也可以仿照上述方法处理. 例45 求x e dx -⎰.解 当0x ≥时,1xx xe dx e dx e C ---==-+⎰⎰. 当0x <时,2xx x edx e dx e C -==+⎰⎰.因为函数x e -的原函数在(,)-∞+∞上每一点都连续,所以120lim()lim()x x x x e C e C +--→→-+=+, 即1211C C -+=+,122C C =+,记 2C C =,则2,0,0xxxe C x e dx x e C --⎧-++≥⎪=⎨<+⎪⎩⎰. 错误解答 当0x ≥时,1xx xe dx e dx e C ---==-+⎰⎰. 当0x <时,2xx x edx e dx e C -==+⎰⎰.故12,0,0x xxe C x e dx e C x --⎧-+≥⎪=⎨+<⎪⎩⎰.错解分析 函数的不定积分中只能含有一个任意常数,这里出现了两个,所以是错误的.事实上,被积函数x e -在(,)-∞+∞上连续,故在(,)-∞+∞上有原函数,且原函数在(,)-∞+∞上每一点可导,从而连续.可据此求出任意常数1C 与2C 的关系,使xe-的不定积分中只含有一个任意常数.注 分段函数的原函数的求法:第一步,判断分段函数是否有原函数.如果分段函数的分界点是函数的第一类间断点, 那么在包含该点的区间内,原函数不存在.如果分界点是函数的连续点,那么在包含该点的区间内原函数存在.第二步,若分段函数有原函数,先求出函数在各分段相应区间内的原函数,再根据原函数连续的要求,确定各段上的积分常数,以及各段上积分常数之间的关系. 例46 求下列不定积分:(1)sin 1cos x x dx x ++⎰. (2)3sin 2cos sin cos x x x x e dx x -⎰. (3)cot 1sin x dx x +⎰. (4)3sin cos dxx x⎰. 解 (1)注意到sin (1cos )xdx d x =-+及2211(tan )1cos 2cos 2xxdx dx d x ==+,可将原来的积分拆为两项,然后积分,即sin sin 1cos 1cos 1cos x x x xdx dx dx x x x +=++++⎰⎰⎰1(tan )(1cos )21cos x xd d x x=-++⎰⎰t a n t a n l n (1c o s )22x xx dx x =--+⎰ 1tan2ln cos ln(1cos )22x xx x C =+-++ 21t a n 2l n c os l n (2c o s )222x xxx C =+-+1tan (ln 2)2x x CC C =+=-.(2)被积函数较为复杂,直接凑微分或分部积分都比较困难,不妨将其拆为两项后再观察.3sin sin sin 2cos sin cos tan sec cos xx x x x xedx e x xdx e x xdx x-=-⎰⎰⎰ sin sin ()(sec )x x xd e e d x =-⎰⎰sin sin sin sin sec x x x x xe e dx e x e dx =--+⎰⎰sin (sec )x e x x C =-+.(3)cot cos 1(sin )1sin sin (1sin )sin (1sin )x x dx dx d x x x x x x ==+++⎰⎰⎰11(sin )(sin )sin 1sin d x d x x x =-+⎰⎰ sin ln 1sin x C x=++.(4)当分母是sin cos m n x x 的形式时,常将分子的1改写成22sin cos x x +,然后拆项,使分母中sin x 和cos x 的幂次逐步降低直到可利用基本积分公式为止.33cos sin cos sin cos sin dx dx xdx x x x x x =+⎰⎰⎰3sin 2csc2sin d xxdx x =+⎰⎰21l n c s c 2c o t 22s i n x x Cx=--+. 注 将被积函数拆项,把积分变为几个较简单的积分,是求不定积分常用的技巧之一.例47 求223(1)x dx x -⎰. 解 考虑第二类换元积分法与分部积分法,令sin x t =,则222353235sin tan sec (sec sec )(1)cos x t dx dt t tdt t t dt x t ===--⎰⎰⎰⎰, 而53323secsec (tan )sec tan 3tan sec tdt td t t t t tdt ==-⎰⎰⎰353sec tan 3(sec sec )t t t t dt =--⎰.故53313sec sec tan sec 44tdt t t tdt =+⎰⎰. 又32secsec (tan )sec tan tan sec tdt td t t t t tdt ==-⎰⎰⎰ 3sec tan (sec sec )t t t t dt =--⎰,从而3111sec sec tan ln sec tan 22tdt t t t t C =+++⎰, 所以223(1)x dx x -⎰3311sec tan sec 44t t tdt =-⎰3111sec tan sec tan ln sec tan 488t t t t t t C =--++ 32211ln 8(1)161x x xC x x ++=-+--. 例48 求7cos 3sin 5cos 2sin x xdx x x-+⎰.解 因为(5cos 2sin )2cos 5sin x x x x '+=-,所以可设7cos 3sin (5cos 2sin )(5cos 2sin )x x A x x B x x '-=+++,即7cos 3sin (5cos 2sin )(2cos 5sin )x x A x x B x x -=++-,比较系数得527253A B A B +=⎧⎨-=-⎩, 解之得1A =,1B =,故7cos 3sin 5cos 2sin x x dx x x -+⎰(5cos 2sin )(5cos 2sin )5cos 2sin x x x x dx x x'+++=+⎰ (5cos 2sin )5cos 2sin d x x dx x x+=++⎰⎰l n 5c o s 2s i n x x x C=+++. 例49 设()F x 是()f x 的原函数,且当0x ≥时有2()()sin 2f x F x x ⋅=,又(0)1F =,()0F x ≥,求()f x .分析 利用原函数的定义,结合已知条件先求出()F x ,然后求其导数即为所求.解 因为()()F x f x '=,所以2()()sin 2F x F x x '=,两边积分得2()()sin2F x F x dx xdx '=⎰⎰,即211()sin 4228x F x x C =-+, 由(0)1F =得12C =,所以()F x =从而()()f x F x '==2=.。

不定积分例题与答案

不定积分例题与答案

求下列不定积分:知识点:直接积分法的练习——求不定积分的荃本方法。

思路分析:利用不定积分的运算性质和荃本积分公式,査接求出不定积分!★(1),旅思路:被积函敌|:,由积分表中的公式(2)可解。

K 77T 八★⑶思路:根裾不定积分的线性性质,将被积函数分为两项,分别积分。

解:j<2x +.K 2Wt = j2,rfA + f.rdv = -L.+lx i +C ★⑷J 仮(.丫-3皿 思酪:根拐不定积分的线性性质,将被积函薮分为两项,分别积分。

J7xU-3)rfv = |x-dv-3jA"dv = ^.v* -2.V-+C★★⑸『竺上竺旦厶息」廉:观察到3xJ3.E=w+ 1后,根拐不定积分的线性性质,将被积函数分项,分别积分。

丿 ~-V+ 1 ~~.C+ 1~"*A x 2+11 ,根据不定积分的线性性质,将被积函数分项,分别积分。

解:JI ' 心=j rfv-j ]:心=A -arctan .v+C.注.容島看出(5)(6)两題的解SI 思绝是一致的• 一般地,如果被积函数为一个有理的假分丈.谨常先将其分解为一个荃或加上或 减去一个真分丈的形丈.再分项积分.★(7) |(三二+W 心思路:分项积分。

4-~-r^ = J 'z£v -|-^<tv + 3|x 'rfv-4j.t u rfv★(8)上3 2 思路:分项积分。

■ J< ] 3 - F k£v = 3j J , dx-2jdr = 3arctan .v-2arcsinx + C.★★⑺j 后眾小思路:皿着看到皿頁=严—“直接积分。

解:J 厶斥曲Y = =加+ U息话:根据不定积分的线性性质,将被积函数分为两项,分别积分。

X ,.思路:注意到r_ JI + x* x l+x 2 l+.r 1+x 2 解: ★⑵ =x + arctan .v + C解:严小+认=★★(10) I忌路:裂项分项积分。

不定积分经典例题

不定积分经典例题

不定积分经典例题1. 计算不定积分:$\int \frac{1}{x^2} dx$解:该不定积分可以通过直接计算得到。

由于$\frac{1}{x^2}$ 的原函数是 $-\frac{1}{x}$,因此$$\int \frac{1}{x^2} dx = -\frac{1}{x} + C$$其中 $C$ 是常数。

2. 计算不定积分:$\int (2x+3)dx$解:使用不定积分的线性性质,可以将被积函数分解成两个分别可求积的部分。

所以$$\int (2x+3)dx = \int 2x dx + \int 3 dx = x^2 + 3x + C$$其中 $C$ 是常数。

3. 计算不定积分:$\int e^x \sin(x) dx$解:可以通过分部积分法来计算该不定积分。

设 $u = e^x$,$dv = \sin(x) dx$,则 $du = e^x dx$,$v = -\cos(x)$。

根据分部积分公式,$$\int e^x \sin(x) dx = -e^x \cos(x) - \int -e^x \cos(x) dx$$然后再次使用分部积分法,可得$$\int e^x \sin(x) dx = -e^x \cos(x) + e^x \sin(x) - \int e^x \sin(x) dx$$将右侧的不定积分移到左侧,可以得到$$2 \int e^x \sin(x) dx = -e^x \cos(x) + e^x \sin(x)$$因此$$\int e^x \sin(x) dx = \frac{-e^x \cos(x) + e^x \sin(x)}{2} + C$$其中 $C$ 是常数。

这只是一些经典的不定积分例题,当然还有很多其他的例题。

希望这些例题能够帮助你理解不定积分的计算方法。

不定积分100道例题及解答

不定积分100道例题及解答

不定积分100道例题及解答不定积分100道例题及解答1. 问题:计算不定积分∫(x^2 + 2x + 1) dx解答:根据不定积分的基本性质,我们可以逐个对各项进行积分。

