小学数学思想方法

合集下载

小学数学思想方法

小学数学思想方法

小学数学思想方法一、整体观念思想方法整体观念是指将问题看作一个整体,并从整体中进行思考和分析。

在学习数学知识和解决数学问题时,学生应该培养整体观念,即从整体去理解和把握问题。

比如,在学习分数的概念时,学生可以通过将一块糖分成几份来理解分数的含义,而不仅仅是记住分数的定义。

二、归纳和演绎思想方法归纳是从具体的事例中总结出一般规律,而演绎是根据一般规律推出具体的结论。

在学习数学知识时,学生应该培养归纳和演绎的思维方法,即从具体例子中归纳出一般规律,然后用这个规律去解决其他类似的问题。

比如,在学习加法运算时,学生可以通过多个具体的例子来总结出加法的规律,再用这个规律去解决其他的加法问题。

三、抽象思维方法抽象是指将事物的共同属性提炼出来,形成概念或规律。

在学习数学知识时,学生应该培养抽象思维方法,即将具体的问题抽象化为数学符号或概念,用符号或概念来表示并解决问题。

比如,在学习几何图形时,学生可以将具体的图形抽象成几何图形的概念,并用几何图形的属性来解决相关问题。

四、逻辑思维方法逻辑思维是指根据前提和推理规则,进行合乎逻辑的推理和判断。

在学习数学知识和解决数学问题时,学生应该培养逻辑思维方法,即根据已知条件和数学规则,进行逻辑推理和判断,得出正确的结论。

比如,在解决代数方程的问题时,学生可以根据方程的性质和运算规则,进行逻辑推理,得出方程的解。

五、实践思维方法实践思维是指通过实际操作和体验,来加深对数学知识的理解和掌握。

在学习数学知识时,学生应该注重实践思维,即通过实际的物体、实际的活动和实际的问题来引导学生进行数学思维和解决问题。

比如,在学习分数的概念时,学生可以通过将物体切割成几份,比较几份的大小,加深对分数大小关系的理解。

小学数学思想方法是数学学习的基础,也是培养学生数学思维能力和解决问题能力的关键。

学生在学习数学时,应该注重培养这些思想方法,并灵活运用到解决问题中,从而提高学习效果。

通过培养这些思想方法,可以使学生更好地理解和掌握数学知识,提高数学水平。

小学数学中常见的数学思想方法有哪些

小学数学中常见的数学思想方法有哪些

小学数学中常见的数学思想方法有哪些1.归纳法:通过观察一般情况,从而推断出普遍规律。

例如,通过寻找一些数列的规律,利用归纳法可以推出数列的通项公式。

2.逆向思维:通过逆向思考问题,从结果出发逆推回起始状态。

逆向思维常用于解决逻辑推理和问题求解。

例如,将一个求和问题转化为找到使得等式成立的数。

3.分解与组合:将一个大问题分解为若干个较小的子问题,然后通过解决子问题得到解决整个问题的方法。

这种思想方法常用于解决复杂的问题,可以降低问题的难度。

4.比较与类比:通过比较或类比不同的情况或对象,找到相似之处或变化的规律,从而解决问题。

例如,可以通过类比找到两个数的最大公约数和两个数的最大公倍数之间的关系。

5.推理与证明:通过逻辑推理和数学证明解决问题。

推理与证明是数学思维中最基本和最重要的方法之一、通过推理和证明,可以建立数学定理和推理规则,从而解决更复杂的问题。

6.抽象与泛化:将问题抽象为一般性质或模式,从而简化问题,找到问题的本质。

抽象与泛化是数学思想中的核心思维方法之一,通过抽象和泛化,可以建立数学概念和定理。

7.反证法:通过反证得到正证结论。

反证法常用于证明一些结论的唯一性或否定性。

通过假设结论不成立,然后推导出与已知条件矛盾的结果,从而得到结论的成立性。

8.猜想与验证:通过猜想和验证的方法解决问题。

猜想与验证是一种探索性的方法,通过发现规律和验证猜想的正确性,找到问题的解决方法。

9.近似与估算:通过近似和估算的方法解决问题。

近似与估算是数学思维中的实用方法之一,可以在缺乏精确计算方法时得到近似的结果。

以上是小学数学中常见的数学思想方法,请注意,数学思想方法的具体应用还受到问题性质、题型以及学生认识和思维水平的影响,因此,教学中还应根据具体情况灵活运用。

小学学习数学的17个思想方法

小学学习数学的17个思想方法

小学学习数学的17个思想方法数字是我们日常生活中不可或缺的一部分,数学作为数字的语言,也是我们学习能力的重要组成部分。

小学是我们数学基础的阶段,通过小学阶段的学习,我们可以掌握数学的基础知识和思维方法,从而为高中甚至更高阶段的学习打下坚实的基础。

下面是小学学习数学的17个思想方法:1.将数字与真实物体相联系。

在小学阶段,数学中的数字可以看成是代表真实物体的象征。

例如:数字“2”可以代表两个橙子或两个球等等。

将数字与真实物体相联系可以帮助学生更好的理解和记忆常见数字和数量。

2.使用模型和工具来展示数字。

当学生看到一个模型来代表一个或多个数字,学生可以更好的理解数字和数量之间的关系。

3. 数量和顺序。

在小学阶段,学生可以通过数数和排列物品来学习数量和顺序的概念。

4. 认知几何图形。

几何图形是数学的一个重要分支。

在小学阶段,可以通过模型、实物等来学习认知几何图形的概念。

5.三角形和角度。

通过基本的三角形和角的知识,可以为学生学习后续数学知识打下坚实的基础。

6.测量和单位。

