傅里叶光学
物理光学教程 第五章 傅里叶光学
G( fξ , fη )
(5-66) 66)
ε ( fξ , fη )
G( fξ , fη )
ex { j Φε ( fξ , fη ) Φg ( fξ , fη ) } p
[
]
3. 相干传递函数与光瞳函数的关系
相干传递函数在空间频率坐标(f ξ,fη)的值 相干传递函数在空间频率坐标 (fξ,fη) 的值 , 与光瞳函数在空间坐标 (f 的值, (ξ=-λdf η=-λdfη)处的取值相等 处的取值相等. (ξ=-λdfξ,η=-λdfη)处的取值相等.
上一页 下一页 目录
5.1.1 薄透镜的位相变换因子
按照波动光学的观点,透镜的作用只不过是一个位相变换器, 按照波动光学的观点,透镜的作用只不过是一个位相变换器,它通过位相延迟 位相延迟的大小正比于透镜孔径内各点的光学厚度. 改变入射光波的波前 ,位相延迟的大小正比于透镜孔径内各点的光学厚度. 透镜的位相变换因子为: 透镜的位相变换因子为:
2. 线性系统与叠加积分
对于均匀各向同性媒质的近轴光学系统,在微扰原理成立的前提下, 对于均匀各向同性媒质的近轴光学系统,在微扰原理成立的前提下, 均可看做是线性系统. 均可看做是线性系统. 线性系统的最显著特征是,它对任意复杂函数的响应, 线性系统的最显著特征是,它对任意复杂函数的响应,能够表示为对 一系列"基元"函数响应的线性叠加. 一系列"基元"函数响应的线性叠加.系统对基元函数的输入输出性 质清楚了,它对任意复杂输入的响应特性也就清楚了, 质清楚了,它对任意复杂输入的响应特性也就清楚了,这是线性系统 分析的基本方法. 分析的基本方法. 对于光学系统,无论是相干光系统还是非相干光系统, 对于光学系统,无论是相干光系统还是非相干光系统,也不论系统是 否用于成像的目的, 否用于成像的目的,最直接的方法是将输入面上的光场分布分解为一 系列点光源的线性叠加. 系列点光源的线性叠加.
傅里叶光学简介
L1
O
F S+1
A B
S0
C
S-1
阿贝成象原理
I’
1
C’
通过衍射屏的光发生夫
琅禾费衍射,在透镜后
B’
焦平面上得到傅里叶频
A’
2
谱 (S+1, S0, S-1)
虚物
2 频谱图上各发光点发出的球面波在象平面上相干叠
加而形成象A’,B’,C’ 。
第一步是信息分解 第二步是信息合成
频 ❖ 第一步夫琅禾费衍射起分频作用将各 谱 语 种空间频率的平面波分开在L后焦面上形 言 成频谱 描 述 ❖ 第二步干涉起综合作用
傅里叶光学的应用
(1)光学信息处理的特点
✓ 高速 处理 并行传输 并行处理 响应 光开关 10-15s 光传输速度 3×108 m/s 电开关 10-9s 电传输速度 105 m/s
✓ 抗干扰能力强 ✓ 大容量 传输容量大 光纤
存储容量大 全息存储
(2)信息光学的应用
✓ 新型成像系统
✓ 图像处理、图像识别
傅里叶变换+线性系统理论
➢空间频率
照片的二维平面 上光振幅有一定 的强弱分布
➢空间频率
空间频率:单位长度光振幅变化的次数。 反映了光强分布随空间变量作周期性变化的频繁程 度,它同光振动本身的时间频率完全是两回事。时 间是一维的,空间可以是一维、二维、三维。
➢ 数学上的傅立叶变换
数学上可以将一个复杂的周期性函数作 傅立叶级数展开,这一点在光学中体现 为:一幅复杂的图像可以被分解为一系 列不同空间频率的单频信息的合成,即, 一个复杂的图像可以看作是一系列不同 频率不同取向的余弦光栅之和。
✓透镜的发明 ✓望远镜、显微镜的发明 ✓Snell折射定律、费马原理 ✓微粒说、波动说
傅里叶光学解析
20世纪上半叶
20世纪40年代至 60年代 20世纪60年代以来
1、傅里叶光学的发展历史
5)现代光学发展的三件大事
✓ 1948年,全息术的诞生,物理学家第一次精确地拍摄下一张立体的物体 像,它几乎记录了光波所携带的全部信息 (这正是“全息”名称的来历)! ✓ 1955年,科学家第一次提出“光学传递函数”的新概念,并用它来评价 光学镜头的质量。 ✓ 1960年,一种全新的光源-激光器诞生了,它的出现极大地推动了相关学 科的发展。
2、傅里叶光学的研究内容和研究方法
1)傅里叶光学基于傅里叶变换的方法研究光学信息在线性系统中的 传递、处理、变换与存储等。 2)傅里叶光学主要的研究内容包括: ✓光在空间的传播(衍射和干涉问题) ✓光学成像(相干与非相干成像系统) ✓全息术(包括计算全息) ✓光学信息处理(相干滤波、相关识别等) ✓光学变换、光计算、光学传感等 3)傅里叶光学主要的研究方法:
傅里叶光学 Fourier Optics
薛常喜 光电工程学院
1、傅里叶光学的发展历史
1)光学是一门古老的学科,主要研究光波的本性、光 波
的传播以及光与物质的相互作用。 2)光学的发展历史可以追溯到公元前5世纪,到目前 已经
有2000多年的历史,并逐渐在物理学中形成了一门 独立
的基础学科。 3)光学的发展历史可以看成是人们对光本性认识的历
史,以及人们利用光学技术推动社会不断进步的历 史。 4)在整个发展历史中,光学也从经典光学发展到现代
光学的发展历程
第一阶段:17世纪 中叶之前
经典光学的早期发 展阶段
【几何光学】
傅里叶光学的实验报告(3篇)
第1篇一、实验目的1. 深入理解傅里叶光学的基本原理和概念。
2. 通过实验验证傅里叶变换在光学系统中的应用。
3. 掌握光学信息处理的基本方法,如空间滤波和图像重建。
4. 理解透镜的成像过程及其与傅里叶变换的关系。
二、实验原理傅里叶光学是利用傅里叶变换来描述和分析光学系统的一种方法。