对于x^2,应用幂函数的基本积分法则得到 x^(2+1)/(2+1) =x^3/3。

对于2x,应用常数倍法则得到的积分结果为 x^2。

对于常数项1,则积分结果是x。

将这三个结果相加,即得到最终的积分结果为x^3/3 + x^2 + x + C,其中C为常数项。

2. 问题:计算不定积分∫(2e^x + 3x^2) dx解答:对于2e^x,应用指数函数的基本积分法则得到 2e^x。

对于3x^2,应用幂函数的基本积分法则得到 x^(2+1)/(2+1) = x^3/3。

将这两个结果相加,即得到最终的积分结果为 2e^x + x^3/3 + C,其中C为常数项。

3. 问题:计算不定积分∫(sin(x) + cos(x)) dx解答:对于sin(x),应用三角函数的基本积分法则得到 -cos(x)。

对于cos(x),同样应用三角函数的基本积分法则得到 sin(x)。

将这两个结果相加,即得到最终的积分结果为 -cos(x) + sin(x) + C,其中C为常数项。

4. 问题:计算不定积分∫(1/x^2) dx解答:对于1/x^2,可以应用倒数函数的基本积分法则得到 -1/x。

因此,最终的积分结果为 -1/x + C,其中C为常数项。

5. 问题:计算不定积分∫(ln(x) + 1/x) dx解答:对于ln(x),应用对数函数的基本积分法则得到 xln(x) - x。

对于1/x,同样应用倒数函数的基本积分法则得到 ln(x)。

将这两个结果相加,即得到最终的积分结果为 xln(x) - x + ln(x) + C,其中C为常数项。

6. 问题:计算不定积分∫(e^2x + x^3) dx解答:对于e^2x,应用指数函数的基本积分法则得到(1/2)e^2x。

高等数学课后习题答案--第四章不定积分

高等数学课后习题答案--第四章不定积分

第四章不定积分典型例题解析例1 求下列不定积分.(1)2dxx x ⎰. (2)3(1)(1)x x dx +-⎰.分析利用幂函数的积分公式111n n x dx x C n +=++⎰求积分时,应当先将被积函数中幂函数写成负指数幂或分数指数幂的形式.解(1)5322512252121()3dx x dx x C x C x x--+-==+=-++-⎰⎰. (2)35312222323122(1)(1)(1)353x x dx x x x dx x x x x C +-=+--=+--+⎰⎰.例2求21()x dx x+⎰. 分析 将被积函数的平方展开,可化为幂函数的和.解 122211()(2)x dx x x dx x x+=++⎰⎰12212x dx x dx dx x =++⎰⎰⎰ 32314ln 33x x x C =+++. 例3求下列不定积分.(1)2523x xxe dx ⋅-⋅⎰.(2)4223311x x dx x +++⎰.分析 (1)将被积函数拆开,用指数函数的积分公式;(2)分子分母都含有偶数次幂,将其化成一个多项式和一个真分式的和,然后即可用公式.解(1)22()5()2522332()5()3331ln 3ln 2ln 3x xxxx x x e e e dx dx dx C ⋅⋅⋅-⋅=-=-+--⎰⎰⎰. (2)42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++⎰⎰⎰. 例4求下列不定积分.(1)24221(1)x x dx x x +++⎰. (2)421x dx x+⎰. (3)221(1)dx x x +⎰. 分析根据被积函数分子、分母的特点,利用常用的恒等变形,例如:分解因式、直接拆项、“加零”拆项、指数公式和三角公式等等,将被积函数分解成几项之和即可求解.解 (1)242222111(1)(1)1x x dx dx x x x x ++=+-++⎰⎰ 22111dx dx dx x x =+-+⎰⎰⎰1arctan x x C x=--+. (2)4422(1)111x x dx dx x x-+=++⎰⎰ 222(1)(1)11x x dx x -++=+⎰221(1)1x dx dx x =-++⎰⎰C x x x ++-=arctan 313. (3)22222211(1)(1)x x dx dx x x x x +-=++⎰⎰22111dx dx x x =-+⎰⎰1arctan x C x=--+.例5 求下列不定积分. (1)11cos2dx x +⎰. (2)cos2cos sin xdx x x-⎰.(3)2cot xdx ⎰. (4)22cos2sin cos xdx x x⎰.分析 当被积函数是三角函数时,常利用一些三角恒等式,将其向基本积分公式表中有的形式转化,这就要求读者要牢记基本积分公式表.解 (1)2111tan 1cos22cos 2dx dx x C x x ==++⎰⎰.(2)22cos2cos sin cos sin cos sin x x xdx dx x x x x-=--⎰⎰(cos sin )sin cos x x dx x x C =+=-+⎰.(3)22cot (csc 1)cot xdx x dx x x C =-=--+⎰⎰. (4)222222cos2cos sin sin cos sin cos x x xdx dx x x x x-=⎰⎰ 2211sin cos dx dx x x=-⎰⎰ 22csc sec xdx xdx =-⎰⎰cot tan x x C =--+.例6 求下列不定积分.(1)99(79)x dx -⎰. (2)12()nx ax b dx +⎰.(0a ≠) (3)232(cos )x dx x ⎰. (4)(1)x x +.(5)1sin(ln )x dx x ⎰. (6)211cos()dx x x⎰.(7)2cos sin 6sin 12xdx x x -+⎰. (8).(9). (10)2. (11)322(arctan )1x x dx x ++⎰.分析 这些积分都没有现成的公式可套用,需要用第一类换元积分法. 解 (1)999910011(79)(79)(79)(79)7700x dx x d x x C -=--=-+⎰⎰. (2)112221()()()2n nx ax b dx ax b d ax b a+=++⎰⎰12()2(1)n n n ax b C a n +=+++. (3)232(cos )x dx x ⎰333211tan 3(cos )3dx x C x ==+⎰.(4)2C ==.(5)1sin(ln )x dx x⎰sin(ln )(ln )cos(ln )x d x x C ==-+⎰.(6)211cos dx x x ⎰111cos ()sin d C x x x=-=-+⎰. (7)2cos sin 6sin 12xdxx x -+⎰2(sin 3)(sin 3)3d x C x -==+-+⎰. (8)(tan )arcsin(tan )x x C ==+.(9)12[1(cot )](cot )x d x =-+⎰12cot (cot )cot d x x d x =--⎰⎰ 322cot (cot )3x x C =--+.(10)2231arcsin (arcsin )(arcsin )3xd x x C ==+⎰.(11)322(arctan )1x x dx x ++⎰3222(arctan )11x x dx dx x x =+++⎰⎰ 32221(1)(arctan )(arctan )21d x x d x x +=++⎰⎰ 52212ln(1)(arctan )25x x C =+++.注 用第一类换元积分法(凑微分法)求不定积分,一般并无规律可循,主要依靠经验的积累.而任何一个微分运算公式都可以作为凑微分的运算途径.因此需要牢记基本积分公式,这样凑微分才会有目标.下面给出常见的12种凑微分的积分类型.(1)11()()()(0)n n n n f ax b x dx f ax b d ax b a na-+=++≠⎰⎰; (2)1()()ln x x x xf a a dx f a daa =⎰⎰; (3)(sin )cos (sin )(sin )f x xdx f x d x =⎰⎰;适用于求形如21sin cos m n x xdx +⎰的积分,(,m n 是自然数).(4)(cos )sin (cos )(cos )f x xdx f x d x =-⎰⎰;适用于求形如21sin cos m n x xdx -⎰的积分,(,m n 是自然数).(5)2(tan )sec (tan )(tan )f x xdx f x d x =⎰⎰; 适用于求形如2tan sec m n x xdx ⎰的积分,(,m n 是自然数).(6)2(cot )csc (cot )(cot )f x xdx f x d x =-⎰⎰;适用于求形如是2cot csc m n x xdx ⎰的积分,(,m n 是自然数).(7)1(ln )(ln )ln f x dx f x d x x=⎰⎰;(8)21(arcsin )(arcsin )(arcsin )1f x dx f x d x x =-⎰⎰;(9)21(arccos )(arccos )(arccos )1f x dx f x d x x =--⎰⎰;(10)2(arctan )(arctan )(arctan )1f x dx f x d x x =+⎰⎰;(11)2(cot )(cot )(cot )1f arc x dx f arc x d arc x x =-+⎰⎰; (12)()1(())()()f x dx d f x f x f x '=⎰⎰; 例7 求下列函数的不定积分: (1)3cos xdx ⎰.(2)4sin xdx ⎰. (3)sin7cos(3)4x x dx π-⎰.(4)6csc xdx ⎰. (5)34sin cos x xdx ⎰.(6)35sec tan x xdx ⎰.分析 在运用第一类换元法求以三角函数为被积函数的积分时,主要思路就是利用三角恒等式把被积函数化为熟知的积分,通常会用到同角的三角恒等式、倍角、半角公式、积化和差公式等.解(1)被积函数是奇次幂,从被积函数中分离出cos x ,并与dx 凑成微分(sin )d x ,再利用三角恒等式22sin cos 1x x +=,然后即可积分.322coscos (sin )(1sin )(sin )xdx xd x x d x ==-⎰⎰⎰2sin sin sin d x xd x =-⎰⎰31sin sin 3x x C =-+.(2)被积函数是偶次幂,基本方法是利用三角恒等式21cos2sin 2xx -=,降低被积函数的幂次.421cos2sin ()2x xdx dx -=⎰⎰311(cos2cos4)828x x dx =-+⎰311sin 2sin 48432x x x C =-++. (3)利用积化和差公式将被积函数化为代数和的形式.1sin7cos(3)[sin(4)sin(10)]4244x x dx x x dx πππ-=++-⎰⎰ 11sin(4)(4)sin(10)(10)8442044x d x x d x ππππ=+++--⎰⎰ 11cos(4)cos(10)84204x x C ππ=-+--+. (4)利用三角恒等式22csc 1cot x x =+及2csc (cot )xdx d x =-.622222csc (csc )csc (1cot )(cot )xdx x xdx x d x ==-+⎰⎰⎰24(12cot cot )cot x x d x =-++⎰3521cot cot cot 35x x x C =---+.(5)因为322sin sin (sin )sin (cos )xdx x xdx xd x ==-,所以3424sincos sin cos (cos )x xdx x xd x =-⎰⎰24(1cos )cos (cos )x xd x =--⎰46cos (cos )cos (cos )xd x xd x =-+⎰⎰5711cos cos 57x x C =-++. (6)由于sec tan (sec )x xdx d x =,所以3524sectan sec tan (sec )x xdx x xd x =⎰⎰222sec (sec 1)(sec )x x d x =-⎰642(sec 2sec sec )(sec )x x x d x =-+⎰ 753121sec sec sec 753x x x C =-++.注利用上述方法类似可求下列积分3sinxdx ⎰、2cos xdx ⎰、cos3cos2x xdx ⎰、6sec xdx ⎰、25sin cos x xdx ⎰,请读者自行完成.例8求下列不定积分:(1)x xdx e e -+⎰.(2)x x dx e e --⎰.(3)11x dx e +⎰. 分析 可充分利用凑微分公式:x x e dx de =;或者换元,令x u e =.解(1)x x dx e e-+⎰221arctan ()1()1x x x x x e dx de e C e e ===+++⎰⎰. (2)解法1 x x dx e e--⎰221()1()1x x x x e dx de e e ==--⎰⎰, 然后用公式2211ln 2x adx C x a a x a-=+-+⎰,则x x dx e e --⎰11ln 21x x e C e -=++.解法2x x dx e e --⎰21111()()1211x xx x x de de e e e ==---+⎰⎰ 1(1)(1)()211x x x x d e d e e e -+=--+⎰⎰ 11ln 21x x e C e -=++. (3)解法1 11x dx e+⎰1(1)11x x xx xe e e dx dx e e +-==-++⎰⎰ 1(1)1xxdx d e e =-++⎰⎰ln(1)x x e C =-++.解法211xdx e+⎰(1)ln(1)11x x x x x e d e dx e C e e -----+==-=-++++⎰⎰. 解法3 令x u e =,x du e dx =,则有11x dx e +⎰1111()ln()111udu du C u u u u u=⋅=-=++++⎰⎰ ln()ln(1)1xx xe C e C e-=+=-+++. 注在计算不定积分时,用不同的方法计算的结果形式可能不一样,但本质相同.验证积分结果是否正确,只要对积分的结果求导数,若其导数等于被积函数则积分的结果是正确的.例9求下列不定积分:(1)ln tan sin cos xdx x x⎰.(2)arctan (1)x x x +.分析 在这类复杂的不定积分的求解过程中需要逐步凑微分. 解 (1)2ln tan ln tan sin cos tan cos x xdx dx x x x x=⎰⎰ln tan (tan )ln tan (ln tan )tan x d x xd x x ==⎰⎰21ln (tan )2x C =+. (2)2arctan arctan 2(1)1()x x dx d x x x x =++⎰⎰22arctan (arctan )(arctan )xd x x C ==+⎰. 例10 求21arctan1x dx x +⎰.分析 若将积分变形为1arctan (arctan )d x x ⎰,则无法积分,但如果考虑到凑出1x,将被积函数变形为221arctan 111()x x x⋅+,再将21x 与dx 结合凑成1()d x -,则问题即可解决. 解2222111arctanarctan arctan11()1111()1()x x x dx dx d x x x x x=⋅=-+++⎰⎰⎰11arctan (arctan )d x x =-⎰211(arctan )2C x=-+.例11求21ln (ln )xdx x x +⎰. 分析 仔细观察被积函数的分子与分母的形式,可知(ln )1ln x x x '=+.解221ln 11(ln )(ln )(ln )ln x dx d x x C x x x x x x+==-+⎰⎰. 例12(04研) 已知()x x f e xe -'=,且(1)0f =,则()_________f x =. 分析 先求()f x ',再求()f x . 解令x e t =,即ln x t =,从而ln ()tf t t'=.故 2ln 1()ln (ln )ln 2x f x dx xd x x C x ===+⎰⎰, 由(1)0f =,得0C =,所以21()ln 2f x x =.例13求sin 22sin dxx x+⎰.分析 被积函数为三角函数,可考虑用三角恒等式,也可利用万能公式代换.解法1sin 22sin dx x x +⎰3122sin (cos 1)4sin cos 22x d dx x x x x ⎛⎫ ⎪⎝⎭==+⎰⎰22tan 1tan 1122tan 442tan cos tan222x x d x d x x x ⎛⎫+ ⎪⎛⎫⎝⎭== ⎪⎝⎭⎰⎰ 211tan ln tan 8242x xC =++. 