热力学作业答案_图文
热力学习题答案
热力学习题答案Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】第9章热力学基础一. 基本要求1. 理解平衡态、准静态过程的概念。
2. 掌握内能、功和热量的概念。
3. 掌握热力学第一定律,能熟练地分析、计算理想气体在各等值过程中及绝热过程中的功、热量和内能的改变量。
4. 掌握循环及卡诺循环的概念,能熟练地计算循环及卡诺循环的效率。
5. 了解可逆过程与不可逆过程的概念。
6. 解热力学第二定律的两种表述,了解两种表述的等价性。
7. 理解熵的概念,了解热力学第二定律的统计意义及无序性。
二. 内容提要1. 内能功热量内能从热力学观点来看,内能是系统的态函数,它由系统的态参量单值决定。
对于理想气体,其内能E仅为温度T的函数,即当温度变化ΔT时,内能的变化功热学中的功与力学中的功在概念上没有差别,但热学中的作功过程必有系统边界的移动。
在热学中,功是过程量,在过程初、末状态相同的情况下,过程不同,系统作的功A也不相同。
系统膨胀作功的一般算式为在p—V图上,系统对外作的功与过程曲线下方的面积等值。
热量热量是系统在热传递过程中传递能量的量度。
热量也是过程量,其大小不仅与过程、的初、末状态有关,而且也与系统所经历的过程有关。
2. 热力学第一定律系统从外界吸收的热量,一部分用于增加内能,一部分用于对外作功,即热力学第一定律的微分式为3. 热力学第一定律的应用——几种过程的A、Q、ΔE的计算公式(1)等体过程体积不变的过程,其特征是体积V =常量;其过程方程为在等体过程中,系统不对外作功,即0A。
等体过程中系统吸收的热量与系统内V能的增量相等,即(2) 等压过程压强不变的过程,其特点是压强p =常量;过程方程为在等压过程中,系统对外做的功系统吸收的热量 )(12T T C M MQ P mol P -=式中R C C V P +=为等压摩尔热容。
(3)等温过程 温度不变的过程,其特点是温度T =常量;其过程方程为pV =常量在等温过程中,系统内能无变化,即(4)绝热过程 不与外界交换热量的过程,其特点是dQ=0,其过程方程pV γ=常量在绝热过程中,系统对外做的功等于系统内能的减少,即7. 循环过程 系统从某一状态出发,经过一系列状态变化后又回到了初始状态的整个变化过程。
热力学习题及答案2010.11.
2-13. 某反应器容积为31.213m ,内装有温度为0227C 的乙醇45.40kg 。
现请你试用以下三种方法求取该反应器的压力,并与实验值(2.75MPa )比较误差。
(1)用理想气体方程;;(2)用RK 方程;(3)用普遍化状态方程。
解:(1)用理想气体方程M P a V n R T P 38.310213.115.50010314.8987.063=⨯⨯⨯⨯== 误差:%9.22 (2)用R-K 方程乙醇:K T C 2.516=, MPa P C 38.6=765.2625.22108039.21038.62.51610314.842748.042748.0⨯=⨯⨯⨯⨯==CCP T R a 0583.01038.62.51610314.808664.008664.063=⨯⨯⨯⨯==C C P RT b 3229.1987.0213.1m V ==()()MPab V V T a b V RT P 76.2109247.7105519.30583.0229.1229.115.500108039.20583.0229.115.50010314.85625.0735.0=⨯-⨯=⨯+⨯--⨯⨯=+--=误差:%36.0(3)用三参数普遍化关联 (2<r V 用维里方程关联,MPa P 7766.2=)635.0=ω, 43.038.675.2===C r P P P , 97.02.51615.500==r T 查图2-12~2-13:82.00=Z , 055.01-=Z7845.0055.0645.082.010=⨯-=+=Z Z Z ω MPa V ZRT P 65.210229.115.50010314.87845.063=⨯⨯⨯⨯== 误差:%64.32-21 一个0.5 m 3压力容器,其极限压力为2.75 MPa ,若许用压力为极限压力的一半,试用普遍化第二维里系数法计算该容器在130℃时,最多能装入多少丙烷?已知:丙烷T c =369.85K ,P c =4.249MPa ,ω=0.152。
第八章的热力学作业(答案详解)
一、选择题[ A ]1.(基础训练4)一定量理想气体从体积V 1,膨胀到体积V2分别经历的过程是:A →B等压过程,A→C 等温过程;A →D 绝热过程,其中吸热量最多的过程(A)是A →B. (B)是A →C. (C)是A →D.(D)既是A →B 也是A →C , 两过程吸热一样多。