根据傅里叶变换原理,任何光场都可以分解为一系列不同频率的平面波。
透镜可以将这些平面波聚焦成一个点,从而实现成像。
本实验主要涉及以下原理:1. 傅里叶变换:将空间域中的函数转换为频域中的函数。
2. 光学系统:利用透镜实现傅里叶变换。
3. 空间滤波:在频域中去除不需要的频率成分。
4. 图像重建:根据傅里叶变换的结果恢复原始图像。
三、实验仪器1. 光具座2. 氦氖激光器3. 白色像屏4. 一维、二维光栅5. 傅里叶透镜6. 小透镜四、实验内容1. 测量小透镜的焦距实验步骤:(1)打开氦氖激光器,调整光路使激光束成为平行光。
(2)将小透镜放置在光具座上,调节光屏的位置,观察光斑的会聚情况。
(3)当屏上亮斑达到最小时,即屏处于小透镜的焦点位置,测量出此时屏与小透镜的距离,即为小透镜的焦距。
2. 利用夫琅和费衍射测光栅的光栅常数实验步骤:(1)调整光路,使激光束通过光栅后形成衍射图样。
(2)测量衍射图样的间距,根据dsinθ = kλ 的关系式,计算出光栅常数 d。
3. 傅里叶变换光学系统实验实验步骤:(1)将光栅放置在光具座上,调整光路使激光束通过光栅。
(2)在光栅后放置傅里叶透镜,将光栅的频谱图像投影到屏幕上。
(3)在傅里叶透镜后放置小透镜,将频谱图像聚焦成一个点。
(4)观察频谱图像的变化,分析透镜的成像过程。
4. 空间滤波实验实验步骤:(1)将光栅放置在光具座上,调整光路使激光束通过光栅。
(2)在傅里叶透镜后放置空间滤波器,选择不同的滤波器进行实验。
(3)观察滤波后的频谱图像,分析滤波器对图像的影响。
五、实验结果与分析1. 通过测量小透镜的焦距,验证了透镜的成像原理。
第十四章傅里叶光学-文档资料
u
x y 1 v 1 d0 d0
~ x E 2, y 2
Ex ,y 1 1
~ Ex, y
t x ,y l 2 2
t x ,y 1 1
~ 而 FT E x ,y 1 1 A FT tx ,y A T u , v 1 1
2 f
~ ~ x E ,y 1 1 E x ,y 1 1
~ Ex, y
f
f
表明:透镜后焦面上的光场分布正比于 tl x ,y 衍射物体平面上复振幅的傅里叶变换。 tx 1 1 f ,y 1 1
jk 2 2 exp 2f x y ,后焦面上的位相分布与物体频谱的位相分布不
tx, y
tl x, y f
~ 2)紧靠透镜之后的平面上的复振幅分布E x ,y 1 1
~ 3)后焦面上的复振幅分布 Ex, y
,y 物体的复振幅透过率为tx ,则物体与透镜之间的平面上的 1 1 复振幅分布为 ~ E x , y A t x , y 1 1 1 1
k 2 2 代入上式得到 ~ 将 E x , y A t x , y exp j x y 1 1 1 1 1 1
jk 2 1 2 Ex, y exp x y j f 2f ~ x y FTEx 1, y 1 u 1 v 1
但是这种FT关系不是准确的。由于变换式前存在位相因子
一样,但他对观察平面上的强度分布没有影响,其光强为
A x y I x , y T , f f f f
物理光学-6傅里叶光学
y方向上
v 1 0 dy
( x) A exp i2 ux E
u
cos
为锐角, cos 0
u cos
xy平面 z=z0或z 0平面
为正值
上的位相值沿x正向增加
这一强度分布具有空间周期性, 在x方向和y方向的空间周期分别为: dx
cos 2 cos 1
,
dy
cos 2 cos 1
空间频率为 cos 2 cos 1 u ,
v
cos 2 cos 1
3. 衍射光波的空间频率 (Spatial frequency of diffraction Lightwave )
为钝角, cos 0
u cos
xy平面 z=z0或z 0平面
为负值
上的位相值沿x正向减小
空间频率的正负,仅表示平 面波的传播方向不同
2.平面波传播方向余弦为cos ,cos 的情况
( x, y ) A exp i 2 z cos exp i 2 x cos y cos E 0 2 A exp i x cos y cos
x
2
y
cos
2
1 u dx 1 dy
cos sin y
sin x
平面波矢量在xz平面内时,
u
sin x
0
空间周期的物理意义:(在z=0平面内讨论) 1)平面波沿k方向的空间周期;平面波沿任意方向 r 的空间周期。
《傅里叶光学基础》课件
傅里叶光学是光学领域的重要基础知识,本课程将介绍傅里叶光学的基本原 理和应用领域,包括光通信、计算机技术和医疗影像。
傅里叶光学基础知识
1 传输函数
了解传输函数的概念以及在傅里叶光学中的作用。
2 光学变换
学习傅里叶变换和反变换,以及它们在光学领域的应用。
3 频谱分析
掌握频谱分析的方法和技巧,以及如何应用于光学系统的研究。
总结与展望
本课程回顾了傅里叶光学的基础知识和应用,介绍了其在光通信、计算机技 术和医疗影像中的重要性。希望通过本课程的学习,您能深入了解傅里叶光 学的原理和应用,并在相关领域取得更好的成就。
数据压缩
了解傅里叶光学在数据压缩领域的应用,如JPEG图像压缩算法。
频谱分析
学习傅里叶光学在信号处理和频谱分析中的作用。
傅里叶光学在现代医疗影像中的应用
1
CT扫描
掌握傅里叶光学在CT扫描中的重建算法和图
磁共振成像
2
像重建技术。
了解傅里叶光学在磁共振成像中的采样技术
和图像重建方法。
3
超声成像
学习傅里叶光学在超声成像中的频域分析和
傅里叶光学在光通信中的应用
高速数据传输
了解傅里叶光学在光通信中的高 速数据传输方案和技术。
光纤通信系统
探索调制与解调
学习傅里叶光学在光调制和解调 中的原理和技术。