通过测量和使用单位,学生可以了解物理量以及与之相关的数字。

7. 时间和日历。

通过学习时间和日历,学生可以了解日期、天数、月份和时间的概念。

8. 有理数。

学生可以通过简单的有理数加、减、乘、除、比较等来掌握有理数的基本运算法则。

9. 等式和不等式。

等式和不等式是进一步学习数学的核心,学生可以通过这些数学知识来理解数字和其它学科之间的关系。

10. 分数和小数。

分数和小数在日常中都会使用,在小学阶段,学生可以通过简单的分数和小数练习掌握其基本的计算方法。

11. 坐标轴。

坐标轴是数学的基础图形之一,它可以帮助学生了解平面上的点、向量和位置。

12. 图表和统计。

图表和统计可以帮助学生更好地了解数学和实际生活中的关系,从而更好的理解数学知识。

13. 平均和中位数。

平均值和中位数是常见的统计概念,在小学阶段,可以通过对物品的数数和操作来学习平均值和中位数的计算方法。

1小学数学中常见的数学思想方法有哪些

1小学数学中常见的数学思想方法有哪些

1小学数学中常见的数学思想方法有哪些数学思想方法是指在解决数学问题时所运用的思维方式和方法步骤。

下面是小学数学中常见的数学思想方法:1.观察法:通过观察问题中的数据和现象,发现问题的规律和特点。

可以通过观察图形、数据表格、实物等来推测规律。

2.归纳法:通过观察若干个具体的数学问题,总结问题中的共同特点,得出一般规律。

采用归纳法可以从特例推广到一般性结论。

3.推理法:通过逻辑推理的方式,从已知的前提出发,得出结论。

可以采用直接推理法、间接推理法、逆否命题推理法等。

4.分类法:将问题中的元素或对象进行分类,找出每个类别的共性和差异性。

通过分类的方法,可以更好地理解和解决问题。

5.拆解法:将复杂的问题拆解成多个简单的小问题进行分析解决。

通过拆解问题的方法,可以更好地理清思路和解题思路。

6.类比法:将问题中的数学概念和方法与已知的类似问题进行对比,从而找到解决问题的方法和思路。

7.假设法:在解决问题时,可以先进行一定的假设,然后验证是否成立。

通过假设法可以引导学生尝试不同的解题思路。

8.反证法:通过假设问题的反面情况,证明原命题的成立。

采用反证法可以理解和解决一些反常或特殊情况下的问题。

9.逆向思维:将问题的要求逆转或倒过来思考。

逆向思维可以帮助学生从不同的角度思考问题,发现问题的本质。

10.前推法:从已知条件出发,通过按照题目要求的步骤和顺序逐步推导,最终得出结论。

11.空想法:通过想象和设想一些与实际情况不一样的情景或条件,以拓宽解决问题的思路。

12.再化归纳法:对已知的规律和经验进行归纳总结,再应用到新的问题中。

通过再化归纳法可以更好地理解和应用数学知识。

这些数学思想方法在小学数学中常常被运用。

学生通过学习和应用这些方法,可以培养出系统的数学思维和解决问题的能力。

小学数学思想方法有哪些

小学数学思想方法有哪些

小学数学思想方法有哪些?1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。

如直线上的点(数轴)与表示具体的数是一一对应。

2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。

假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。

3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。

在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。

4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。

如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。

如定律、公式、等。

5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。

如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。

类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。

6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。

如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。

7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。

如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。

又如三角形可以按边分,也可以按角分。

不同的分类标准就会有不同的分类结果,从而产生新的概念。

对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。

小学数学中常见的数学思想方法有哪些?

