3 平面任意力系习题一
理论力学习题册答案
第一章静力学公理与受力分析(1)一.是非题1、加减平衡力系公理不但适用于刚体.还适用于变形体。
()2、作用于刚体上三个力的作用线汇交于一点.该刚体必处于平衡状态。
()3、刚体是真实物体的一种抽象化的力学模型.在自然界中并不存在。
()4、凡是受两个力作用的刚体都是二力构件。
()5、力是滑移矢量.力沿其作用线滑移不会改变对物体的作用效果。
()二.选择题1、在下述公理、法则、原理中.只适于刚体的有()①二力平衡公理②力的平行四边形法则③加减平衡力系公理④力的可传性原理⑤作用与反作用公理三.画出下列图中指定物体受力图。
未画重力的物体不计自重.所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画。
b(杆ABa(球A ))d(杆AB、CD、整体)c(杆AB、CD、整体))e(杆AC、CB、整体)f(杆AC、CD、整体四.画出下列图中指定物体受力图。
未画重力的物体不计自重.所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画。
)a(球A、球B、整体)b(杆BC、杆AC、整体第一章 静力学公理与受力分析(2)一.画出下列图中指定物体受力图。
未画重力的物体不计自重.所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画。
WADB CE Original FigureAD B CEWWFAxF AyF BFBD of the entire frame)a (杆AB 、BC 、整体)b (杆AB 、BC 、轮E 、整体)c (杆AB 、CD 、整体 )d (杆BC 带铰、杆AC 、整体)e(杆CE、AH、整体)f(杆AD、杆DB、整体)g(杆AB带轮及较A、整体)h(杆AB、AC、AD、整体第二章平面汇交和力偶系一.是非题1、因为构成力偶的两个力满足F= - F’.所以力偶的合力等于零。
()2、用解析法求平面汇交力系的合力时.若选用不同的直角坐标系.则所求得的合力不同。
()3、力偶矩就是力偶。
()二.电动机重P=500N.放在水平梁AC的中央.如图所示。
3第三章平面任意力系
固定端(插入端)约束
说明: ①认为Fi 这群力在同一平面内; ② 将Fi向A点简化得一力和一力偶; ③FA方向不定可用正交分力FAx, Fay 表示; ④ FAy, FAx, MA为固定端约束反力;
⑤ FAx, FAy限制物体平动, MA为限
制转动。
11
MO
§3-2 平面一般力系的简化结果 合力矩定理 y 简化结果:主矢 F ' R ,主矩 M O 。
∴ 力的直线方程为:
MO
x
FR '
x
O
x
670.1 x 232.9 y 2355 0
2355 当 y 0, x 3.5 m 670 .1
18
FR
§3-3 平面一般力系的平衡条件与平衡方程
F' 0 R MO 0
为力平衡,没有移动效应。 为力偶平衡,没有转动效应。
P
45
0
M A (F i ) 0 :
FC sin45 AC P AB 0
B
FAy
FAx
y
A
C
FAx 20.01kN ,
FAy 10.0kN
FC
x
FC 28.3kN
或: M C ( F i ) 0 : FAy AC P CB 0
22
o
例:求横梁A、B处的约束力。已知 M Pa, q, 解:1)AB杆 q M B A 2)受力分析
主矩MO 方向:方向规定 +
Fiy tg 方向: tg FRx Fix
1
FRy
1
大小: M O M O ( Fi ) , (与简化中心有关),(因主矩等于各力对简化中心取矩 的代数和)
平面任意力系习题
A
a
D
E
F
a
4m
B
1E
B
C
A
F
G
D
ll
6
6
a
a
题 3-28图
题3-29图
3-30.构架由杆 ACE 、DEF 、BCD 铰接而成的, 所受的力及几何尺寸如图所示,各杆的
自重不计,试求杆 BCD 在铰链 C 处给杆 ACE 的力。
D
A b
E a
C a
B
b
b
题 3-30图
3-31.如图所示的构架,起吊重物的重为 滑轮和杆的自重,几何尺寸如图,试求支座
B1
2
A
α
题 3-37图
4F 4F
F
3
a
1
F
2
a
a
a
a
a
题 3-36 图
()
3-9.桁架中的杆是二力杆。 ( )
3-10.静滑动摩擦力 F 应是一个范围值。 ( )