解法2令cos t x =,则 sin 22sin dxx x +⎰2sin 2sin (cos 1)2sin (1cos )dx xdx x x x x ==++⎰⎰212(1)(1)dt t t =--+⎰21112811(1)dt t t t ⎛⎫=-++ ⎪-++⎝⎭⎰12(ln |1|ln |1|)81t t C t =--++++ 111ln(1cos )ln(1cos )884(1cos )x x C x =--++++. 解法3令tan 2x t =,则22sin 1t x t =+,221cos 1t x t -=+,221dx dt t =+,则 sin 22sin dx x x +⎰21111ln ||484t dt t t C t ⎛⎫=+=++ ⎪⎝⎭⎰ 211tan ln |tan |8242x xC =++.例14 求11dx x ++⎰.分析 被积函数含有根式,一般先设法去掉根号,这是第二类换元法最常用的手段之一. 解 设1x t +=,即21x t =-,2dx tdt =,则212(1)1111t dt dt t t x ==-++++⎰⎰⎰22ln 1t t C =-++212ln(11)x x C =+-+++例15 求455x x-+-⎰.分析 被积函数中有开不同次的根式,为了同时去掉根号,选取根指数的最小公倍数.解45x t -=,34dx t dt =-,则24414(1)1155dxt dt t dt t t x x-==--+++-+-⎰⎰⎰ 214(ln 1)2t t t C =--+++4414[55ln(15)]2x x x C =----++-+. 例16 243(1)(1)dxx x +-⎰解 令311x t x -=+,即3211x t =--,2326(1)t dx dt t =-,则 243(1)(1)dxx x +-⎰23322332164(1)1(1)(1)1dx t dt t t x tx t x ==⋅--⋅--+⎰⎰132313131()2221x dt C C t t x +==-⋅+=-+-⎰. 例17求224x x dx -⎰.分析被积函数中含有根式24x -,可用三角代换2sin x t =消去根式. 解 设242cos (0)2x t t π-=<<,2cos dx tdt =,则222244sin 2cos 2cos 4sin 2x x dx t t tdt t dt -=⋅⋅=⋅⎰⎰⎰12(1cos4)2sin 42t dt t t C =-=-+⎰222sin cos (12sin )t t t t C =--+2212arcsin 4(1)222x x x x C =---+.注1 对于三角代换,在结果化为原积分变量的函数时,常常借助于直角三角形.注2 在不定积分计算中,为了简便起见,一般遇到平方根时总取算术根,而省略负平方根情况的讨论.对三角代换,只要把角限制在0到2π,则不论什么三角函数都取正值,避免了正负号的讨论.例18 求221(1)dx x +⎰. 分析虽然被积函数中没有根式,但不能分解因式,而且分母中含有平方和,因此可以考虑利用三角代换,将原积分转换为三角函数的积分.解 设tan x t =,2sec dx tdt =,()2241sec x t +=,则222241sec cos (1)sec t dx dt tdt x t ==+⎰⎰⎰111(1cos2)sin 2224t dt t t C =+=++⎰ 21arctan 22(1)xx C x =+++. 例19求22x a dx x-⎰. 分析 被积函数中含有二次根式22x a -,但不能用凑微分法, 故作代换sec x a t =, 将被积函数化成三角有理式.解 令sec x a t =,sec tan dx a t tdt =⋅,则22x a dx x -⎰22tan sec tan tan (sec 1)sec a t a t tdt a tdt a t dt a t=⋅⋅==-⎰⎰⎰ (tan )a t t C =-+22(arccos )x a aa C a x-=-+.例20求248x dx x x ++⎰.解 由于2248(2)4x x x ++=++,故可设22tan x t +=,22sec dx tdt =,22(2tan 2)2sec 2sec tan 2sec 2sec 48xt t dx dt t tdt tdt t x x -⋅==-++⎰⎰⎰⎰12sec 2ln sec tan t t t C =-++22482ln(248)x x x x x C =+++++++.()12ln 2C C =+注 2ax bx c ++ 由 22222224()0244()024b ac b a x a a a ax bx c b b ac a x a a a ⎧-++>⎪⎪++⎨-⎪--++<⎪⎩可作适当的三角代换, 使其有理化.例21 求23(24)x x -+.解23(24)x x -+322[3(1)]dx x =+-⎰,令13x t -=,则322321sec 11cos sin 3sec 33[3(1)]dxt dt tdt t C t x ===++-⎰⎰⎰21324x C x x -=+-+. 故 23(24)dx x x -+⎰21324x C x x -=+-+.例22求421(1)dx x x +⎰.分析当有理函数的分母中的多项式的次数大于分子多项式的次数时,可尝试用倒代换.解 令1x t=,21dx dt t =-,于是421(1)dx x x +⎰44221111t t dt dt t t --+==-++⎰⎰221(1)1t dt dt t =---+⎰⎰31arctan 3t t t C =--+3111arctan 3C x x x=--+. 注有时无理函数的不定积分当分母次数较高时,也可尝试采用倒代换,请看下例. 例23 求22a x dx -. 解 设1x t=,2dtdx t =-,则2222241()dt a a xt t t -⋅--=1222(1)a t t dt =--⎰.当0x >时,1222222221(1)(1)2a x dx a t d a t a-=---⎰ 32222(1)3a t C a -=-+322223()3a x C a x -=-+.当0x <时,有相同的结果.故22a xdx-322223()3a x C a x -=-+.注1第二类换元法是通过恰当的变换,将原积分化为关于新变量的函数的积分,从而达到化难为易的效果,与第一类换元法的区别在于视新变量为自变量,而不是中间变量.使用第二类换元法的关键是根据被积函数的特点寻找一个适当的变量代换.注2 用第二类换元积分法求不定积分,应注意三个问题: (1)用于代换的表达式在对应的区间内单调可导,且导数不为零. (2)换元后的被积函数的原函数存在. (3)求出原函数后一定要将变量回代.注3 常用的代换有:根式代换、三角代换与倒代换.根式代换和三角代换常用于消去被积函数中的根号,使其有理化,这种代换使用广泛.而倒代换的目的是消去或降低被积函数分母中的因子的幂.注4 常用第二类换元法积分的类型: (1)(,),n n f x ax b dx t ax b +=+⎰令. (2)(,),nnax b ax bf x dx t cx d cx d++=++⎰令. (3)222(,)f x a b x dx -⎰,可令sin a x t b =或cos ax t b =. (4)222(,)f x a b x dx +⎰,可令tan a x t b =或ax sht b =.(5)222(,)f x b x a dx -⎰,可令sec a x t b =或ax cht b=.(6)当被积函数含有22(40)px qx r q pr ++-<时,利用配方与代换可化为以上(3),(4),(5)三种情形之一.(7)当被积函数分母中含有x 的高次幂时,可用倒代换1x t=.例24求下列不定积分:(1)3x xe dx -⎰.(2)2sin 4x xdx ⎰.(3)2ln x xdx ⎰.(4)arcsin xdx ⎰. (5)arctan x xdx ⎰.(6)sin ax e bxdx ⎰22(0)a b +≠.分析上述积分中的被积函数是反三角函数、对数函数、幂函数、指数函数、三角函数中的某两类函数的乘积,适合用分部积分法.解(1)3x xe dx -⎰33333111()33339xx x x x x x xd e e e dx e e C -----=-=-+=--+⎰⎰. (2)2sin 4x xdx ⎰2211(cos4)cos4cos4442x x d x x x xdx =-=-+⎰⎰22111cos4(sin 4)cos4sin 4sin 448488x x x xd x x x x xdx =-+=-+-⎰⎰211cos4sin 4cos44832x x x x x C =-+++.(3)2ln x xdx ⎰3333211ln ()ln ln 33339x x x xd x x x dx x C ==-=-+⎰⎰.(4)解法1 arcsin xdx ⎰22arcsin arcsin 11x x dx x x x C x =-=+-+-⎰.解法2 令arcsin t x =,即sin x t =,则arcsin (sin )sin sin sin cos xdx td t t t tdt t t t C ==-=++⎰⎰⎰2arcsin 1x x x C =+-+(5)解法1 arctan x xdx ⎰222211arctan arctan 2221x x xdx x dx x ==-+⎰⎰2211arctan (1)221x x dx x =--+⎰ 21arctan arctan 222x x x x C =-++. 解法221arctan arctan (1)2x xdx xd x =+⎰⎰ 22111arctan arctan 2222x x xx dx x C ++=-=-+⎰.(6)解法1sin axe bxdx ⎰11sin ()sin cos axax ax b bxd e e bx e bxdx a a a ==-⎰⎰ 21sin cos ()ax ax be bx bxd e a a=-⎰2221sin cos sin ax ax axb b e bx e xbx e bxdx a a a=--⎰ 从而21221(1)sin sin cos ax ax ax b be bxdx e bx e bx C a a a+=-+⎰,则221sin (sin cos )ax axe bxdx e a bx b bx C a b =-++⎰.解法21sin cos axaxe bxdx e d bx b =-⎰⎰,然后用分部积分,余下的解答请读者自行完成. 注在用分部积分法求()f x dx ⎰时关键是将被积表达式()f x dx 适当分成u 和dv 两部分.根据分部积分公式udv uv vdu =-⎰⎰,只有当等式右端的vdu 比左端的udv 更容易积出时才有意义,即选取u 和dv 要注意如下原则:(1)v 要容易求;(2)vdu ⎰要比udv ⎰容易积出. 例25求cos ln(cot )x x dx ⎰.分析 被积函数为三角函数与对数函数的乘积, 可采用分部积分法. 解cos ln(cot )ln(cot )(sin )x x dx x d x =⎰⎰21sin ln(cot )sin (csc )cot x x x x dx x=⋅-⋅⋅-⎰ sin ln(cot )sec x x xdx =⋅+⎰ sin ln(cot )ln sec tan x x x x C =+++例26求2ln(1)x x dx ++⎰.分析 被积函数可以看成是多项式函数与对数函数的乘积,可采用分部积分法.解 2222112ln(1)ln(1)(1)211xx x dx x x x x dx x x x++=++-⋅⋅+⋅+++⎰⎰22ln(1)1x x x x dx x=++-+⎰122221ln(1)(1)(1)2x x x x d x -=++-++⎰22ln(1)1x x x x C =++-++.例27求1x xxe dx e -⎰.分析 可利用凑微分公式x x e dx de =,然后用分部积分;另外考虑到被积函数中含有根式,也可用根式代换.解法11x x dx e -⎰2(1)1x x x xd e e ==--⎰⎰211x x x e e dx ⎡⎤=---⎣⎦⎰, 令1x t e =-,则2ln(1)x t =+,221tdtdx t=+,则 212122(arctan )1xt dte dx t t C t -==-++⎰⎰,故1x x dx e -⎰()21212arctan 1x x x x e e e Cz =---+-+21414arctan 1x x x x e e e C =---+-+.解法21x e tz -=,则1xx xe dx e -⎰22222ln(1)2ln(1)41t t dt t t dt t =+=+-+⎰⎰ 22ln(1)44arctan t t t t C =+-++21414arctan 1x x x x e e e C =---+-+.注求不定积分时,有时往往需要几种方法结合使用,才能得到结果. 例28(01研) 求2arctan xxe dx e⎰. 分析 被积函数是指数函数和反三角函数的乘积,可考虑用分部积分法. 解法12arctan x xe dx e ⎰222211arctan ()arctan 22(1)x x x x xx x de e d e e e e e --⎡⎤=-=--⎢⎥+⎣⎦⎰⎰ 21arctan arctan 2x x x xe e e e C --⎡⎤=-+++⎣⎦. 解法2 先换元,令x e t =,再用分部积分法,请读者自行完成余下的解答.例29 求3csc xdx ⎰.分析 被积函数含有三角函数的奇次幂,往往可分解成奇次幂和偶次幂的乘积,然后凑微分,再用分部积分法.解32csc csc (csc )csc (cot )xdx x x dx xd x ==-⎰⎰⎰ 2csc cot cot csc x x x xdx =--⋅⎰ 3csc cot csc csc x x xdx xdx =--+⎰⎰ 3csc cot csc ln csc cot x x xdx x x =--+-⎰,从而31csc (csc cot ln csc cot )2xdx x x x x C =---+⎰. 注用分部积分法求不定积分时,有时会出现与原来相同的积分,即出现循环的情况,这时只需要移项即可得到结果. 例30求下列不定积分:(1)22221(1)x x x e dx x ---⎰. (2)2ln 1(ln )x dx x -⎰. 解(1)2222222112(1)1(1)xx xx x xdx e dx e dx e x x x --=----⎰⎰⎰ 221()11x x e dx e d x x =+--⎰⎰ 22221111x x x x e e e e dx dx C x x x x =+-=+----⎰⎰.(2)22ln 111(ln )ln (ln )x dx dx dx x x x -=-⎰⎰⎰ 221ln (ln )(ln )x x dx dx x x x x =+-⎰⎰ ln xC x=+. 注将原积分拆项后,对其中一项分部积分以抵消另一项,或对拆开的两项各自分部积分后以抵消未积出的部分,这也是求不定积分常用的技巧之一.例31 求sin(ln )x dx ⎰.分析 这是适合用分部积分法的积分类型,连续分部积分,直到出现循环为止. 解法1 利用分部积分公式,则有1sin(ln )sin(ln )cos(ln )x dx x x x x dx x=-⋅⎰⎰ sin(ln )cos(ln )x x x dx =-⎰sin(ln )cos(ln )sin(ln )x x x x x dx =--⎰,所以1sin(ln )[sin(ln )cos(ln )]2x dx x x x C =-+⎰. 解法2 令 ln x t =,t dx e dt =,则sin(ln )x dx ⎰=sin sin sin sin cos sin t t t t t te tdt e t e tdt e t e t e tdt =-=--⎰⎰⎰,所以11sin(ln )(sin cos )[sin(ln )cos(ln )]22t tx dx e t e t C x x x C =-+=-+⎰. 例32 求ln n n I xdx =⎰,其中n 为自然数. 分析 这是适合用分部积分法的积分类型. 解11ln ln ln ln n n n n n n I xdx x x n xdx x x nI --==-=-⎰⎰,即1ln n n n I x x nI -=-为所求递推公式.而1ln ln ln I xdx x x dx x x x C ==-=-+⎰⎰.注1 在反复使用分部积分法的过程中,不要对调u 和v 两个函数的“地位”,否则不仅不会产生循环,反而会一来一往,恢复原状,毫无所得.注2 分部积分法常见的三种作用: (1)逐步化简积分形式; (2)产生循环;(3)建立递推公式.例33求积分24411(21)(23)(25)x x dx x x x +--+-⎰.