傅里叶光学在现代计算机技术中的应 用
图像处理
探索傅里叶光学在图像处理中的应用,如图像滤波和频域图像增强。
分子影像学
4
图像增强技术。
探索傅里叶光学在分子影像学中的应用,如 光学断层成像和荧光成像技术。
傅里叶光学的发展现状
第1章 傅里叶光学基础
(21)
(8) 矩 (moment) g(x,y)的(k,l g(x,y)的(k,l )阶矩定义为 M k, l = ∫∫∞- ∞ g(x,y)xk yl dxdy 将逆变换表达式( 代入上式, 将逆变换表达式(2)代入上式,得到
M k, l=∫∫∞-∞G(u,v)dudv∫∫∞-∞xkylexp[i2π(ux+vy)]dxdy G(u,v)du [i2π x+v
傅里叶-贝塞尔变换 傅里叶 贝塞尔变换 设函数g(r,θ) = g(r) 具有圆对称, 具有圆对称, 函数 θ 傅里叶-贝塞尔变换为 傅里叶 贝塞尔变换为 G(ρ) = B {g(r)} ρ = 2π ∫∞org(r)Jo(2πρr)dr g(r)J π r)dr π 其中 Jo 为第一类零阶贝塞尔函数 傅里叶-贝塞尔逆变换为 傅里叶 贝塞尔逆变换为 g(r) = B-1 {G(ρ)} ρ = 2π ∫∞o ρ G(ρ)Jo(2πρr)dρ π ρ J π r)dρ
第一章
傅里叶光学基础
第一章 傅里叶光学基础
1.1 二维傅里叶分析 1.2 空间带宽积和测不准关系式 1.3 平面波的角谱和角谱的衍射 1.4 透镜系统的傅里叶变换性质
1.1 二维傅里叶分析
1.1.1 定义及存在条件 傅里叶变换可表为 复变函数器 g(x,y) 的傅里叶变换可表为 G(u,v) = F {g(x,y)} = ∫∫∞- ∞g(x,y)exp[-i2π(ux+vy)]dxdy g(x,y)exp[x+vy)]dxdy (1) 为变换函数或像函数 称g(x,y)为原函数,G(u,v)为变换函数或像函数。 为原函数, 为变换函数或像函数。 (1)式的逆变换为 式的逆变换 式的逆变换为 g(x,y) = F -1{G(u,v) } = ∫∫∞- ∞G(u,v)exp[i2π(ux+vy)]dudv (2) exp[i2 x+vy)]du
傅里叶光学(高等物理光学)
第一章光场的表示和Fourier分析1.1 Maxwell方程与标量波1.2 平面波和球面波1.3 二维Fourier变换的定义和物理意义1.4 卷积和相关1.5 Fourier变换的基本性质1.6 可分离变量的Fourier变换1.7 一些常用函数和它们的Fourier变换17空间频率概念的引入f (2j eU )y ,x (U π=/1/1==f f y x λcos =X9112. ( f x , f y )的物理意义方向余弦为(cos α, cos β) 的单色平面波在xoy平面上的复振幅分布是以2π为周期的分布,该复振幅分布可用沿x,y 方向的空间频率( f x , f y ) 来描述3.根据波叠加原理,任何复杂的光场分布可以分解为许多不同方向传播的平面波的叠加,或分解为许多不同空间频率的波的叠加.此式表示一个在xy 平面上沿x方向的空间频率为f x ,沿y方向的空间频率为f y 作周期的复振幅函数,它代表一个传播方向为( cos α=λf x ,cos β=λf y )的平面波.)(20),(y f x f j y x eU y x U +=π)cos cos (0),(βαy x jk e U y x U +=四、球面波的复振幅1、定义:点光源发出的单色光波等相位面是球面波1215近轴条件:只考虑xoy 平面上与S 点张角不大的范围.3、近轴条件下球面波的复振幅(1)171.3 Fourier变换的定义和物理意义一、广义变换∫∞∞−=dxx k x f I f ),()()(αα把函数f (x)在x 空间变换成α空间的I f (α)的函数,I f (α) 叫函数f (x) 的以k (α,x) 为核的积分变换.变换Fourier e x k x j −−=−παα2),(拉普拉斯变换−−−x e α梅林变换−−−1αx 阶汉克尔变换n xJ n −−)(α18二、一维Fourier变换1、定义t j eπν2基元函数代表频率为ν的简谐振荡.F (ν)= F {f ( t )}=∫∞∞−−dte tf t j πν2)({}dve v F v F tf vt j π21)()()(∫∞∞−−==F 2、物理意义:1) f (t)可分解为许多基元函数的线性组合;2) F (ν)权重因子.1921四、存在条件(函数g(x,y)存在FT的条件)1、g(x,y)在整个xy平面绝对可积∫∫∞<dxdy y x g |),(|五、广义Fourier变换g (x ,y)=),(lim y x g n n ∞→G (f x ,f y )=),(lim y x n n f f G ∞→2、在任一有限区域里,g(x,y) 必须只有有限个间断点和有限个极大和(或)极小点;3、g(x,y)必须没有无限大间断点.23若g(x,y) 为实函数,G( f x , f y ) 是厄米函数,则G (-f x ,-f y ) = ( f x , f y )即振幅|G (-f x ,-f y ) | = |G( f x , f y )|幅角φ(-f x ,-f y ) = -φ( f x , f y )其中( f x , f y )是G( f x , f y )的共轭复数,G ( f x , f y )是中心对称的函数.傅立叶变换并不改变函数的奇偶性,通常该性质称为傅立叶变换的对称性.∗G ∗G24一、卷积(Convolution)1. 