小学数学中常见的数学思想方法有哪些?

小学数学中常见的数学思想方法有哪些?答;1、集合思想。

集合思想对数学的影响巨大,很多的数学分支都需要用集合语言表达。

①教学中要注重集合概念的渗透。

例如,认识“2”的教学中,例举多个两个物体,这多个两个物体的所在类的代表就是“2”。

又如六头猪和六只狗等所在类的代表就是“6”。

这里的2、6就是集合的基数。

”②教学中要注重集合关系的渗透。

如:一一对应关系,包含关系等。

③教学中要注重集合运算的渗透。

如:加法运算其实就是并集,减法运算的结果就是差集。

2、数形结合思想。

数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。

数与形之间的联系即称为数形结合,或形数结合。

数形结合,主要指的是数与形之间的一一对应关系。

数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的。

即“以形助数”或“以数解形”。

作为一种数学思想方法,数形结合的应用一般可分为两种情形:或者借助于数的精确性来阐明形的某些属性,或者借助形的几何直观性来阐明数之间某种关系。

数形结合的思想方法是数学教学内容的主线之一,应用数形结合的思想,可以解决很多数学问题。

①利用数与形的对应来理解数学概念。

例如:认识分数的教学。

②利用数与形的对应解应用题。

例如:画线段图解应用题。

③坐标思想。

用方程表示图形,沟通数形之间的关系。

在教学中要培养学生积极主动地利用数形结合的思想解决问题。

3、函数思想。

函数描述了自然界中量的依存关系,反映了一个事物随着另一个事物变化而变化的关系和规律。

函数的思想方法就是提取问题的数学特征,用联系和变化的观点提出数学对象,抽象其数学特征,建立函数关系,并利用函数的性质研究、解决问题的一种数学思想方法。

在小学阶段学习的对应关系,正、反比例关系中就蕴藏中基本的函数思想。

4、变换与转化思想。

变换与转化思想是中小学数学中最重要的数学思想,充分重视这种数学思想方法在解题中的应用,不但可使问题化繁为简、化难为易,而且还可以提高学生的思维品质,培养学生的创新能力。