2. 填空题(把正确的答案写在横线上)
3-11.平面平行力系的平衡方程
n
n
M A (Fi ) 0
M B(Fi ) 0 ,
i1
i1
其限制条件
。
3-12. 题 3-12 图平面力系,已知: F1=F 2=F 3=F 4=F , M=Fa , a 为三角形边长,如以 A
C
A
l /2
l /2
l/6 B
题3-26图
3-27.均质杆 AB 重为 P1,一端用铰链 A
支与墙面上,并用滚动支座 C 维持平衡,另一端又与重为 P2 的均质杆 BD 铰接,杆 BD 靠
与光滑的台阶 E 上,且倾角为 α ,设 AC 2 AB , BE 2 BD 。试求 A 、 C 和 E 三处的约
第三章-平面任意力系
第三章 平面任意力系[习题3-1] x 轴与y 轴斜交成α角,如图3-23所示。
设一力系在xy 平面内,对y 轴和x 轴上的A 、B 两点有0=∑iA M ,0=∑iB M ,且0=∑iy F ,0≠∑ix F 。
已知a OA =,求B 点在x 轴上的位置。
解:因为0==∑iA A M M ,但0≠∑ix F ,即0≠R F ,根据平面力系简化结果的讨论(2)可知,力系向A 点简化的结果是:R F 是原力系的合力,合力R F 的作用线通过简化中心A 。
又因为0==∑iB B M M ,但0≠∑ix F ,即0≠R F ,根据平面力系简化结果的讨论(2)可知,力系向B 点简化的结果是:R F 是原力系的合力,合力R F 的作用线通过简化中心B 。
一个力系的主矢量是一个常数,与简化中心的位置无关。
因此,合力R F 的作用线同时能过A 、B 两点。
又因为0==∑iy Ry F F ,所以合力R F 与y 轴垂直。
即AB 与y 垂直。
由直角三角形OAB 可知,B 点离O 点的距离为: αcos ab =[习题3-2] 如图3-24所示,一平面力系(在oxy 平面内)中的各力在x 轴上投影之代数和等于零,对A 、B 两点的主矩分别为m kN M A ⋅=12,m kN M B ⋅=15,A 、B 两点的坐标分别为(2,3)、(4,8),试求该力系的合力(坐标值的单位为m)。
解:由公式(3-5)可知:)(212R O O O F M M M +=)(R B A B F M M M +=)()(Ry B Rx B A B F M F M M M ++=依题意0=Rx F ,故有:)(Ry B A B F M M M +=)24(1215-⨯+=Ry F 32=Ry F )(5.1kN F Ry = kN F F Ry R 5.1==)(85.112m F M a R A ===故C 点的水平坐标为:m x 6-=。
理论力学习题
班级姓名学号第一章静力学公理与受力分析(1)一.是非题1、加减平衡力系公理不但适用于刚体,还适用于变形体。
()2、作用于刚体上三个力的作用线汇交于一点,该刚体必处于平衡状态。
()3、刚体是真实物体的一种抽象化的力学模型,在自然界中并不存在。
()4、凡是受两个力作用的刚体都是二力构件.()5、力是滑移矢量,力沿其作用线滑移不会改变对物体的作用效果. ()二.选择题1、在下述公理、法则、原理中,只适于刚体的有( )①二力平衡公理②力的平行四边形法则③加减平衡力系公理④力的可传性原理⑤作用与反作用公理三.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触。
整体受力图可在原图上画。
)a(球A )b(杆ABd(杆AB、CD、整体)c(杆AB、CD、整体))e(杆AC、CB、整体)f(杆AC、CD、整体四.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画.)a(球A、球B、整体)b(杆BC、杆AC、整体班级 姓名 学号第一章 静力学公理与受力分析(2)一.画出下列图中指定物体受力图.未画重力的物体不计自重,所有接触处均为光滑接触.整体受力图可在原图上画.WADB CE Original FigureAD B CEWWFAxF AyF BFBD of the entire frame)a (杆AB 、BC 、整体)b (杆AB 、BC 、轮E 、整体)c (杆AB 、CD 、整体)d (杆BC 带铰、杆AC 、整体)e(杆CE、AH、整体)f(杆AD、杆DB、整体)g(杆AB带轮及较A、整体)h(杆AB、AC、AD、整体班级 姓名 学号第二章 平面汇交和力偶系一.是非题1、因为构成力偶的两个力满足F = — F ’,所以力偶的合力等于零。