定义:αααd x h f x h x f x g )()()()()(−∫=∗=∞∞−展宽:卷积运算的宽度是原来两个函数宽度之和.设f (x) 宽度为b 1, h (x) 的宽度为b 2,则g (x) 的宽度是:b = b 1+b 2 .1.4 卷积和相关卷积运算的几何解释:先反转h (α),每平移一个距离x,计算f (α)h (x -α)相乘,∫∞∞−−da a x h a f )()(求面积;再绘成g(x) 随x 变化的图形;积分252627)}()({)}()({)()}()({x h x v b x h x u a x h x bv x au ∗+∗=∗+4)结合性:)()()()()()()()}()({x v x h x u x h x v x u x h x v x u ∗∗=∗∗=∗∗)()()(x u x v x h ∗∗=卷积的次序是无关紧要的.2. 性质:1)平滑性:g (x)的变化率<< f (x)、h (x)的最大变化率;2)对易性:f (x) * h (x)= h (x) * f(x);3)线性性质:30二、相关(correlation)1. 定义:αααd x h f x h x f x g )()()()()(*−∫==∞∞−★令:x −=αβ得:βββd h x f )()(*∫∞∞−+ηξηξηξd d y x h f y x h y x f y x g ),(),(),(),(),(*−−∫∫=∞∞−=★ηξηξηξ′′′′∫∫+′+′∞∞−d d h y x f ),(),(*=与卷积运算的区别:没有反转,只有平移.)(αh )(α−h31相关运算示意图322.性质:1)尖峰化:相关运算是两个信号之间存在相似性的量度.34若f (x) = h (x),则:αααd x f f x f x f x g )()()()()(*−∫==∞∞−★ηξηξηξ∫∫−−=∞∞−d d y x f f y x f y x f ),(),(),(),(*★ηξηξηξ′∫∫′′′+′+′=∞∞−d d f y x f ),(),(*3. 自相关函数:1)定义:3538六、自相关定理七、Fourier积分定理对函数相继进行正FT变换和逆FT,得到原函数.八、FT的FT对函数相继进行FT,所得的函数形式不变,仅将坐标反向.F {g (x,y )☆g (x,y )}=|G (f x , f y )|2F {|G (f x , f y )|2}= g (x,y )☆g (x,y )F –1{F {g (x,y )}}= F {F –1{g (x,y )}}=g (x,y )F {F {g (x,y )}}=g (-x,-y )自相关函数的FT是原函数的功率谱,信号的自相关和功率谱之间存在FT关系.F {g (x,y )☆h (x,y )}= (f x , f y )·H (f x , f y )——互相关定理∗G 两函数的互相关与其互谱密度之间存在FT关系.41结论:在极坐标中可分离变量函数g (r ,θ)=g r (r )g θ(θ)它的频谱在极坐标中也是可分离变量函数,关于φ的函数是exp(j k φ),关于ρ的函数是G k (ρ) 它为g r (r ) 的k 阶汉克尔变换.=ρ45464748491.7、一些常用函数和它们的FT50。
光学第六篇傅里叶变换光学简介
复杂波场: 分解为一系列平面波或球面波成分
波的类型和特性 波前相因子
波前相因子
方向角的余角
线性相因子
系数(cosx,cosy)或 (sin1,sin2)与平面 波的传播方向一一对应。
U2 U1
ik x2 y2
e 2fBiblioteka 凹透镜和凸透镜的情况相同,
只是焦距一个为负,一个为正。
相位型
例题:求薄透镜傍轴成像公式:
在傍轴条件下:U1 ( x,
y)
ik x2 y2
A1e 2s
ik x2 y2
透镜函数:tL (x, y) e 2 f
s
s’
ik x2 y2
ik x2 y2
U2 (x, y) tL (x, y)U1(x, y) e 2 f
二维 tP ( x, y) eik (n1() 1x+2 y)
例题:推导棱镜傍轴成像公式:
傍轴条件:
ik x2 y2
s
U1(x, y) A1e 2s
ik x2 y2 ik (n1) x
U2 (x, y) tP (x, y) U1(x, y) A1e 2s
(n1)s 2 x(n1)s 2 y2
第六章 傅里叶变换光学简介
第六章 傅里叶变换光学简介
1、衍射系统 波前变换 2、相位衍射元件 3、波前相因子分析法 4、余弦光栅的衍射场 5、傅里叶变换 6、超精细结构的衍射 隐失波 7、阿贝成像原理与空间滤波 8、光学信息处理列举 9、泽尼克的相衬法
惠更斯-菲涅耳原理 光波衍射
菲涅耳衍射 夫琅禾费衍射
二维波前 决定 三维波场
二维波前 决定 三维波场
Double-helix Point Spread Function (DH-PSF) DH-PSF transfer function obtained from the iterative obtimization procedure, and its GL modal plane decomposition, which forms a cloud around the GL modal plane line. The DH-PSF transfer function does not have any amplitude component, and consequently is not absorptive.