小学数学中常见的数学思想方法有哪些

小学数学中常见的数学思想方法有哪些

小学数学中常见的数学思想方法有哪些?1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。

如直线上的点(数轴)与表示具体的数是一一对应。

2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。

假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。

3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。

在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。

4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。

如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。

如定律、公式、等。

5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。

如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。

类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。

6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。

如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。

7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。

如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。

又如三角形可以按边分,也可以按角分。

不同的分类标准就会有不同的分类结果,从而产生新的概念。

对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。

小学数学思想方法有哪些

小学数学思想方法有哪些

小学数学思想方法有哪些小学数学是培养学生数学思维能力和逻辑推理能力的重要阶段。

为了帮助学生培养正确的数学思想和方法,我们可以运用以下几种思想方法。

一、观察与发现思想方法二、综合思想方法综合思想方法强调把多种知识和方法进行综合运用,从而解决复杂的问题。

例如,在解决一个应用题时,学生可以结合整数、分数、小数等数的知识,运用四则运算的基本法则进行综合计算。

三、抽象思维方法抽象思维方法是指学生通过抽象事物的共同特点和规律,将问题进行归纳和概括,从而进行类比和推理。

例如,学生可以通过观察和比较三角形、四边形、五边形等多边形的特点,得出它们的共同规律,然后解决一些有关多边形的问题。

四、归纳与演绎思想方法归纳与演绎思想方法是指学生通过归纳和总结大量的具体事例和数据,从而发现其中的共同规律。

例如,学生可以通过观察和总结两个数之间的运算特点,得出数的运算规律,然后根据这个规律解决一些计算问题。

五、借助工具思想方法借助工具思想方法是指学生可以通过使用具体的工具,如尺子、天平等来帮助解决问题。

例如,在学习长度的比较时,学生可以使用尺子来测量和比较两个物体的长度,以便更直观地理解大小关系。

六、探究与实践思想方法探究与实践思想方法是指学生通过实际操作和探索,从而获得数学知识和解决问题的能力。

例如,在学习几何形状时,学生可以通过剪纸、折纸等手工活动,来探索不同形状的特点和性质。

以上是小学数学常用的思想方法,通过合理运用这些方法,可以帮助学生更好地理解和掌握数学知识,提高解决问题的能力。

同时,在教学中也需要注意灵活运用这些方法,根据学生的实际情况和能力发展的要求,选择适合的思想方法进行教学。

小学数学教材中蕴涵的7种常见数学思想方法

小学数学教材中蕴涵的7种常见数学思想方法

小学数学教材中蕴涵的7种常见数学思想方法1.归纳。

归纳是通过特例的分析引出普遍的结论。

在研究一般性问题时,先研究几个简单、个别的、特殊的情况,从中概括出一般的规律和性质,这种由部分到整体、由特殊到一般的推理被称为归纳。

小学数学中的有些数学问题是直接建立在类比之上的归纳,有些数学问题是建立在抽象分析之上的归纳。

小学阶段学生接触较多的是不完全归纳推理。

加法结合律,我们就采用了不完全归纳推理展开教学。

例如,28个男生在跳绳,17个女生在跳绳,23个女生在踢毽子。

求跳绳和踢毽子的一共有多少人,可以先求跳绳的人数列出算式(28+17)+23计算,也可以先求女生的人数列出算式28+(17+23)计算。

这两道算式的算理是等价的,得数也相同,因此可以写成等式(28+17)+23=28+(17+23)。

在这第一个实例中,学生看到的数学现象是不是普遍性的规律,需要在类似的情况中验证。

于是,我们让学生分别算一算(45+25)+13和45+(25+13)、(36+18)+22和36+(18+22),看看每组的两道算式是不是相等,两道算式中间能不能填上等号,再看看这些相等的算式有什么结构上的特点,猜想有这种结构特点的算式结果是否一定相等,通过实验发现第一个实例中的数学现象在类似的情况中同样存在。