【提示】功即过程曲线下的面积,由图可知AD AC AB A A A >>; 根据热力学第一定律:E A Q ∆+= AD 绝热过程:0=Q ; AC 等温过程:AC A Q =;AB 等压过程:AB AB E A Q ∆+=,且0>∆A B E[ B ]2.(基础训练6)如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为p 0,右边为真空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是(A) p 0. (B) p 0 / 2. (C) 2γp 0. (D) p 0 / 2γ.【提示】该过程是绝热自由膨胀:Q=0,A=0;根据热力学第一定律Q A E =+∆得 0E ∆=,∴0T T =;根据状态方程pV RT ν=得00p V pV =;已知02V V =,∴0/2p p =.[ D ]3.(基础训练10)一定量的气体作绝热自由膨胀,设其热力学能增量为E ∆,熵增量为S ∆,则应有(A) 0......0=∆<∆S E (B) 0......0>∆<∆S E . (C) 0......0=∆=∆S E . (D) 0......0>∆=∆S E 【提示】由上题分析知:0=∆E ;而绝热自由膨胀过程是孤立系统中的不可逆过程,故熵增加。
[ D ]4.(自测提高1)质量一定的理想气体,从相同状态出发,分别经历等温过程、等压过程和绝热过程,使其体积增加1倍.那么气体温度的改变(绝对值)在 (A) 绝热过程中最大,等压过程中最小. (B) 绝热过程中最大,等温过程中最小. (C) 等压过程中最大,绝热过程中最小.(D) 等压过程中最大,等温过程中最小. 【提示】如图。
热力学所有答案
1-2 试确定表压力为0.01MPa 时U 形管压力计中液柱的高度差。
(1)U 形管中装水,其密度为1000kg/m 3;(2)U 形管中装酒精,其密度为789kg/m 3。
解答:m29.178981.91001.02m02.1100081.91001.0166=⨯⨯=∆=⨯⨯=∆=∆∴∆=酒精水)()即(h h gP h h g P gg ρρ1—3 用U 形管测量容器中气体的压力。
在水银柱上加一段水柱(如图1—3)。
已侧的水柱高850mm ,汞柱高520mm 。
当时大气压力为755mmHg. 问容器中气体的绝对压力为多少MPa?解答:MPa P P P PHg O H 178.080665.98503224.1335207552b =⨯+⨯+=++=)(图1—3 图1—41-4 用斜管压力计测量锅炉烟道中烟气的真空度(如图1-4)。
管子的倾角o 30=α;压力计中使用密度为800kg/m3的煤油;斜管中液柱长度l=200mm 。
当时大气压力mmHgP 745b =。
问烟气的真空度为多少毫米水柱?绝对压力为多少毫米汞柱?解答:mmHgP P P mmHgPa h g P v b o v 1135.7391050062.78.7847452801001972.18.784 8.81784.930sin 2.0800131=⨯⨯-=-==⨯⨯=⨯⨯⨯=∆=--绝)()(ρ1—7 从工程单位制热力性质表中查得,水蒸汽在500℃、100at 时的比体积和比焓分别为kg kcal h kg m v /6.806/03347.03==、。
在国际单位制中,这时水蒸气的压力和比热力学各为多少?解答:kgkJ pV U MPaP /8.304803347.01080665.91868.46.806h 280665.91080665.9100134=⨯⨯-⨯=-==⨯⨯=)()(1—8 摄氏温标取水在标准大气压下的冰点和沸点分别为C 0o和C 010o ,而华氏温标则相应地取为F o 32和F o 212。
热学作业(附解答)
热学作业(附解答)热力学1.1mol理想气体(设γ=C p/C V为已知)的循环过程如T – V图所示,其中CA为绝热过程,A点状态参量(T1,V1)和B点状态参量(T2,V2)为已知。
试求C点的状态参量:则V c= ___________________ ,T c= ____________________,p c= ____________________,V2(V1/V2)γ-1T1(RT1/V2)(V1/V2)γ-12.所示的T – S(温熵)图表示热力学系统经历了一个ABCDA循环过程,该循环称为______________循环。
若图中矩形ABCD的面积是矩形ABEF的面积的1/3,则该循环的效率为__________________。
卡诺1/33.1 mol理想气体在气缸中进行无限缓慢的膨胀,其体积由V1变化到V2。
(1)当气缸处于绝热情况下时,理想气体熵的增量ΔS= _______________。
(2)当气缸处于等温情况下时,理想气体熵的增量ΔS= _______________。
1)02)R ln4.常温常压下,一定量的某种理想气体(其分子可视为刚性分子,自由度为i),在等压过程中吸热为Q,对外做功为W,内能增加为ΔE,则W/Q= ___________。
ΔE/Q= ___________。