《傅里叶光学》课件
光通信
利用傅里叶光学原理实现高速光信号的传输和处 理,提高通信容量和速度。
3
光学仪器设计
傅里叶光学在光学仪器设计中的应用,如干涉仪 、光谱仪等。
傅里叶光学的发展前景和挑战
发展前景
随着光子技术的不断发展,傅里叶光学在光通信、光学仪器、生物医学等领域的应用前 景广阔。
傅里叶光学在光学显微镜、光谱仪和 OCT等生物医学成像技术中被广泛应 用。
光电子器件
利用傅里叶光学原理设计的光电子器 件,如光调制器、光滤波器和光开关 等。
02
傅里叶变换
傅里叶变换的定义和性质
傅里叶变换的定义
将一个时域信号转换为频域信号的过 程,通过正弦和余弦函数的线性组合 来表示信号。
傅里叶变换的性质
傅里叶变换在信号处理中的应用
频域滤波
通过在频域对信号进行滤波,可以实现信号的降噪、增强等处理 。
信号压缩
利用傅里叶变换可以将信号从时域转换到频域,从而实现对信号的 压缩和编码。
图像处理
傅里叶变换在图像处理中也有广泛应用,如图像滤波、图像增强、 图像压缩等。
03
光学信号的傅里叶分析
光学信号的表示和测量
05
傅里叶光学的实践应用
傅里叶光学的实验技术
光学干涉实验
利用干涉现象研究光的波动性质,验证傅里叶光学的 基本原理。
光学衍射实验
通过衍射实验观察光的衍射现象,理解傅里叶光学中 的衍射理论。
光学频谱分析实验
利用傅里叶变换对光信号进行频谱分析,研究光波的 频率成分。
傅里叶光学的应用案例
1 2
图像处理
干涉和衍射在光学系统中的应用
8.11傅里叶光学简介
1 0 -1 -3
λ
G
光 栅
f′
对于光栅我们可以用透过率函数′(x)来描 来描 对于光栅我们可以用透过率函数 一维透射光栅的透过率函数是一矩形波函数. 述,一维透射光栅的透过率函数是一矩形波函数 一维透射光栅的透过率函数是一矩形波函数 为了讨论问题方便, 设光栅狭缝总数N无限大 无限大. 为了讨论问题方便 设光栅狭缝总数 无限大d s源自n θ = mλ,在近轴条件下
(m = 0, ±1, ± 2,L )
= mp0λ,
sin θ ≈
ξ
f′
=m
λ
d
因此透镜后焦面上频率为
ξ p = mp0 = , ′ fλ
上面的讨论可以说明, 上面的讨论可以说明 理想夫琅和费衍射系统 起到空间频率分析器的作用.这就是现代光学对夫 起到空间频率分析器的作用 这就是现代光学对夫 琅和费衍射的新认识。 琅和费衍射的新认识。 当单色光波入射到待分析的图象上时,通过夫琅 当单色光波入射到待分析的图象上时 通过夫琅 和费衍射,一定空间频率的信息就被一定特定方向 和费衍射 一定空间频率的信息就被一定特定方向 的平面衍射波输送出来. 的平面衍射波输送出来 这些衍射波在近场彼此 交织在一起,到了远场它们彼此分开 到了远场它们彼此分开,从而达到分 交织在一起 到了远场它们彼此分开 从而达到分 频的目的. 频的目的
1 1 i2π p0x i2π p0x 1 i2π 3p0x i2π 3 p0x f (x) = + (e +e +e ) ) (e 2 π 3π 1 i2π 5 p0x i2π 5 p0x + (e +e )L L 5π
在光学中,负的空间频率也可以被赋予物理意义 在光学 在光学中 负的空间频率也可以被赋予物理意义.在光学 负的空间频率也可以被赋予物理意义 用复数表示更方便,更合理 中,用复数表示更方便 更合理 用复数表示更方便
傅里叶光学
傅里叶光学
傅里叶光学的原理是根据傅里叶分析的原理,利用光的波动特性,将一个复杂的光波分解成多个简单的光波,然后利用这些简单的光波来描述复杂的光波的特性。
这种分析方法可以用来研究光的传播,衍射,折射,反射和其他光学相关的现象,可以研究光的空间分布,特性,调制,幅度,相位等特性。
傅里叶光学是一种基于傅里叶变换的光学理论,它用来描述光线的行为,其中光线的行为可以用傅里叶变换的形式表示。
它是由法国物理学家和数学家约瑟夫·傅里叶发现的,他在1822年发表了一篇论文,提出了“傅里叶光学”的概念,并且将其用于描述光线的行为。
傅里叶光学的基本原理是,光线可以用一系列的正弦函数来表示,这些正弦函数的频率和振幅可以用傅里叶变换来表示。
换句话说,傅里叶光学可以用来描述光线如何传播,如何反射,如何折射,以及如何在介质中传播,等等。
傅里叶光学的原理被广泛应用于光学,以及其他科学和工程领域。
它可以用来解释和模拟光线在不同环境中的传播特性,以及光线在介质中的反射、衍射和折射等现象。
物理光学A---第六章 傅里叶光学
频 谱 面
物 面 高频信息
阿贝成像原理的意义在于:它以一种新的 频谱语言来描述信息,它启发人们用改造频谱 的方法来改造信息.