接着,鼓励学生自己写出类似的几组算式,进行更多的验证,体验现象的普遍性。

学生通过进行类似的实验,在实验中概括出加法结合律,并用字母a、b、c分别表示三个加数,写成(a+b)+c= a+(b+c)。

这样,学生在学习加法结合律等的过程中,就经历了由具体到一般的抽象、概括过程,不仅可以发现数学规律、定理,而且能够初步感受归纳的思想方法,使思维水平得到提升。

2.演绎。

演绎与归纳相反,是从普遍性结论或一般性的前提推出个别或特殊的结论。

在研究个别问题时,以一般性的逻辑假设为基础,推出特定结论,这种从一般到特殊的推理被称为演绎。

在推理的形式合乎逻辑的条件下,应用演绎推理从真实的前提一定能推出真实的结论。

小学数学常见的数学思想方法

小学数学常见的数学思想方法

小学数学常见的数学思想方法在小学数学中,有一些常见的数学思想方法,这些方法不仅帮助学生理解和解决数学问题,还培养了他们的逻辑思维和问题解决能力。

本文将介绍一些常见的小学数学思想方法。

第一、归纳法归纳法是一种从特殊到一般的思维方法。

通过观察和分析特殊情况,再总结规律,推广到一般情况。

例如,学习排列组合时,可以先从2个数字的排列开始归纳,然后推广到更多数字的排列。

这样做可以帮助学生理解和记忆更抽象的概念。

第二、类比法类比法是通过寻找事物之间的共同特征,把问题转化为已知问题的方法。

例如,在学习解方程时,可以把方程看作一个天平,通过移项和化简,使方程两边平衡。

这种类比可以帮助学生把抽象的数学问题转化为更具体和易于理解的形式。

第三、分解法分解法是将复杂的问题分解为若干简单的子问题来解决的思维方法。

例如,在学习长除时,可以将被除数分解成各个位的数字,并逐位进行计算。

这种分解的思维方法可以帮助学生理清思路,简化问题,更容易得到答案。

第四、逆向思维法逆向思维法是从问题的结果出发,逆向推导出解决问题的方法。

例如,在学习排序时,可以先思考如何将数字从大到小排列,然后将步骤反转,即可得到从小到大排列的方法。

逆向思维法可以培养学生的逻辑思维和反向推理能力。

第五、模型法模型法是通过建立数学模型,把实际问题转化为数学问题来解决的思维方法。

例如,在学习面积时,可以通过绘制图形模型来计算面积。

这种方法可以帮助学生理解数学概念,并将数学应用于实际问题中。

第六、试错法试错法是通过尝试不同的方法和策略,找到解决问题的最优解的思维方法。

例如,在学习解方程时,可以尝试不同的代入法或变形法,直到找到满足方程的解。

试错法可以培养学生的探索精神和自主解题能力。

小学数学常见的数学思想方法多种多样,每种方法都有其独特的特点和适用范围。

学生在学习数学时,可以根据问题的性质和自己的思维特点选择合适的方法,培养灵活运用数学思想方法的能力。

通过不断练习和思考,学生可以提高数学思维能力,更好地理解和应用数学知识。

小学十大数学思想方法

小学十大数学思想方法

小学十大数学思想方法数学是一门抽象而又具体的学科,它是一种思维方式,也是一种解决问题的工具。

在小学阶段,数学思想方法的培养尤为重要,它不仅能够帮助学生更好地理解数学知识,还能够培养学生的逻辑思维能力和解决问题的能力。

下面,我们就来介绍小学十大数学思想方法。

1. 观察法。

观察是数学思维的起点,通过观察,学生可以发现问题的规律和特点,从而更好地解决问题。

例如,通过观察不同形状的图形,学生可以总结出它们的特点和性质,从而更好地理解几何知识。

2. 比较法。

比较是一种重要的思维方式,通过比较不同的数学对象,学生可以找出它们的相同点和不同点,从而更好地理解数学概念。

例如,比较不同大小的数值,可以帮助学生理解数值的大小关系。

3. 分类法。

分类是整理和归纳的一种重要方式,通过分类,学生可以将问题进行归类,找出其中的规律和特点。

例如,将不同形状的图形进行分类,可以帮助学生更好地理解图形的性质和特点。

4. 推理法。

推理是数学思维的核心,通过推理,学生可以从已知的条件出发,得出未知的结论。

例如,通过已知的几何定理,可以推导出一些未知的几何性质。

5. 归纳法。

归纳是从具体到一般的思维方式,通过归纳,学生可以从具体的事例中总结出一般的规律和结论。

例如,通过观察一系列数列的规律,学生可以总结出数列的通项公式。

6. 演绎法。

演绎是从一般到具体的思维方式,通过演绎,学生可以从一般的规律出发,得出具体的结论。

例如,通过已知的数学定理,可以推导出一些具体的数学问题的解法。

7. 抽象法。

抽象是数学思维的重要特点,通过抽象,学生可以将具体的问题转化为符号或者图形,从而更好地进行推理和计算。

例如,将实际问题转化为代数方程式,可以帮助学生更好地解决问题。

8. 反证法。

反证是一种重要的证明方法,通过反证,学生可以通过假设反命题,从而推导出矛盾,从而证明原命题的正确性。

例如,通过反证法可以证明平行线的性质。

9. 递归法。

递归是数学思维的一种重要方式,通过递归,学生可以通过递推关系得出数列的通项公式。

小学十大数学思想方法

小学十大数学思想方法

小学十大数学思想方法
1. 预测和推论:预测和推论是数学思想方法的重要部分。

小学生可以通过观察数据和图表来做出预测,并据此推断出结果。

2. 抽象和分类:数学思维可以通过分类和抽象来提高。

小学生可以按照特定的属性将事物分组,并将它们视为一个整体。

3. 排列和组合:排列和组合是掌握初级数学思维的重要步骤。

小学生可以利用排列和组合来解决问题,从而提高他们的思维能力。

4. 逻辑推理:数学思维方法中的逻辑推理是使小学生思考的关键。

通过逻辑推理,小学生可以理解和解决问题的思考逻辑。

5. 连续性和平滑性:在数学思维中,连续性和平滑性很重要。

小学生应能够察觉到不同形状和尺寸之间的变化。

6. 比较与对比:比较和对比可让小学生看到不同事物之间的共性和差异。

这种思维方式可以在计算能力和问题解决方面帮助他们。

7. 建模与测量:建模以及测量纪录对于小学生的数学思维发展也是至关重要的。

他们可以用模型来表示数学规律,并通过测量和比较得出结论。

8. 模式发现:模式发现是小学生学习数学的关键之一。

他们应该能够看到形式之间的关系,并识别出有规律的模式。

9. 变化和变形:变化和变形是数学思维方法中的关键。

小学生应该能够理解数学概念和数据之间的变化和变形。

10. 探索和发现:小学生应该主动去探索和发现,发现新的数学规律和规则。

在探索和发现过程中,他们可以更好地理解数学规律并得到更深刻的体验。

小学数学常用的16种解题思想方法

小学数学常用的16种解题思想方法

数学|小学数学常用的16种思想方法数学基础打得好,对将来的升学也有较大帮助。

但是数学的学习比较抽象,小学生在学习过程中会碰到一些“拦路虎”,掌握一些方法,这些就都不怕了。

1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。

如直线上的点(数轴)与表示具体的数是一一对应。

2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。

假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。

3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。

在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。

4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。

如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。

如定律、公式、等。

5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。

如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。

类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。

6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。

如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。

7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。

如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。

小学数学数学思想方法

小学数学数学思想方法

小学数学数学思想方法
数学思想方法指的是在解决数学问题时采用的思考方式和解题方法,小学数学的数学思想方法主要包括以下几点:
1. 归纳法:通过从个别情况到一般情况的推导,得出结论的方法。