5.一卡诺热机(可逆的),低温热源的温度为27℃,热机效率为40%,起高温热源温度为___________K。
今欲将该热机效率提高到50%,若低温热源保持不变,则高温热源的温度应增加____________K。
5001006.从统计的意义来解释,不可逆过程实质上是一个_________________的转变过程,一切实际过程都向着__________________的方向进行。
从几率较的状态到几率较大的状态状态的几率增大(或熵值增加)7.一个能透热的容器,盛有各为1mol的A、B两种理想气体,C为具有分子筛作用的活塞,能让A种气体自由通过,不让B种气体通过,如图所示。
西工大(冯青) 工程热力学作业答案 第一章
1-1体积为2L 的气瓶内盛有氧气2.858g,求氧气的比体积、密度和重度。
解:氧气的比体积为3310858.2102−−××==m V v =0.6998 m 3/kg 密度为vm V 110210858.233=××==−−ρ=1.429 kg/m 3重度80665.9429.1×==g ργ=14.01 N/m 31-2某容器被一刚性器壁分为两部分,在容器的不同部分安装了测压计,如图所示。
压力表A 的读数为0.125MPa,压力表B 的读数为0.190 MPa,如果大气压力为0.098 MPa,试确定容器两部分气体的绝对压力可各为多少?表C 是压力表还是真空表?表C的读数应是多少? 解:设表A、B、C 读出的绝对压力分别为A p 、B p 和C p 。
则根据题意,有容器左侧的绝对压力为=+=+==125.0098.0gA b A p p p p 左0.223 MPa 又∵容器左侧的绝对压力为gB C B p p p p +==左 ∴033.0190.0223.0gB C =−=−=p p p 左 MPa<b p∴表C 是真空表,其读数为033.0098.0C b vC −=−=p p p =0.065 MPa 则容器右侧的绝对压力为=−=−=065.0098.0vC b p p p 右0.033 MPa1-5水银温度计浸在冰水中时的水银柱长度为4.0cm,浸在沸水中时的水银柱长度为24.0cm。
试求:1)在室温为22℃时水银柱的长度为多少?2)温度计浸在某种沸腾的化学溶液中时,水银柱的长度为25.4cm,求溶液的温度。
解:假设水银柱长度随温度线性增加。
则1℃间隔的水银柱长度为424100−=ΔΔz t =5.00 ℃/cm 1) 在室温为22℃时水银柱的长度为=+=ΔΔ+5/224/0ztt z 8.4 cm2) 水银柱的长度为25.4cm时,溶液的温度为=×−=ΔΔ×−=5)44.25()(0ztz z t 107 ℃1-6如图所示,一垂直放置的汽缸内存有气体。
普通物理学热力学答案PPT课件
第11页/共74页
目录 结束
解:(1)
M Q =Δ E =
M
i
RΔ T = 2 C Δ T
2
V
mol
Q
ΔT =
=
500
2C
5
V 2× 2 × 8.31
= 12K
T = T + Δ T = 120C
0
M
V
(2)
Q =A =
R T ln
2
T
TM
0
V
mol
1
V
ln
2=
V
1
Q
T
M RT
500 =
2×8.31×273
= 8.31×353×ln2
= 2033 J
Q = Q + Q =Δ E + A
1
2
1
2
=1246+2033=3279J
第18页/共74页
目录 结束
V
(2)
A = A = R T ln
1
0
V
0
= 8.31×293×ln2
Δ E = C ΔT
2
V
5
= 2 × 8.31
×60
= 1678 J
(3) p
=
C
1 (
V
1
1 )
V
2
(2)
pV = R T
C =R T
V
C T=
RV
T= 1
C
RV 1
T= 2
C
RV 2
V >V
2
1
T <T
2
1
第16页/共74页
热力学习题与答案(原件)讲解
材料热力学习题1、阐述焓H 、内能U 、自由能F 以及吉布斯自由能G 之间的关系,并推导麦克斯韦方程之一:T P PST V )()(∂∂-=∂∂。
答: H=U+PV F=U-TS G=H-TS U=Q+W dU=δQ+δWdS=δQ/T, δW=-PdV dU=TdS-PdVdH=dU+PdV+VdP=TdS+VdP dG=VdP-SdTdG 是全微分,因此有:TP P TP ST V ,PT G T P G ,T V P G T P T G P S T G P T P G )()()()()()(2222∂∂-=∂∂∂∂∂=∂∂∂∂∂=∂∂∂∂=∂∂∂∂∂-=∂∂∂∂=∂∂∂因此有又而2、论述: 试绘出由吉布斯自由能—成分曲线建立匀晶相图的过程示意图,并加以说明。
(假设两固相具有相同的晶体结构)。
由吉布斯自由能曲线建立匀晶相图如上所示,在高温T 1时,对于所有成分,液相的自由能都是最低;在温度T 2时,α和L 两相的自由能曲线有公切线,切点成分为x1和x2,由温度T 2线和两个切点成分在相图上可以确定一个液相线点和一个固相线点。