( )2、用解析法求平面汇交力系的合力时,若选用不同的直角坐标系,则所求得的合力不同。
( )3、 力偶矩就是力偶。
平面任意力系习题答案
平面任意力系习题答案平面任意力系是指作用在物体上的力不满足平面力偶系或平面共面力系的条件,即力的作用线不在同一平面上,也不互相平行。
解决这类问题通常需要应用静力学的基本原理,如力的平衡条件、力矩平衡等。
习题1:已知一平面任意力系作用在刚体上,力F1=50N,方向为水平向右;力F2=30N,方向为竖直向上;力F3=40N,方向为与水平面成30度角斜向上。
求力系的合力。
答案:首先,将力F3分解为水平分量和竖直分量:- 水平分量:F3x = F3 * cos(30°) = 40 * (√3/2) = 20√3 N- 竖直分量:F3y = F3 * sin(30°) = 40 * (1/2) = 20 N然后,计算合力的水平分量和竖直分量:- 水平合力:Fx = F1 + F3x = 50 + 20√3 N- 竖直合力:Fy = F2 + F3y = 30 + 20 N最后,计算合力的大小和方向:- 合力大小:F = √(Fx^2 + Fy^2) = √((50 + 20√3)^2 + (30 + 20)^2) N- 方向:与水平面夹角θ满足tan(θ) = Fy / Fx习题2:一个平面任意力系作用在刚体上,已知力F1=60N,作用点A;力F2=40N,作用点B;力F3=50N,作用点C。
A、B、C三点不共线。
求力系的合力矩。
答案:首先,计算各力对任意一点(如A点)的力矩:- 力矩M1 = 0(因为力F1作用在A点,力矩为0)- 力矩M2 = F2 * (B到A的距离)- 力矩M3 = F3 * (C到A的距离)然后,计算合力矩:- 合力矩M = M1 + M2 + M3由于题目没有给出具体的距离,我们无法计算出具体的数值。
但是,上述步骤提供了计算合力矩的方法。
习题3:已知一平面任意力系作用在刚体上,力F1和F2的合力为100N,方向与F1相反,求F1和F2的大小。
答案:设F1的大小为xN,F2的大小为yN。
平面任意力系习题
第3章 平面任意力系习题1、就是非题(对画√,错画×)3-1、平面任意力系的主矢0∑='=n1i i R F F =时,则力系一定简化一个力偶。
( )3-2、平面任意力系中只要主矢0∑≠'=n1i i R F F =,力系总可以简化为一个力。
( )3-3、平面任意力系中主矢的大小与简化中心的位置有关。
( )3-4、平面任意力系中主矩的大小与简化中心的位置无关。
( ) 3-5、作用在刚体上的力可以任意移动,不需要附加任何条件。
( )3-6、作用在刚体上任意力系若力的多边形自行封闭,则该力系一定平衡。
( ) 3-7、平面任意力系向任意点简化的结果相同,则该力系一定平衡。
( )3-8、求平面任意力系的平衡时,每选一次研究对象,平衡方程的数目不受限制。
( ) 3-9、桁架中的杆就是二力杆。
( )3-10、静滑动摩擦力F 应就是一个范围值。
( ) 2、填空题(把正确的答案写在横线上)3-11、平面平行力系的平衡方程0)(0)(i i ==∑∑==F F n1i Bn1i A MM ,其限制条件 。
3-12、题3-12图平面力系,已知:F 1=F 2=F 3=F 4=F ,M=Fa ,a 为三角形边长,如以A 为简化中心,则最后的结果其大小 ,方向 。
3-13、平面任意力系向任意点简化除了简化中心以外,力系向 简化其主矩不变。
3-14、平面任意力系三种形式的平衡方程: 、 、 。
3-15、判断桁架的零力杆。
题3-13a 图 、题3-13b 图 。
3F 4题3-12图题3-13图(a)(b)3、简答题3-16、平面汇交力系向汇交点以外一点简化,其结果如何?(可能就是一个力?可能就是一个力偶?或者就是一个力与一个力偶?),则此力系的最终结果就是什么?题3-21图'题3-22图(2)(1)C5KN3-18、为什么平面汇交力系的平衡方程可以取两个力矩方程或者就是一个投影方程与一个力矩方程?矩心与投影轴的选择有什么条件?3-19、如何理解桁架求解的两个方法?其平衡方程如何选取?3-20、摩擦角与摩擦因数的关系就是什么?在有摩擦的平衡问题时应如何求解?4、计算题3-21、已知F 1=150N,F 2=200N,F 3=300N,N 200='=F F ,求力系向点O 简化的结果,合力的大小及到原点O 的距离。