2. 推理法:通过已知事实和逻辑思维,得出未知结论的方法。

3. 分类法:将问题分成不同的类别,然后分别考虑解决每个类别的方法。

4. 比较法:通过比较不同对象的共性和差异,得出结论的方法。

5. 探究法:通过探究问题,发现问题的规律,进而得到解决的方法。

6. 抽象化和数形结合法:将问题的内容抽象成符号和图形,通过数学符号和图形进行分析和推导,并得出解决问题的结论。

7. 借助辅助线和构造法:通过构造辅助线、辅助图形,或者借助几何构造,使解题变得简单。

8. 同步思维法:在解题的过程中,需要时常回顾已知信息和解题思路,以确保每一步操作都是正确的。

以上是小学数学的数学思想方法的基本内容。

学生在学习数学时,要注重培养这些思想方法,以提高数学素养和解题能力。

小学数学中常用的数学思想方法

小学数学中常用的数学思想方法

小学数学中常用的数学思想方法在小学数学教学中,常用的数学思想方法有以下几种:1.查找规律法:通过观察一系列数的特点,总结出它们之间的规律和规则。

例如,观察一个数列的每个项与前一项之间的关系,推理出数列的通项公式。

2.分类讨论法:对于一个问题,将其分为几种情况进行讨论,然后分别解决。

例如,求解一个实际问题中的数字运算题,可以将问题中的数字进行分类,分别计算后再进行合并。

3.反证法:当问题较难解决时,可以通过假设结论不成立,再推导出矛盾的结论,证明原结论一定成立。

例如,证明一个数是素数时,可以先假设该数是合数,然后推导出矛盾的结论。

4.归纳法:通过寻找一个问题的基本情况和递推关系,进行逐步推导,从而得出结论。

例如,通过归纳法可以证明等差数列的通项公式。

5.求同法:将问题中的数学关系与其他几个问题中的数学关系进行对比,从而找出相似之处。

例如,解决一个数学问题时,可以将其与类似的已解决问题进行比较,找到解决问题的方法。

6.分析法:将一个复杂的问题拆解成多个简单的部分,然后逐个分析解决。

例如,解决一个几何问题时,可以将其分解成多个几何图形,逐个进行研究和解决。

7.探究法:鼓励学生自主探索,通过实际操作和观察,发现问题的规律和解决方法。

例如,通过实际测量和比较,学生可以探究出相似三角形的性质。

8.逆向思维法:从问题的目标出发,反向思考解决问题的方法。

例如,当一个问题无法直接求解时,可以考虑从目标得出的信息反向推导,从而找到解决问题的线索。

9.列出方程法:通过将问题中的数学关系用方程式表示,转化为代数问题进行求解。

例如,解决一个关于两个未知数的问题时,可以先列出方程组,然后求解方程组得出结果。

10.图形化表示法:通过绘制图形来表示问题,直观地观察和推理问题的特点。

例如,在解决一个几何问题时,可以先绘制出对应的图形,再进行推理和求解。

以上是小学数学教学中常用的一些数学思想方法,帮助学生更好地理解和解决数学问题。

小学数学常用的16种思想方法

小学数学常用的16种思想方法

数学|小学数学常用的16种思想方法数学基础打得好,对将来的升学也有较大帮助。

但是数学的学习比较抽象,小学生在学习过程中会碰到一些“拦路虎”,掌握一些方法,这些就都不怕了。

1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。

如直线上的点(数轴)与表示具体的数是一一对应。

2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。

假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。

3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。

在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。

4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。

如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。

如定律、公式、等。

5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。

如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。

类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。

6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。

如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。

7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。

如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。

小学数学思想方法有哪些

小学数学思想方法有哪些

小学数学思想方法有哪些1、对应思想方法:对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。

如直线上的点(数轴)与表示具体的数是一一对应。

2、比较思想方法:比较思想是数学中常见的思想方法之一,也是促进同学思维发展的手段。