分析 计算有理函数的积分可分为两步进行,第一步:用待定系数法或赋值法将有理分式化为部分分式之和;第二步:对各部分分式分别进行积分.解 用待定系数法将24411(21)(23)(25)x x x x x +--+-化为部分分式之和.设24411(21)(23)(25)212325x x A B Cx x x x x x +-=++-+--+-, 用(21)(23)(25)x x x -+-乘上式的两端得24411(23)(25)(21)(25)(21)(23)x x A x x B x x C x x +-=+-+--+-+,两端都是二次多项式,它们同次幂的系数相等,即131155311A B C A B C A B C ++=⎧⎪--+=⎨⎪-+-=-⎩, 这是关于A ,B ,C 的线性方程组,解之得12A =,14B =-,34C =.由于用待定系数法求A ,B ,C 的值计算量大,且易出错,下面用赋值法求A ,B ,C .因为等式24411(23)(25)(21)(25)(21)(23)x x A x x B x x C x x +-=+-+--+-+是恒等式,故可赋予x 为任何值.令 12x =,可得12A =.同样,令32x =-得14B =-,令52x =,得34C =,于是 24411(21)(23)(25)x x dx x x x +--+-⎰111131221423425dx dx dx x x x =-+-+-⎰⎰⎰ 113ln 21ln 23ln 25488x x x C =--++-+ 231(21)(25)ln 823x x C x --=++. 例34 求321452dx x x x +++⎰.解 32452x x x +++是三次多项式,分解因式 32322452()3()2(1)x x x x x x x x +++=+++++22(1)(32)(1)(2)x x x x x =+++=++设221(1)(2)21(1)A B Cx x x x x =+++++++,即2()(23)(22)1A B x A B C x A B C +++++++=,从而0230221A B A B C A B C +=⎧⎪++=⎨⎪++=⎩, 解得1A =,1B =-,1C =,因此3221111()45221(1)dx dx x x x x x x -=++++++++⎰⎰ 211121(1)dx dx dx x x x =-++++⎰⎰⎰ 1ln 2ln 11x x C x =+-+-++. 例35求22(1)(1)dxx x x +++⎰.解因为222211(1)(1)11x x x x x x x x -+=+++++++,所以22221()(1)(1)11dx x x dx x x x x x x -+=+++++++⎰⎰222221(1)1(1)1212121d x d x x dxx x x x x +++=-+++++++⎰⎰⎰ 2221()1112ln(1)ln(1)13222()24d x x x x x +=-+++++++⎰ 2211321ln arctan 2133x x C x x ++=-++++.例36求2425454x x dx x x ++++⎰.解设24222545414x x Ax B Cx D x x x x ++++=+++++,则有 23254()()(4)4x x A C x B D x A C x B D ++=+++++++,比较两边同次幂的系数,解得53A =,1B =,53C =-,0D =,从而 24222541535543134x x x xdx dx dx x x x x +++=-++++⎰⎰⎰2222255151ln arctan 3134164x x x dx dx dx x C x x x x +=-+=++++++⎰⎰⎰. 例37 求322456x x dx x x +++⎰.分析 322456x x x x +++是假分式,先化为多项式与真分式之和,再将真分式分解成部分分式之和.解 由于32224615656x x x x x x x x +-=--++++ 98132x x x =--+++,则 322498(1)5632x x dx x dx x x x x +=--+++++⎰⎰219ln 38ln 22x x x x C =--++++. 例38 求5632x dxx x --⎰.解 令3u x =,23du x dx =,则533636321()123232x dx x d x udux x x x u u ==------⎰⎰⎰ 1112()3(1)(2)912u du du u u u u ==++-+-⎰⎰332121ln 1ln 2ln (1)(2)999u u C x x C =++-+=+-+. 例39 求2100(1)x dx x -⎰. 分析 被积函数2100(1)x x -是有理真分式,若按有理函数的积分法来处理,那么要确定1A ,2A ,…,100A ,比较麻烦.根据被积函数的特点:分母是x 的一次因式,但幂次较高,而分子是x 的二次幂,可以考虑用下列几种方法求解.解法1 令1x t -=,dx dt =-,则222100100100(1)21(1)x t t t dx dt dt x t t --+=-=--⎰⎰⎰98991002t dt t dt t dt ---=-+-⎰⎰⎰9798991112979899t t t C ---=-⋅++ 979899111(1)(1)(1)974999x x x C ---=---+-+. 解法222100100(1)1(1)(1)x x dx dx x x -+=--⎰⎰9910011(1)(1)x dx dx x x +=-+--⎰⎰ 99100(1)21(1)(1)x dx dx x x --=+--⎰⎰ 98991001112(1)(1)(1)dx dx dx x x x =-+---⎰⎰⎰ 979899111(1)(1)(1)974999x x x C ---=---+-+. 解法3 用分部积分法.22991001[(1)](1)99x dx x d x x -=--⎰⎰29999299(1)99(1)x x dx x x =---⎰2989921[(1)]99(1)9998x xd x x -=---⎰ 299989821[]99(1)9998(1)98(1)x x dx x x x =-----⎰ 299989712199(1)9949(1)999897(1)x x C x x x =-⋅-⋅+--⋅-. 注 形如()()P x Q x 的(()P x 与()Q x 均为多项式)有理函数的积分关键是将有理真分式分解成部分分式之和,而部分分式都有具体的积分方法,对于假分式则要化为真分式与多项式之和.例40 求13221dx x x ++-⎰. 分析 这是无理函数的积分,先要去掉根号化为有理函数的积分,分子分母有理化是常用去根号的方法之一.解132213221(3221)(3221)x x dx dx x x x x x x +--=++-++-+--⎰⎰112211(32)(21)44x dx x dx =+--⎰⎰ 332211(32)(21)1212x x C =+--+. 例41 求a xdx a x+-⎰. 解法12222221a x a x xdx dx a dx dx a x a x a x a x++==+----⎰⎰⎰⎰ 1222222211()()2a dx a x d a x a x -=----⎰⎰ 22arcsin xa a x C a=--+.解法2 令 a xt a x+=-,余下的请读者自行完成. 例42求154sin 2dx x+⎰.分析被积函数是三角有理函数,可用万能公式将它化为有理函数. 解令tan t x =,211dx dt t=+,则 21154sin 2585dx dt x t t =+++⎰⎰54332543311()3()1d t t =+++⎰154arctan()333t C =++154arctan(tan )333x C =++. 注虽然万能代换公式总能求出积分,但对于具体的三角有理函数的积分不一定是最简便的方法.通常要根据被积函数的特点,采用三角公式简化积分.例43求1sin cos dxx x++⎰.解法1令tan 2xu =,则2222211211sin cos 1111dx u du du u u x x u u u +==-+++++++⎰⎰⎰ln 1tan 2x C =++.解法21sin cos dxx x ++⎰22122sin cos 2cos cos (1tan )22222dx dx x x x x x ==++⎰⎰ 2()(tan )22cos (1tan )1tan222x x d d x x x==++⎰⎰ ln 1tan2xC =++. 注 可化为有理函数的积分主要要求熟练掌握如下两类: 第一类是三角有理函数的积分,即可用万能代换tan2xu =将其化为u 的有理函数的积分. 第二类是被积函数的分子或分母中带有根式而不易积出的不定积分.对于这类不定积分,可采用适当的变量代换去掉根号,将被积函数化为有理函数的积分.常用的变量代换及适用题型可参考前面介绍过的第二类换元法.例44 求2max{,1}x dx ⎰.分析 被积函数2max{,1}x 实际上是一个分段连续函数,它的原函数()F x 必定为连续函数,可先分别求出各区间段上的不定积分, 再由原函数的连续性确定各积分常数之间的关系.解 由于221,()max{,1}1,1x x f x x x >⎧==⎨≤⎩,设()F x 为()f x 的原函数,则312331,13(),11,13x C x F x x C x x x C ⎧+⎪<-⎪=+≤⎨⎪>⎪+⎩,其中1C ,2C ,3C 均为常数,由于()F x 连续,所以121(1)(1)13F C F C -+-=-+=-=-,231(1)1(1)3F C F C -+=+==+,于是1223C C =-+,3223C C =+,记 2C C =,则32312,133max{,1},112,133x C x x dx x C x x x C⎧-+⎪<-⎪=+≤⎨⎪>⎪++⎩⎰. 注对于一些被积函数中含有绝对值符号的不定积分问题,也可以仿照上述方法处理. 例45 求x e dx -⎰. 解 当0x ≥时,1xx xe dx e dx e C ---==-+⎰⎰. 当0x <时,2xx x edx e dx e C -==+⎰⎰.因为函数x e -的原函数在(,)-∞+∞上每一点都连续,所以120lim()lim()x xx x e C e C +--→→-+=+, 即1211C C -+=+,122C C =+,记 2C C =,则2,0,0xxxe C x e dx x e C --⎧-++≥⎪=⎨<+⎪⎩⎰. 错误解答 当0x ≥时,1xx x edx e dx e C ---==-+⎰⎰.当0x <时,2xx x edx e dx e C -==+⎰⎰.故12,0,0xxxe C x e dx e C x --⎧-+≥⎪=⎨+<⎪⎩⎰. 错解分析 函数的不定积分中只能含有一个任意常数,这里出现了两个,所以是错误的.事实上,被积函数x e -在(,)-∞+∞上连续,故在(,)-∞+∞上有原函数,且原函数在(,)-∞+∞上每一点可导,从而连续.可据此求出任意常数1C 与2C 的关系,使x e -的不定积分中只含有一个任意常数.注 分段函数的原函数的求法:第一步,判断分段函数是否有原函数.如果分段函数的分界点是函数的第一类间断点, 那么在包含该点的区间内,原函数不存在.如果分界点是函数的连续点,那么在包含该点的区间内原函数存在.第二步,若分段函数有原函数,先求出函数在各分段相应区间内的原函数,再根据原函数连续的要求,确定各段上的积分常数,以及各段上积分常数之间的关系.例46 求下列不定积分:(1)sin 1cos x x dx x ++⎰.(2)3sin 2cos sin cos xx x xe dx x-⎰.(3)cot 1sin xdx x+⎰.(4)3sin cos dxx x⎰. 解(1)注意到sin (1cos )xdx d x =-+及2211(tan )1cos 2cos 2xxdx dx d x ==+,可将原来的积分拆为两项,然后积分,即sin sin 1cos 1cos 1cos x x x xdx dx dx x x x +=++++⎰⎰⎰1(tan )(1cos )21cos x xd d x x =-++⎰⎰tan tan ln(1cos )22x xx dx x =--+⎰1tan 2ln cos ln(1cos )22x xx x C =+-++21tan2ln cos ln(2cos )222x x xx C =+-+ 1tan (ln 2)2x x CC C =+=-.(2)被积函数较为复杂,直接凑微分或分部积分都比较困难,不妨将其拆为两项后再观察.3sin sin sin 2cos sin cos tan sec cos xx x x x xedx e x xdx e x xdx x-=-⎰⎰⎰ sin sin ()(sec )x x xd e e d x =-⎰⎰sin sin sin sin sec x x x x xe e dx e x e dx =--+⎰⎰ sin (sec )x e x x C =-+.(3)cot cos 1(sin )1sin sin (1sin )sin (1sin )x x dx dx d x x x x x x ==+++⎰⎰⎰11(sin )(sin )sin 1sin d x d x x x =-+⎰⎰ sin ln 1sin x C x=++.(4)当分母是sin cos m n x x 的形式时,常将分子的1改写成22sin cos x x +,然后拆项,使分母中sin x 和cos x 的幂次逐步降低直到可利用基本积分公式为止.33cos sin cos sin cos sin dx dx xdx x x x x x =+⎰⎰⎰3sin 2csc2sin d xxdx x =+⎰⎰21ln csc2cot 22sin x x C x=--+.注将被积函数拆项,把积分变为几个较简单的积分,是求不定积分常用的技巧之一.例47 求223(1)x dx x -⎰.解 考虑第二类换元积分法与分部积分法,令sin x t =,则222353235sin tan sec (sec sec )(1)cos x t dx dt t tdt t t dt x t ===--⎰⎰⎰⎰, 而53323secsec (tan )sec tan 3tan sec tdt td t t t t tdt ==-⎰⎰⎰ 353sec tan 3(sec sec )t t t t dt =--⎰.故53313sec sec tan sec 44tdt t t tdt =+⎰⎰. 又32secsec (tan )sec tan tan sec tdt td t t t t tdt ==-⎰⎰⎰ 3sec tan (sec sec )t t t t dt =--⎰,从而3111sec sec tan ln sec tan 22tdt t t t t C =+++⎰, 所以223(1)x dx x -⎰3311sec tan sec 44t t tdt =-⎰3111sec tan sec tan ln sec tan 488t t t t t t C =--++ 32211ln 8(1)161x x xC x x++=-+--.例48 求7cos 3sin 5cos 2sin x xdx x x-+⎰.解因为(5cos 2sin )2cos 5sin x x x x '+=-,所以可设7cos 3sin (5cos 2sin )(5cos 2sin )x x A x x B x x '-=+++,即7cos 3sin (5cos 2sin )(2cos 5sin )x x A x x B x x -=++-,比较系数得527253A B A B +=⎧⎨-=-⎩, 解之得1A =,1B =,故7cos 3sin 5cos 2sin x x dx x x -+⎰(5cos 2sin )(5cos 2sin )5cos 2sin x x x x dx x x'+++=+⎰ (5cos 2sin )5cos 2sin d x x dx x x+=++⎰⎰ln 5cos 2sin x x x C =+++.例49 设()F x 是()f x 的原函数,且当0x ≥时有2()()sin 2f x F x x ⋅=,又(0)1F =,()0F x ≥,求()f x .分析 利用原函数的定义,结合已知条件先求出()F x ,然后求其导数即为所求.解 因为()()F x f x '=,所以2()()sin 2F x F x x '=,两边积分得2()()sin2F x F x dx xdx '=⎰⎰,即211()sin 4228x F x x C =-+, 由(0)1F =得12C =,所以 1()sin 414F x x x =-+从而()()12sin 414f x F x x x '==-+21sin 414x x =-+.。