工程力学-平面任意力系习题
平面任意力系习题
一、选择题
1、在刚体同一平面内A,B,C 三点上分别作用1F ,2F ,3F 三个力,并构成封闭三角形,如图所示,则此力系的简化结果是(
)。
A、力系平衡;
B 、力系可以简化为合力;
C 、力系可以简化为合力偶;
D 、力系简化为一个合力和一个合力偶。
1
F 2
F 3F 2、某一平面平行力系各力的大小、方向和作用线的位置如图,则此力系的简化结果与简化中心的位置()
A 、无关;B、有关;C、无法确定。
3、若某一平面任意力系对其作用面内某一点之矩的代数和等于零,即
()∑=0F M A 时,则该力系的简化结果为(
)。
A、一定平衡;
B、一个合力偶;
C、不可能简化为合力偶;
D、一个合力和一个合力偶。
二、填空题
1、平面任意力系三矩式平衡方程限制条件(
)。
2、平面任意力系二矩式平衡方程限制条件(
)。
3、平面平行力系有(
)个独立的平衡方程;面任意力系有()个独立的平衡方
程。
三、计算题
1、已知:F、M、q、L,各杆自重不计,试求A、C处约束反力。
2、求图示组合梁支座的约束反力。
gxt3第三章工程力学课后题答案
第三章 平面任意力系3-1 如图(a )所示,已知F 1=150N ,F 2=200N ,F 3=300N ,N 200='=F F 。
求力系向O 点简化的结果,并求力系合力的大小及其与原点O 的距离d 。
解:(1)将力系向O 点简化N6.43752300101200211505210121321R-=---=---=∑='F F F F F x xN6.16151300103200211505110321321R-=+--=+--=∑='F F F F F y y()()N F F F y x 5.4666.1616.437222R 2R R=-+-='+'='设主矢与x 轴所夹锐角为θ,则有61206.4376.161arctanarctanRR '︒=--=''=x y F F θ因为0R <'x F ,0R <'y F ,所以主矢F 'R在第三象限。
08.02002.0513001.02115008.02.0511.021)(31⨯-⨯+⨯=⨯-⨯+⨯==∑F F F M M O O F(a)(b) (c)将力系向O 点简化的结果如图(b )。
(2)因为主矢和主矩都不为零,所以此力系可以简化为一个合力如图(c ),合力的大小mm 96.4504596.05.46644.21N 5.466RR R ====='=m F M d F F o3-2重力坝的横截面形状如图(a )所示。
为了计算的方便,取坝的长度(垂直于图面)l =1m 。
已知混凝土的密度为2.4×103 kg/m 3,水的密度为1×103 kg/m 3,试求坝体的重力W 1,W 2和水压力P 的合力F R ,并计算F R 的作用线与x 轴交点的坐标x 。
解:(1)求坝体的重力W 1,W 2和水压力P 的大小kNN dy y dy y q P mN y dyy dy y q 5.9922105.9922245108.9)45(108.9)()45(108.9)45(8.91011)(3234534533=⨯=⨯⨯=⋅-⨯=⋅=-⨯=-⨯⨯⨯⨯⨯=⎰⎰(2)将坝体的重力W 1,W 2和水压力P 向O 点简化,则kN 5.9922R==∑='P F F x xkN 3057621168940821R-=--=--=∑='W W F F y y()kN 7.32145305765.9922222R 2R R=-+='+'='y x F F FkN N W kN N W 2116810211688.9104.2136)545(2194081094088.9104.218)545(332331=⨯=⨯⨯⨯⨯⨯+==⨯=⨯⨯⨯⨯⨯+=(a) (b) (c)设主矢与x 轴所夹锐角为θ,则有︒=-=''= 02.725.992230576arctanarctanRR x y F F θ因为0R >'x F ,0R <'y F ,所以主矢F 'R在第四象限,如图(b )。
平面任意力系习题汇总
习题3-1.求图示平面力系的合成结果,长度单位为m。
解:(1)取O点为简化中心,求平面力系的主矢:
求平面力系对O点的主矩:
(2)合成结果:平面力系的主矢为零,主矩不为零,力针。
习题3-2.求下列各图中平行分布力的合力和对于A点之矩。