在教学分数应用题中,〔教师〕善于引导同学比较题中已知和未知数量变化前后的状况,可以帮助同学较快地找到解题途径。

3、符号化思想方法:用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。

如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。

如定律、公式、等。

2思维训练方法转化型:这是解决问题碰到障碍受阻时把问题由一种形式转换成另一种形式,使问题变得更简单、更清楚,以利解决的思维形式。

在教学中,通过该项训练,可以大幅度地提升同学解题能力。

如:某一卖鱼者规定,凡买鱼的人必须买筐中鱼的一半再加半条。

照这样卖法,4 人买了后,筐中鱼尽,问筐中原有鱼多少条?该题对一些没有受过转化思维训练的同学来说,会感到一筹莫展。

即使基础较好的同学也只能复杂的方程。

但经过转化思维训练后,同学就变得聪慧起来了,他们知道把买鱼人转换成1人,显然鱼1条;然后转换成2人,则鱼有3条;再3人,则7条;再4人,则15条。

系统型:这是把事物或问题作为一个系统从不同的层次或不同的角度去合计的高级整体思维形式。

在高年级除结合综合应用题以外还可编制许多智力训练题来培养同学系统思维能力。

如:1 2 3 4 5 6 7 8 9在不改变顺序前提下(即可以将几个相邻的数合在一起成为一个数,但不可以颠倒),在它们之间划加减号,使运算结果等于1OO。

象这道题就牵涉到系统思维的训练。

教师可引导同学把10 个数看成一个系统,从不同的层次去合计、第一层次:找100 的最接近数,即89 比100 仅少11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、符号化思想 1、符号化思想的应用。
用符号表示变化规律。 数列的变化规律:1,2,3,5,8,… 图形的变化规律。
2、符号化思想的教学。 “垂直与平行”

②③



a∥b或者b∥a

②③



a⊥bห้องสมุดไป่ตู้者b⊥a
二、化归思想
化归(转化)思想从小学到中学,数学知识呈 现一个由易到难、从简到繁的过程;然而,人们在 学习数学、理解和掌握数学的过程中,却经常通过 把陌生的知识转化为熟悉的知识、把繁难的知识转 化为简单的知识,从而逐步学会解决各种复杂的数 学问题。化归思想也是攻克各种复杂问题的法宝之 一。
这些是课堂教学的本源和精髓
——品《小学数学思想方法》
真正的教育是将在学校所学的知 识全忘掉,所剩下的。
——陶行知
在学生的脑力劳动中,摆在第 一位的并不是背书,而是让学生本 人进行思考。背书会使人变傻。
——苏霍姆林斯基
数学思想是数学学科发生、发 展的根本,是探索研究数学所依赖 的基础,也是数学课程教学的精髓, 内涵十分丰富。
直接分析:1千克苹果和2千克香蕉6.5元,那么可 得出2千克苹果和4千克香蕉13元;题中已知2千克 苹果和3千克香蕉11元。用13减去11得2,所以香 蕉的单价是每千克2元。再通过计算得苹果的单价 是每千克2.5元。
(4)化未知问题为已知问题。
案例1:水果商店昨天销售的苹果比香蕉的2倍多30千克,这 两种水果一共销售了180千克。销售香蕉多少千克?
一、符号化思想 九、统计思想
二、化归思想
十、分析法和综合法
三、模型思想
十一、概率思想
四、数形结合思想 十二、反证法
五、推理思想
十三、集合思想
六、方程和函数思想 十四、极限思想
七、几何变换思想 十五、假设法
八、分类讨论思想 十六、运筹思想
一、符号化思想 1、符号化思想的应用。 第一,能从具体情境中抽象出数量关系和变化规 律,并用符号表示。如:a+b=b+a 第二,理解符号所代表的数量关系和变化规律。 第三,会进行符号间的转换。 第四,能选择适当的程序和方法解决用符号所表 示的问题。
1
2
2
3
15米
5米
3
4
……
发现: 棵数=间隔数+1 间隔数=棵数-1
解决问题中的化归策略。
(2)化繁为简的策略。 案例2:把186拆分成两个自然数的和,怎 样拆分才能使拆分后的两个自然数的乘积 最大?187呢?
把186拆分成93和93, 93和93的乘积最大,乘 积为8649。
(2)化繁为简的策略。 案例3:你能快速口算85×85=, 95×95=,105×105=吗?
1、化归思想的具体应用。
二、化归思想
2、教学中的化归策略。
(1)下图是平行四边形停车位,它的 面积是( )。
A.7.5×4 B.7.5×6 C.6×4
王老师在教学时,用木条制成一个 长方形框教具,木条长18厘米,宽 15厘米。它的周长和面积各是多少? 如果把它拉成平行四边形,周长和 面积会怎样?
个位数是5的相等的两个数的乘积分为左 右两部分:左边为因数中5以外的数字乘 比它大1的数,右边为25(5乘5的积)。 所以85×85=7225,95×95=9025, 105×105=11025
解决问题中的化归策略。 (3)化实际问题为特殊的数学问题。 案例1:某旅行团队翻越一座山。上午9时 上山,每小时行3千米,到达山顶时休息1 小时。下山时,每小时行4千米,下午4时 到达山底。全程共行了20千米。上山和下 山的路程各是多少千米?
4、水果商店昨天销售的苹果是香蕉的2倍,销售的梨是 苹果的2倍。这三种水果一共销售了210千克。销售香蕉多 少千克?
期末测试体现转化数学思想的题目: 1、如下图,在推倒平行四边形面积公式的过 程中,这一过程体现了( )数学思想。这 一思想为后面学习三角形面积、梯形面积奠 定基础。
1