根据不同温度下自由能成分曲线,可以确定多个液相线点和固相线点,这些点连接起来就成为了液相线和固相线。
在低温T 3,固相α的自由能总是比液相L 的低,因此意味着此时相图上进入了固相区间。
3、论述:通过吉布斯自由能成分曲线阐述脱溶分解中由母相析出第二相的过程。
第二相析出:从过饱和固溶体α中(x0)析出另一种结构的β相(xβ),母相的浓度变为xα. 即:α→β+ α1α→β+ α1 的相变驱动力ΔGm的计算为ΔGm=Gm(D)-Gm(C),即图b中的CD段。
图b中EF是指在母相中出现较大为xβ的成分起伏时,由母相α析出第二相的驱动力。
4、根据Boltzman方程S=kLnW,计算高熵合金FeCoNiCuCrAl和FeCoNiCuCrAlTi0.1(即FeCoNiCuCrAl各为1mol,Ti为0.1mol)的摩尔组态熵。
第一章化学热力学习题参考答案
第一章 化学热力学习题参考答案1. 封闭体系中的理想气体由初态{P 1, V 1, T 1 },分别经以下四个过程:(1) 等温可逆膨胀; (2) 等温恒外压膨胀;(3) 绝热可逆膨胀;(4) 绝热恒外压膨胀;到具有相同体积V 2的终态。
请在PV 图上表示出四个过程所做的功。
并比较其做功的大小。
解:由状态{P 1, V 1, T 1 }到具有相同体积V 2的终态,(1)等温可逆膨胀 (2)等温恒外压膨胀 (3)绝热可逆膨胀 (4)绝热恒外压膨胀过程的PV 图如下所示(1):AB 线下的面积即为过程(1)所做的功[W(1)]; (2):DB 线下的面积即为过程(2)所做的功[W(2)]; (3):AC 线下的面积即为过程(3)所做的功[W(3)]; (4):EF 线下的面积即为过程(4)所做的功[W(4)];由图可以看出:W(1)>W(2);W(1)>W(3);W(1)>W(4);W(2)>W(4);W(3)>W(4)。
2. 证明封闭体系等压热容(C p )与等容热容(C v )存在如下关系:[()]()P V T V H P C C V P T∂∂-=-+∂∂ 证明如下:因为(,)H H T P = 则有∂∂⎛⎫⎛⎫=+⎪ ⎪∂∂⎝⎭⎝⎭P TH H dH dT dP T P 在恒容条件下:V =+P P T V H H H P T T T ∂∂∂∂⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭H U PV =+又U ()则 V V P T VPV H H P T T T P T ∂∂∂∂∂⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=+ ⎪ ⎪ ⎪ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭U ()=+移项得: P V T V VH H P PV T T P T T ∂∂∂∂∂⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=V P VT VH P C C P T ⎡⎤∂∂⎛⎫⎛⎫-=- ⎪ ⎪⎢⎥∂∂⎝⎭⎝⎭⎣⎦=V P V T VH P C C P T ⎡⎤∂∂⎛⎫⎛⎫--⎪ ⎪⎢⎥∂∂⎝⎭⎝⎭⎣⎦即3. 令 H = H(T, P) 和 S = S(T, P), 根据热力学关系式推导以下关系式:(1)2211[()]T P P P T P VH C dT T V dP T∂∆=+-+∂⎰⎰ (2)2211[()]T P PP T P C V S dT dP T T∂∆=+-∂⎰⎰解答:(1)式证明:()()因为 p T H H dH dT dp T p∂∂=+∂∂ () (1)T HCpdT dp p∂=+∂ dH TdS Vdp =+又()()T T H ST V p p∂∂=+∂∂则 (2) ()()T P S Vp T∂∂=-∂∂且有麦克斯韦关系式 (3) 将(2)和(3)式代入(1)式得:[()]p P VdH C dT T V dp T∂=+-+∂ 积分得:2211[()]T P P P T P VH C dT T V dP T∂∆=+-+∂⎰⎰ (2)式证明:因为()()(4)P T S SdS dT dP T P∂∂=+∂∂ 将(3)式代入(4)式得:()[()](5)P p S VdS dT dP T T∂∂=+-∂∂据dH TdS VdP =+得:()P H T S ∂=∂,即()()P P H T T T S∂∂=∂∂ 因而有:1()()(6)P P P C S HT T T T∂∂==∂∂将(6)式代入(5)式得:[()](7)P P C VdS dT dP T T∂=+-∂对(7)式积分得:2211[()]T P P P T P C VS dT dP T T∂∆=+-∂⎰⎰4. 