解:(1)平行力系对A点的矩是:
解:(1)研究AB杆,受力分析(注意BC是二力杆),画受力图:
列平衡方程:
(2)研究铰C,受力分析(注意BC、CD、CE均是二力杆),画受力图:
由力三角形:
其中:
(3)研究OE,受力分析,画受力图:
列平衡方程:
习题3-10.图示液压升降装置,由平台和两个联动机构所组成,联动机构上的液压缸承受相等的力(图中只画了一副联动机构和一个液压缸)。连杆EDB和CG长均为2a,杆端装有滚轮B和C,杆AD铰结于EDB的中点。举起重量W的一半由图示机构承受。设W=9800N,a=0.7m,l=3.2m,求当θ=60o时保持平衡所需的液压缸的推力,并说明所得的结果与距离d无关。
解:(1)研究整体,受力分析(注意1杆是二力杆),画受力图:
列平衡方程:
解方程组:
(2)研究1杆(二力杆),受力分析,画受力图:
由图得:
(3)研究铰C,受力分析,画受力图:
由力三角形得:
杆1和杆3受压,杆2受拉。
习题3-9.图示破碎机传动机构,活动颚板AB=60cm,设破碎时对颚板作用力垂直于AB方向的分力P=1kN,AH=40cm,BC=CD=60cm,OE=10cm;求图示位置时电机对杆OE作用的转矩M。
图中的几何关系是:
(3)列平衡方程
(4)解方程组:
反力实际方向如图示;
(5)研究BC杆,是二力杆,画受力图:
工程力学课后习题答案第四章 平面任意力系
第四章 平面任意力系习 题4.1F TyxOF N解:软绳AB 的延长线必过球的中心,力N F 在两个圆球圆心线连线上N F 和T F 的关系如图所示:AB 于y 轴夹角为θ 对小球的球心O 进行受力分析:0,s i n c o sT NXF F θθ==∑ 0,cos sin T N Y F F W θθ=+=∑ s i n R r R dθ+=+ c o s L r R dθ+=+()()()()22T R d L r F W R r L r ++=+++ ()()()()22N R d R r F W R r L r ++=+++4.2。
AyF AxF 解:对AB 杆件进行受力分析:120,sin cos022AL MW W L θθ=-=∑解得: 212a r c s i n WW θ=对整体进行受力分析,由:20,c o s 02A x X F W θ=-=∑210,sin 02A y YF W W θ=+-=∑ 22121Ay W W F W +=4.3 解:A yF A xF B yA xF A yF B yFBA xF A yF A xF AM(a )受力如图所示0,0.8cos 300AxX F =-=∑0,0.110.80.150.20ABy MF =⨯+⨯-=0,10.8sin 300AyBy Y FF =+--=∑, 1.1,0.3Ax By Ay F F KN F KN ===(b )受力如图所示0,0.40AxX F =+=∑0,0.820.5 1.60.40.720ABy MF =⨯-⨯-⨯-=∑0,20.50AyBy Y F F =+-+=∑ 0.4,0.26,0.24Ax By Ay F K N F K N F K N =-==(c )受力如图所示0,sin 300AxB X F F =-=∑0,383cos 300AB MF =+-=∑0,cos 3040AyB Y FF =+-=∑2.12, 4.23,0.3Ax By Ay F K N F K N F K N ===(d )受力如图所示()()133q x x =- 0,0Ax X F ==∑()()33010,3 1.53A y YF q x dx x dx K N ===-=∑⎰⎰()30,0AA M M xq x dx =+=∑⎰()3013 1.53AMx x dx K N m =-=-∙⎰4.4AyF解:立柱底部A 处的受力如图所示,取截面A 以上的立柱为研究对象0,0AxX F qh =+=∑ 20Ax F qh K N =-=-0,0AyY F G F =--=∑ 100Ay F G F K N =+=0,0hA A M M qxdx Fa =--=∑⎰ 211302AMqh F a K N m =+=⋅4.5解:设A ,B 处的受力如图所示, 整体分析,由:()210,2202AB y MaF qa W a W a e =----=∑415By F K N =0,20Ay By Y F F W qa =+--=∑ 1785A y F K N =取BC 部分为研究对象()0,0CBy Bx M aF F a W a e =+--=∑ 191Bx F K N =-再以整体为研究对象0,191Ax XF KN ==∑4.7。