不定积分分部积分法例题及解析

不定积分分部积分法例题及解析

不定积分分部积分法例题及解析说到不定积分,真是个让人又爱又恨的话题。

就像我们每天都要喝水,但有时候喝多了也会觉得腻。

今天咱们就来聊聊分部积分法,这可是解决不定积分的一把好手。

别担心,不会把你淹没在公式里,我会让它变得简单又有趣。

分部积分法就像一个老朋友,帮你把复杂的事情变得简单。

想象一下,你在吃一个超大汉堡。

最开始,汉堡看起来巨无霸,一口咬下去可能觉得咽不下去。

但是,如果把它分成两半,慢慢享用,突然就变得简单了。

这就是分部积分法的魅力。

公式长得像个数学怪兽,但其实它的样子是这样的:(int u , dv = uv int v , du)。

听起来是不是有点晦涩?别担心,咱们一起来拆解它。

选取 (u) 和 (dv) 是关键。

就像选汉堡的配料,你得挑你最喜欢的。

选择 (u) 的时候,通常选那些容易微分的,比如多项式;而 (dv) 通常是剩下的部分,容易积分的。

这个选择就像是搭配衣服,有些组合看起来很美,有些就像灾难现场。

对了,选择好之后,要记得微分 (u),积分 (dv)。

没错,这就是我们要的材料。

举个简单的例子。

想象一下我们要计算 (int x e^x , dx)。

这里的 (u) 可以选 (x),而(dv) 自然就是 (e^x , dx)。

所以,微分 (u) 得到 (du = dx),积分 (dv) 得到 (v = e^x)。

把这些放回公式里,咱们就能得出结论。

这样一来,整个积分问题瞬间变得可口多了。

把 (u) 和 (v) 带回公式,得到的就是 (x e^x int e^x , dx)。

看到没,原本复杂的事情,现在变得一目了然。

简单积分就行了,结果是 (x e^x e^x + C)。

听起来简单吗?其实也就是那么回事儿。

分部积分法不是万能钥匙,有时候也会碰到难题。

这就像考试时遇到让人抓狂的题目,你可能要多花些时间去琢磨。

这时候,不妨再试一次,或者换个角度思考。

数学的魅力就在于它的灵活性,你总能找到出路。

不定积分典型例题

不定积分典型例题

不定积分典型例题一、直接积分法直接积分法是利用基本积分公式和不定积分性质求不定积分的方法,解题时往往需对被积函数进行简单恒等变形,使之逐项能用基本积分公式.例1、求∫(1−1)x x dx x 234−54714解原式=∫(x −x )dx =x 4+4x 4+C 7e 3x +1例2、求∫x dx e +1解原式=∫(e 2x −e x +1)dx =例3、求∫12x e −e x +x +C 21dx 22sin x cos xsin 2x +cos 2x 11解原式=∫dx =dx +dx =tan x −cot x +C 2222∫∫sin x cos x cos x sin x例4、∫cos 2解原式=∫x dx 2x +sin x 1+cos x dx =+C 22x 2例5、∫dx 21+x x 2+1−11dx =(1−解原式=∫∫1+x 2)dx =x −arctan x +C 1+x 2注:本题所用“加1减1”方法是求积分时常用的恒等变形技巧.二、第一类换元积分法(凑微分法)∫f (x )dx =∫g [ϕ(x )]ϕ'(x )dx 凑成令ϕ(x )=u =∫g (u )du 求出=G (u )+C 还原=G [ϕ(x )]+C 在上述过程中,关键的一步是从被积函数f (x )中选取适当的部分作为ϕ'(x ),与dx 一起凑成ϕ(x )的微分d ϕ(x )=du 且∫g (u )du 易求.tan x dx cos x例1、求∫3−2sin x −d cos x =−∫(cos x )2d cos x =+C dx =∫解原式=∫cos x cos x cos x cos x cos x例2、求∫arcsin xx −x 2dx解原式=∫arcsin x1−x ⋅1x dx =∫2arcsin x1−(x )2d (x )=2∫arcsin xd (arcsin x )=(arcsin x )2+C注1dx =2d (x )x1−x9−4x 2 例3、求∫dx1−1d (2x )12 解原式=∫+∫(9−4x )2d (9−4x 2)232−(2x )28=12∫2d (x )11213+9−4x 2=arcsin x +9−4x 2+C 423421−(x )23例4、求∫tan 1+x 2⋅x1+x 2dx解原式=∫tan1+x 2d 1+x 2=−ln |cos 1+x 2|+C 例5、求∫x x −x −12dxx (x +x 2−1)22dx =x dx +x x −1dx 解原式=∫2∫∫x −(x 2−1)3x 31x 31222=+∫x −1d (x −1)=+(x −1)2+C 3233例6、求∫1dx 1+tan xcos x 1cos x −sin x )dx dx =∫(1+sin x +cos x 2cos x +sin x解原式=∫=1⎡1⎤1++(cos sin )x d x x =(x +ln |cos x +sin x |)+C ∫⎢⎥2⎣cos x +sin x ⎦211+x ln dx 1−x 21−x11+x 1+x 121+x ln (ln +C )d ln =∫21−x 1−x 41−x例7、求∫ 解原式= 例8、求∫1dx x e +1e x 1+e x −e x dx =∫dx −∫dx 解原式=∫e x +11+e x=∫dx −∫1x x d (1+e )=x −ln(1+e )+C x1+e例9、求∫1dx e x +e −xe x 1 解原式=∫2x dx =∫d (e x )=arctan e x +C x 2e +11+(e ) 例10、求∫sin x dx 1+sin x11−sin x )dx =∫dx −∫dx 21+sin x cos x解原式=∫(1−=x −∫1sin x dx +dx =x −tan x +sec x +C 22∫cos x cos x例11、求∫dx x 2−3ln x−12 解原式=∫(2−3ln x )d (ln x )1111(2−3ln x )2+C =∫(2−3ln x )(−)d (2−3ln x )=−⋅33−1+12−12=−22−3ln x +C 31dx a 2sin 2x +b 2cos 2x1b 2+a 2tan 2x d (tan x )=11a (tan x )d ab ∫1+(a tan x )2b b例 12、求∫ 解原式=∫=1a arctan(tan x )+C ab bx 4+1dx 例13、求∫6x +1(x 2)2−x 2+1x 2x 4−x 2+1+x 2dx +∫32dx dx =∫解原式=∫(x 2)3+1(x )x 6+1=∫111133dx +dx =arctan x +arctan x +C 232∫1+x 31+(x )3例14、求∫1dx x (1+x 8)1+x 8−x 811x 78=−dx dx dx 解原式=∫=ln |x |−ln(1+x )+C 88∫x ∫1+x x (1+x )8例15、求∫3x −2dx x 2−4x +53d (x 2−4x +5)1+4∫2 解原式=∫2dx 2x −4x +5x −4x +5d (x −2)3ln |x 2−4x +5|+4∫22(x −2)+13ln |x 2−4x +5|+4arctan(x −2)+C 2== 注由于分子比分母低一次,故可先将分子凑成分母的导数,把积分化为形1dx 的积分(将分母配方,再凑微分).如∫2ax +bx +cx 2 例16、已知f (x −1)=ln 2,且f [ϕ(x )]=ln x ,求∫ϕ(x )dx .x −22x 2−1+1x +1 解 因为f (x −1)=ln 2,故f (x )=ln ,又因为x −1−1x −12f [ϕ(x )]=ln ϕ(x )+1ϕ(x )+1x +1=ln x ,得=x ,解出ϕ(x )=,从而ϕ(x )−1ϕ(x )−1x −1∫ϕ(x )dx =∫ 例17、求∫x +12dx =∫(1+)dx =x +2ln |x −1|+C x −1x −11dx cos 4x1 解原式=∫sec 2xd tan x =∫(1+tan 2x )d tan x =tan x +tan 3x +C 3例18、求∫1+ln x dx 22+(x ln x ) 解原式=∫1d (x ln x )x ln x arctan(=)+C 2+(x ln x )222三、第二类换元法设x =ϕ(t )单调可导,且ϕ'(t )≠0,已知∫f [ϕ(t )]ϕ'(t )dt =F (t )+C ,则∫f (x )dx 令x =ϕ(t )=∫f [ϕ(t )]ϕ'(t )dt =F (t )+C t =ϕ−1(x )还原=F [ϕ−1(x )]+C选取代换x =ϕ(t )的关键是使无理式的积分化为有理式的积分(消去根号),同时使∫f [ϕ(t )]ϕ'(t )dt 易于计算.例1、求∫xdx(x +1)1−x 22 解令x =sin t ,dx =cos tdt原式=∫111sin t cos tdt d cos t (=−)d cos t =−+22∫∫(sin t +1)cos t 2−cos t 222−cos t 2+cos t2+cos t 12+1−x 2ln +C =−+C ln =−2222−cos t 222−1−x 1例2、求∫dxx41+x2解令x=tan t,dx=sec2tdtsec2tdt cos3tdt1−sin2t原式=∫=∫=∫d sin t=∫(sin−4t−sin−2t)d sin t 444tan t⋅sec t sin t sin t(1+x2)3(1+x2)111++C=−++C=−333sin t sin t3x xx2−9dxx2例3、求∫解令x=3sec t,则dx=3sec t⋅tan tdt3tan t tan2t原式=∫⋅3sec t⋅tan tdt=∫dt=∫(sec t−cos t)dt29sec t sec t=ln|sec t+tan t|−sin t+C1x x2−a2x2−a2=ln+−+C1a a xx2−a2+C=ln x+x−a−x22例4、求∫1dxx(x7+2)11 解令x=,则dx=−2dt,t t1t 6117 原式=∫(−2)dt =−∫dt =−d (1+2t )77∫11+2t 141+2t +2t 7t t 111ln |1+2t 7|+C =−ln |2+x 7|+ln |x |+C 14142=− 注设m ,n 分别为被积函数的分子,分母关于x 的最高次数,当n −m >1时,可用倒代换求积分.例5、求∫x +1x 2x −12dx11 解令x =,dx =−2dt t t 1+111+t 1d (1−t 2)t (−2)dt =−∫dt =−∫dt +∫ 原式=∫222t 111−t 1−t 21−t −1t 2t 2=−arcsin t +1−t +C =2x 2−11−arcsin +C x x例6、求∫x 3x −x 24dxt 10⋅t 4t 6t 1411解原式=11∫83⋅12t dt =12∫5dt =12∫5dt dx =12t dt t −t t −1t −1令12x =t t 10−1+14121121212⋅t dt =∫(t 5+1+5)dt 5=t 10+t 5+ln |t 5−1|+C =12∫5t −15t −1105561212=x 6+x 12+ln x 12−1+C 555555例7、求∫dx1+e x解令1+e x =t ,e x =t 2−1,dx =2t dt 2t −112t 1t −11+e x −1原式=∫⋅2dt =2∫2dt =ln +C =ln +C x t t −1t −1t +11+e +1ln x dx x 1+ln x例8、求∫解令t =1+ln x原式=∫ln x t −1d ln x =∫dt 1+ln x t112322=∫(t −)dt =t −2t 2+C =(ln x −2)1+ln x +C 33t例9、求∫x +1−1dx x +1+1解令x +1=t ,x =t 2−1,dx =2tdt因为原式=∫x +2−2x +1x +1dx =x +2ln |x |−2∫dx x x而∫x +12t 2dt 1dx =∫2=2∫(1+2)dt x t −1t −1t −1x +1−1+C =2x +1+ln +C t +1x +1+1=2t +ln原式=x +2ln |x |−4x +1−2ln x +1−1+C =x −4x +1+4ln x +1+1+C x +1+1四、分部积分法分部积分公式为∫uv 'dx =uv −∫u 'vdx 使用该公式的关键在于u ,v '的选取,可参见本节答疑解惑4.