证明卡诺循环中证明:卡诺循环P-V 图如下:Q 2卡诺循环经如下过程(理想气体) 1、等温可逆膨胀22U 0T Q W ∆=+=,2222121lnV T V V Q W PdV nRT V =-==⎰ 2、绝热可逆膨胀1,112()Q V U Q W C T T ∆=+=-,,10,Q Q U W =∆=,113222311Q V V nRT V WPdV V γγ-⎡⎤⎛⎫⎢⎥==- ⎪-⎢⎥⎝⎭⎣⎦⎰3、等温可逆压缩Q 211U 0T Q W ∆=+=4411313lnV T V V Q W PdV nRT V =-==⎰ 4、绝热可逆压缩2,221()Q V U Q W C T T ∆=+=- 220,,Q Q U W =∆=,214213411Q V V nRT V WPdV V -⎡⎤⎛⎫⎢⎥=-=- ⎪-⎢⎥⎝⎭⎣⎦⎰γγ 12,1,2,Q Q U U W W ∆=-∆=-可知则12144323,V V V VV V V V ==则有即或:根据绝热可逆过程方程PV γ=常数可得:1423V V V V = 整个循环过程中:2,11,221T Q T Q T T W W W W W W W =+++=+2211,T T W Q W Q ==又2421131232221lnln =ln V VnRT nRT V V Q Q W VQ Q nRT V η++==故有1423V V V V =又1221222=Q Q T T W Q Q T η+-==所以有5. 理想气体从始态(P 1, V 1, T 1)到终态 (P 2, V 2, T 2),设计三条不同路径,计算熵变,并证明三条路径所得结果一致。
工程热力学课后作业答案
p734-1 1kg 空气在可逆多变过程中吸热40kJ ,其容积增大为1102v v =,压力减少为8/12p p =,设比热为定值,求过程中内能旳变化、膨胀功、轴功以及焓和熵旳变化。
解:热力系是1kg 空气过程特性:多变过程)10/1ln()8/1ln()2/1ln()1/2ln(==v v p p n =0.9由于T c q n ∆=内能变化为R c v 25==717.5)/(K kg J •v p c R c 5727===1004.5)/(K kg J •=n c ==--v v c n kn c 51=3587.5)/(K kg J •n v v c qc T c u /=∆=∆=8×103J膨胀功:u q w ∆-==32 ×103J轴功:==nw w s 28.8 ×103J焓变:u k T c h p ∆=∆=∆=1.4×8=11.2 ×103J熵变:12ln 12lnp p c v v c s v p +=∆=0.82×103)/(K kg J •4-2 有1kg 空气、初始状态为MPa p 5.01=,1501=t ℃,进行下列过程:(1)可逆绝热膨胀到MPa p 1.02=;(2)不可逆绝热膨胀到MPa p 1.02=,K T 3002=;(3)可逆等温膨胀到MPa p 1.02=;(4)可逆多变膨胀到MPa p 1.02=,多变指数2=n ;试求上述各过程中旳膨胀功及熵旳变化,并将各过程旳相对位置画在同一张v p -图和s T -图上解:热力系1kg 空气(1) 膨胀功:])12(1[111k k p p k RT w ---==111.9×103J熵变为0(2))21(T T c u w v -=∆-==88.3×103J12ln 12ln p p R T T c s p -=∆=116.8)/(K kg J •(3)21ln1p p RT w ==195.4×103)/(K kg J • 21ln p p R s =∆=0.462×103)/(K kg J • (4)])12(1[111n n p p n RT w ---==67.1×103J n n p p T T 1)12(12-==189.2K 12ln 12ln p p R T T c s p -=∆=-346.4)/(K kg J •4-3 具有1kmol 空气旳闭口系统,其初始容积为1m 3,终态容积为10 m 3,当时态和终态温度均100℃时,试计算该闭口系统对外所作旳功及熵旳变化。
热力学课程习题解答-109页精选文档
目录第一章 (1)第二章 (18)第三章 (258)第一章 温 度1-1 在什么温度下,下列一对温标给出相同的读数:(1)华氏温标和摄氏温标;(2)华氏温标和热力学温标;(3)摄氏温标和热力学温标? 解:(1)Q 9325F t t =+∴当F t t =时,即可由9325t t =+,解得325404t ⨯=-=- 故在40c -o 时 F t t =(2)又Q 273.15T t =+ ∴当F T t =时 则即9273.15325t t +=+ 解得:241.155301.444t ⨯== ∴273.15301.44574.59T K =+= 故在574.59T K =时,F T t =(3)Q 273.15T t =+ ∴若T t = 则有273.15t t += 显而易见此方程无解,因此不存在T t =的情况。
1-2 定容气体温度计的测温泡浸在水的三相点槽内时,其中气体的压强为50mmHg 。