理论力学习题
第一章静力学公理与受力分析(1)一.是非题1、加减平衡力系公理不但适用于刚体,还适用于变形体。
()2、作用于刚体上三个力的作用线汇交于一点,该刚体必处于平衡状态。
()3、刚体是真实物体的一种抽象化的力学模型,在自然界中并不存在。
( )4、凡是受两个力作用的刚体都是二力构件。
()5、力是滑移矢量,力沿其作用线滑移不会改变对物体的作用效果。
()二.选择题1、在下述公理、法则、原理中,只适于刚体的有()①二力平衡公理②力的平行四边形法则③加减平衡力系公理④力的可传性原理⑤作用与反作用公理三.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触。
整体受力图可在原图上画。
)a(球A )b(杆ABd(杆AB、CD、整体)c(杆AB、CD、整体)- 1 -)e(杆AC、CB、整体)f(杆AC、CD、整体四.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触.多杆件的整体受力图可在原图上画。
)a(球A、球B、整体)b(杆BC、杆AC、整体- 2 -- 3 -第一章 静力学公理与受力分析(2)一.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触。
整体受力图可在原图上画。
WADB CE Original FigureAD B CEWWFAxF AyF BFBD of the entire frame)a (杆AB 、BC 、整体)b (杆AB 、BC 、轮E 、整体)c (杆AB 、CD 、整体)d (杆BC 带铰、杆AC 、整体)e(杆CE、AH、整体)f(杆AD、杆DB、整体)g(杆AB带轮及较A、整体)h(杆AB、AC、AD、整体- 4 -- 5 -第二章 平面汇交和力偶系一.是非题1、因为构成力偶的两个力满足F = — F ',所以力偶的合力等于零。
( )2、用解析法求平面汇交力系的合力时,若选用不同的直角坐标系,则所求得的合力不同。
平面任意力系习题
第3章 平面任意力系习题1.是非题(对画√,错画×)3-1.平面任意力系的主矢0∑='=n1i i R F F =时,则力系一定简化一个力偶。
( ) 3-2.平面任意力系中只要主矢0∑≠'=n1i i R F F =,力系总可以简化为一个力。
( ) 3-3.平面任意力系中主矢的大小与简化中心的位置有关。
( )3-4.平面任意力系中主矩的大小与简化中心的位置无关。
( ) 3-5.作用在刚体上的力可以任意移动,不需要附加任何条件。
( )3-6.作用在刚体上任意力系若力的多边形自行封闭,则该力系一定平衡。
( ) 3-7.平面任意力系向任意点简化的结果相同,则该力系一定平衡。
( )3-8.求平面任意力系的平衡时,每选一次研究对象,平衡方程的数目不受限制。
( ) 3-9.桁架中的杆是二力杆。
( )3-10.静滑动摩擦力F 应是一个X 围值。
( ) 2.填空题(把正确的答案写在横线上) 3-11.平面平行力系的平衡方程0)(0)(i i ==∑∑==F F n1i Bn1i A MM ,其限制条件。
3-12.题3-12图平面力系,已知:F 1=F 2=F 3=F 4=F ,M=Fa ,a 为三角形边长,如以A 为简化中心,则最后的结果其大小,方向。
3-13.平面任意力系向任意点简化除了简化中心以外,力系向简化其主矩不变。
3-14.平面任意力系三种形式的平衡方程:、 、。
3-15.判断桁架的零力杆。
题3-13a 图、题3-13b 图 。
3F 4题3-12图题3-13图(a)(b)3.简答题3-16.平面汇交力系向汇交点以外一点简化,其结果如何?(可能是一个力?可能是一个力偶?或者是一个力和一个力偶?)3-17.平面力系向任意点简化的结果相同,则此力系的最终结果是什么?题3-21图'题3-22图(2)(1)C5KN3-18.为什么平面汇交力系的平衡方程可以取两个力矩方程或者是一个投影方程和一个力矩方程?矩心和投影轴的选择有什么条件?3-19.如何理解桁架求解的两个方法?其平衡方程如何选取?3-20.摩擦角与摩擦因数的关系是什么?在有摩擦的平衡问题时应如何求解? 4.计算题3-21.已知F 1=150N ,F 2=200N ,F 3=300N ,N 200='=F F ,求力系向点O 简化的结果,合力的大小及到原点O 的距离。