例1、求∫x 3e x dx解原式=∫x 3de x =x 3e x −3∫x 2de x =x 3e x −3x 2e x +6∫xde x =x 3e x −3x 2e x +6xe x −6e x +C例2、求∫x 2cos 2解原式=x dx 2121312x (1+cos x )dx =x +∫x cos xdx ∫262=131211x +∫x d sin x =x 3+x 2sin x −∫x sin xdx 6262131211x +x sin x +∫xd cos x =x 3+x 2sin x +x cos x −∫cos xdx 62621312x +x sin x +x cos x −sin x +C 623==例3、求∫e x dx令3x =t 解原式dx =3t 2dt=3∫t e dt =3∫t de 2t 2t =3t 2e t −6te t +6e t +C=33x 2e 3x −63xe 3x +6e 3x +C例4、求∫cos(ln x )dx解原式=x cos(ln x )+∫sin(ln x )dx=x cos(ln x )+x sin(ln x )−∫cos(ln x )dxx移项,整理得原式=[cos(ln x )+sin(ln x )]+C2注应用一次分部积分法后,等式右端循环地出现了我们所要求出的积分式,移项即得解,类似地能出现循环现象的例题是求如下不定积分:αxe ∫cos βxdx 或αxe ∫sin βxdx例5、求∫ln(x +1+x 2)dx解原式=x ln(x +1+x 2)−∫x 1+x 2dx =x ln(x +1+x 2)−1+x 2+Cln 3x例6、求∫2dx x 1ln 3x 1 解原式==∫−ln xd ()=−−3∫ln 2xd ()x x x3ln 3x ⎡ln 2x 1⎤ln 3x 3ln 2x 6ln x 6−3⎢+2∫ln xd ()⎥=−−−−+C=−x x ⎦x x x x ⎣x例7、推导∫1dx 的递推公式22n(x +a ) 解令I n =∫1dx (x 2+a 2)nx x 2+a 2−a 21x 2I n =2n +dx 222=+−nI na dx n 2n 22n +122n 22n +1∫∫(x +a )(x +a )(x +a )(x +a )=x 2+2nI −2na In +1n 22n(x +a )I n +1=12na 2⎡⎤x(2n 1)I +−n ⎥⎢(x 2+a 2)n ⎣⎦⎡⎤x(2n 3)I +−n −1⎥⎢(x 2+a 2)n −1⎣⎦I n =12(n −1)a 2例8、推导I n=∫tan n xdx 的递推公式.解I n=∫tan n −2x ⋅tan 2xdx =∫tan n −2x ⋅(sec 2x −1)dx=∫tan n −2x ⋅sec 2xdx −∫tan n −2xdx =∫tann −2xd (tan x )−In −2=1tan n −1x −I n −2n −1注应用分部积分法可以建立与正整数n 有关的一些不定积分的递推公式.例9、已知f (x )的一个原函数是e −x ,求∫xf '(x )dx解原式=∫xdf (x )=xf (x )−∫f (x )dx =xf (x )−e −x +C例10、求∫x arctan x ln(1+x2)dx解因为∫x ln(1+x 2)dx ==221ln(1+x 2)d (1+x 2)∫211(1+x 2)ln(1+x 2)−x 2+C 221⎤⎡1所以 原式=∫arctan xd ⎢(1+x 2)ln(1+x 2)−x 2⎥2⎦⎣211⎡x 2⎤2222=(1+x )ln(1+x )−x arctan x −∫⎢ln(1+x )−2⎥22⎣1+x ⎦[]=13x arctan x (1+x 2)ln(1+x 2)−x 2−3−ln(1+x 2)+x +C 222[]注本题是三类函数相乘的形式,这类问题大多采用本题的方法.xe arctan xdx 例11、求∫2(1+x )解令x =tan t ,dx =sec 2tdttan t ⋅e t sec 2tdt =∫sin t cos te t dt 原式=∫4sec te arctan x (x 2+x −1)11t t +C =∫sin 2te dt =e (sin 2t −cos 2t )+C =25(1+x )210x 2arctan xdx 例12、求∫21+x 解原式=∫(1−11=−)arctan xdx arctan xdx ∫∫1+x 2arctan xdx 1+x 211=x arctan x −ln(1+x 2)−(arctan x )2+C22arcsin x 1+x 2⋅dx 例13、求∫22x 1−x 解令x =sin t ,arcsin x =t ,dx =cos tdt ,t (1+sin 2t )t cos ⋅tdt = 原式=∫∫sin 2tdt +∫tdt sin 2t cos t=td (−cot t )+∫121t=−t cot t +∫cot tdt +t2221=−t cos t +ln |sin t |+t 2+C21−x 21=−arcsin x +ln |x |+(arcsin x )2+Cx 2注直接积分法、换元法、分部积分法是求不定积分最重要的方法,主要用到了“拆、凑、换、分”的技巧,同时应注意这些方法的综合运用.五、有理函数的积分有理函数的积分总可化为整式和如下四种类型的积分:(1)∫Adx =A ln |x −a |+C x −a−AA 1dx =+C (n ≠1)n n −1(x −a )n −1(x −a )(2)∫(3)∫dx dx dx =∫⎡p 4q −p 2⎤n(x 2+px +q )n 2⎢(x +)+⎥24⎣⎦p令x +=u24q −p 2令=a 4=du 22n∫(u +a )2(4)∫(x +a )dx 11p dx()dx a =−+−,其2n 2n −12n∫(x +px +q )2(n −1)(x +px +q )2(x +px +q )中p 2−4q <0.这就是说有理函数积分,从理论上讲,可先化假分式为整式与真分式之和,再将真分式化为若干部分分式之和,然后逐项积分,但这样做有时非常复杂,因此我们最好先分析被积函数的特点,寻求更合适,更简捷的方法也是很必要的.例1、求∫dx2x −2x +31dx d (x −1)x −1arctan ==+C(x −1)2+2∫2+(x −1)222解原式=∫x 2+5x +4例2、求∫4dx 2x +5x +4x 2+4x解原式=∫2dx +5dx222∫(x +1)(x +4)(x +1)(x +4)dx 5dx 25112=∫2arctan x ()dx +∫2=+−222∫x +12(x +1)(x +4)6x +1x +45x 2+1+C=arctan x +ln 26x +4本题若用待定系数法,较麻烦一些,也可获得同样的结果.事实上,x 2+5x +4Ax +B Cx +D 设4=2+2,通分后应有2x +5x +4x +1x +4x 2+5x +4=(Ax +B )(x 2+4)+(Cx +D )(x 2+1)得A +C =0,B +D =0,4A +C =5,4B +D =4比较等式两端x 的同次幂的系数,55由此,A =,B =1,C =−,D =−1335⎡5⎤−−+11x x ⎢3⎥5x 2+13+2+arctan x +C 故原式=∫⎢2⎥dx =ln 2x +4⎥6x +4⎢x +1⎣⎦例3、求∫解设xdx3x −1x A Bx +C2=+,通分后应有x =A (x +x +1)+(Bx +C )(x −1)32x −1x −1x +x +1比较等式两端x 的同次幂的系数,得A +B =0,A −B +C =1,A −C =0,由此,111A =,B =−,C =333⎡1⎤x −1故原式=∫⎢dx −⎥2⎣3(x −1)3(x +x +1)⎦1d (x +)1dx 12x +112dx +∫=∫−∫23x −16x +x +12(x +1)2+324(x −1)212x +11=ln 2+arctan +C 6x +x +133例4、求∫dx24x (1−x )(x 2+1)−x 211解原式=∫2dx dx =−∫x 2(1−x 2)∫(1−x 2)(1+x 2)dx x (1−x 4)=∫(11111+−+)dx ()dx x 21−x 22∫1−x 21+x 211111=−+∫−dx dx 22∫21+x x 21−x 111+x 1−arctan x +C=−+ln x 41−x 2注:本题若用待定系数法,应当将被积函数分解为A B C D Ex +F11==++++x 2(1−x 4)x 2(1−x )(1+x )(1+x 2)x x 21−x 1+x 1+x 2然后再确定系数,显然这样做比较麻烦,也可获同样结果,此处从略.x 11dxdx 例5、求∫8x +3x 4+3解令x 4=u ,则du =4x 3dx ,于是,u 21411−原式=∫2du =∫(1+)du u +1u +24u +3u +241x 41=(u +ln |u +1|−4ln |u +2|+C )=+ln(1+x 4)−ln(x 4+2)+C 444x 5例6、求∫dx23(2x +3)解令2x 2+3=t ,x 2=t −3,4xdx =dt ,从而,2(t −3)21169原式=∫dt =(−2+3)dt 3∫4⋅4t 16t t t 169169(ln |t |+−2)+C =[ln |2x 2+3|+2−]+C 221616t 2t 2x +32(2x +3)=x 4dx 例7、求∫4x +5x 2+4x 4−(5x 2+4)解4=1+4x +5x 2+4x +5x 2+4−(5x 2+4)A 1x +B 1A 2x +B2设4=2+2,通分后应有x +5x 2+4x +1x +4−(5x 2+4)=(A 1x +B 1)(x 2+4)+(A 2x +B 2)(x 2+1)116由此,A 1=0,B 1=,A 2=0,B 2=−,故33⎡18116⎤xdx −原式=∫⎢1+arctan arctan =x +x −+C ⎥223(1)3(4)++x x 332⎣⎦例8、求∫dx 102x (x +1)x 10+1−x 10x 911==−10解由于102102102x (x +1)x (x +1)x (x +1)(x +1)1x 9x 9=−10−102x (x +1)(x +1)⎤⎡1x 9x 91d (x 10+1)1d (x 10+1)dx =ln |x |−∫10原式=∫⎢−10−∫10−102⎥2x x x (1)(1)10x +110(x +1)++⎦⎣111x 10110=ln |x |−ln(x +1)++C =ln ++C10x 10+110(x 10+1)1010(x 10+1)注对被积函数先做初等变形常常可以使问题得到简化,常见的初等变形有:分子分母同乘一个因子;有理化;加一项或者减一项以及利用三角函数恒等变形等.六、三角函数有理式的积分一般从理论上讲,三角函数有理式的积分∫R (sin x ,cos x )dx 可通过万能代换x化为代数有理式的积分,但有时较繁,因此我们常采用三角恒等变形,2然后再求解.t =tan 例1、求∫dx4sin x cos xsin 2x +cos 2x sin x dx dx dx =+解原式=∫442∫∫sin x cos x cos x sin x cos x=−∫=sin x dx1d (cos x )dx ++∫cos 2x ∫sin xcos 4x x 111d (cos x )x −+ln |tan |=++ln |tan |+C 3cos 3x ∫cos 2x 23cos 3x cos x 2例2、求∫1+sin xdxx x x x +cos 2+2sin cos dx2222解原式=∫sin 2=∫(sin x x x x x x+cos )2dx =∫(sin +cos )dx =−2cos +2sin +C222222例3、求∫dx2sin x −cos x +5x 2t 1−t 22dt,cos x ,dx ==,于是解令t =tan ,则sin x =22221+t 1+t 1+t x ⎞⎛3tan +1⎟⎜11dt ⎛3t +1⎞2⎟+C 原式=∫2arctan ⎜arctan ⎜=⎟+C =3t +2t +2555⎜⎟⎝5⎠⎜⎟⎝⎠例4、求∫sin xdx 1+sin xsin x (1−sin x )sin x 1−cos 2xdx =∫dx −∫dx 解原式=∫cos 2x cos 2x cos 2x=1−tan x +x +C cos xsin xdx sin x +cos x1sin x +cos x +sin x −cos x 1⎛sin x −cos x ⎞dx =⎜1+⎟dx ∫∫2sin x +cos x 2⎝sin x +cos x ⎠例5、求∫解原式==11−d (sin x +cos x )1x +∫=(x −ln |sin x +cos x |)+C 22sin x +cos x 2例6、求∫sin 5x cos xdx解原式=111[sin 4x +sin 6x ]dx =−cos 4x −cos6x +C 2∫812注积化和差公式1sin αx ⋅cos βx =[sin(α+β)x +sin(α−β)x ]21sin αx ⋅sin βx =[cos(α−β)x −cos(α+β)x ]21cos αx ⋅cos βx =[cos(α+β)x +cos(α−β)x ]2例7、求∫dx2(2+sin x )cos x解令sin x =t ,cos xdx =dt1(2+t 2)+(1−t 2)dt =于是原式=∫dt(2+t 2)(1−t 2)3∫(2+t 2)(1−t 2)=1dt 111+t 1dt tln +=+arctan()+C 22∫∫31−t 32+t 61−t 32211+sin x 1sin xarctan(=ln +)+C 61−sin x 322注形如∫R (sin x ,cos x )dx 的有理函数的积分,一般可利用代换tan 为有理函数的积分.(i) 若R (−sin x ,cos x )=−R (sin x ,cos x )或R (sin x ,−cos x )=−R (sin x ,cos x )成立,最好利用代换cos x =t 或对应的sin x =t .(ii) 若等式R (−sin x ,−cos x )=R (sin x ,cos x )成立,最好利用代换tan x =t .x=t 化2例8、求∫sin xdx sin 3x +cos 3x解令tan x =t ,则sec 2xdx =dt ,于是t 1(1+t )2−(1−t +t 2)1t +11dt dt =dt =dt −原式=∫1+t 33∫(1+t )(1−t +t 2)3∫1−t +t 23∫1+t 112t −11arctan()−ln |1+t |+C =ln(t 2−t +1)+63332tan x −11tan 2x −tan x +11+arctan()+C =ln 26(1+tan x )33 21。