(1)用温度计测量300K 的温度时,气体的压强是多少? (2)当气体的压强为68mmHg 时,待测温度是多少? 解:对于定容气体温度计可知:()273.15trPT P K P = (1) 115030055273.16273.16tr P T P mmHg ⨯===(2) 2268273.16273.1637250tr P T KK K P === 1-3 用定容气体温度计测得冰点的理想气体温度为273.15K ,试求温度计内的气体在冰点时的压强与水的三相点时压强之比的极限值。
题1-4图解:根据00lim ()273.16limtr tr P P trP T T P K P →→==已知 冰点273.15T K =你∴0273.15lim0.99996273.16273.16tr P trP T KP K K →==。
1-4 用定容气体温度计测量某种物质的沸点。
原来测温泡在水的三相点时,其中气体的压强500tr P mmHg =;当测温泡浸入待测物质中时,测得的压强值为734P mmHg =,当从测温泡中抽出一些气体,使tr P 减为200mmHg 时,重新测得293.4P mmHg =,当再抽出一些气体使tr P 减为100mmHg 时,测得146.68P mmHg =.试确定待测沸点的理想气体温度.解:根据273.16trPT K P =333146.68273.16273.16400.67100tr P T KK K P === 从理想气体温标的定义:0273.16limtr P trPT K P →=依以上两次所测数据,作T-P 图看趋势得出0tr P →时,T 约为400.5K 亦即沸点为400.5K. 1-5 铂电阻温度计的测量泡浸在水的三相点槽内时,铂电阻的阻值为90.35欧姆。
工程热力学-第三章作业答案
p1 = 2068.4kPa,V1 = 0.03m3
T1
=
p1V1 mR
=
2068.4×103 × 0.03 1× 287
= 216.2K
由题意,可知:
p2 = p1 = 2068.4kPa,T2 = 2T1 = 2× 216.2 = 432.4K
根据理想气体状态方程,可得:
V2 = T2 = 2 V1 T1
第三章作业答案
3-1 解: (1)取礼堂中的空气为热力系统,此时为闭口系 根据闭口系统能量方程
Q = ΔU +W
因为没有作功故 W=0;热量来源于人体散热;热力学能的增加等于人体散热。
ΔU = Q = 2000× 400× 20 = 2.67 ×105 KJ 60
(2)取礼堂中的空气和人为热力系统,此时为闭口绝热系 根据闭口系统能量方程
3-10
解:
(1)设风机的出口温度为 tout ,取风机为控制体,属稳定流动开口系统 由稳定流动系统能量方程:
Q
=
ΔH
+
1 2
mΔc2
+
mgΔz
+ Ws
忽略风机动能、位能的变化,可得:
Q = ΔH +Ws
由题意,可知: Q = 0,Ws = −1kW
•
即 m cp (tout − t1) −1000 = 0
系统储存能增量: uδ m
可得: dU = hinδ min − δWg
积分得: (m2u2 − m1u1) + Wg = minhin
因容器开始时为真空,则有 m1 = 0;u1 = 0; min = m2 可知: m2u2 + Wg = m2hin KK(1) Wg = pAL = p2V2 = m2RT2 KK(2)
热力学习题与解答
习题提示与答案第一章基本概念及定义1-1试确定表压力为0.1 kPa 时U 形管压力计中的液柱高度差。
(1)液体为水,其密度为1 000 kg/m 3;(2)液体为酒精,其密度为789 kg/m 3。
提示:表压力数值等于U 形管压力计显示的液柱高度的底截面处液体单位面积上的力,g h p ρ∆=e 。
答案:(1)mm 10.19=∆水h (2)mm 12.92=∆酒精h 。
1-2测量锅炉烟道中真空度时常用斜管压力计。
如图1-17所示,若α=30°,液柱长度l =200 mm ,且压力计中所用液体为煤油,其密度为800 kg/m 3,试求烟道中烟气的真空度为多少mmH 2O(4 ℃)。
提示:参照习题1-1的提示。
真空度正比于液柱的“高度”。
答案:()C 4O mmH 802v =p 。
1-3在某高山实验室中,温度为20 ℃,重力加速度为976 cm/s 2,设某U 形管压力计中汞柱高度差为30 cm ,试求实际压差为多少mmHg(0 ℃)。
提示:描述压差的“汞柱高度”是规定状态温度t =0℃及重力加速度g =980.665cm/s 2下的汞柱高度。
答案:Δp =297.5mmHg(0℃)。
1-4某水塔高30 m ,该高度处大气压力为0.098 6 MPa ,若水的密度为1 000 kg/m 3,求地面上水管中水的压力为多少MPa 。
提示:地面处水管中水的压力为水塔上部大气压力和水塔中水的压力之和。
答案:Mpa 8 0.392=p 。
1-5设地面附近空气的温度均相同,且空气为理想气体,试求空气压力随离地高度变化的关系。
又若地面大气压力为0.1 MPa ,温度为20 ℃,求30 m 高处大气压力为多少MPa 。