3.空间滤波和光学信息处理
(1)
x
阿贝-波特空间实验
光
x
a / d 1/ 3
光 栅
栅 的
频
谱
频 谱 面
像 面
光栅的像是一 条条直条纹
光栅的夫琅和费衍射图样,记 录下光栅的空间频率信息.
x
光 栅 的 频 谱
I ( x)
傅氏面上的光阑 只让零级通过. 它是一个低通滤 波器.
屏幕上光 强分布
屏上无条纹
控制频谱就控制了像面
x
光 栅 的 频 谱
傅氏面上的光 阑让零级和正 负一级通过.
屏幕上光 强分布,是 基频和直 流成分
屏上有细小 的 亮 条 纹..
2 cos( 2 5 p0 x) 5
上式表明,图中表示的矩形波可以分解为不同频 率的简谐波,这些简谐波的频率为
1 3 5 p , , , , d d d
这里p称为空间频率. P0是p的基频.
有时称P0=1/d是矩形波函数的频率,但这 不是严格意义上的频率, 只有简谐波(正弦波 和余弦波)的频率才是严格意义上的频率. 透过率函数也可用复数傅里叶级数表示:
失网 格 的 像 灰 尘 消
(3)
调制实验
用白光照明透明物体,物体的不同部分是 由不同取向的透射光栅片组成.频谱面上(除 零级外)干涉主极大呈彩色.物面上不同的部 分的频谱在不同方向上. 将一个方向的频谱, 只保留一种颜色,滤掉其余的颜色,其对应的 象面上,就显示出该频率的颜色来.
现代光学第3章 傅里叶光学基础
18
第3章 傅里叶光学基础
1) 索末菲辐射条件和SR上的积分 对于SR面上的积分,由于基尔霍夫积分定理中积分面 的选择的任意性,可以假定R→∞, 则SR为趋于无限大的 半球壳。考虑到U和G在SR面上都按1/R随R的增大而减小, 所以,R→∞时,在SR面上被积函数趋于零,但同时积分面 的面积SR按R2增大,故不能直接认为SR面上的积分为零。 下面具体讨论SR面上的积分。当R很大时,在SR面上有
(3.1-22)
相应光强分布为
(3.1-23)
33
第3章 傅里叶光学基础
3.1.3 瑞利-索末菲衍射公式
索末菲通过巧妙地选择格林函数G,排除了边界条件
中对U和
同时规定为零的要求,从而克服了基
尔霍夫理论的不自恰性。在解决了SR上的积分之后,式 (3.1-12)简化为
(3.1-24)
34
第3章 傅里叶光学基础
(3.1-3)
5
第3章 傅里叶光学基础
式中: c为光在真空中的速度;
为拉普
拉斯算符。把式(3.1-2)代入式(3.1-3),得到自由空间单色
光场满足的波动方程为
(3.1-4)
式中: k=2πν/c=2π/λ为波矢量的大小。该式称为亥姆霍兹方 程。这表明自由空间传播的任何单色光波的复振幅必然满 足亥姆霍兹方程。
11
第3章 傅里叶光学基础
于是式(3.1-7)简化为 或
12
(3.1 -8)
第3章 傅里叶光学基础
在Sε面上,n与r处处反向,有 故
(3.1-9)
13
第3章 傅里叶光学基础
令ε→0,则有
(3.1-10)
14
第3章 傅里叶光学基础
傅里叶变换光学系统
傅里叶变换光学系统
傅里叶变换光学系统是一种基于傅里叶变换原理的光学成像系统。
傅里叶变换可以将一个复杂的光学信号分解成一系列简单的正弦或余弦波,从而实现对信号频率谱的分析。
在光学成像中,傅里叶变换可以用来处理图像,将图像分解成不同的频率成分,从而实现图像增强、滤波、去噪等功能。
傅里叶变换光学系统通常由光源、物镜、频率滤波器、傅里叶变换透镜、像方透镜等组成。
光源产生的光通过物镜投射到目标物体上,然后被反射或透过物体后再次通过物镜进入系统。
接着,通过一系列频率滤波器进行频率筛选,将所需的频率成分传递给傅里叶变换透镜,进而通过像方透镜成像得到频域图像。
通过反傅里叶变换可以将频域图像转换为原始图像。
傅里叶变换光学系统具有高分辨率、高灵敏度、高速度等优点,广泛应用于图像处理、成像、光学检测等领域。
- 1 -。
傅里叶光学变换
傅里叶光学变换
傅里叶光学变换是一种将光学信号从时域转换到频域的数学工具。
它通过将光学信号分解为不同的频率成分,可以帮助我们更好地理解和分析光学现象。
傅里叶光学变换基于傅里叶变换的原理,在光学领域广泛应用于光波的传播、衍射和成像等问题。
通过傅里叶光学变换,我们可以把一个光学信号表示为一系列不同频率的正弦波的叠加,这些正弦波的振幅和相位信息可以提供有关原始信号的详细特征。
傅里叶光学变换的数学公式如下:
F(ν) = ∫f(t)e^(-2πiνt)dt
其中,F(ν)表示频率为ν的光学信号的傅里叶变换结果,f(t)表示原始光学信号,e为自然对数的底。
傅里叶光学变换的一个重要应用是光学成像。