工程力学第三章:平面任意力系
水平尾翼的约束。
车刀
利用平面任意力系的简化讨论固定端约束(以雨搭为例):
Fi
A
雨搭
雨搭
简化为一个平面任意力系
MA
A
FA
雨搭
FAy
MA
A
FAx
雨搭
向A处简化,简化结果是 一个主矢加一个主矩
主矢方向待定,用两正交分 量表示
例1:已知F1=150N,F2=200N,F3=300N,F=F ́=200N。求此力 系向原点O简化的结果,并求力系的合力。
2
M=0
FR′≠0
3
M=0
合力
合力
合力作用线通过简化中心
合力作用线距离简化中心距离
4
M≠0
d M O / FR
第三种和第四种结果属于同一种情形。是简化中心选择的不同 引起的。
四、合力矩定理
可以证明,M O ( FR ) M O ( Fi )
i 1
n
由于简化中心可任取,因此上式有普遍意义,可描述为:平 面任意力系的合力对作用面内任一点之矩等于力系中各分力 对于同一点之矩的代数和。
4、在列平衡方程时,最好将力矩方程的矩心取为两个未知力的 交点,而对投影方程的投影轴的选取,应尽可能使其与某些未知 力垂直,为什么? 答:避免解联立方程,使方程尽量简单。
5、在等腰直角三角形上的A、B、C三点分别作用三个力,各力 的大小和方向如图所示。问该力系是否平衡?为什么?
问题引入:平面任意力系研究物体或物系在受到相关力系作用
下的平衡问题。
吊车:工程中吊车的
起重载荷如何进行计
算?
破碎机:鄂式破碎机是矿山机械中常见的机械设备,颚板作用 给矿石的作用力应如何进行计算?
第03章工程力学 习题答案
三、平面任意力系简明回答下列问题;试用力系向已知点简化的方法说明图所示的力F 和力偶(F 1,F 2)对于轮的作用有何不同?在轮轴支撑A 和B 处的约束反力有何不同?设F 1=F 2=F /2,轮的半径为r 。
[答]:考虑约束,则力和力偶对轮的作用相同;而A 处的约束反力大小等于F ,B 处的约束反力大小等于0。
怎样判定静定和静不定问题?图中所示的六种情况那些是静定问题,那些是静不定问题?为什么? 静定问题: (c)、(e)静不定问题:(a)、(b)、(d)、(f)(d)(e) (f)P图示平面力系,其中P 1=150N ,P 2=200N ,P 3=300N ,。
力偶的臂等于8cm ,力偶的力F =200N 。
试将平面力系向O 点简化,并求力系合力的大小及其与原点O 的距离d 。
[解] X X X XR X 6.4373005220010115022321-=⨯-⨯-⨯-=++==∑Y Y Y YR Y .1613005120010315022321-=⨯+⨯-⨯-=++==∑合力R 大小为:N R R R Y X 5.466)6.161()6.437(2222=-+-=+=方向: ︒===3.2037.0arctg R R arctgXY α合力偶矩大小为:Nm F MMOO44.2108.02002.0513001.022150)(=⨯-⨯⨯+⨯⨯==∑与原点距离为: cm RM d O 96.45==A 点之矩。
[解](a) 对A 点之矩为: (b) 对A 点之矩为:(c) 对A 点之矩为:22121qaa qa MA-=⨯-= 2313221qLLqL MA-=⨯-= 2211221)2(61)(3121Lq q Lq q L q MA+-=---=(a)求下列各梁和刚架的支座反力,长度单位为m 。
[解](a)AB 梁受力如图(a)所示: 045cos 2:0=︒⨯+=∑AXX=︒⨯-+=045sin 2:0BA N Y Y=⨯︒⨯-⨯+-=0645sin 245.1:0B AN M联立方程组可解得: ;KN 50.2;KN 09.1;KN 41.1=-=-=B A AN Y X(b) AB 梁受力如图(b)所示: ∑==0:0AXX∑=⨯⨯--+=031212:0B A N Y Y ∑=⨯⨯⨯-⨯+⨯=013121212:0B AN M解得:;K N 25.0;K N 75.3;K N 0-===B A AN Y X(C)AC 梁受力如图(c)所示: ∑==0:0AXX∑=-⨯-=0534:0A Y Y∑=⨯⨯-⨯-=05.13435:0AAMM由上述方程可解得:;KNm 33;KN 17;KN 0===AA AMY XG =1.8KN ,其它重量不计,求铰链A 的约束反力和杆BC 所受的力。