提示:h g p p ρ-=0→T R h g p p g d d -=,0p 为地面压力。
答案:MPa 65099.0=p 。
1-6某烟囱高30 m ,其中烟气的平均密度为0.735 kg/m 3。
热学部分作业全部答案.ppt
∴
dT = (p dV + Vdp) / (5R)
绝热过程中用热力学第一定律可得:
CV dT = -p dV
25
状态方程: pV = 5RT
∴
dT = (p dV + Vdp) / (5R)
绝热过程中用热力学第一定律可得:
CV dT = -p dV 由上两式消去dT
-p dV = (21/2)R (p dV + Vdp) / (5R)
bc : V0 9T0
3V0 Tc
Tc
27T0
30
Qab CV Qbc C
(Tb Ta ) p (Tc Tb )
iR i2(29T0
T0
)
2 R(27T0
12RT0 9T0 )
45RT0
Qca Eca Wca 方法1
Eca
CV
(Ta
Tc )
3 2
R(T0
27T0 )
的摩尔热容量C =________。(气体的定容摩尔热容量 为已知量)
12
pV n paVan (n 1)
Wab
Vb pdV
Va
Vb Va
paVan Vn
dV
paVan V n1 Vb
n 1
Va
paVan n1
(Va n1
Vbn1 )
paVa pbVb n1
R(Ta Tb )
p F
N
Px
2 Nmv
S t S
S
45
18
M 2mol
45
M1mol
19 3p ,
4.95102 m / s
20
3p v2
1.04kg
热力学作业答案2.ppt
S1 0
对于等容升温过程,其熵变
S2
dQ T
dE T
CV
T1 dT T T2
CV
ln T1 T2
又因为 T1V1 1 T2V2 1
综上可得 T3=1 2T2=9 2m MR Q+3 2T0
3.单原子分子理想气体作如图所示循环,bc为等温过 程,在bc中吸热140J,试求:
(1)在一次循环过程中系统从外界吸收的热量;
(2)在一次循环过程中系统向外界放出的热量;
(3)循环效率 。
解:
Qab
i 2 (PbVb PaVa )
P(105Pa)
压电强热都丝是对气p体0 加体热积,都传是给V气0 温体度的都热是量T为0 Q今,通达过到A平室衡中时的
A室的体积恰为B室的2倍,试求A、B两室中气体的温
度解:
对A气体
4 (P0,V0 ,T0 ) (P1, 3 V0 ,T2 )
P0V0
P1
4 3
V0
P0
4
P1
T0
T2
T0 3 T2
对B气体
(
P0,V0
(3)循环效率
P(105Pa)
M
解: Q2 Qca C p (Ta Tc )
2.0
b
i2 2 (PaVa PcVc )
250J
1.0 a
c
O 1.0 2.0 V(10-3m3)
Q1 Q2 13.8%
Q1
4、将热机与热泵组合在一起的暖气设备称为动力暖设备,其中带 动热泵的动力由热机燃料燃烧对外做的功来提供。热泵从天然蓄水
m M
RTa
20
Pa
第一章化学热力学习题参考答案
第一章 化学热力学习题参考答案1. 封闭体系中的理想气体由初态{P 1, V 1, T 1 },分别经以下四个过程:(1) 等温可逆膨胀; (2) 等温恒外压膨胀;(3) 绝热可逆膨胀;(4) 绝热恒外压膨胀;到具有相同体积V 2的终态。
请在PV 图上表示出四个过程所做的功。
并比较其做功的大小。
解:由状态{P 1, V 1, T 1 }到具有相同体积V 2的终态,(1)等温可逆膨胀 (2)等温恒外压膨胀 (3)绝热可逆膨胀 (4)绝热恒外压膨胀过程的PV 图如下所示(1):AB 线下的面积即为过程(1)所做的功[W(1)]; (2):DB 线下的面积即为过程(2)所做的功[W(2)]; (3):AC 线下的面积即为过程(3)所做的功[W(3)]; (4):EF 线下的面积即为过程(4)所做的功[W(4)];由图可以看出:W(1)>W(2);W(1)>W(3);W(1)>W(4);W(2)>W(4);W(3)>W(4)。
2. 证明封闭体系等压热容(C p )与等容热容(C v )存在如下关系:[()]()P V T V H P C C V P T∂∂-=-+∂∂ 证明如下:因为(,)H H T P = 则有∂∂⎛⎫⎛⎫=+⎪ ⎪∂∂⎝⎭⎝⎭P TH H dH dT dP T P 在恒容条件下:V =+P P T V H H H P T T T ∂∂∂∂⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭H U PV =+又U ()则 V V P T VPV H H P T T T P T ∂∂∂∂∂⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=+ ⎪ ⎪ ⎪ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭U ()=+移项得: P V T V VH H P PV T T P T T ∂∂∂∂∂⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=V P VT VH P C C P T ⎡⎤∂∂⎛⎫⎛⎫-=- ⎪ ⎪⎢⎥∂∂⎝⎭⎝⎭⎣⎦=V P V T VH P C C P T ⎡⎤∂∂⎛⎫⎛⎫--⎪ ⎪⎢⎥∂∂⎝⎭⎝⎭⎣⎦即3. 