2

底 上底
3

下底
上底
平行四边形的面积 =底 ×高
三角形的面积 =底 ×高÷2
梯形的面积 =(上底 +下底)×高÷2
图1
图2
解决问题中的化归策略。 (1)化抽象问题为直观问题。
案例1:1
2
+1
4
+1
8
+ 1 ……=
16
1
解决问题中的化归策略。
(2)化繁为简的策略。
四年级(下册)第117---118页例1《植树问 题》。 例1:同学们要在全长100米的小路一边植树, 每隔5米种一棵树(两端要栽)。一共需要多 少棵树苗?
变式: 1、水果商店昨天销售的苹果比香蕉的2倍少30千克,这
两种水果一共销售了180千克。销售苹果多少千克? 2、水果商店昨天销售的香蕉比苹果的 1 多30千克,这
两种水果一共销售了180千克。销售苹果多2 少千克? 3、水果商店昨天销售的苹果是香蕉的2倍,销售的梨是
香蕉的3倍。这三种水果一共销售了180千克。销售香蕉多 少千克?
假设都是上山,那么总路程是18(6×3)千米, 比实际路程少算了2千米,所以,上山时间是4小 时。上山和下山的路程分别是12千米和8千米。
解决问题中的化归策略。 (3)化实际问题为特殊的数学问题。
案例2:李阿姨买了2千克苹果和3千克香蕉用了 11元,王阿姨买了同样价格的1千克苹果和2千克 香蕉,用了6.5元。每千克苹果和香蕉各多少钱?
数学思想和方法是数学知识在 更高层次上的抽象和概括,它蕴 涵在数学知识发生、发展和应用 的过程中。
高考考试大纲的说明
不懂得数学思想方法的数学教 师不是一个称职的教师。
——徐利治
数学思想和数学方法既有区别又有密切 联系。数学思想的理论和抽象程度要高一些, 而数学方法的实践性更强一些。人们实现数 学思想往往要靠一定的数学方法;而人们选 择数学方法,又要以一定的数学思想为依据。 因此,二者是有密切联系的。我们把二者合 称为数学思想方法。数学思想方法是数学的 灵魂,那么,要想学好数学、用好数学,就 要深入到数学的“灵魂深处”。
解决问题中的化归策略。 (2)化繁为简的策略。
全长 间隔长度 研究方法(线段图) 间隔段数 棵数
5米
5米
10米
5米
1
2
2
3
15米
5米
3
4
……
发现: 棵数=间隔数+1 间隔数=棵数-1
解决问题中的化归策略。 (2)化繁为简的策略。
全长 间隔长度 研究方法(线段图) 间隔段数 棵数
5米
5米
10米
5米
相关文档
最新文档