理论力学习题之欧阳德创编
第一章静力学公理与受力分析(1)一.是非题1、加减平衡力系公理不但适用于刚体,还适用于变形体。
()2、作用于刚体上三个力的作用线汇交于一点,该刚体必处于平衡状态。
()3、刚体是真实物体的一种抽象化的力学模型,在自然界中并不存在。
()4、凡是受两个力作用的刚体都是二力构件。
()5、力是滑移矢量,力沿其作用线滑移不会改变对物体的作用效果。
()二.选择题1、在下述公理、法则、原理中,只适于刚体的有()①二力平衡公理②力的平行四边形法则③加减平衡力系公理④力的可传性原理⑤作用与反作用公理三.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触。
整体受力图可在原图上画。
)a(球A)b(杆AB)c(杆AB、CD、整体)d(杆AB、CD、整体)e(杆AC、CB、整体)f(杆AC、CD、整体四.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画。
)a(球A、球B、整体)b(杆BC、杆AC、整体第一章静力学公理与受力分析(2)一.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触。
整体受力图可在原图上画。
)a(杆AB、BC、整体)b(杆AB、BC、轮E、整体)c(杆AB、CD、整体)d(杆BC带铰、杆AC、整体)e(杆CE、AH、整体)f(杆AD、杆DB、整体)g(杆AB带轮及较A、整体)h(杆AB、AC、AD、整体第二章平面汇交和力偶系一.是非题1、因为构成力偶的两个力满足F= -F’,所以力偶的合力等于零。
()2、用解析法求平面汇交力系的合力时,若选用不同的直角坐标系,则所求得的合力不同。
()3、力偶矩就是力偶。
()二.电动机重P=500N,放在水平梁AC的中央,如图所示。
梁的A端以铰链固定,另一端以撑杆BC 支持,撑杆与水平梁的交角为300。
忽略梁和撑杆的重量,求撑杆BC 的内力及铰支座A 的约束力。
()(kN 5F ,kN 5F BC A 压力-==)三. 拔桩机如图,图示位置DC 水平、AC 垂直,若︒=4α,N 400P =,求木桩所受的力F ,并求两力的比值:?P /F =(204P /F ,kN 8.81F ==)四.一大小为50N 的力作用在圆盘边缘的C 点上,如图所示,试分别计算此力对B ,A ,O 三点之矩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 平面任意力系(习题一)
4.l 计算下列各图中F 力对O 点之矩。
图题4-1
4.2 分别求下图所示三个力偶的合力偶矩,已知;1180F F N '==,22130F F N '==,33100F F N '==;170d cm =,260d cm =,350d cm =。
图题4-2
4.3求图示梁上分布荷载对B 点之矩。
图题4.3
4.4各梁受荷载情况如图题2.3所示,试求
(1)各力偶分别对A 、B 点的矩。
(2)各力偶中二个力在x 、y 轴上的投影。
图题4.4
4.5 求图题4.5示各梁的支座反力
图题4.5 图题4.6
4.6 如图题4.6所示,已知皮带轮上作用力偶矩80m N m =⋅,皮带轮的半径0.2d m =,皮带紧拉边力N F T 5001=,求平衡时皮带松边的拉力2
T F 。
4.7 如图所示,四个力作用于O 点,设F 1=50N ,F 2=30N ,F 3=60N ,F 4=100N 。
试分别用几何法和解析法求其合力。
题4.7 (a)图 题4.7 (b)图
4.8 拖动汽车需要用力F=5kN ,若现在改用两个力F1和F2,已知F1与汽车前进方向的夹角
20=α,分别用几何法和解析法求解:
(1)若已知另外一个作用力F2与汽车前进方向的夹
角 30=β,试确定F1和F2的大小; (2)欲使F2为最小,试确定夹角β及力F1、F2的
大小。
图题4.8
4.9 支架由杆AB 、AC 构成,A 、B 、C 三处都是铰链约束。
在A 点作用有铅垂力F ,用两种方法求在图示两种情况下杆AB 、AC 所受的力,并说明所受的力是拉还是压。
题4.9图 题4.10图
4.10 简易起重机如图所示,重物W=100N ,设各杆、滑轮、钢丝绳自重不计,摩擦不计,A 、B 、C 三处均为铰链连接。
求杆件AB 、AC 受到的力。