令 H = H(T, P) 和 S = S(T, P), 根据热力学关系式推导以下关系式:(1)2211[()]T P P P T P VH C dT T V dP T∂∆=+-+∂⎰⎰ (2)2211[()]T P PP T P C V S dT dP T T∂∆=+-∂⎰⎰解答:(1)式证明:()()因为 p T H H dH dT dp T p∂∂=+∂∂ () (1)T HCpdT dp p∂=+∂ dH TdS Vdp =+又()()T T H ST V p p∂∂=+∂∂则 (2) ()()T P S Vp T∂∂=-∂∂且有麦克斯韦关系式 (3) 将(2)和(3)式代入(1)式得:[()]p P VdH C dT T V dp T∂=+-+∂ 积分得:2211[()]T P P P T P VH C dT T V dP T∂∆=+-+∂⎰⎰ (2)式证明:因为()()(4)P T S SdS dT dP T P∂∂=+∂∂ 将(3)式代入(4)式得:()[()](5)P p S VdS dT dP T T∂∂=+-∂∂据dH TdS VdP =+得:()P H T S ∂=∂,即()()P P H T T T S∂∂=∂∂ 因而有:1()()(6)P P P C S HT T T T∂∂==∂∂将(6)式代入(5)式得:[()](7)P P C VdS dT dP T T∂=+-∂对(7)式积分得:2211[()]T P P P T P C VS dT dP T T∂∆=+-∂⎰⎰4. 证明卡诺循环中证明:卡诺循环P-V 图如下:Q 2卡诺循环经如下过程(理想气体) 1、等温可逆膨胀22U 0T Q W ∆=+=,2222121lnV T V V Q W PdV nRT V =-==⎰ 2、绝热可逆膨胀1,112()Q V U Q W C T T ∆=+=-,,10,Q Q U W =∆=,113222311Q V V nRT V WPdV V γγ-⎡⎤⎛⎫⎢⎥==- ⎪-⎢⎥⎝⎭⎣⎦⎰3、等温可逆压缩Q 211U 0T Q W ∆=+=4411313lnV T V V Q W PdV nRT V =-==⎰ 4、绝热可逆压缩2,221()Q V U Q W C T T ∆=+=- 220,,Q Q U W =∆=,214213411Q V V nRT V WPdV V -⎡⎤⎛⎫⎢⎥=-=- ⎪-⎢⎥⎝⎭⎣⎦⎰γγ 12,1,2,Q Q U U W W ∆=-∆=-可知则12144323,V V V VV V V V ==则有即或:根据绝热可逆过程方程PV γ=常数可得:1423V V V V = 整个循环过程中:2,11,221T Q T Q T T W W W W W W W =+++=+2211,T T W Q W Q ==又2421131232221lnln =ln V VnRT nRT V V Q Q W VQ Q nRT V η++==故有1423V V V V =又1221222=Q Q T T W Q Q T η+-==所以有5. 理想气体从始态(P 1, V 1, T 1)到终态 (P 2, V 2, T 2),设计三条不同路径,计算熵变,并证明三条路径所得结果一致。
热力学作业答案
所作的功A= 268J,放出热量Q2= 732J 。
9. 对单原子分子理想气体,下面各式代表什么物
理意义? (R为摩尔气体常量,T为气体温度)
(1) 3 RT : 1mol 理想气体的内能
;
2
(2) 3 R :
5. 若在某个过程中,一定量的理想气体内能E随
压强p的变化关系为一直线(延长线过E-p图原
点)则该过程为 A.等温过程
E
m M
CVT
E
B.等压过程 m i RT
C.等容过程 D.绝热过程
M2 i PV
2
p
6. 室温双原子分子理想气体,在等压膨胀时,
系统对外作功与从外界吸收热量之比A/Q 是
A.1/3 C.2/5
B.1/4 D.2/7 A / Q R / Cp
7.一理想气体经过一循环过程ABCA,如图所示,
AB为等温过程,BC是等体过程,CA是绝热过程,
则该循环效率可用下列面积之比来表示
A.
面积(1) 面积(2)
B.
面积(1) 面积(1) 面积(2)
C.
面积(1) 面积(1) 面积(2)
D.不能用面积来表示
= 0.69 )。求:(1)状态的状态参量;(2)求循环效率。
(2) b→c等体升温 吸热
Qbc
M
CV (Tc
Tb
)
3 2
8.31(600
300)
3.7 103
J
c→a等温膨胀 吸热
Qca
M
RT lnVa Vc
8.31 600 ln
40 20