通过将光场的复振幅进行傅里叶变换,可以获得物体的光学频谱信息,从而实现对物体的高分辨率成像。
此外,傅里叶光学变换还可以应用于光衍射、光波前传播和信号处理等方面。
通过分析不同频率成分的振幅和相位信息,我们可以了解光场在不同空间位置和时间点的变化规律,从而对光学现象进行更深入的研究。
总之,傅里叶光学变换是光学领域中一种重要的数学工具,它能够帮助我们从频域的角度来理解和分析光学信号的特性和行为,为光学研究和应用提供了有力的支持。
5-第五章傅里叶光学
平面波的复振幅分布与空间频率
14 / 120
2π 2π E ( x) A exp i z0 cos γ exp i x cos α λ λ 2π A 'exp i x cos α λ
~
λ x方向空间周期: d x cos α
参考书
4 / 120
Introduction to Fourier Optics_Third edition, Dec. 2004.
吕乃光,傅里叶光学,第二版,机械工业出版社,2007 吕乃光,周哲海,傅里叶光学 概念.题解,机械工业出版社, 2008 Ronald N. Bracewell, The Fourier transform and its application, Third edition, McGrawHill, 2000
本章内容和组织结构
3 / 120
5.6 相干成像系统分析及相干传递函数 成像系统的普遍模型,成像系统的线性和空间不变性,点扩展函数概 念,扩展物体成像,相干传递函数(CTF)概念。 5.7 非相干成像系统分析及光学传递函数 非相干成像系统的光学传递函数(OTF)概念,CTF与OTF的关系, 典型孔径的OTF。 5.8 阿贝成像理论和阿贝-波特实验 阿贝二次衍射成像理论,阿贝-波特实验及空间滤波概念。 5.9 相干光学信息处理 相干光学信息处理的应用:泽尼克相衬显微镜、激光束去噪、集成电 路瑕疵检查、图像加减、图像识别。 5.10 非相干光学信息处理 非相干光学处理的应用:孔径光阑的高斯切趾及变迹。
二维傅里叶变换
二维傅里叶变换:
31 / 120
E ( x, y) ε(u, v) exp i 2π ux vy dudv
傅里叶光学全
傅里叶光学全复习资料1 傅里叶变换F f _ , f y f _, y e2i f_ _ fy y d_dy F{f (_, y )}式中H 0 (f_,fy)f_ 和 fy 称为空间频率,F f_ , f yF f_ , f y出瞳重叠面积 (f_, fy) 出瞳总面积 0称为 F(_,y)的傅里叶谱或空间频谱。
F (f_,fy)和 F(_,y)分别称为函数 f(_,y)的振幅谱和相位谱,而称为 f(_,y)的功率谱。
2 逆傅里叶变换f ( _, y )F ( f_ , fy )e[ 2 i ( f _ _ f y y )f_fy F 1 {F ( f_ , fy )}3 函数 f(_,y)存在傅里叶变换的充分条件是: f(_,y)必须在 _y 平面上的每一个有限区域内局部连续,即仅存在有限个不连续结点 f(_,y)在 _y 平面域内绝对可积 f(_,y)必须没有无穷大间短点4 物函数 f(_,y)可看做是无数振幅不同,方向不同的平面线性叠加的结果5 sinc 函数常用来描述单缝或矩孔的夫琅禾费衍射图样6 在光学上常用矩形函数不透明屏上矩形孔,狭缝的透射率7 三角状函数表示光瞳为矩形的非相干成像系统的光学传递函数8 高斯函数常用来描述激光器发出的高斯光束,又是用于光学信息处理的“切趾术” 9 δ函数表示某种极限状态。
可用来描述高度集中的物理量。
如点电荷、点光源、瞬间电脉冲等,所以δ函数又称为脉冲函数。
δ函数只有通过积分才有定值 10 在光学上,单位光通量间隔为 1 个单位的点光源线阵之亮度可用一个一维梳状函数表示:42 非相干成像系统的截止频率是相干成像系统的两倍 43 具有像差的系统其调制传递函数只可能下降而绝不会增大,结果会使像面上光强度分布在多个空间频率处的对比率降低,这是一个具有普遍性的重要结论 44 在相干照明条件下,光学成像系统对光场的复振幅变换而言,是线性不变系统;对于光强度的变换,则不是线性系统。
第四章__傅里叶光学
透镜的位相变换因子(球面波的菲涅耳近似) 透镜具有位相变换能力
2、透镜的傅立叶变换性质
当d0=f 时,有
C0
1 exp[ ik 2 f ] i f
E (u , v) C 0 E ( x 2 , y 2 ) exp[i 2 ( x 2 u y 2 v)]dx2 dy2