不定积分典型例题讲解

不定积分典型例题讲解

4
目录 上页 下页 返回 结束
例1. 求
2 9x
x3x 4
x
dx
.
解: 原式
2x3x 32 x 22
x
dx
1
(
32) x d (32)2 x
ax dx
a
x
ln
a
dx
1
ln
2 3
d (32) x 1 (32)2 x
arctan(
2 3
)x
C
ln 2 ln3
2021/11/14
5
目录 上页 下页 返回 结束
一般经验: 按“反, 对, 幂, 指 , 三” 的顺
序,
排前者取为 u , 排后者取为 v .
计算格式: 列表计算
2021/11/14
3
目录 上页 下页 返回 结束
多次分部积分的 规 律
u v(n1) dx u v(n) uv(n) dx
u v(n) uv(n1) uv(n1) dx u v(n) uv(n1) uv(n2) uv(n2) dx
习题课
第四章
不定积分的计算方法
一、 求不定积分的基本方法 二、几种特殊类型的积分
2021/11/14
1
目录 上页 下页 返回 结束
一、 求不定积分的基本方法
1. 直接积分法
通过简单变形, 利用基本积分公式和运算法则 求不定积分的方法 .
2. 换元积分法
第一类换元法
f (x)dx
f [(t)](t) dt

F(x)F(x)dx
sin2
2xdx
1
cos 2
4xdx

F
2
(x)

一道不定积分的几种解法

一道不定积分的几种解法

一道不定积分的几种解法
一道不定积分的题目可以有很多种解法,下面就以一个具体的例子来讲解不定积分的几种解法方法。

例:求不定积分∫(x^2 + 2x + 1)dx。

解法一:基本法则
我们可以使用基本法则求解这个不定积分。

根据积分的线性性质,我们可以将该积分拆分为三个部分:
∫(x^2 + 2x + 1)dx = ∫x^2dx + ∫2xdx + ∫1dx
对于每个部分,我们可以使用基本积分公式进行计算:
∫x^2dx = 1/3*x^3 + C1 (其中C1为常数)
∫2xdx = x^2 + C2 (其中C2为常数)
∫1dx = x + C3 (其中C3为常数)
不定积分的结果为:
∫(x^2 + 2x + 1)dx = x^2 + 2x + 1 + C (其中C为常数)
解法三:分部积分法
分部积分法可以用于求解含有乘积的积分。

公式为∫u*dv = uv - ∫v*du。

对于∫(x^2 + 2x + 1)dx,我们可以选择u = x^2,dv = dx。

则有du = 2xdx,v = x。

对第二个积分∫1*dx,由于∫1*dx = x + C2 (其中C2为常数),所以不需要再做进一步的计算。

以上就是三种不定积分的解法方法。

对于不同的题目,可能有不同的最佳解法,所以灵活应用各种方法是非常重要的。

不定积分参考答案

不定积分参考答案

不定积分参考答案不定积分参考答案不定积分是微积分中的重要概念,它与定积分相对应。

在求解不定积分时,我们需要找到一个函数的原函数,即求出它的不定积分。

本文将介绍一些常见函数的不定积分参考答案,并探讨一些与不定积分相关的概念和性质。

一、基本积分公式在求解不定积分时,我们可以利用一些基本积分公式来简化计算。

以下是一些常见的基本积分公式:1. $\int x^n dx = \frac{1}{n+1}x^{n+1} + C$ (其中n不等于-1)2. $\int e^x dx = e^x + C$3. $\int a^x dx = \frac{1}{\ln a}a^x + C$4. $\int \sin x dx = -\cos x + C$5. $\int \cos x dx = \sin x + C$6. $\int \frac{1}{\cos^2 x} dx = \tan x + C$7. $\int \frac{1}{\sin^2 x} dx = -\cot x + C$这些基本积分公式可以帮助我们快速求解一些常见函数的不定积分。

但需要注意的是,对于复杂的函数,可能需要利用一些积分技巧来求解。

二、常见函数的不定积分1. $\int \frac{1}{x} dx = \ln |x| + C$这是一个非常重要的积分公式,也是自然对数函数的定义。

需要注意的是,由于对数函数的定义域不包括0,所以在不定积分中,我们需要加上绝对值。

2. $\int \frac{1}{x^2} dx = -\frac{1}{x} + C$这是一个常见的反比例函数的不定积分。

需要注意的是,由于分母中的x不能为0,所以在不定积分中,我们需要加上限制条件。

3. $\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C$这是一个三角函数的不定积分,也是反正弦函数的定义。

需要注意的是,由于反正弦函数的定义域为[-1, 1],所以在不定积分中,我们需要加上限制条件。

不定积分的例题分析及解法

不定积分的例题分析及解法

不定积分的例题分析及解法这一章的基本概念是原函数、不定积分、主要的积分法是利用基本积分公式,换元积分法和分部积分法。

对于第一换元积分法,要求熟练掌握凑微分法和设中间变量)(x u ϕ=,而第二换元积分法重点要求掌握三角函数代换,分部积分法是通过“部分地”凑微分将⎰υud 转化成⎰du υ,这种转化应是朝有利于求积分的方向转化。

对于不同的被积函数类型应该有针对性地、灵活地采用有效的积分方法,例如)(x f 为有理函数时,通过多项式除法分解成最简分式来积分,)(x f 为无理函数时,常可用换元积分法。

应该指出的是:积分运算比起微分运算来,不仅技巧性更强,而且业已证明,有许多初等函数是“积不出来"的,就是说这些函数的原函数不能用初等函数来表示,例如dx x x ⎰sin ;dx e x ⎰-2;dx x ⎰ln 1;⎰-x k dx 22sin 1(其中10<<k )等。

这一方面体现了积分运算的困难,另一方面也推动了微积分本身的发展,在第7章我们将看到这类积分的无限形式的表示。

一、疑难分析(一)关于原函数与不定积分概念的几点说明(1)原函数与不定积分是两个不同的概念,它们之间有着密切的联系.对于定义在某区间上的函数)(x f ,若存在函数)(x F ,使得该区间上每一点x 处都有)()(x f x F =',则称)(x F 是)(x f 在该区间上的原函数,而表达式C C x F ()(+为任意常数)称为)(x f 的不定积分。

(2))(x f 的原函数若存在,则原函数有无限多个,但任意两个原函数之间相差某个常数,因此求)(x f 的不定积分⎰dx x f )(时,只需求出)(x f 的一个原函数)(x F ,再加上一个任意常数C 即可,即⎰+=C x F dx x f )()(。

(3)原函数)(x F 与不定积分⎰dx x f )(是个体与全体的关系,)(x F 只是)(x f 的某个原函数,而⎰dx x f )(是)(x f 的全部原函数,因此一个原函数只有加上任意常数C 后,即C x F +)(才能成为)(x f 的不定积分,例如3,21,1222-++x x x 都是x 2的原函数,但都不是x 2的不定积分,只有C x +2才是x 2的不定积分(其中C 是任意常数)。

不定积分公式大全 含求积分通用方法及例题

不定积分公式大全 含求积分通用方法及例题

不定积分小结一、不定积分基本公式(1)∫x a dx=x a+1a+1+C(a≠−1) (2)∫1xdx=ln|x|+C(3)∫a x dx=a xln a+C(4)∫sin x dx=−cos x+C(5)∫cos x dx=sin x+C(6)∫tan x dx=−ln|cos x|+C (7)∫cot x dx=ln|sin x|+C(8)∫sec x dx=ln|sec x+tan x|+C (9)∫csc x dx=ln|csc x−cot x|+C(10)∫sec2x dx=tan x+C (11)∫csc2x dx=−cot x+C(12)∫dx1+x2=arctan x+C(13)∫dxx2+a2=1aarctan xa+C(14)∫dxx2−a2=12aln|a−xa+x|+C(15)∫dxa2−x2=12aln|a+xa−x|+C(16)∫√1−x2=arcsin x+C(17)√a2−x2=arcsin xa+C(18)√x2±a2=ln|x+√x2±a2|+C(19)∫√a2−x2dx=x2√a2−x2+a22arcsinxa+C(20)∫√x2±a2dx=x2√x2±a2±a22ln|x+√x2±a2|+C二、两个重要的递推公式(由分部积分法可得)(1)D n=∫sin n x dx(详情请查阅教材166页)则D n=−cos x sin n−1xn+n−1nD n−2(求三角函数积分)易得D n:n为奇数时,可递推至D1=∫sin x dx=−cos x+C;n为偶数时,可递推至D2=∫sin2x dx=x2−sin2x4+C;(2)I n=∫dx(x2+a2)n(详情请查阅教材173页)则I n+1=12na2x(x2+a2)n+2n−12na2I n易得I n可递推至I1=∫dxx2+a2=1aarctan xa+C迅捷P DF编辑器(这是有理函数分解后一种形式的积分的求法,大家可以回顾课本恢复记忆)三、普遍方法(一)换元积分法:第一类换元积分法(凑微分法)这类方法需要敏锐的观察力,即观察出某个函数的导数,这就要求我们熟悉常见函数的导数。

不定积分解题方法及技巧总结

不定积分解题方法及技巧总结

不定积分解题方法及技巧总结【解】例2:【解】3.第二类换元法:设是单调、可导的函数,并且具有原函数,则有换元公式第二类换元法主要是针对多种形式的无理根式。

常见的变换形式需要熟记会用。

主要有以下几种:(7)当根号内出现单项式或多项式时一般用代去根号。

但当根号内出现高次幂时可能保留根号,(7)当根号内出现单项式或多项式时一般用代去根号。

但当根号内出现高次幂时可能保留根号,4.分部积分法.公式:分部积分法采用迂回的技巧,规避难点,挑容易积分的部分先做,最终完成不定积分。

具体选取时,通常基于以下两点考虑:(1)降低多项式部分的系数(2)简化被积函数的类型举两个例子吧~!例3:【解】观察被积函数,选取变换,则例4:【解】上面的例3,降低了多项式系数;例4,简化了被积函数的类型。

有时,分部积分会产生循环,最终也可求得不定积分。

在中,的选取有下面简单的规律:将以上规律化成一个图就是:(aarcsinx)(lnxPm(x)sinx)νμ但是,当时,是无法求解的。

对于(3)情况,有两个通用公式:(分部积分法用处多多~在本册杂志的《涉及lnx的不定积分》中,常可以看到分部积分)5不定积分中三角函数的处理1.分子分母上下同时加、减、乘、除某三角函数。

被积函数上下同乘变形为令,则为2.只有三角函数时尽量寻找三角函数之间的关系,注意的使用。

三角函数之间都存在着转换关系。

被积函数的形式越简单可能题目会越难,适当的使用三角函数之间的转换可以使解题的思路变得清晰。

3.函数的降次①形如积分(m,n为非负整数)当m为奇数时,可令,于是,转化为多项式的积分当n为奇数时,可令,于是,同样转化为多项式的积分。

当m,n均为偶数时,可反复利用下列三角公式:不断降低被积函数的幂次,直至化为前两种情形之一为止。

②形如和的积分(n为正整数)令,则,,从而已转化成有理函数的积分。

类似地,可通过代换转为成有理函数的积分。

③形如和的积分(n为正整数)当n为偶数时,若令,则,于是已转化成多项式的积分。

不定积分100道例题及解答

不定积分100道例题及解答

不定积分100道例题及解答摘要:一、引言1.1 积分的概念1.2 不定积分的概念二、不定积分的性质2.1 不定积分的存在性2.2 不定积分的线性性2.3 不定积分的连续性三、不定积分的计算方法3.1 基本积分公式3.2 反常积分3.3 复合函数积分3.4 隐函数积分3.5 参数方程积分四、100 道不定积分例题及解答4.1 例题1-104.2 例题11-204.3 例题21-30...4.10 例题91-100五、结论5.1 不定积分在实际问题中的应用5.2 不定积分的技巧和策略正文:一、引言1.1 积分的概念积分学是微积分学的一个重要分支,它主要研究如何求解一个函数在某一区间上的累积效应。

积分可以形象地理解为“求曲边梯形的面积”,即将函数的图像与坐标轴所围成的曲边梯形面积分解为无数个无穷小的矩形,然后求和得到总面积。

1.2 不定积分的概念不定积分,又称为一元函数的不定积分,是指求解一个函数f(x) 在区间[a, b] 上的原函数F(x)。

原函数F(x) 的导数等于原函数f(x),即F"(x) =f(x)。

不定积分的目的是找到一个函数F(x),使得F"(x) = f(x),并在给定的区间[a, b] 上求解该函数。

二、不定积分的性质2.1 不定积分的存在性根据牛顿- 莱布尼茨公式,几乎所有的连续函数都存在原函数,即具有不定积分。

然而,存在一些特殊的函数,例如非连续函数、含有分段的函数等,它们可能没有不定积分。

2.2 不定积分的线性性不定积分具有线性性,即对于任意的两个函数f(x) 和g(x),它们的和的不定积分等于各自不定积分的和,即∫(f(x) + g(x)) dx = ∫f(x) dx + ∫g(x)dx。

2.3 不定积分的连续性如果一个函数在某一区间上连续,那么它的不定积分在该区间上也是连续的。

三、不定积分的计算方法3.1 基本积分公式基本积分公式包括幂函数、三角函数、指数函数、对数函数等的积分公式,通过记忆这些公式,可以简化不定积分的计算过程。

不定积分的例题分析及解法

不定积分的例题分析及解法

不定积分的例题分析及解法这一章的基本概念是原函数、不定积分、主要的积分法是利用基本积分公式,换元积分法和分部积分法。

对于第一换元积分法,要求熟练掌握凑微分法和设中间变量)(x u ϕ=,而第二换元积分法重点要求掌握三角函数代换,分部积分法是通过“部分地”凑微分将⎰υud 转化成⎰du υ,这种转化应是朝有利于求积分的方向转化。

对于不同的被积函数类型应该有针对性地、灵活地采用有效的积分方法,例如)(x f 为有理函数时,通过多项式除法分解成最简分式来积分,)(x f 为无理函数时,常可用换元积分法。

应该指出的是:积分运算比起微分运算来,不仅技巧性更强,而且业已证明,有许多初等函数是“积不出来"的,就是说这些函数的原函数不能用初等函数来表示,例如dx x x ⎰sin ;dx e x ⎰-2;dx x ⎰ln 1;⎰-x k dx 22sin 1(其中10<<k )等。

这一方面体现了积分运算的困难,另一方面也推动了微积分本身的发展,在第7章我们将看到这类积分的无限形式的表示。

一、疑难分析(一)关于原函数与不定积分概念的几点说明(1)原函数与不定积分是两个不同的概念,它们之间有着密切的联系.对于定义在某区间上的函数)(x f ,若存在函数)(x F ,使得该区间上每一点x 处都有)()(x f x F =',则称)(x F 是)(x f 在该区间上的原函数,而表达式C C x F ()(+为任意常数)称为)(x f 的不定积分。

(2))(x f 的原函数若存在,则原函数有无限多个,但任意两个原函数之间相差某个常数,因此求)(x f 的不定积分⎰dx x f )(时,只需求出)(x f 的一个原函数)(x F ,再加上一个任意常数C 即可,即⎰+=C x F dx x f )()(。

(3)原函数)(x F 与不定积分⎰dx x f )(是个体与全体的关系,)(x F 只是)(x f 的某个原函数,而⎰dx x f )(是)(x f 的全部原函数,因此一个原函数只有加上任意常数C 后,即C x F +)(才能成为)(x f 的不定积分,例如3,21,1222-++x x x 都是x 2的原函数,但都不是x 2的不定积分,只有C x +2才是x 2的不定积分(其中C 是任意常数)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学不定积分例题思路和答案超全内容概要课后习题全解习题4-1:求下列不定积分1.知识点:。

直接积分法的练习——求不定积分的基本方法思路分析:!利用不定积分的运算性质和基本积分公式,直接求出不定积分(1)★思路: 被积函数,由积分表中的公式(2)可解。

解:(2)★思路: 根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:(3)★思路: 根据不定积分的线性性质,将被积函数分为两项,分别积分。

:解.(4)★思路: 根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:(5)★★思路:观察到后,根据不定积分的线性性质,将被积函数分项,分别积分。

解:(6)★★思路:注意到,根据不定积分的线性性质,将被积函数分项,分别积分。

解:注:容易看出(5)(6)两题的解题思路是一致的。

一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。

(7)★思路:分项积分。

解:(8)★思路:分项积分。

解:(9)★★思路:?看到,直接积分。

解:(10)★★思路: 裂项分项积分。

解:(11)★解:(12)★★思路:初中数学中有同底数幂的乘法:指数不变,底数相乘。

显然。

解:(13)★★思路:应用三角恒等式“”。

解:(14)★★思路:被积函数,积分没困难。

解:(15)★★思路:若被积函数为弦函数的偶次方时,一般地先降幂,再积分。

解:(16)★★思路:应用弦函数的升降幂公式,先升幂再积分。

解:() 17★思路:不难,关键知道“”。

:解.()18★思路:同上题方法,应用“”,分项积分。

解:()19★★思路:注意到被积函数,应用公式(5)即可。

解:()20★★思路:注意到被积函数,则积分易得。

解:、设,求。

2★知识点:。

考查不定积分(原函数)与被积函数的关系思路分析::。

即可1直接利用不定积分的性质解::等式两边对求导数得、,。

求的原函数全体设的导函数为3★知识点:。

仍为考查不定积分(原函数)与被积函数的关系思路分析:。

连续两次求不定积分即可解:,由题意可知:。

所以的原函数全体为、证明函数和都是的原函数4★知识点:。

考查原函数(不定积分)与被积函数的关系思路分析:。

只需验证即可解:,而、,且在任意点处的切线的斜率都等于该点的横坐标的倒数,求此曲线的方程。

一曲线通过点5★知识点:属于第12章最简单的一阶线性微分方程的初值问题,实质仍为考查原函数(不定积分)与被积函数的关系。

思路分析:求得曲线方程的一般式,然后将点的坐标带入方程确定具体的方程即可。

解:设曲线方程为,由题意可知:,;又点在曲线上,适合方程,有,所以曲线的方程为、,:问6一物体由静止开始运动,经秒后的速度是★★(1)在秒后物体离开出发点的距离是多少?(2)物体走完米需要多少时间?知识点:属于最简单的一阶线性微分方程的初值问题,实质仍为考查原函数(不定积分)与被积函数的关系。

思路分析:求得物体的位移方程的一般式,然后将条件带入方程即可。

解:设物体的位移方程为:,则由速度和位移的关系可得:,又因为物体是由静止开始运动的,。

(1)秒后物体离开出发点的距离为:米;令秒。

(2)习题4-2、。

填空是下列等式成立1★.知识点:练习简单的凑微分。

思路分析:。

根据微分运算凑齐系数即可解:、求下列不定积分。

2知识点:(凑微分)第一换元积分法的练习。

思路分析:审题看看是否需要凑微分。

直白的讲,凑微分其实就是看看积分表达式中,有没有成块的形式作为一个整体变量,这种能够马上观察出来的功夫来自对微积分基本公式的熟练掌握。

此外第二类换元法中的倒代换法对特定的题目也非常有效,这在课外例题中专门介绍!)(1★思路:凑微分。

解:()2★思路:凑微分。

解:()3★思路:凑微分。

解:()4★思路:凑微分。

解:()5★思路:凑微分。

解:(6)★★思路:如果你能看到,凑出易解。

解:(7)★思路:凑微分。

解:() 8★★思路:连续三次应用公式(3)凑微分即可。

解:() 9★★思路:本题关键是能够看到是什么,是什么呢?就是!这有一定难度!解:()10★★思路:凑微分。

解:方法一:倍角公式。

方法二:将被积函数凑出的函数和的导数。

方法三:三角公式,然后凑微分。

()11★★思路:凑微分:。

解:()12★思路:凑微分。

解:()13★★思路:由凑微分易解。

解:()14★★思路: 凑微分。

解:()15★★思路:凑微分。

解:()16★思路:凑微分。

解:()17★★思路:经过两步凑微分即可。

解:()18★★思路:分项后分别凑微分即可。

解:()19★★思路裂项分项后分别凑微分即可。

:解:()20★思路: 分项后分别凑微分即可。

解:()21★思路:分项后分别凑微分即可。

解:()22★★思路:裂项分项后分别凑微分即可。

解:()23★思路: 。

凑微分。

解:()24★★思路:降幂后分项凑微分。

解:()25★★★思路:积化和差后分项凑微分。

解:()26★★★思路:积化和差后分项凑微分。

解:()27★★★思路:凑微分。

解:()28★★思路:凑微分。

解:()29★★思路:凑微分。

解:() 30★★★★思路:。

凑微分解:() 31★★★★思路:被积函数中间变量为,故须在微分中凑出,即被积函数中凑出,解:() 32★★★★思路:解:() 33★★★★解:方法一:思路:将被积函数的分子分母同时除以,则凑微分易得。

方法二:思路:分项后凑微分方法三:思路: 将被积函数的分子分母同时乘以,裂项后凑微分。

() 34★★★★解:方法一:思路:分项后凑积分。

方法二:思路:利用第二类换元法的倒代换。

令,则。

() 35★★★★解:方法一:思路:分项后凑积分。

方法二:思路:利用第二类换元法的倒代换。

令,则。

、求下列不定积分。

3知识点:(真正的换元,主要是三角换元)第二种换元积分法的练习。

思路分析:题目特征是----被积函数中有二次根式,如何化无理式为有理式?三角函数中,下列二恒等式起到了重要的作用。

为保证替换函数的单调性,通常将交的范围加以限制,以确保函数单调。

不妨将角的范围统统限制在锐角范围内,得出新变量的表达式,再形式化地换回原变量即可。

()1★★★思路:令,先进行三角换元,分项后,再用三角函数的升降幂公式。

解:令,则。

(或)(万能公式,又时,)()2★★★思路:令,三角换元。

解:令,则。

(,)时()3★★★思路:令,三角换元。

解:令,则。

()4★★★思路:令,三角换元。

解:令,则。

()5★★★★思路:先令,进行第一次换元;然后令,进行第二次换元。

解:,令:得,令,则,(与课本后答案不同)()6★★★思路:,关键配方要正确。

三角换元解:,令,则。

、,。

满足,且求一个函数4★★思路:求出的不定积分,由条件确定出常数的值即可。

解:令,又,可知,、设,求证:,并求。

5★★★思路:由目标式子可以看出应将被积函数分开成,进而写成:,分项积分即可。

证明:习题4-31、:求下列不定积分知识点:基本的分部积分法的练习。

思路分析:严格按照“‘反、对、幂、三、指'顺序,越靠后的越优先纳入到微分号下凑微分。

”的原则进行分部积分的练习。

()1★思路:被积函数的形式看作,按照“反、对、幂、三、指”顺序,幂函数优先纳入到微分号下,凑微分后仍为。

解:()2★★思路:同上题。

()3★.思路:同上题。

解:() 4★★思路:严格按照“反、对、幂、三、指”顺序凑微分即可。

解:() 5★★思路:严格按照“反、对、幂、三、指”顺序凑微分即可。

解:() 6★思路:严格按照“反、对、幂、三、指”顺序凑微分即可。

解:() 7★★思路:严格按照“反、对、幂、三、指”顺序凑微分即可。

解:() 8★★思路:严格按照“反、对、幂、三、指”顺序凑微分即可。

解:() 9★★思路:严格按照“反、对、幂、三、指”顺序凑微分即可。

解:() 10★★思路:严格按照“反、对、幂、三、指”顺序凑微分即可。

解:() 11★★思路:严格按照“反、对、幂、三、指”顺序凑微分即可。

解:() 12★★思路() 小题解答中间,解答略。

:详见第10() 13★★思路:严格按照“反、对、幂、三、指”顺序凑微分即可。

解:()14★★思路:严格按照“反、对、幂、三、指”顺序凑微分即可。

解:()15★★思路:严格按照“反、对、幂、三、指”顺序凑微分即可。

解:()16★★思路:将积分表达式写成,将看作一个整体变量积分即可。

解:()17★★★思路:严格按照“反、对、幂、三、指”顺序凑微分即可。

()18★★思路:先将降幂得,然后分项积分;第二个积分严格按照“反、对、幂、三、指”顺序凑微分即可。

解:()19★★思路:分项后对第一个积分分部积分。

解:() 20★★★思路:首先换元,后分部积分。

解:令,则() 21★★★思路:严格按照“反、对、幂、三、指”顺序凑微分即可。

解:() 22★★★思路:严格按照“反、对、幂、三、指”顺序凑微分即可。

解:方法一:方法二:( )23★★★.思路:严格按照“反、对、幂、三、指”顺序凑微分即可。

解:令,则所以原积分。

() 24★★★思路:严格按照“反、对、幂、三、指”顺序凑微分即可。

解:注。

33)4-2,2(:该题中的其他计算方法可参照习题() 25★★★思路:严格按照“反、对、幂、三、指”顺序凑微分即可。

解:注:该题也可以化为再利用分部积分法计算。

() 26★★★思路:将被积表达式写成,然后分部积分即可。

解:2、用列表法求下列不定积分。

知识点:仍是分部积分法的练习。

思路分析:审题看看是否需要分项,是否需要分部积分,是否需要凑微分。

按照各种方法完成。

我们仍然用一般方法解出,不用列表法。

()1★思路:严格按照“反、对、幂、三、指”顺序凑微分即可。

解:()2★思路:严格按照“反、对、幂、三、指”顺序凑微分即可。

解:。

()3★思路:严格按照“反、对、幂、三、指”顺序凑微分即可。

解:()4★思路:分项后分部积分即可。

解:()5★.思路:严格按照“反、对、幂、三、指”顺序凑微分即可。

解:()6★思路:严格按照“反、对、幂、三、指”顺序凑微分即可。

解:3、,。

求已知是的原函数★知识点:考察原函数的定义及分部积分法的练习。

思路分析:,,应该知道积分中出现了条件告诉你是的原函数应马上知道积分应使用分部积分,解:又4、已知,求。

★★知识点:仍然是分部积分法的练习。

思路分析:),应马上知道积分应使用分部积分。

积分中出现了解:又5、,;。

证明:设★★★★知识点:仍然是分部积分法的练习。

思路分析:,和提示我们如何在被积函数的表达式中变出和呢?这里涉及要证明的目标表达式中出现了。

到三角函数中的变形应用,初等数学中有过专门的介绍,这里可变为证明:6、,,,且设为单调连续函数为其反函数★★★★。

求:知识点:本题考察了一对互为反函数的函数间的关系,还有就是分部积分法的练习。

相关文档
最新文档