若一个二维函数f ( x, y )满足傅立叶积分存在条 件,则有: F (u, v) F ( x, y ) exp i 2 ux vy dxdy f ( x, y ) F (u , v) expi 2 ux vy dudv
(1)
(2)
傅立叶变换就是将一个复杂函数可以分解成简单函数的和 1 ) exp[i2(ux+vy)] 表示一个沿波矢方向空间频 率(u,v)传播的单色平面波。 2 ) 每组平面光波有自己的传播方向,其复振幅的 大小可以表示为F(u, v)dudv。
二、扩展物体的成像
对于线性空不变系统,扩展物体的光场分布可以看 成许多点物经系统形成的点扩散函数的线性组合
g ( x) O( x) h( x x)dx O( x) h( x)
三、相干传递函数(CTF)
1、CTF的意义
在频率域中求解: Gc (u, v) g ( x, y) 记:
① 用归一化的物象频谱表示物象对应各(u,v)分量的对比度 ② 一般情况下,
|H(u,v)| ——对比传递函数(MTF) 表示物象分布中同一(u,v)分量对比度变化
φ(u,v) ——相位传递函数(PTF) 表示物象分布中同一(u,v)分量的相移
二、OTF的求法
1、利用OTF与CTF的自相关
2、图解法求取OTF
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传统光学显 微镜分辨率 Rayleigh 准则
1.22λ ∆x ≥ 2n sin θ
增大N.A.
减小照明波长
几何光学可认为是波动光学短波(λ→0)的近似 ----有何启示 ? ? What′λ
如何在光频,压缩波长?
把光灌入高折射率介质(空气--水) ω ph = ω? k ph + [?] = k ? any other way ?
Fourier Spectrum
从干涉强度的空间频谱中,提取光源辐射小论文)+60%考试
小论文(40%): 课程进行中间要求大家完成1篇小论文。自由组合, 5人为一小组,充分讨论合作完成。论文的格式要规范。论文的结 尾要说明各人在论文完成过程的分工。严禁抄袭!!届时答辩
“衍射光学元件(DOE)设计及其应用” “超衍射极限的光操控(光刻、成像)研究”
考试(60%): 闭卷, 期末考。(允许“裸” 考)
Reference
J. W. Goodman,《傅里叶光学导论》,科学出版社,1976 J. W. Goodman, 《傅里叶光学导论》( 第三版)(秦克诚,刘培森等, 译),电子工业出版社,2006 羊国光,宋菲君,《高等物理光学》,中国科学技术大学出版社, 1991 谢建平,明海,王沛, 近代光学基础,高等教育出版社,2006
Fourier Optics
主讲人: 王 沛
中国科学技术大学物理学院光学与光学工程系 安徽省光电子科学与技术重点实验室
2011-09-05
HTTP://WWW……
How To The Position://WWW.
? Who Where When Why What How
思考有益于生活
位置
为学 为道
波 处理 理 波阵 阵面 面处
场 加 场叠 叠加
特点 特点
多少 多少
位相 位相
偏振 偏振
振幅 振幅
偏 振 态 偏 振 态 偏振态 平 平面 面 球 球面 面 离 离散 散求 求和 和 无 无限 限积 积分 分
尔 公 式 菲 涅 菲 涅 尔 公 式
傅立叶光学初 步
干涉
应 用 应用
衍射
波动---爱里斑
责任
增加积极的知识 提高心灵的境界
与 “你” 有缘
感兴趣研究方向:
非线性光学 表面等离子体亚波长光学 微纳光学
绪论
傅里叶光学简介 课程内容 课程目的 傅里叶光学特点 参考书目
“光学”学习中的要点
“一个中心两个基本点三个代表”
惠更斯-菲涅尔原理
干涉 衍射
振幅、偏振、位相
涅 尔原 理 -菲 惠 更 斯
离的更近,看的更清? “管窥之见” “瞎子摸象”
0.3mm笔芯; 40-60小时; A2纸大小(420×594)
耗时、易碎→ ???
傅里叶光学简介
课程内容
绪论 光波及其衍射基础 二维线性系统分析 标量衍射理论基础 菲涅耳衍射与夫琅禾费衍射 透镜的傅立叶变换性质及成像性质 光学成像系统的频谱分析
ftp://202.38.68.155 帐号: gstudent 密码: foptics
课程目的
了解傅里叶光学的基本原理:
如何用傅里叶变换的数学工具讨论光的传输、成像问 题以及光学中傅里叶变换的物理含义等
傅里叶光学典型应用:
光全息:全息防伪,全息存储 光学滤波:光学图像识别与处理 激光散斑:散斑照像,散斑干涉 光学系统频谱分析
傅里叶光学特点
Fourier Transform
用改变空间谱的办法来处理相干成像系统中的光信息